Dynamic Indexability
and
Lower Bounds for Dynamic
One-Dimensional Range Query Indexes

Ke Yi
HKUST




2-1

First Annual SIGMOD Programming Contest
(to be held at SIGMOD 2009)

O “Student teams from degree granting institutions are invited
to compete in a programming contest to develop an indexing
system for main memory data.”

“The index must be capab
exact match queries as wel

e of supporting range queries and
as updates, inserts, and deletes.”

“The choice of data structures (e.g., B-tree, AVL-tree, etc.)

. IS up to you."



2-2

First Annual SIGMOD Programming Contest
(to be held at SIGMOD 2009)

O “Student teams from degree granting institutions are invited
to compete in a programming contest to develop an indexing
system for main memory data.”

“The index must be capab
exact match queries as wel

e of supporting range queries and
as updates, inserts, and deletes.”

“The choice of data structures (e.g., B-tree, AVL-tree, etc.)

. IS up to you."

O We think these problems are so basic that every DB grad
student should know, but do we really have the answer?



3-1

Answer: Hash Table and B-treel

S Indeed, (external) hash tables and B-trees are both funda-
mental index structures that are used in all database systems



3-2

Answer: Hash Table and B-treel

S Indeed, (external) hash tables and B-trees are both funda-
mental index structures that are used in all database systems

O Even for main memory data, we should still use external ver-
sions that optimize cache misses



3-3

Answer: Hash Table and B-treel

S Indeed, (external) hash tables and B-trees are both funda-
mental index structures that are used in all database systems

O Even for main memory data, we should still use external ver-
sions that optimize cache misses

External memory model (1/O model):

Memory

I

Dis

[
v

Memory of size m
Each 1/O reads/writes a block

Disk partitioned into blocks of size b



The B-tree

=Tt

e Nl DN




The B-tree

]
AN N

}

A range query in O(log, n + k/b) 1/0Os
k: output size



The B-tree

memory

AN

]

i
TN

}

A range query in O(fogpzn + k/b) 1/Os

k: output size

1Ogb T, — lOgb m = logb %




The B-tree

memory

AN

]

i
TN

4-4

A range query in O(

}

togsa + k/0) 1/0s

k: output size

1Ogb T, — lOgb Tm =

The height of B-tree never goes beyond 5 (e.g., if b = 100, then
a B-tree with 5 levels stores n = 10 billion records). We will

assume log;, —

— 0(1).




5-1

Now Let's Go Dynamic

O Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

O B-tree: Split blocks when necessary

O Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]



5-2

Now Let's Go Dynamic

O Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

O B-tree: Split blocks when necessary

O Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]

O These resizing operations only add O(1/b) 1/Os amortized per
Insertion: bottleneck is the first search + insert



5-3

Now Let's Go Dynamic

O Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

O B-tree: Split blocks when necessary

O Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]

O These resizing operations only add O(1/b) 1/Os amortized per
Insertion: bottleneck is the first search + insert

O Cannot hope for lower than 1 I/O per insertion only if the
changes must be committed to disk right away (necessary?)



5-4

Now Let's Go Dynamic

O Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

O B-tree: Split blocks when necessary

O Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]

O These resizing operations only add O(1/b) 1/Os amortized per
Insertion: bottleneck is the first search + insert

O Cannot hope for lower than 1 I/O per insertion only if the
changes must be committed to disk right away (necessary?)

