
TERRASTREAM: From Elevation Data to Watershed
Hierarchies∗

Andrew Danner
Swarthmore College

Swarthmore, PA, USA

adanner@cs.swarthmore.edu

Thomas Mølhave
University of Aarhus

Aarhus, Denmark

thomasm@daimi.au.dk

Ke Yi
Hong Kong U.S.T.

Kowloon, Hong Kong

yike@cse.ust.hk

Pankaj K. Agarwal
Duke University

Durham, NC, USA

pankaj@cs.duke.edu

Lars Arge
University of Aarhus

Aarhus, Denmark

large@madalgo.au.dk

Helena Mitasova
North Carolina State University

Raleigh, NC, USA

hmitaso@unity.ncsu.edu

ABSTRACT

We consider the problem of extracting a river network and a wa-
tershed hierarchy from a terrain given as a set of irregularly spaced
points. We describe TERRASTREAM, a “pipelined” solution that
consists of four main stages: construction of a digital elevation
model (DEM), hydrological conditioning, extraction of river net-
works, and construction of a watershed hierarchy. Our approach
has several advantages over existing methods. First, we design and
implement the pipeline so that each stage is scalable to massive data
sets; a single non-scalable stage would create a bottleneckand limit
overall scalability. Second, we develop the algorithms in ageneral
framework so that they work for both TIN and grid DEMs. Fur-
thermore, TERRASTREAM is flexible and allows users to choose
from various models and parameters, yet our pipeline is designed
to reduce (or eliminate) the need for manual intervention between
stages.

We have implemented TERRASTREAM and we present exper-
imental results on real elevation point sets, which show that our
approach handles massive multi-gigabyte terrain data sets. For
example, we can process a data set containing over 300 million
points—over 20GB of raw data—in under 26 hours, where most of
the time (76%) is spent in the initial CPU-intensive DEM construc-
tion stage.

∗Work in this paper was supported by ARO grant W911NF-04-1-0278.
Agarwal, Danner, and Yi are also supported by NSF under grants CCR-00-
86013, CCR-02-04118, and DEB-04-25465, and by a grant from the U.S.–
Israel Binational Science Foundation. Arge and Mølhave arealso supported
by an Ole Rømer Scholarship from the Danish National ScienceResearch
Council, a NABIIT grant from the Danish Strategic Research Council and
by MADALGO - Center for Massive Data Algorithmics - a Center of the
Danish National Research Foundation. Yi is also supported by a Hong Kong
Direct Allocation Grant (DAG07/08) and Mølhave by a scholarship from
the Oticon Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM-GIS’07 Seattle, Washington USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1 Introduction
Recent revolutionary improvements in mapping technologies are
rapidly expanding the impact of Geographic Information Systems
(GIS). In particular, laser altimetry (lidar) gathers georeferencedel-
evationdata as a set of points inR3 at unprecedented resolutions
and rates. While lidar enables critically important applications,
such as environmental and disaster management, many technical
challenges make the development of these applications difficult.
One of the main challenges is to develop robust and efficient al-
gorithms for terrain modeling and analysis that can handle massive
data sets.

In this paper we consider the problem of extracting a river net-
work and a watershed hierarchy from a set of points inR

3 sampled
from a terrain. Intuitively, a river network is a collectionof paths
that indicate where water flow accumulates and creates well de-
fined channels. A watershed hierarchy is a hierarchical partition of
the terrain into connected regions, orwatersheds, where all water
within a region flows toward a single common outlet. We describe
TERRASTREAM, a scalable solution that consists of a sequence of
algorithms that form a pipeline. Each algorithm in the pipeline
scales to massive data sets. Our pipeline is flexible and allows users
to choose from various models and parameters, with no or minimal
manual intervention between stages. We also present experimental
results on real lidar data using TERRASTREAM that demonstrate its
scalability.

1.1 Background and previous results

Terrain modeling and analysis.Typically, a terrain in a GIS
is not stored as a set of points, but rather as a digital elevation
model (DEM), either in the form of aTriangulated Irregular Net-
work (TIN) or a grid. In a TIN DEM, the terrain is represented by
a planar triangulation, where each vertex has an associatedeleva-
tion; in a grid DEM, it is represented as a two dimensional array of
points, where each grid point represents an elevation. BothDEM
formats are common in many GIS applications.

Terrain modeling and analysis has been studied extensivelyin
many different communities, and algorithms have been developed
for many fundamental problems. Refer to [32] and the references
therein for a survey. Many GIS applications use apipeline (or
work-flow) approach for combining many smaller, simpler algo-
rithms into a larger, more complex application. Often, the indi-



Height Graph

Hydro. Conditioned

Height Graph

Hydro. Conditioned

TIN

Grid

OR
Points 

Height Graph

Watershed LabelsLevels of

Hierarchy

Persistence
ThresholdOR

(TIN Only)
Breaklines

Grid Size

Interp. Method

Method
Flat Area Routing

Flow Model

DEM Construction Height Graph Hydrological Conditioning

Watershed ExtractionFlow Modeling

Flow Graph with

Flow Accumulations

Figure 1. Overview of pipeline stages showing inputs, outputs, and optional modeling parameters for each stage.

vidual stages in a pipeline are developed independently andre-
quire manual intervention to pre-process or post-process the data
between stages. Furthermore, while a typical GIS can managegi-
gabytes of data consisting of hundreds or thousands of smaller in-
dividual data sets, most systems are not designed to handle sin-
gle multi-gigabyte data sets. Moreover, previous GIS algorithms
designed to handle massive data sets have focused on individual
stages of the pipeline, and have been designed for only either grid
or TIN DEMs.

