
1-1

Dynamic External Hashing:
The Limit of Buffering

August 13, 2009

Qin Zhang

Hong Kong University of Science & Technology

Joint work with Zhewei Wei and Ke Yi

SPAA 2009

2-1

(internal) Hashing!

null

null
null

null
null

null

null
null
null

universal
hashing

dynamic
hashing

distributed
hashing

external
hashing

perfect
hashing

One of the most important data
structures in computer science!

3-1

External hashing!

A cell has b (= 2) words

null

null

null null

null

external
hashing

universal
hashing

dynamic
hashing

distributed
hashing

perfect
hashing Extremely useful in

Database System!

nullnull

4-1

Model and problem

Model: External memory model.
Block size b words, cache size m
words. Cost is “number of blocks
read/write (I/Os)”

Problem: Maintain a hash table to
support update and query.

Try to understand “the inherent
tradeoff between queries and up-
dates”

Hashing

5-1

Results

6-1

Hashing in the internal memory is well under-
stood (under random inputs).

Knuth, 1970s: tq = 1
2
(1+1/(1−α)), tu = 1+

1
2
(1 + 1/(1− α)2). α: load factor: minimum

storage should be use/storage actually used

Previous results

6-2

Hashing in the internal memory is well under-
stood (under random inputs).

Knuth, 1970s: tq = 1
2
(1+1/(1−α)), tu = 1+

1
2
(1 + 1/(1− α)2). α: load factor: minimum

storage should be use/storage actually used

Previous results

In external memory (random inputs)

Knuth, 1970s: Expected average cost of a
query is 1 + 1/2Ω(b) I/Os, provided the load
factor α is less than a constant smaller than
1. Update has a similar bound.

7-1

Exact Numbers Calculated by D. E. Knuth

The Art of Computer Programming, volume 3, 1998, page 542

8-1

Can we batch updates?

However, in external memory model, disk reads/writes
are expensive and powerful. Can we hope for lower than
1 I/O per update?

8-2

Can we batch updates?

However, in external memory model, disk reads/writes
are expensive and powerful. Can we hope for lower than
1 I/O per update?

No, if there is no space in main memory for buffering.
But, not the case in reality!

8-3

Can we batch updates?

However, in external memory model, disk reads/writes
are expensive and powerful. Can we hope for lower than
1 I/O per update?

No, if there is no space in main memory for buffering.
But, not the case in reality!

Maybe yes, if we have an Ω(b) main memory for buffer-
ing! Like numerous problems in external memory, e.g.
stack. More: priority queue, buffer tree ...

Can the amortized update cost be something like
O(1/bc) (for some 0 < c ≤ 1) for hashing?

8-4

Can we batch updates?

However, in external memory model, disk reads/writes
are expensive and powerful. Can we hope for lower than
1 I/O per update?

No, if there is no space in main memory for buffering.
But, not the case in reality!

Maybe yes, if we have an Ω(b) main memory for buffer-
ing! Like numerous problems in external memory, e.g.
stack. More: priority queue, buffer tree ...

Can the amortized update cost be something like
O(1/bc) (for some 0 < c ≤ 1) for hashing?

Conjectured by Jensen and Pagh (2007):

The insertion cost must be Ω(1) I/Os if the query cost is

required to be O(1) I/Os.

9-1

Our results

1 + 1/2Ω(b)

1−O(1/b(c−1)/6)

Ω(bc−1)

O(bc−1)

Ω(1)

O(1)

Insertion

Query

1 + Θ(1/b)

1 + Θ(1/bc), c < 11

upper bounds

lower bounds

1+Θ(1/bc)
c > 1

expected
amortized

expected average

Due to Knuth (on random inputs)

successful queries

9-2

Our results

1 + 1/2Ω(b)

1−O(1/b(c−1)/6)

Ω(bc−1)

O(bc−1)

Ω(1)

O(1)

Insertion

Query

1 + Θ(1/b)

1 + Θ(1/bc), c < 11

upper bounds

lower bounds

1+Θ(1/bc)
c > 1

expected
amortized

expected average

Due to Knuth (on random inputs)

successful queries

9-3

Our results

1 + 1/2Ω(b)

1−O(1/b(c−1)/6)

Ω(bc−1)

O(bc−1)

Ω(1)

O(1)

Insertion

Query

1 + Θ(1/b)

1 + Θ(1/bc), c < 11

upper bounds

lower bounds

1+Θ(1/bc)
c > 1

Almost a complete
understanding for
successful queries!