O Otherwise we probably can lower the amortized insertion cost by
buffering, like numerous problems in external memory, e.g. stack,
priority queue,... All of them support an insertion in O(1/b) 1/Os

— the best possible



6-1

Dynamic B-trees for Fast Insertions

O LSM-tree [O'Neil, Cheng, Gawlick, [ ,,

memory

O’'Neil, 96]: Logarithmic method -

/m

B-tree
[ ]




Dynamic B-trees for Fast Insertions

O LSM-tree [O'Neil, Cheng, Gawlick, . m memory
O’'Neil, 96]: Logarithmic method -
B-tree Bl |
O |nsertion: O(%loge ) - ?’m

O Query: O(log, & + %)



Dynamic B-trees for Fast Insertions

O LSM-tree [O'Neil, Cheng, Gawlick, [Iij ,, memory

O’'Neil, 96]: Logarithmic method -
B-tree I

O |nsertion: O(% log, =) -

O Query: O(log, & + %)
O Stepped merge tree [Jagadish, Narayan, Seshadri, Sudar-
shan, Kannegantil, 97]: variant of LSM-tree

O Insertion: O(; log, 2)
O Query: O(flog, & + %)



6-4

Dynamic B-trees for Fast Insertions

O LSM-tree [O'Neil, Cheng, Gawlick, [Iij ,, memory

O’'Neil, 96]: Logarithmic method -
B-tree I

O |nsertion: O(% log, =) -

O Query: O(log, & + %)
O Stepped merge tree [Jagadish, Narayan, Seshadri, Sudar-
shan, Kannegantil, 97]: variant of LSM-tree

O Insertion: O(; log, 2)
O Query: O(flog, & + %)

O Usually £ is set to be a constant, then they both have
O(3 log ) insertion and O(log & + %) query



7-1

More Dynamic B-trees

O Buffer tree [Arge, 95]

O Yet another B-tree (Y-tree) [Jermaine, Datta, Omiecinski, 99]



7-2

More Dynamic B-trees

O Buffer tree [Arge, 95]

O Yet another B-tree (Y-tree) [Jermaine, Datta, Omiecinski, 99]

O Insertion: O(;log ), pretty fast since b > log 2 typically, but

k

not that fast; if O(3) insertion required, query becomes O(b° + %)

O Query: O(log %+%), much worse than the static B-tree's O(1+%);
if O(1 + %) query required, insertion cost becomes O(%)



7-3

More Dynamic B-trees

O Buffer tree [Arge, 95]

O Yet another B-tree (Y-tree) [Jermaine, Datta, Omiecinski, 99]

O Insertion: O(;log ), pretty fast since b > log 2 typically, but

k

not that fast; if O(3) insertion required, query becomes O(b° + %)

O Query: O(log %+%), much worse than the static B-tree's O(1+%);
if O(1 + %) query required, insertion cost becomes O(%)

O Deletions? Standard trick: inserting “delete signals”



7-4

More Dynamic B-trees

O Buffer tree [Arge, 95]

O Yet another B-tree (Y-tree) [Jermaine, Datta, Omiecinski, 99]

O Insertion: O(;log ), pretty fast since b > log 2 typically, but

k

not that fast; if O(3) insertion required, query becomes O(b° + %)

O Query: O(log %+%), much worse than the static B-tree's O(1+%);
if O(1 + %) query required, insertion cost becomes O(%)

O Deletions? Standard trick: inserting “delete signals”

O No further development in the last 10 years. So, seems we can't
do better, can we?



8-1

Main Result

For any dynamic range query index with a query cost of g4+ O(k/b)
and an amortized insertion cost of u /b, the following tradeoff holds

q-log(u/q) = Q(logb), for ¢ < alnb, v is any constant;
u - log g = Q(logb), for all g.



Main Result

For any dynamic range query index with a query cost of g4+ O(k/b)
and an amortized insertion cost of u /b, the following tradeoff holds

q-log(u/q) = Q(logb), for ¢ < alnb, v is any constant;
u - log g = Q(logb), for all g.

Current upper bounds:

q U

log = | log =
1 ()"

(5)° 1




8-3

Main Result

For any dynamic range query index with a query cost of g4+ O(k/b)
and an amortized insertion cost of u /b, the following tradeoff holds

q-log(u/q) = Q(logb), for ¢ < alnb, v is any constant;
u - log g = Q(logb), for all g.