I/O-efficient algorithms.The massive terrain data sets we con-
sider can be much larger than the main memory of typical machines
and must reside on large but slow disks. In such cases the trans-
fer of data between disk and main memory, not CPU computation
time, often becomes the primary bottleneck. Therefore we are in-
terested in designing efficient algorithms in the I/O-model[4]. In
this model, the machine consists of a main memory of sizeM and
an infinite-size disk. A block ofB consecutive elements can be
transferred between main memory and disk in oneI/O operation(or
simply I/O). Computation only occurs on elements in main mem-
ory, and the complexity of an algorithm is measured in terms of
the number of I/Os it performs. Many fundamental problems have
been solved in the I/O model. For example, sortingN elements
requiresSORT(N) = Θ(N

B
logM/B

N
B

) I/Os. Refer to surveys by
Vitter [31] and Arge [5] for other results.

Only recently have terrain problems been considered in the I/O-
model. I/O-efficient algorithms have been developed for construc-
tion of either TIN or grid DEMs from a set of input points [1, 2,
18, 19], as well as for certain water flow problems, includingriver
network extraction, on grid DEMs [8]. The I/O-efficient flow al-
gorithms for grid DEMs have been distributed in the TERRAFLOW

software package [8]. Very recently, an I/O-efficient algorithm for
extracting watershed hierarchies from a grid DEM river network
has also been developed and implemented [9]. These algorithms
typically useO(SORT(N)) I/Os.

1.2 Our results
In contrast to earlier approaches, TERRASTREAM is a pipeline of
I/O-efficient algorithms and their implementation that automati-
cally computes a watershed hierarchy from a point setS in R

3. Our
pipeline is highly efficient, scalable, modular, and flexible. It scales
to single multi-gigabyte sized data sets, works for both grid and
TIN DEMs, and is faster than other scalable algorithms currently
implemented, e.g., TERRAFLOW [8] in GRASS [24]. The highly
modular and configurable pipeline is designed to reduce manual in-

tervention, and to allow for easy addition of new modeling features.
Our approach provides several parameters to control the behavior
of each pipeline stage, and users can choose between severalpopu-
lar models in each stage.

TERRASTREAM consists of four main stages: DEM construc-
tion, hydrological conditioning (sink removal), flow modeling in-
cluding extraction of river networks, and extraction of watershed
hierarchies. Figures 1 and 2 illustrate the overall structure of the
pipeline and the outputs of its stages. TERRASTREAM builds upon
and extends a number of previously developed I/O-efficient terrain
algorithms, and includes several new algorithms designed to com-
plete a whole pipeline. A considerable amount of engineering effort
has been devoted to making TERRASTREAM efficient and practi-
cal. Our main technical contributions in this paper includethe fol-
lowing:

• We take a unified approach for handling both TIN and grid
DEMs. We represent TIN and grid DEMs as a graph, which
we refer to as aheight graph. We then design algorithms
in the subsequent pipeline stages to use height graphs. Our
methods therefore work on both grid and TIN DEMs. Such
a unified approach makes it easier to maintain software and
to add new features. Moreover, the unified approach does
not come at a cost of decreased performance. Our pipeline
works on a given DEM type as efficiently as if the code were
written solely for that particular type.

• We implement anO(SORT(N) log(N/M))-I/O algorithm for
assigning a numerical score orsignificanceto each sink, or
local minimum, in a height graph. We then use a sink’s
significance forhydrologically conditioning—we remove in-
significant sinks from a terrain while preserving significant
sinks such as large closed depressions with no outlet. This
step of removing unimportant sinks is crucial to standard
flow models.

• In addition to extending earlier grid based flow modeling al-
gorithms [8] to height graphs, we develop a simple and prac-
tical algorithm for detecting flat areas in a terrain. We also
implement an improved algorithm for flow routing on flat ar-
eas. Flat areas commonly cause problems in flow modeling
algorithms. Flat areas may exist in either the original data
due to insufficient vertical resolution or be introduced into
the terrain as a side-effect of hydrological conditioning.

The rest of the paper is organized as follows. We briefly de-
scribe the main stages of our pipeline in Sections 2–5. In Section



(a) (b) (c) (d)
Figure 2. (a) DEM of Neuse river basin derived from lidar points (b) Rivers with drainage greater than 5000 acres (2023 hectares) extracted
from DEM. (c) First level of Pfafstetter watershed labels for largest basin in Neuse. (d) Recursive decomposition of the shaded basin.

6 we present a number of experimental results on real lidar data
that demonstrate the power of our pipeline. For example, we can
process a data set containing over 300 million points—over 20GB
of raw data—in under 26 hours; most of the time (76%) is spent
in the initial CPU-intensive DEM construction stage and canbe re-
duced using simpler interpolation schemes [18, 19]. We alsoshow
that the relevant portions of TERRASTREAM are significantly faster
than the corresponding TERRAFLOW [8] algorithms.

2 DEM Construction
The first stage of our pipeline constructs a grid or TIN DEM from
a setS of N input points inR

3. Below we briefly review the al-
gorithms we utilize; the reader is referred to [1, 2] for a complete
overview of, and comparison with, previous work. We also intro-
duce the the notion of a height graph, which we use in later stages.

