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First Annual SIGMOD Programming Contest
(to be held at SIGMOD 2009)

O “Student teams from degree granting institutions are invited
to compete in a programming contest to develop an indexing
system for main memory data.”

“The index must be capab
exact match queries as wel

e of supporting range queries and
as updates, inserts, and deletes.”

“The choice of data structures (e.g., B-tree, AVL-tree, etc.)

. IS up to you."

O We think these problems are so basic that every DB grad
student should know, but do we really have the answer?
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Answer: Hash Table and B-treel

S Indeed, (external) hash tables and B-trees are both funda-
mental index structures that are used in all database systems

O Even for main memory data, we should still use external ver-
sions that optimize cache misses

External memory model (1/O model):

Memory
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Memory of size m
Each 1/O reads/writes a block

Disk partitioned into blocks of size b
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A range query in O(

}

togsa + k/0) 1/0s

k: output size

1Ogb T, — lOgb Tm =

The height of B-tree never goes beyond 5 (e.g., if b = 100, then
a B-tree with 5 levels stores n = 10 billion records). We will

assume log;, —

— 0(1).




5-1

Now Let's Go Dynamic

O Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

O B-tree: Split blocks when necessary

O Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]
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Now Let's Go Dynamic

O Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

O B-tree: Split blocks when necessary

O Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]

O These resizing operations only add O(1/b) 1/Os amortized per
Insertion: bottleneck is the first search + insert

O Cannot hope for lower than 1 I/O per insertion only if the
changes must be committed to disk right away (necessary?)

O Otherwise we probably can lower the amortized insertion cost by
buffering, like numerous problems in external memory, e.g. stack,
priority queue,... All of them support an insertion in O(1/b) 1/Os

— the best possible
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Dynamic B-trees for Fast Insertions

O LSM-tree [O'Neil, Cheng, Gawlick, [ ,,

memory

O’'Neil, 96]: Logarithmic method -

/m

B-tree
[ ]




Dynamic B-trees for Fast Insertions

O LSM-tree [O'Neil, Cheng, Gawlick, . m memory
O’'Neil, 96]: Logarithmic method -
B-tree Bl |
O |nsertion: O(%loge ) - ?’m

O Query: O(log, & + %)



Dynamic B-trees for Fast Insertions

O LSM-tree [O'Neil, Cheng, Gawlick, [Iij ,, memory

O’'Neil, 96]: Logarithmic method -
B-tree I

O |nsertion: O(% log, =) -

O Query: O(log, & + %)
O Stepped merge tree [Jagadish, Narayan, Seshadri, Sudar-
shan, Kannegantil, 97]: variant of LSM-tree

O Insertion: O(; log, 2)
O Query: O(flog, & + %)



6-4

Dynamic B-trees for Fast Insertions

O LSM-tree [O'Neil, Cheng, Gawlick, [Iij ,, memory

O’'Neil, 96]: Logarithmic method -
B-tree I

O |nsertion: O(% log, =) -

O Query: O(log, & + %)
O Stepped merge tree [Jagadish, Narayan, Seshadri, Sudar-
shan, Kannegantil, 97]: variant of LSM-tree

O Insertion: O(; log, 2)
O Query: O(flog, & + %)

O Usually £ is set to be a constant, then they both have
O(3 log ) insertion and O(log & + %) query
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More Dynamic B-trees

O Buffer tree [Arge, 95]

O Yet another B-tree (Y-tree) [Jermaine, Datta, Omiecinski, 99]

O Insertion: O(;log ), pretty fast since b > log 2 typically, but

k

not that fast; if O(3) insertion required, query becomes O(b° + %)

O Query: O(log %+%), much worse than the static B-tree's O(1+%);
if O(1 + %) query required, insertion cost becomes O(%)

O Deletions? Standard trick: inserting “delete signals”

O No further development in the last 10 years. So, seems we can't
do better, can we?
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Main Result

For any dynamic range query index with a query cost of g4+ O(k/b)
and an amortized insertion cost of u /b, the following tradeoff holds

q-log(u/q) = Q(logb), for ¢ < alnb, v is any constant;
u - log g = Q(logb), for all g.

Current upper bounds:

q U

log > | log =
1 ()"

(5)° 1

Assuming log, = = O(1), all the bounds are tight!