Current upper bounds:

q U

log > | log =
1 ()"

(5)° 1

Assuming log, = = O(1), all the bounds are tight!



8-4

Main Result

For any dynamic range query index with a query cost of g4+ O(k/b)
and an amortized insertion cost of u /b, the following tradeoff holds

q-log(u/q) = Q(logb), for ¢ < alnb, v is any constant;
u - log g = Q(logb), for all g.

Current upper bounds:

q U

log > | log =
1 ()"

(5)° 1

Assuming log, = = O(1), all the bounds are tight!

The technique of [Brodal, Fagerberg, 03] for the predecessor prob-
lem can be used to derive a tradeoff of

g - log(ulog® =) = Q(log ).



9-1

Lower Bound Model: Dynamic Indexability

O Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]



Lower Bound Model: Dynamic Indexability

O Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

47911124 1358|267 |[189]||45

O Objects are stored in disk blocks of size up to b, possibly with

redundancy.
Redundancy r = (total # blocks)/[n/b]



Lower Bound Model: Dynamic Indexability

O Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

a query reports {2,3,4,5}

47911124 1358|267 |[189]||45

O Objects are stored in disk blocks of size up to b, possibly with

redundancy.
Redundancy r = (total # blocks)/[n/b]



9-4

Lower Bound Model: Dynamic Indexability

O Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

a query reports {2,3,4,5}

_— cost = 2
4709 Q24 359 267 |l189]||4a5

O Objects are stored in disk blocks of size up to b, possibly with

redundancy.
Redundancy r = (total # blocks)/[n/b]

O The query cost is the minimum number of blocks that can
cover all the required results (search time ignored!).
Access overhead A = (worst-case) query cost /| k/b]



9-5

Lower Bound Model: Dynamic Indexability

O Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

a query reports {2,3,4,5}

_— cost = 2
4709 Q24 359 267 |l189]||4a5

O Objects are stored in disk blocks of size up to b, possibly with

redundancy.
Redundancy r = (total # blocks)/[n/b]

O The query cost is the minimum number of blocks that can
cover all the required results (search time ignored!).
Access overhead A = (worst-case) query cost /| k/b]

O Similar in spirit to popular lower bound models: cell probe
model, semigroup model



Previous Results on Indexability

O Nearly all external indexing lower bounds are under this model

10-1



Previous Results on Indexability

O Nearly all external indexing lower bounds are under this model

5 2D range queries: r = Q(loﬁgf/‘b))

Papadimitriou, 97], [Koutsoupias, Taylor, 98], [Arge, Samoladas, Vitter, 99]

[Hellerstein, Koutsoupias,

10-2



10-3

Previous Results on Indexability

O Nearly all external indexing lower bounds are under this model

5 2D range queries: r = Q(loﬁgf/‘b)) [Hellerstein, Koutsoupias,

Papadimitriou, 97], [Koutsoupias, Taylor, 98], [Arge, Samoladas, Vitter, 99]

5 2D stabbing queries: AgA?2 = Q(lofsg{ab)) [Arge, Samoladas, Yi, 04]

O Refined access overhead: a query is covered by Ag+ A1 - [k/b]| blocks



10-4

Previous Results on Indexability

O Nearly all external indexing lower bounds are under this model

5 2D range queries: r = Q(loﬁgf/‘b)) [Hellerstein, Koutsoupias,

Papadimitriou, 97], [Koutsoupias, Taylor, 98], [Arge, Samoladas, Vitter, 99]

5 2D stabbing queries: AgA?2 = Q(lofsg{ab)) [Arge, Samoladas, Yi, 04]

O Refined access overhead: a query is covered by Ag+ A1 - [k/b]| blocks

O 1D range queries: A = O(1),r = O(1) trivially



10-5

Previous Results on Indexability

O Nearly all external indexing lower bounds are under this model

5 2D range queries: r = Q(loﬁgf/‘b)) [Hellerstein, Koutsoupias,

Papadimitriou, 97], [Koutsoupias, Taylor, 98], [Arge, Samoladas, Vitter, 99]

5 2D stabbing queries: AgA?2 = Q(lofsg{ab)) [Arge, Samoladas, Yi, 04]

O Refined access overhead: a query is covered by Ag+ A1 - [k/b]| blocks

O 1D range queries: A = O(1),r = O(1) trivially

O Adding dynamization makes it much more interesting!