Grid DEM construction.The common approach for construct-
ing a grid DEM given a user-specified grid resolution fromS is to
use one of many interpolation or approximation methods to com-
pute a height value for each grid point (refer to e.g., [22] and the ref-
erences therein). For inputs with more than a few thousand points,
applying an interpolation method directly on all points is infeasi-
ble because of the computational complexity of solving large sys-
tems of linear equations. Instead we chose for TERRASTREAM

a recently developed I/O-efficient algorithm [1] that uses aquad-
tree segmentation in combination with a regularized splinewith
tension interpolation method [23]. It constructs a grid DEMin
O(N

B
h

log M

B

+ SORT(T )) I/Os, whereh is the height of a quad

tree onS andT is the number of points in the desired grid DEM.
Note that the algorithm usesO(SORT(N) + SORT(T )) I/Os if h =
O(log N), that is, if the points inS are distributed such that the
quad tree is roughly balanced. Our implementation is modular and
allows users to implement a variety of interpolation methods (in-
stead of the regularized spline method). The spline method we use
allows smooth approximation of data, and can therefore accurately
compute properties such as slope, profile curvature, and tangential
curvature (which are important for landform analysis and landscape
process modeling). We store the output grid in a simple row-major
format to allow efficient grid row access in later stages.

TIN DEM construction.The most popular method for construct-
ing TINs from elevation points is to project the points onto thexy-
plane, compute their Delaunay triangulation, and then liftthe trian-
gulation back to 3D. In many GIS terrain processing applications,
however, elevation data sets are often supplemented with line seg-
ments orbreaklinesthat provide additional elevation information
along linear features such as roads or rivers. Breaklines constrain
the edges of the TIN to match breakline segments and preserve
important topological features. In TERRASTREAM, we use a ran-
domized I/O-efficient algorithm [2] for constructing aconstrained

Delaunay triangulation[11] of a setS of N points and a setL of
K line segments, where allK line segments appear as edges of the
final triangulation. The algorithm usesSORT(N) expected I/Os if
the number of constraining segmentsK is smaller than then mem-
ory sizeM . In most applications,K is considerably smaller than
bothN andM . We store the output TIN in an “indexed triangle”
format, which is a common, simple, and compact representation of
TINs. In this format, the coordinates of the TIN vertices arestored
consecutively on disk along with a unique vertex ID, followed by
a list of triangles each identified by three vertex IDs in clockwise
order.

Height graph.To avoid designing separate grid and TIN algo-
rithms for each of our successive pipeline stages, we define agraph,
which is typically referred to as aheight graph, that unifies both
DEM formats. A height graphG = (V, E) is an undirected graph
derived from a DEM, with aheighth(v) and anid id(v) associated
with eachv ∈ V . The id’s are assumed to be unique. For any pair
of verticesu andv, we say thatu is higher thanv if h(u) > h(v),
or if h(u) = h(v) andid(u) > id(v). The concept oflower than is
defined similarly. The vertices and edges of a TIN DEM naturally
form a height graph. To construct a height graph from a grid DEM,
we include all the grid points as the vertices of the graph. For each
grid pointu, we add edges fromu to some of its eight immediate
neighbors.

In both the TIN and the grid case, we add an additional “outside”
vertexξ with h(ξ) = −∞, which is connected to all the vertices
on the boundary of the DEM. A height graph can be constructed
from a grid or TIN DEM of sizeN in O(SORT(N)) I/Os.

3 Hydrological Conditioning
Most flow modeling algorithms assume water will flow downhill
until it reaches a local minimum orsink. In practice, local min-
ima in DEMs fall into two primary categories;significantand in-
significant(or spurious) sinks. Significant sinks correspond to large
real geographic features such as quarries, sinkholes or large natural
closeddepressions with no drainage outlet. The insignificant sinks
correspond to noise in the input data or to small natural features
that flood easily. When modeling water flow, these insignificant
sinks impede flow and result in artificially disconnected hydrolog-
ical networks. The second stage of our pipeline “hydrologically
conditions” a DEM for the flow modeling stage by removing in-
significant sinks, while preserving significant sinks.

A widely used hydrological conditioning algorithm removesall
sinks using a so-calledflooding approach [20], which simulates
uniformly pouring water on the terrain until a steady-stateis reached.
A weakness of this approach is that it removes even significant
sinks. See Figures 3(a) and (b). Furthermore, the previous I/O-
efficient algorithm [8] for hydrological conditioning works only for
grids and assumes that all sinks fit in memory. This assumption



(a) (b) (c)

Figure 3. (a) Original terrain. (b) Terrain flooded with τ =∞. (c) Terrain partially flooded with persistence threshold τ = 30.

does not hold for large high-resolution terrains. We instead use a
partial flooding algorithm, based ontopological persistence[16,
15], that detects and removes only insignificant sinks, as indicated
in Figure 3(c). We briefly describe topological persistenceand then
present our algorithm.

Topological persistence.In the context of a terrainT represented
by a planar height graph, topological persistence [16, 15],matches
each local minimum (sink) vertexv of T to a higher “saddle” vertex
w (see [14] for the precise definition of a saddle) and assigns aper-
sistencevalue, denoted byπ(v), to v. In [15], π(v) is defined to be
the difference in the heights ofv andw, i.e.,π(v) = h(w)− h(v).
The persistenceπ(v) denotes thesignificanceof the sinkv. In-
tuitively, the saddlew is a vertex at which two distinct connected
components of the portion ofT lying strictly beloww merge. Sup-
pose each connected component is represented by the lowest vertex
in the component, and thatv is the higher representative of two con-
nected components merged byw; let u denote the representative of
the other component. Then topological persistence inducesamerge
treeon the sinks ofT , in whichu is the parent ofv. The merge tree
has the property that the heights of vertices on any root-to-leaf path
increase, while the persistence values decrease along sucha path.