The technique of [Brodal, Fagerberg, 03] for the predecessor prob-
lem can be used to derive a tradeoff of

g - log(ulog® =) = Q(log ).
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Lower Bound Model: Dynamic Indexability

O Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

a query reports {2,3,4,5}

_— cost = 2
4709 Q24 359 267 |l189]||4a5

O Objects are stored in disk blocks of size up to b, possibly with

redundancy.
Redundancy r = (total # blocks)/[n/b]

O The query cost is the minimum number of blocks that can
cover all the required results (search time ignored!).
Access overhead A = (worst-case) query cost /| k/b]

O Similar in spirit to popular lower bound models: cell probe
model, semigroup model
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Previous Results on Indexability

O Nearly all external indexing lower bounds are under this model

5 2D range queries: r = Q(loﬁgf/‘b)) [Hellerstein, Koutsoupias,

Papadimitriou, 97], [Koutsoupias, Taylor, 98], [Arge, Samoladas, Vitter, 99]

5 2D stabbing queries: AgA?2 = Q(lofsg{ab)) [Arge, Samoladas, Yi, 04]

O Refined access overhead: a query is covered by Ag+ A1 - [k/b]| blocks

O 1D range queries: A = O(1),r = O(1) trivially

O Adding dynamization makes it much more interesting!
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Dynamic Indexability

O Still consider only insertions

memory of size m

blocks of size b = 3

time t: 127>

timet+1:C_ 1267 O

timet+2:< >

479|145 < snapshot
479 45 0 Inserted
479 125 0 3 8 Inserted

transition cost = 2
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Dynamic Indexability

O Still consider only insertions

memory of size m blocks of size b = 3
time t: 127 > 4791145 <« snapshot
timet+1:C_ 1267 > ||479||45 6 inserted
time t 4 2: < > 479112568 8 inserted

transition cost = 2

O Redundancy (access overhead) is the worst redundancy (access
overhead) of all snapshots
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Dynamic Indexability

O Still consider only insertions

memory of size m

time t: 127>
timet+1:C_ 1267 O
timet+2:< >

blocks of size b = 3

479|145
479|145
479112568

< snapshot
0 Inserted

8 Inserted

transition cost = 2

O Redundancy (access overhead) is the worst redundancy (access

overhead) of all snapshots

O Update cost: u = the average transition cost per b insertions



Main Result Obtained in Dynamic Indexability

THEOREM: For any dynamic 1D range query index with access
overhead A and update cost u, the following tradeoff holds, pro-
vided n > 2mb?:

A -log(u/A) = Q(logb), for A < alnb,« is any constant;
u - log A = Q(logb), for all A.
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Main Result Obtained in Dynamic Indexability

THEOREM: For any dynamic 1D range query index with access
overhead A and update cost u, the following tradeoff holds, pro-
vided n > 2mb?:

A -log(u/A) = Q(logb), for A < alnb,« is any constant;
u - log A = Q(logb), for all A.

Because a query cost O(q + |k/b]) implies O(q - [k/b])

The lower bound doesn't depend on the redundancy r!
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b balls A bins

e W AN AN AN
O N AN AN A

cost of putting the ball directly into a bin = # balls in the bin + 1
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The Ball-Shuffling Problem

b balls A bins

Shuffle:  __ \Q/\:L/L/\;/ et — &

Cost of shuffling = # balls in the involved bins

Putting a ball directly into a bin is a special shuffle

Goal: Accommodating all b balls using A bins with minimum cost
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Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

15-1



|
Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

o’

15-2



|
Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

o’

ot/

1 2

15-3



|
Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

o’

ot/
' blog b
¢

1 2 log b

15-4



|
Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

o’

ot/
' blog b
¢

-9

1 2 log b b*

15-5



15-6

Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A o b’ Tight (ignoring constants in big-Omega)

for A = O(logb) and A = Q(log" " b)

ot/
' blog b
¢

-9

1 2 log b b*
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The Workload Construction
> keys
round 1: e ° ° ° °
round 2: @ ° ® ° °
round 3: ® ® ° ° °
round b: | ° ° ° ° °
v
time Queries that we require the index to cover with A blocks
# queries > 2mb
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The Workload Construction
> keys
round 1: e ° ° ° °
snapshot
round 2: e ° ° ® ®
snapshot
round 3: ° ® ° ° °
snapshot
round b: | ° ° ° ° °
v snapshot
time Queries that we require the index to cover with A blocks
# queries > 2mb
Snapshots of the dynamic index considered
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The Workload Construction

> keys
round 1: e ° ® ® ®
round 2: e ° ° ® ®
round 3: ° ® ® ° ®
round b: ° ® ® ® °

There exists a query such that

e The < b objects of the query reside in < A blocks
v In all snapshots

time e All of its objects are on disk in all b snapshots (we
have > mb queries)

e [he index moves Its objects ub times Iin total

17-1
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The Reduction

An index with update cost u and access overhead A gives
us a solution to the ball-shuffling game with cost ub for

b balls and A bins

Lower bound on the ball-shuffling problem:

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b2/ for A < alnb where o is any constant;
Q(blog 4 b), for any A.