Dynamic Indexability

O Still consider only insertions

111



11-2

Dynami

O Still consider only insertions

time t:

c Indexability

memory of size m

127 O

blocks of size b = 3

479

45

< snapshot



11-3

Dynamic Indexability

O Still consider only insertions

memory of size m

blocks of size b = 3

time t: 127>

479

45

timet+1:C_ 1267 O

479

45

< snapshot

6 Inserted



11-4

Dynamic Indexability

O Still consider only insertions

memory of size m

blocks of size b = 3

time t: 127>

timet+1:C_ 1267 O

timet+2:< >

479|145
479|145
479|125 ]|68

< snapshot
0 Inserted

8 Inserted



11-5

Dynamic Indexability

O Still consider only insertions

memory of size m

blocks of size b = 3

time t: 127>

timet+1:C_ 1267 O

timet+2:< >

479|145 < snapshot
479 45 0 Inserted
479 125 0 3 8 Inserted

transition cost = 2



11-6

Dynamic Indexability

O Still consider only insertions

memory of size m blocks of size b = 3
time t: 127 > 4791145 <« snapshot
timet+1:C_ 1267 > ||479||45 6 inserted
time t 4 2: < > 479112568 8 inserted

transition cost = 2

O Redundancy (access overhead) is the worst redundancy (access
overhead) of all snapshots



11-7

Dynamic Indexability

O Still consider only insertions

memory of size m

time t: 127>
timet+1:C_ 1267 O
timet+2:< >

blocks of size b = 3

479|145
479|145
479112568

< snapshot
0 Inserted

8 Inserted

transition cost = 2

O Redundancy (access overhead) is the worst redundancy (access

overhead) of all snapshots

O Update cost: u = the average transition cost per b insertions



Main Result Obtained in Dynamic Indexability

THEOREM: For any dynamic 1D range query index with access
overhead A and update cost u, the following tradeoff holds, pro-
vided n > 2mb?:

A -log(u/A) = Q(logb), for A < alnb,« is any constant;
u - log A = Q(logb), for all A.

12-1



12-2

Main Result Obtained in Dynamic Indexability

THEOREM: For any dynamic 1D range query index with access
overhead A and update cost u, the following tradeoff holds, pro-
vided n > 2mb?:

A -log(u/A) = Q(logb), for A < alnb,« is any constant;
u - log A = Q(logb), for all A.

Because a query cost O(q + |k/b]) implies O(q - [k/b])



12-3

Main Result Obtained in Dynamic Indexability

THEOREM: For any dynamic 1D range query index with access
overhead A and update cost u, the following tradeoff holds, pro-
vided n > 2mb?:

A -log(u/A) = Q(logb), for A < alnb,« is any constant;
u - log A = Q(logb), for all A.

Because a query cost O(q + |k/b]) implies O(q - [k/b])

The lower bound doesn't depend on the redundancy r!