Agarwal et al. [3] developed anO(SORT(N))-I/O algorithm for
computing the persistence of all sinks in a triangular planar height
graph, as well as the merge tree. They also developed and imple-
mented a simpler and practicalO(SORT(N) log(N/M))-I/O algo-
rithm. We extend the latter to form our partial flooding algorithm
given below.

Partial flooding. We use topological persistence as a measure of
the significance of a sink. Given a user-specified thresholdτ , we
declare all sinks with persistence less thanτ to be the insignificant
sinks and remove all such sinks using a partial flooding method
described below. The user can change the threshold to control the
smallest feature size to be preserved.

We define partial flooding of a height graph by generalizing the
flooding definition for grid DEMs [20, 8]. LetG be a height graph
with significant sinksζ1, . . . , ζk. Let theheight of a pathin G
be the height of the highest vertex on the path, and let theraise
elevationof a vertexv of G be the minimum height of all paths
from v to ζi for any 1 ≤ i ≤ k. In partial flooding, we change
the height of each vertex inG to its raise elevation. Partial flooding
produces a modified height graph containing only significantsinks
whose persistence value is greater thanτ . Note that ifτ = ∞, our
definition of partial flooding is the same as the original definition
of flooding. Thus, partial flooding is a tunable way to condition the
terrain for the purpose of flow modeling.

To efficiently condition a terrain using partial flooding, weutilize
the following property of the merge tree whose proof can be found
in [13]: Let u be a vertex in the merge tree that does not correspond
to a significant sink, but whose parent does. Letv be any vertex
in the sub-tree rooted atu. Then the raise elevationr(v) of v is
r(v) = r(u) = h(u) + π(u). This allows us to compute the raise
elevations for each sink in the merge tree (or more precisely, the
sinks ofG corresponding to vertices in the merge tree) in a simple
way: For each insignificant sinku in the merge tree whose parent
corresponds to a significant sink, we propagater(u) to all vertices
below u. To do so efficiently we simply direct tree edges from a
vertex to its children and traverse the vertices in height order while
forwarding the relevant raise elevation along outgoing edges. This
traversal can be performed inO(SORT(N)) I/Os using standard
techniques [12, 6].

What remains is to compute the raise elevations for all non-sink
vertices in the height graphG. To do so we assign a sink label to
each vertex inG. A vertexu is assigned sink labelv if there is a
path of monotonically decreasing height fromu to a sinkv; if sev-
eral such paths exists, we choose the one to the lowest sinkv. The
raise elevation ofu is then simplyr(u) = max{h(u), r(v)} [13].
To assign the labels efficiently to all vertices, we construct a DAG
by directing edges inG from lower height vertices to higher height
vertices. The vertices in this DAG are naturally sorted in topologi-
cal order by increasing height. We traverse the DAG in topological
order and forward sink labels along outgoing edges; the sinklabel
for a vertexu is simply the label corresponding to the lowest sink
among the labels received from the preceding vertices. Thistraver-
sal is similar to the merge tree-traversal and can be performed in
O(SORT(N)) I/Os [12, 6].

In summary, for a given thresholdτ , we can partially flood the
terrain represented as a height graph inO(SORT(N)) I/Os.

4 Flow Modeling

4.1 Flow routing and accumulation
The third stage of our pipeline models the flow of water on a hy-
drologically conditioned DEM, represented as a height graph. It
consists of two phases. In the firstflow-routingphase, we compute
aflow directionfor each vertexv in the height graph that intuitively
indicates the direction water will flow fromv. In the secondflow-
accumulationphase, we intuitively compute the area of the terrain
represented by vertices upstream of each vertexv.

Flow routing. Given a height graphG = (V, E), the flow-routing
phase computes a directed subgraphF(G) = (V, Er) of G called



the flow graph. An edge(v, u) in F(G) indicates that water can
flow from v to u. We say thatu is downstream neighborof v and
v is upstream neighborof u. In general, we sayv is upstreamof a
vertexw if there is a path fromv to w in F(G). Er is constructed
from G by looking at each vertexv and its neighbors and applying a
flow-directionmodel. We implemented two popular flow-direction
models:

• Single-flow-direction(SFD) model: for each vertexv, the
edge fromv to the neighbor with lowest height lower than
the height ofv is selected.

• Multi-flow-directions(MFD) model: for each vertexv, all
edges fromv to neighbors of lower height are selected.

Several other flow-direction models have also been proposed(e.g.,
[28, 21]), and most of them can be incorporated in our pipeline. We
refer the reader to [8] for more information on SFD and MFD rout-
ing. If the height of every vertex inG is distinct, we can easily
constructF(G) in O(SORT(N)) I/Os using standard techniques,
by simply examining the neighbors of every vertex in the height
graph and assign a flow directions to all but the sinks. In the SFD
and MFD models, the resulting flow graph is a forest or a DAG,
respectively. Terrain models, however, can have largeflat areasof
vertices with no neighbors of lower height. Flat areas can benatu-
ral plateaus in the terrain model, or they can appear as by-products
of the flooding. Detecting these flat areas and routing flow through
them in a realistic way is challenging, and we discuss these steps
further in Section 4.2. We have implemented extensions of SFD
and MFD models that incorporate routing on flat areas.