U

A -log(u/A) = Q(logb), for A < alnb,« is any constant;
u-log A = Q(logb), for all A.
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(A(blog 4 b), for any A.

O Will show: Any algorithm that handles the balls with an average
cost of u using A bins cannot accommodate (2A4)** balls or

Mmore.

b < (24)%%, or u > QIécég(QbA), so the total cost of the algorithm
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O Prove by induction on u

O ¢4 = 1: Can handle at most A balls.

Oy —u+17?
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Ball-Shuffling Lower Bound Proof (2)

O Need tol show: Any algorithm that handles the balls with an av-
erage cost of u+% using A bins cannot accommodate (2A)2“+1

balls or more.

To handle (24)%“*1 balls, any algorithm has to pay an average
cost of more than u + % per ball, or

(u + %) (24)*"T = (2Au+ A)(2A4)*"

In total.
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Ball-Shuffling Lower Bound Proof (3)

O Divide all balls into 2A batches of (24)%% each.

O Accommodating each batch by itself costs u(QA)Q“

O The “interference” among the 2A batches costs > A(2A4)4%

O |f 3 batch has at least one ball that is never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

"here are at most A bad batches

"here are at least A good batches
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Ball-Shuffling Lower Bound Proof (3)

O Divide all balls into 2A batches of (24)%% each.

O Accommodating each batch by itself costs u(QA)Qu

O The “interference” among the 2A batches costs > A(2A4)4%

O |f 3 batch has at least one ball that is never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

"here are at most A bad batches

"here are at least A good batches

O Each good batch contributes at least (24)" to the “interfer-
ence’ cost
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O [ Q(A-p'+R/AN " for A < alnb where « is any constant;
Q(blog 4 b), for any A.
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|
| ower Bound Proof: The Real Work

O [ Q(A-p'+R/AN " for A < alnb where « is any constant;
Q(blog 4 b), for any A.

O The merging lemma: There is an optimal ball-shuffling algo-
rithm that only uses merging shuffles

O Let fa(b) be the minimum cost to accommodate b balls with

A bins

O The recurrence

fat1(b)

[V

min r1 —1)+ -+ . — 1

+kx1+ (k—1)xg +---+ x5 — b}
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Open Problems and Conjectures

O 1D range reporting

O Current lower bound: query Q(logb), update Q(+ logb). Im-

n 1

prove to (log ™, 7 log =)?
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Open Problems and Conjectures

O 1D range reporting

O Current lower bound: query Q(logb), update Q(+ logb). Im-

n 1

prove to (log ™, 7 log =)?

O Closely related problems: range sum (partial sum), predecessor
search
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The Grant Conjecture

Internal memory (RAM) External memory

w: word size b: block size (in words)

O : (lOg n, l()g n)

range sum binary tree

Q2 : (logn,logn)
[Patrascu, Demaine, 006]

predecessor

range reporting
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The Grant Conjecture
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Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

range reporting




24-3

The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]
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O : (loglogw,log w)

O : (loglogn,logn/loglogn)
[Mortensen, Pagh, Patrascu, 05]
() : open
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The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

range reporting

O : (loglogw,log w)

O : (loglogn,logn/loglogn)
[Mortensen, Pagh, Patrascu, 05]
() : open

O : (log,

B-tree
method

n
m ?

_I_

% log, %)

logarithmic
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The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

O : (log, 2 gloge %)

B-tree + logarithmic
method

Optimal for all three?
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[Mortensen, Pagh, Patrascu, 05]
() : open
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The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
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O : (log, 2 %loge %)

B-tree + logarithmic
method

Optimal for all three?

range reporting

O : (loglogw,log w)

O : (loglogn,logn/loglogn)
[Mortensen, Pagh, Patrascu, 05]
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to be for B-tree to be
optimal?
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The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

O : (log, 2 gloge %)

B-tree + logarithmic
method

Optimal for all three?

range reporting

O : (loglogw,log w)

O : (loglogn,logn/loglogn)
[Mortensen, Pagh, Patrascu, 05]
() : open

How large does b need
to be for B-tree to be
optimal?

We now know this is true
for range reporting for
b = (%)Q(l); false for
b = o(loglogn)



The End

THANK YOU

Q and A