The Ball-Shuffling Problem

b balls A bins



The Ball-Shuffling Problem

b balls A bins

e N A AN AN



The Ball-Shuffling Problem

b balls A bins

e W AN AN AN
O N AN AN A

cost of putting the ball directly into a bin = # balls in the bin + 1



The Ball-Shuffling Problem

b balls A bins

c o\ oo oo/ e/



The Ball-Shuffling Problem

b balls A bins

Shuffle:  __ \-‘_-/\é/\;/\;/ et — &



The Ball-Shuffling Problem

b balls A bins

Shuffle:  __ \Q/\:L/u\;/ et — &

Cost of shuffling = # balls in the involved bins



The Ball-Shuffling Problem

b balls A bins

Shuffle:  __ \Q/\:L/L/\;/ et — &

Cost of shuffling = # balls in the involved bins

Putting a ball directly into a bin is a special shuffle

14-4



14-5

The Ball-Shuffling Problem

b balls A bins

Shuffle:  __ \Q/\:L/L/\;/ et — &

Cost of shuffling = # balls in the involved bins

Putting a ball directly into a bin is a special shuffle

Goal: Accommodating all b balls using A bins with minimum cost




|
Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

15-1



|
Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

o’

15-2



|
Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

o’

ot/

1 2

15-3



|
Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

o’

ot/
' blog b
¢

1 2 log b

15-4



|
Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A

o’

ot/
' blog b
¢

-9

1 2 log b b*

15-5



15-6

Ball-Shuffling Lower Bounds

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b FRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

cost lower bound

A o b’ Tight (ignoring constants in big-Omega)

for A = O(logb) and A = Q(log" " b)

ot/
' blog b
¢

-9

1 2 log b b*



The Workload Construction

> keys
round 1: e ® ® ® ®

time

16-1



The Workload Construction

> keys
round 1: e ® ® ® ®

round 2: e ® ® ® Y

time

16-2



The Workload Construction

> keys
round 1: e ® ® ® °
round 2: e ® ° ® Y
round 3: ° ® ® ° ®
round b: ® ® ® ® °
\ /
time

16-3



|
I
The Workload Construction
> keys
round 1: e ° ° ° °
round 2: @ ° ® ° °
round 3: ® ® ° ° °
round b: | ° ° ° ° °
v
time Queries that we require the index to cover with A blocks
# queries > 2mb

16-4



|
|
The Workload Construction
> keys
round 1: e ° ° ° °
snapshot
round 2: e ° ° ® ®
snapshot
round 3: ° ® ° ° °
snapshot
round b: | ° ° ° ° °
v snapshot
time Queries that we require the index to cover with A blocks
# queries > 2mb
Snapshots of the dynamic index considered

16-5



The Workload Construction

> keys
round 1: e ° ® ® ®
round 2: e ° ° ® ®
round 3: ° ® ® ° ®
round b: ° ® ® ® °

There exists a query such that

e The < b objects of the query reside in < A blocks
v In all snapshots

time e All of its objects are on disk in all b snapshots (we
have > mb queries)

e [he index moves Its objects ub times Iin total

17-1



The Reduction

An index with update cost u and access overhead A gives
us a solution to the ball-shuffling game with cost ub for

b balls and A bins




The Reduction

An index with update cost u and access overhead A gives
us a solution to the ball-shuffling game with cost ub for

b balls and A bins

Lower bound on the ball-shuffling problem:

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b2/ for A < alnb where o is any constant;
Q(blog 4 b), for any A.

18-2



The Reduction

An index with update cost u and access overhead A gives
us a solution to the ball-shuffling game with cost ub for

b balls and A bins

Lower bound on the ball-shuffling problem:

THEOREM: The cost of any solution for the ball-shuffling problem
Is at least

Q(A - b2/ for A < alnb where o is any constant;
Q(blog 4 b), for any A.

U

A -log(u/A) = Q(logb), for A < alnb,« is any constant;
u-log A = Q(logb), for all A.

18-3



|
Ball-Shuffling Lower Bound Proof

50 QA-pHRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

19-1



|
Ball-Shuffling Lower Bound Proof

50 QA-pHRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

O Will show: Any algorithm that handles the balls with an average
cost of u using A bins cannot accommodate (2A4)** balls or

Mmore.

b < (24)%%, or u > QIécég(QbA), so the total cost of the algorithm
is ub = Q(blog 4 b).