Flow accumulation.Given a flow graphF(G) with flow direc-
tions, the flow accumulation [26] phase intuitively computes the
area of the terrain represented by vertices upstream of eachvertex
v. More precisely, each vertexv in the flow graphF(G) is as-
signed some initial flow. Each vertex then receives incomingflow
from upstream neighbors and distributes all incoming and initial
flow to one or more downstream neighbors. The flow accumula-
tion of a vertexv is the sum of its initial flow and incoming flow
from upstream neighbors.

Following the above definition, our flow accumulation algorithm
simply visits the vertices ofF(G) in topological order and for each
vertexv, computes the total incoming flow and distributes flow to
each downstream neighboru with an edge(v, u) in F(G) using a
given function. In our implementation we distribute flow in pro-
portion to the height difference betweenv andu, but our pipeline
allows other distribution functions. Our algorithm is a slight gen-
eralization of aO(SORT(N)) I/O algorithm by [10] developed for
grid DEMs. In terms of initial flow, one typically assigns a “unit”
of initial flow to each vertex ifG represents a grid DEM, since each
grid vertex represents an area of the same size. IfG represents a
TIN DEM, one typically distributes thexy-projection of the area of
each triangle inG equally among its three vertices. We have imple-
mented these choices, but TERRASTREAM also allows for the user
to specify an initial flow for each vertex.

Given the flow accumulations for all vertices, we can extract
river networks[26] in O(SORT(N)) I/Os, simply by extracting
edges incident to vertices whose flow accumulation exceeds agiven
threshold.

4.2 Handling flat areas
A robust flow model must handle extended flat areas in a terrain. A
vertexv in a height graphG is flat if h(v) ≤ h(u) for all neighbors

u of v in G, or if v has a neighbor of the same height that has no
lower neighbors. Aflat area is a maximal connected component
of flat vertices of the same height. Aspill point of a flat area is a
flat vertex with a downstream neighbor. Routing flow on flat areas
is composed of two steps; detecting all flat areas and routingflow
across each individual flat area.

Detecting flat areas.Detecting flat areas is equivalent to find-
ing connected components of same-height vertices inG. Although
a previous theoreticalO(N/B)-I/O algorithm for computing con-
nected components on grid DEMs [10] exists, it is too complex
to be of practical interest. Furthermore, it can not be extended to
work on height graphs. We developed and implemented a simpler
algorithm for height graphs that scans the vertices and their neigh-
bors and uses a batched union-find structure to merge vertices in
the same flat area into a single connected component. We used a
simple and practical union-find implementation [3] such that the
algorithm usesO(SORT(N) log(N/M)) I/Os.

Detecting flat areas on a grid DEM.Since TERRASTREAM is
modular and allows us to plug in customized modules easily, we
have also implemented a simplified algorithm for detecting flat ar-
eas on grid DEMs that usesO(N/B) I/Os assuming that a constant
number of rows (or columns) of the grid fit in memory. In this case,
we can, in practice, handle grid DEMs containing several terabytes
of space using only 256 MB of main memory.

Intuitively, our algorithm performs two row-by-row sweepsof
the grid DEM, while only keeping two grid rows and a small union-
find structure in main memory, and assigns every vertex in thesame
connected flat area the same uniqueconnected component label.
The union-find structure maintains connected component labels for
the two grid rows currently in memory. The first sweep is adown-
sweepfrom the topmost to bottommost row in the grid that assigns
provisional connected component labels to each flat vertex.Af-
ter the down-sweep all flat vertices with the same label are inthe
same connected component. However, a single flat area may have
multiple labels. We therefore perform a secondup-sweepfrom the
bottommost to topmost row in the grid that assigns a single unique
connected component label to all vertices in the same flat area. The
sweeps are described in detail below.

In the down-sweep, we keep the current row and the row im-
mediately above it in memory. In the top row, each flat vertex has
already been assigned a connected component label. To process the
current row we first visit the vertices in the row from left to right
and assign a new unique labell(u) to each flat vertexu. Then we
visit each vertexu in the current row again and perform aUNION

on l(u) andl(v) for any pair of neighboring flat vertices(u, v) cur-
rently in memory. We implement the union-find structure suchthat
the unique representative for a set of labels is the label that was
assigned earliest. Finally, we update the label of each flat vertexu
in the current row to be the labelFIND(u). We can prove that after
processing the current row, two vertices in the same flat areain the
current row have the same label if and only if they are connected by
a path completely contained in the current row and the rows above
it [13]. We can also show that all vertices on the bottom-mostrow
of a flat area have the same label as the first label assigned in the
highest row [13]. At the end of the up-sweep this will be the unique
label assigned to the flat area.

In the up-sweep, we also keep two rows in memory; the current
row and the row immediately below it. To process the current row
we first visit the vertices in the row from left to right and determine
for each flat vertexu if it has a flat neighborv in the row below the



Figure 4. Comparison of routing methods on a flat area with a single
spill point on the right. Rivers indicated in white were extracted by us-
ing the smallest Euclidean distance. Black river lines were computed
using the Soille et al. approach.

current row; if so we perform aUNION on l(u) andl(v). As in the
down-sweep, we then update the label of each flat vertexu in the
current row to be the labelFIND(u). We can prove that after the
up-sweep, vertices in the same connected flat area have the same
connected component label [13].

Since the union-find structure used during the two sweeps never
contains more labels than there are vertices in two rows, we can
implement it such that it uses space proportional to the space occu-
pied by a row. Thus it fits in main memory at all times and does
not require any I/Os. Therefore our algorithm usesO(N/B) I/Os,
because it only scans the grid DEM twice.

Improved routing on flat areas.When routing flow on flat areas
we distinguish between flat areas that have at least one spillpoint
and those with no spill point. In the first case water should beable
to flow out of the flat area through the spill points, while in the
second case water is simply absorbed into the extended sink.