expected
amortized

expected average

Due to Knuth (on random inputs)

successful queries

10-1

Other related results

Upper bounds

Remove ideal hash function assumption [Carter and Wegman
1979], making query worst-case [i.e. Fredman, Komlos and
Szemeredi, 1984] ... (internal)

Queries and updates in 1 + O(1/b
1
2) I/Os with α = 1 −

O(1/b
1
2) [Jensen and Pagh, 2007]. (external, no memory)

10-2

Other related results

Upper bounds

Remove ideal hash function assumption [Carter and Wegman
1979], making query worst-case [i.e. Fredman, Komlos and
Szemeredi, 1984] ... (internal)

Lower bounds (internal)

Very sparse, only with some strong requirements, e.g., the al-
gorithm is deterministic and query is worst-case [Dietzfelbinger
et. al. 1994].

Queries and updates in 1 + O(1/b
1
2) I/Os with α = 1 −

O(1/b
1
2) [Jensen and Pagh, 2007]. (external, no memory)

10-3

Other related results

Upper bounds

Remove ideal hash function assumption [Carter and Wegman
1979], making query worst-case [i.e. Fredman, Komlos and
Szemeredi, 1984] ... (internal)

Lower bounds (internal)

Very sparse, only with some strong requirements, e.g., the al-
gorithm is deterministic and query is worst-case [Dietzfelbinger
et. al. 1994].

Lower bounds in other dynamic external memory problems

Only known are query-update tradeoffs for the predecessor
[Fagerberg and Brodal 2003], range reporting [Yi 2009].

Queries and updates in 1 + O(1/b
1
2) I/Os with α = 1 −

O(1/b
1
2) [Jensen and Pagh, 2007]. (external, no memory)

11-1

Technical details:

Lowerbounds

12-1

Preliminaries

U = {0, 1, . . . , u− 1}: universe. |U | = u.

m: size of main memory. n: total number of items.
b: size of one block. All in words.

12-2

Preliminaries

U = {0, 1, . . . , u− 1}: universe. |U | = u.

Some mild assumptions

Atomic elements

n ≥ Ω
(
m log u · b2c

)
for some constant c > 0

m: size of main memory. n: total number of items.
b: size of one block. All in words.

12-3

Preliminaries

U = {0, 1, . . . , u− 1}: universe. |U | = u.

Deterministic data structure + a random distrib. of inputs

(Via a method similar to Yao’s Minimax Principle) =⇒
Randomized data structure

Some mild assumptions

Atomic elements

n ≥ Ω
(
m log u · b2c

)
for some constant c > 0

m: size of main memory. n: total number of items.
b: size of one block. All in words.

13-1

Observations

Two extreme cases

One exterme: only use a
fixed mapping for all items.

1, 11

21, 31

32 13, 73

43, 23

63, 33

null

Update is expensive!
b = 2

15, 55

45

13-2

Observations

Two extreme cases

One exterme: only use a
fixed mapping for all items.

1, 11

21, 31

32 13, 73

43, 23

63, 33

null

Update is expensive!

Another exterme: for every b
items come, write to a new
block.

Too many
possible
mappings.b = 2

15, 55

45

13-3

Observations

Two extreme cases

One exterme: only use a
fixed mapping for all items.

1, 11

21, 31

32 13, 73

43, 23

63, 33

null

Update is expensive!

Also easy to see

If with only the information in memory, the hash table cannot
locate the item, then querying it takes at least 2 I/Os.

Another exterme: for every b
items come, write to a new
block.

Too many
possible
mappings.b = 2

15, 55

45

14-1

The abstraction

Consider the layout of a hash table at any snapshot. Denote
all the blocks on disk by B0, B1, B2, . . . , Bd (B0 = M). Let
f : U → {0, 1, . . . , d} be any function computable within
memory.

When querying x ∈ U , f(x): index of the first block the DS
will probe. If f(x) = 0, the DS will still probe the memory.

14-2

The abstraction

Consider the layout of a hash table at any snapshot. Denote
all the blocks on disk by B0, B1, B2, . . . , Bd (B0 = M). Let
f : U → {0, 1, . . . , d} be any function computable within
memory.

When querying x ∈ U , f(x): index of the first block the DS
will probe. If f(x) = 0, the DS will still probe the memory.

Memory zone M : set of items
stored in memory. tq = 0.

Fast zone F : set of
items x such that
x ∈ Bf(x). tq = 1.

Slow zone S:
The rest of items.
tq ≥ 2.

Memory

Disk

We divide items inserted into 3 zones with respect to f .