19-2



|
Ball-Shuffling Lower Bound Proof

50 QA-pHRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

O Will show: Any algorithm that handles the balls with an average
cost of u using A bins cannot accommodate (2A4)** balls or

Mmore.

b < (24)%%, or u > QIécég(QbA), so the total cost of the algorithm
is ub = Q(blog 4 b).

O Prove by induction on u

O ¢4 = 1: Can handle at most A balls.

19-3



|
Ball-Shuffling Lower Bound Proof

50 QA-pHRA/AN T for A < alnb where « is any constant;
(A(blog 4 b), for any A.

O Will show: Any algorithm that handles the balls with an average
cost of u using A bins cannot accommodate (2A4)** balls or

Mmore.

b < (24)%%, or u > QIécég(QbA), so the total cost of the algorithm
is ub = Q(blog 4 b).

O Prove by induction on u

O ¢4 = 1: Can handle at most A balls.

Oy —u+17?

19-4



|
Ball-Shuffling Lower Bound Proof (2)

O Need tol show: Any algorithm that handles the balls with an av-
erage cost of u+% using A bins cannot accommodate (2A)2“+1

balls or more.

To handle (24)%“*1 balls, any algorithm has to pay an average
cost of more than u + % per ball, or

(u + %) (24)*"T = (2Au+ A)(2A4)*"

In total.

20-1



|
Ball-Shuffling Lower Bound Proof (2)

O Need tol show: Any algorithm that handles the balls with an av-
erage cost of u+% using A bins cannot accommodate (2A)2“+1

balls or more.

To handle (24)%“*1 balls, any algorithm has to pay an average
cost of more than u + % per ball, or

(u + %) (24)*"T = (2Au+ A)(2A4)*"

In total.

O Divide all balls into 2A batches of (24)%% each.

20-2



20-3

Ball-Shuffling Lower Bound Proof (2)

O Need tol show: Any algorithm that handles the balls with an av-
erage cost of u+% using A bins cannot accommodate (2A)2“+1

balls or more.

To handle (24)%“*1 balls, any algorithm has to pay an average
cost of more than u + % per ball, or

(u + %) (24)*"T = (2Au+ A)(2A4)*"

In total.

O Divide all balls into 2A batches of (24)%% each.

O Accommodating each batch by itself costs u(2A)2“



|
Ball-Shuffling Lower Bound Proof (3)

O Divide all balls into 2A batches of (24)%% each.

O Accommodating each batch by itself costs u(QA)Q“

21-1



|
Ball-Shuffling Lower Bound Proof (3)

O Divide all balls into 2A batches of (24)%% each.

O Accommodating each batch by itself costs u(QA)Q“

O The “interference” among the 2A batches costs > A(2A4)4%

21-2



|
Ball-Shuffling Lower Bound Proof (3)

O Divide all balls into 2A batches of (24)%% each.

O Accommodating each batch by itself costs u(QA)Q“

O The “interference” among the 2A batches costs > A(2A4)4%

O |f a batch has at least one ball that i1s never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

21-3



|
Ball-Shuffling Lower Bound Proof (3)

O Divide all balls into 2A batches of (24)%% each.

O Accommodating each batch by itself costs u(QA)Q“

O The “interference” among the 2A batches costs > A(2A4)4%

O |f 3 batch has at least one ball that is never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

O There are at most A bad batches

21-4



|
Ball-Shuffling Lower Bound Proof (3)

O Divide all balls into 2A batches of (24)%% each.

O Accommodating each batch by itself costs u(QA)Q“

O The “interference” among the 2A batches costs > A(2A4)4%

O |f 3 batch has at least one ball that is never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

"here are at most A bad batches

"here are at least A good batches

21-5



21-6

Ball-Shuffling Lower Bound Proof (3)

O Divide all balls into 2A batches of (24)%% each.