Many earlier approaches to flat area routing (see e.g. [8] and
references therein) assign flow in a simple way such that eachver-
tex v are assigned a flow direction to the neighbor on the shortest
(Euclidean) path edge fromv to the closest spill point. However,
these approaches are not hydrologically realistic and tendto create
many parallel flow lines [29]. Recently, a new more realisticflat
area routing approach was proposed by Soille et al. [27]. Their ap-
proach, based on geodesic time and distance, improves an earlier,
popular approach by Garbrecht and Martz [17]. Given a flat area,
defineH to be the set of flat vertices having an upstream neighbor.
The algorithm of Soille et al. [27] computes the minimum distance
dv from each of the other flat verticesv to a vertex inH . Let dmax

be the maximum distancedv computed in the flat area. Each vertex
v is assigned a flow direction to the first vertex on the minimum-
cost path fromv to a spill vertex, where the cost of a path is defined
as the sum ofdmax − du for all verticesu along the path. If no
spill vertex exists, the minimum cost paths from a vertex with dis-
tancedmax is used. Sincedmax − du is large near the upstream
boundaries, the shortest paths will converge toward the lowcost
vertices away from the boundaries. This substantially increases the
convergence of the flow routing paths.

We implemented both the Soille et al. [27] approach, and a sim-
ple shortest path approach. Figure 4 compares the two. Both ap-
proaches are implemented under the assumption that each flatarea
fits in main memory; our experience with high resolution elevation
data indicates this is a reasonable assumption.

5 Watershed Hierarchy Extraction
Given a flow graphF(G) in which each vertex inF(G) is aug-
mented with its flow accumulation, the final stage of our pipeline

computes a watershed hierarchy forG. As mentioned earlier, a wa-
tershed hierarchy is a hierarchical decomposition of a terrain into
a set of disjoint regions, or watersheds, where all water flows to-
wards a single outlet. Such a decomposition is the basis of several
GIS algorithms for hydrological and pollutant transport modeling.

Verdin and Verdin [30] described a method that divides a terrain
into nine disjoint watersheds and thereafter recursively subdivide
each of these watersheds. The terrain is thus hierachally divided
into arbitrarily small regions. In the process each vertex is assigned
a uniquePfafstetter labelthat encodes the watershed it belongs to
on each level of the hierarchy, as well as topological properties such
as upstream and downstream ordering.

Arge et al. [9] developed an algorithm usingO(SORT(N) +
T/B) I/Os for computing the Pfafstetter labels of a grid DEM;
hereT is the total size of the labels. The algorithm uses a data
structure equivalent to a flow graphF(G) computed using a sin-
gle flow direction model and augmented with flow accumulations
for each vertex. We modified the algorithm to use the flow graph
F(G), that is, to work for flow graphs derived from a height graph.

6 Experiments
We have implemented TERRASTREAM in C++ using TPIE [7],
a library that provides support for implementing I/O-efficient al-
gorithms and data structures. Figure 1 gives an overview of the
pipeline inputs, options, and outputs; note that each stagein the
pipeline can also be used independently on a grid or TIN DEM. As
mentioned in the Introduction, TERRASTREAM is highly modular
and designed to reduce manual intervention while providingsev-
eral parameters to control the behavior of each pipeline stage and
allowing new models and features to be added with minimal effort.
We highlight only a few key features in this extended abstract; addi-
tional details can be found athttp://terrain.cs.duke.edu
or in [13]. We have experimented extensively with TERRASTREAM

on multiple data sets but, for lack of space, present only a limited
set of experimental results that demonstrate the practicality and
scalability of the pipeline. Again we refer the reader to [13] for
more extensive experiments.

Experimental setup.We performed experiments on a Dell Pre-
cision Server 370 (3.40 GHz Pentium 4 processor) running Linux
2.6.11. The machine had 1 GB of physical memory, though our
experiments never required more than 640 MB. All test data was
stored on a single 400 GB SATA disk drive.

To demonstrate the scalability on a real watershed, we used a
collection of 477 million bare Earth lidar points (over 20GBof raw
data) from the Neuse river basin in North Carolina as our maintest
data. This data is publicly available for download from the North
Carolina flood mapping project [25] and covers an area of roughly
6,200 square miles (16,000 km2). The average point spacing in the
set is approximately 20 feet (6m).

Pipeline scalability.We present three experiments on the Neuse
river basin data set to illustrate the pipeline scalability. In the first
experiment we construct a TIN DEM in the first stage of the pipeline,
while we construct 10ft and 20ft grid DEMs in the last two exper-
iments. Running times for each of the pipeline stages in the three
experiments are shown in Table 1. A visual overview of the output
of the different stages for the 20ft grid case is shown in Figure 2.