15-1

The key idea

The hash table can employ a family F of at most
2m log u distinct f ’s.

Note that the current f adopted by the hash ta-
ble is dependent upon the already inserted items,
but the family F has to be fixed beforehand.

16-1

Size of the slow zone is small.

Suppose the hash table answers a successful query with
an expected average cost of tq = 1 + δ I/Os. Consider
the snapshot when k random items have been inserted.

E[|S|] ≤ m + δk. Memory zone M : tq = 0

Fast zone F : tq = 1 Slow zone S: tq ≥ 2

small!

16-2

Size of the slow zone is small.

Suppose the hash table answers a successful query with
an expected average cost of tq = 1 + δ I/Os. Consider
the snapshot when k random items have been inserted.

E[|S|] ≤ m + δk.

The high-probability version.

LEMMA 1. Let φ ≥ 1/b(c−1)/4 and let k ≥ φn. At
the snapshot when k items have been inserted, with
probability at least 1− 2φ, |S| ≤ m + δ

φk.

Memory zone M : tq = 0

Fast zone F : tq = 1 Slow zone S: tq ≥ 2

small!

17-1

Basic idea of the lower bound proof

Consider any f : U → {0, 1, . . . , d}. For i = 0, . . . , d,
let αi = |f−1(i)|/u, and we call (α0, α1, . . . , αd) the
characteristic vector of f .

17-2

Basic idea of the lower bound proof

Consider any f : U → {0, 1, . . . , d}. For i = 0, . . . , d,
let αi = |f−1(i)|/u, and we call (α0, α1, . . . , αd) the
characteristic vector of f .

After φn random insertions. Pick a fixed threshold ρ.
Assume α0 ≥ α1 ≥ . . . ≥ αd

α0 α1 α2 αk αd

ρ

f

If ∃ too many large αi’s,
S too large, violating
the query requirement
(LEMMA 1).

(A)

17-3

Basic idea of the lower bound proof

Consider any f : U → {0, 1, . . . , d}. For i = 0, . . . , d,
let αi = |f−1(i)|/u, and we call (α0, α1, . . . , αd) the
characteristic vector of f .

After φn random insertions. Pick a fixed threshold ρ.
Assume α0 ≥ α1 ≥ . . . ≥ αd

α0 α1 α2 αk αdf αj

ρ
Else f is likely to distribute
recent randomly inserted
items evenly, leading to a
high insertion cost.

(B)

17-4

Basic idea of the lower bound proof

Consider any f : U → {0, 1, . . . , d}. For i = 0, . . . , d,
let αi = |f−1(i)|/u, and we call (α0, α1, . . . , αd) the
characteristic vector of f .

After φn random insertions. Pick a fixed threshold ρ.
Assume α0 ≥ α1 ≥ . . . ≥ αd

α0 α1 α2 αk αd

ρ

f

If ∃ too many large αi’s,
S too large, violating
the query requirement
(LEMMA 1).

αj

ρ
Else f is likely to distribute
recent randomly inserted
items evenly, leading to a
high insertion cost.

Both hold with very high probability, even after taking union
of all O(2m log u) different f .

(A) (B)

18-1

Upper bounds

Easy!

Logarithmic method

+ Query start from the last (biggest) layer

+ Tricks to keep the last layer large

19-1

Beyond hashing:
Subsequent and future work

20-1

Beyond hashing

Hashing (successful)

20-2

Beyond hashing

Hashing (successful)

Membership

Problem: Maintain a set S ⊆ U . Given an
x ∈ U , answer x ∈ S?

Again, tradeoffs between update and query

Membership: if tq ≤ 1 + δ
(0 ≤ δ < 1/2), then tu ≥ Ω(1)
[Yi and Zhang 2009]

(1) Without atomic assumption
(2) Consider both successful and
unseccessful query

20-3

Beyond hashing

Hashing (successful)

Membership

Problem: Maintain a set S ⊆ U . Given an
x ∈ U , answer x ∈ S?

Again, tradeoffs between update and query

Membership: if tq ≤ 1 + δ
(0 ≤ δ < 1/2), then tu ≥ Ω(1)
[Yi and Zhang 2009]

(1) Without atomic assumption
(2) Consider both successful and
unseccessful query

General Membership

General Hashing

21-1

Lower bounds of other dynamic problems in the
cell probe with cache setting.

1. predecessor, range-sum

2. union-find

3. . . .

More problems

22-1

The End

T HANK YOU
Q and A

The Banff National Park