O Accommodating each batch by itself costs u(QA)Qu

O The “interference” among the 2A batches costs > A(2A4)4%

O |f 3 batch has at least one ball that is never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

"here are at most A bad batches

"here are at least A good batches

O Each good batch contributes at least (24)" to the “interfer-
ence’ cost



|
| ower Bound Proof: The Real Work

O [ Q(A-p'+R/AN " for A < alnb where « is any constant;
Q(blog 4 b), for any A.

22-1



|
| ower Bound Proof: The Real Work

O [ Q(A-p'+R/AN " for A < alnb where « is any constant;
Q(blog 4 b), for any A.

O The merging lemma: There is an optimal ball-shuffling algo-
rithm that only uses merging shuffles

22-2



|
| ower Bound Proof: The Real Work

O [ Q(A-p'+R/AN " for A < alnb where « is any constant;
Q(blog 4 b), for any A.

O The merging lemma: There is an optimal ball-shuffling algo-
rithm that only uses merging shuffles

O Let fa(b) be the minimum cost to accommodate b balls with
A bins

22-3



|
| ower Bound Proof: The Real Work

O [ Q(A-p'+R/AN " for A < alnb where « is any constant;
Q(blog 4 b), for any A.

O The merging lemma: There is an optimal ball-shuffling algo-
rithm that only uses merging shuffles

O Let fa(b) be the minimum cost to accommodate b balls with

A bins

O The recurrence

fat1(b)

[V

min r1 —1)+ -+ . — 1

+kx1+ (k—1)xg +---+ x5 — b}

22-4



Open Problems and Conjectures

O 1D range reporting

O Current lower bound: query Q(logb), update Q(+ logb). Im-

n 1

prove to (log ™, 7 log =)?

23-1



Open Problems and Conjectures

O 1D range reporting

O Current lower bound: query Q(logb), update Q(+ logb). Im-

n 1

prove to (log ™, 7 log =)?

O Closely related problems: range sum (partial sum), predecessor
search

23-2



The Grant Conjecture

Internal memory (RAM) External memory

w: word size b: block size (in words)

O : (lOg n, l()g n)

range sum binary tree

Q2 : (logn,logn)
[Patrascu, Demaine, 006]

predecessor

range reporting

24-1



The Grant Conjecture

24-2

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

range reporting




24-3

The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

range reporting

O : (loglogw,log w)

O : (loglogn,logn/loglogn)
[Mortensen, Pagh, Patrascu, 05]
() : open




24-4

The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

range reporting

O : (loglogw,log w)

O : (loglogn,logn/loglogn)
[Mortensen, Pagh, Patrascu, 05]
() : open

O : (log,

B-tree
method

n
m ?

_I_

% log, %)

logarithmic



24-5

The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

O : (log, 2 gloge %)

B-tree + logarithmic
method

Optimal for all three?

range reporting

O : (loglogw,log w)

O : (loglogn,logn/loglogn)
[Mortensen, Pagh, Patrascu, 05]
() : open




24-6

The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

O : (log, 2 %loge %)

B-tree + logarithmic
method

Optimal for all three?

range reporting

O : (loglogw,log w)

O : (loglogn,logn/loglogn)
[Mortensen, Pagh, Patrascu, 05]
() : open

How large does b need
to be for B-tree to be
optimal?



24-7

The Grant Conjecture

Internal memory (RAM)

w: word size

External memory

b: block size (in words)

O : (logn,logn)
binary tree

range sum
(2 : (logn,logn)
[Patrascu, Demaine, 00]
O : query = update =
. log log n log w logn
predecessor mm{ log log w ’\/loglogn}

Q...
[Beame, Fich, 02]

O : (log, 2 gloge %)

B-tree + logarithmic
method

Optimal for all three?

range reporting

O : (loglogw,log w)

O : (loglogn,logn/loglogn)
[Mortensen, Pagh, Patrascu, 05]
() : open

How large does b need
to be for B-tree to be
optimal?

We now know this is true
for range reporting for
b = (%)Q(l); false for
b = o(loglogn)



The End

THANK YOU

Q and A