As seen in Table 1, the TIN DEM construction stage is much
faster than the grid DEM construction stage since the formerdoes
not involve a sophisticated interpolation routines (whichsolve large



Format 20 ft grid 10 ft grid TIN

# of height graph vertices (millions) 397 1590 469

Pipeline stage
DEM Construction 19h 56m 27h 12m 4h 20m

Building height graph 0h 07m 0h 30m 11h 42m
Hydrological conditioning 1h 17m 7h 25m 10h 03m
Flow Modeling

Flow Routing 1h 26m 6h 34m 15h 08m
Flow Accumulation 1h 40m 7h 35m 2h 05m

Watershed extraction 2h 28m 14h 39m 6h 26m

Total 25h 54m 63h 34m 49h 44m

Table 1. Running times for various pipeline stages (and sub-stages) on the Neuse river basin data set.

systems of linear equations). In fact, the DEM constructionstage
is by far the most time consuming stage in the grid DEM experi-
ments; as noted in [1], more than half of the total grid construction
stage running time is spent on performing CPU-intensive interpo-
lation. Note that the construction time for the 10ft grid DEMis
not significantly longer than that of the 20ft grid, despite the fact
that the latter has four times as many vertices. The reason isthat
the running time of our grid construction algorithm is more heavily
influenced by the number of input points used in the interpolation
than by the number of grid vertices (output points). Furthermore,
the number of input points to the 20ft grid interpolation algorithm
is actually smaller (but not 4 times smaller) than the numberof
input point to the 10ft grid interpolation algorithm (339 and 415
million, respectively) because the construction algorithm discards
points that are close to each other relative to the grid cell size.

After constructing a DEM from the input points, our pipeline
constructs a height graph. As seen from Table 1, this step is much
more costly in the TIN case than in the grid case. This is because
the output of the TIN construction algorithm is a set of triangles
without any connectivity information, while the grid DEM con-
struction algorithm returns a two-dimensional array (withimplicit
connectivity information).

All the remaining stages of our pipeline work on a height graph
and therefore their running time should theoretically onlydepend
on the number of input vertices (and edges). In the grid case we
observe that each of the stages for the 10ft grid takes roughly four
times as long time as for (the four times smaller) 20ft grid. This is
to be expected sinceSORT(N) does not grow much faster than lin-
early for similarly sized inputs. However, we also observe that the
hydrological conditioning and flow routing steps take much more
time for the TIN DEM than for the 20ft grid DEM of comparable
size. The reason is that, as in the construction stage, we cantake
advantage of the implicit connectivity information in the case of a
grid DEM. Finally, the flow routing stage on the TIN DEM is also
much slower than for the 20ft grid DEM. The reason is obviously
that we use the simple flat area detecting algorithm described in
Section 4 in the grid case, while we must use a more complicated
I/O-efficient connected component algorithm [3] in the TIN case.

Comparison withTERRAFLOW. For grid DEMs, TERRAFLOW

[8] provides the same functionality as the portion of our pipeline
from building the height graph through computing flow accumu-
lation, provided that we configure our hydrological conditioning
stage to removeall sinks. We therefore also compared the running
time of TERRASTREAM to the running time of TERRAFLOW on
the 20ft grid. TERRASTREAM finished in 4.5 hours, while TER-
RAFLOW finished after 12.2 hours. The hydrological conditioning
(flooding) stage of TERRAFLOW was particular slow at 6 hours,

while TERRASTREAM needed only 1.28 hours. There are two
primary reasons for our speedup over TERRAFLOW. First, TER-
RAFLOW uses a different algorithm that also has aO(SORT(N))
I/O bound, but performs more scanning and sorting steps to com-
pute the raise elevations. Second, by using edges and vertices
of F(G) directly during flow accumulation, we have a compact
representation for vertex connectivity. In contrast, eachvertex in
TERRAFLOW keeps a copy of all eight neighbors regardless of
height when computing the accumulation, effectively multiplying
the original input size by nine.

Hydrological conditioning persistence values.As mentioned,
our hydrological conditioning stage allows us to tune a persistence
threshold in order to remove insignificant sinks. As one finalil-
lustration of the features and properties of our software pipeline,
we consider the distribution of sink persistence values in the Neuse
river basin dataset.

There were 12.5 million sinks in the 20ft grid DEM, roughly 3%
of the height graph vertices. However, over 94% of these sinks had
a persistence value of less than 1ft (30cm), and 99.9% of all sinks
had a persistence value of less than 6ft. There were only 15 sinks
with a persistence greater than 50ft (15m) and all but one of these
corresponded to quarries; the last (with a persistence value of ap-
proximately 50ft) was due to a bridge crossing a steep river valley.
The sinks with the 100 highest persistence values had persistence
value greater than 29.7ft. By visual inspection, we found that most
of these sinks were due to bridges crossing waterways. We also
found that the top 100 sinks for the TIN and 10ft grid had sim-
ilar, but not identical, persistence values as compared to the 20ft
grid. Typically the differences were less than 1ft. The 10ftgrid had
27.3 million (about 1.7% of all height-graph vertices) sinks while
the TIN had the most sinks at 32.8 million or 6.8% of all vertices.
The number of sinks is higher in the TIN DEM because unlike the
grid DEM, no smoothing via approximation or interpolation was
performed. This illustrates one advantage of the expensiveinterpo-
lation/approximation step performed in the construction of the grid
DEM.

Overall, we found that a persistence of 50ft resulted in a well
connected hydrological network while preserving most significant
sinks.

7 Future Work
In this paper we described TERRASTREAM, a pipeline of scalable
algorithms and their implementations that extract river networks
and a watershed hierarchy from a set of elevation data points.

We are currently extending TERRASTREAM in many ways: other
interpolation schemes for grid DEMs, which are not as compu-



tationally intensive as the one currently used; more sophisticated
methods for removing insignificant sinks in the hydrological condi-
tioning stage; and building a hierarchical representationof a DEM
that preserves river networks.

Acknowledgments

We wish to thank Jan Vahrenhold, Herman Haverkort and Henrik
Blunck for helpful discussion and for their contributions to the TPIE

and the grid watershed decomposition code.

References
[1] P. K. Agarwal, L. Arge, and A. Danner. From point cloud

to grid DEM: A scalable approach. InProc. 12th Interna-
tional Symposium on Spatial Data Handling, pages 771–788.
Springer-Verlag, 2006.

[2] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient construction
of constrained Delaunay triangulations. InProc. 13th Euro-
pean Symposium on Algorithms, pages 355–366, 2005.

[3] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched
union-find and its applications to terrain analysis. InProc.
22nd Annual Symposium on Computational Geometry, pages
167–176, 2006.

[4] A. Aggarwal and J. S. Vitter. The input/output complexity of
sorting and related problems.Communications of the ACM,
31(9):1116–1127, 1988.

[5] L. Arge. External memory data structures. InHandbook of
Massive Data Sets, pages 313–358. Kluwer Academic Pub-
lishers, 2002. J. Abello, P. M. Pardalos, M. G. C. Resende
(editors).

[6] L. Arge. The buffer tree: A technique for designing batched
external data structures.Algorithmica, 37(1):1–24, 2003.

[7] L. Arge, R. Barve, D. Hutchinson, O. Procopiuc, L. Toma,
D. E. Vengroff, and R. Wickremesinghe.TPIE User Manual
and Reference (edition 082902). Duke University, 2002.

[8] L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban, J. S. Vitter,
and R. Wickremesinghe. Flow computation on massive grid
terrains.GeoInformatica, 7(4):283–313, 2003.

[9] L. Arge, A. Danner, H. Haverkort, and N. Zeh. I/O-efficient
hierarchical watershed decomposition of grid terrain models.
In Proc. 12th International Symposium on Spatial Data Han-
dling, pages 825–844. Springer-Verlag, 2006.

[10] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for
problems on grid-based terrains.ACM Journal on Experimen-
tal Algorithmics, 6(1), 2001.

[11] L. P. Chew. Constrained Delaunay triangulations.Algorith-
mica, 4:97–108, 1989.

[12] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia,
D. E. Vengroff, and J. S. Vitter. External-memory graph al-
gorithms. InProc. ACM-SIAM Symposium on Discrete Algo-
rithms, pages 139–149, 1995.

[13] A. Danner.I/O Efficient Algorithms and Applications in Ge-
ographic Information Systems. PhD thesis, Department of
Computer Science, Duke University, 2006.

[14] H. Edelsbrunner.Geometry and Topology for Mesh Genera-
tion. Cambridge University Press, New York, 2001.

[15] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical
Morse complexes for piecewise linear 2-manifolds. InProc.
17th Annual Symposium on Computational Geometry, pages
70–79, 2001.

[16] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topolog-
ical persistence and simplification. InProc. 41st IEEE Sym-
posium on Foundations Computer Science, pages 454–463,
2000.

[17] J. Garbrecht and L. Martz. The assignment of drainage di-
rections over flat surfaces in raster digital elevation models.
Journal of Hydrology, 193:204–213, 1997.

[18] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink. Stream-
ing computation of Delaunay triangulations. InProc. SIG-
GRAPH, 2006.

[19] M. Isenburg, Y. Liu, J. Shewchuk, J. Snoeyink, and T. Thirion.
Generating raster DEM from mass points via TIN streaming.
In Proc. 4th International Conference on Geographic Infor-
mation Science, 2006.

[20] S. Jenson and J. Domingue. Extracting topographic structure
from digital elevation data for geographic information system
analysis.Photogrammetric Engineering and Remote Sensing,
54(11):1593–1600, 1988.

[21] N. L. Lea. An aspect driven kinematic routing algorithm. In
Overland Flow: Hydraulics and Erosion Mechanics. Chap-
man & Hall, New York, 1992.

[22] L. Mitas and H. Mitasova. Spatial interpolation. InGe-
ographic Information Systems - Principles, Techniques,
Management, and Applications. Wiley, New York, 1999.
P. A. Longley, M. F. Goodchild, D. J. Maguire, D. W. Rhind
(editors).

[23] H. Mitasova, L. Mitas, and R. S. Harmon. Simultaneous
spline interpolation and topographic analysis for lidar eleva-
tion data: methods for open source GIS.IEEE Geoscience
and Remote Sensing Letters, 2(4):375–379, 2005.

[24] M. Neteler and H. Mitasova.Open source GIS: A GRASS GIS
Approach (3rd edition), Springer, New York, 2008.

[25] North Carolina Flood Mapping Program.
http://www.ncfloodmaps.com.

[26] J. F. O’Callaghan and D. M. Mark. The extraction of
drainage networks from digital elevation data.Computer Vi-
sion, Graphics and Image Processing, 28:323-344, 1984.

[27] P. Soille, J. Vogt, and R. Colombo. Carving and adaptive
drainage enforcement of grid digital elevation models.Water
Resources Research, 39(12):1366–1375, 2003.

[28] D. Tarboton. A new method for the determination of flow di-
rections and contributing areas in grid digital elevation mod-
els.Water Resources Research, 33:309–319, 1997.

[29] A. Tribe. Automated recognition of valley lines and drainage
networks from grid digital elevation models: a review and a
new method.Journal of Hydrology, 139:263–293, 1992.

[30] K. L. Verdin and J. P. Verdin. A topological system for delin-
eation and codification of the Earth’s river basins.Journal of
Hydrology, 218:1–12, 1999.

[31] J. S. Vitter. External memory algorithms and data struc-
tures: Dealing with MASSIVE data.ACM Computing Sur-
veys, 33(2):209–271, 2001.

[32] J. P. Wilson and J. C. Gallant.Terrain Analysis : Principles
and Applications. Wiley, New York, NY, 2000.


