
1-1

Dynamic Indexability
and

Lower Bounds for Dynamic
One-Dimensional Range Query Indexes

Ke Yi

HKUST

2-1

First Annual SIGMOD Programming Contest
(to be held at SIGMOD 2009)

“Student teams from degree granting institutions are invited
to compete in a programming contest to develop an indexing
system for main memory data.”

“The index must be capable of supporting range queries and
exact match queries as well as updates, inserts, and deletes.”

“The choice of data structures (e.g., B-tree, AVL-tree, etc.)
... is up to you.”

2-2

First Annual SIGMOD Programming Contest
(to be held at SIGMOD 2009)

“Student teams from degree granting institutions are invited
to compete in a programming contest to develop an indexing
system for main memory data.”

“The index must be capable of supporting range queries and
exact match queries as well as updates, inserts, and deletes.”

“The choice of data structures (e.g., B-tree, AVL-tree, etc.)
... is up to you.”

We think these problems are so basic that every DB grad
student should know, but do we really have the answer?

3-1

Answer: Hash Table and B-tree!

Indeed, (external) hash tables and B-trees are both funda-
mental index structures that are used in all database systems

3-2

Answer: Hash Table and B-tree!

Indeed, (external) hash tables and B-trees are both funda-
mental index structures that are used in all database systems

Even for main memory data, we should still use external ver-
sions that optimize cache misses

3-3

Answer: Hash Table and B-tree!

Indeed, (external) hash tables and B-trees are both funda-
mental index structures that are used in all database systems

Even for main memory data, we should still use external ver-
sions that optimize cache misses

External memory model (I/O model):

Each I/O reads/writes a block

Memory of size m

Disk partitioned into blocks of size b

Memory

Disk

4-1

The B-tree

4-2

The B-tree

A range query in O(logb n+ k/b) I/Os

k: output size

4-3

The B-tree

A range query in O(logb n+ k/b) I/Os

k: output size

memory

logb n− logbm = logb
n
m

4-4

The B-tree

A range query in O(logb n+ k/b) I/Os

k: output size

memory

logb n− logbm = logb
n
m

The height of B-tree never goes beyond 5 (e.g., if b = 100, then
a B-tree with 5 levels stores n = 10 billion records). We will
assume logb

n
m = O(1).

5-1

Now Let’s Go Dynamic

B-tree: Split blocks when necessary

Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]

5-2

Now Let’s Go Dynamic

B-tree: Split blocks when necessary

Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

These resizing operations only add O(1/b) I/Os amortized per
insertion; bottleneck is the first search + insert

Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]

5-3

Now Let’s Go Dynamic

Cannot hope for lower than 1 I/O per insertion only if the
changes must be committed to disk right away (necessary?)

B-tree: Split blocks when necessary

Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

These resizing operations only add O(1/b) I/Os amortized per
insertion; bottleneck is the first search + insert

Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]

5-4

Now Let’s Go Dynamic

Cannot hope for lower than 1 I/O per insertion only if the
changes must be committed to disk right away (necessary?)

B-tree: Split blocks when necessary

Otherwise we probably can lower the amortized insertion cost by
buffering, like numerous problems in external memory, e.g. stack,
priority queue,... All of them support an insertion in O(1/b) I/Os
— the best possible

Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

These resizing operations only add O(1/b) I/Os amortized per
insertion; bottleneck is the first search + insert

Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]

6-1

Dynamic B-trees for Fast Insertions

LSM-tree [O’Neil, Cheng, Gawlick,
O’Neil, 96]: Logarithmic method +
B-tree

memory

`2m

`m

m

6-2

Dynamic B-trees for Fast Insertions

LSM-tree [O’Neil, Cheng, Gawlick,
O’Neil, 96]: Logarithmic method +
B-tree

memory

`2m

`m

m

Insertion: O(`
b

log`
n
m

)

Query: O(log`
n
m

+ k
b
)

6-3

Dynamic B-trees for Fast Insertions

LSM-tree [O’Neil, Cheng, Gawlick,
O’Neil, 96]: Logarithmic method +
B-tree

memory

`2m

`m

m

Insertion: O(`
b

log`
n
m

)

Query: O(log`
n
m

+ k
b
)

Stepped merge tree [Jagadish, Narayan, Seshadri, Sudar-
shan, Kannegantil, 97]: variant of LSM-tree

Insertion: O(1
b

log`
n
m

)

Query: O(` log`
n
m

+ k
b
)

6-4

Dynamic B-trees for Fast Insertions

LSM-tree [O’Neil, Cheng, Gawlick,
O’Neil, 96]: Logarithmic method +
B-tree

memory

`2m

`m

m

Insertion: O(`
b

log`
n
m

)

Query: O(log`
n
m

+ k
b
)

Stepped merge tree [Jagadish, Narayan, Seshadri, Sudar-
shan, Kannegantil, 97]: variant of LSM-tree

Insertion: O(1
b

log`
n
m

)

Query: O(` log`
n
m

+ k
b
)

Usually ` is set to be a constant, then they both have
O(1

b log n
m) insertion and O(log n

m + k
b) query

7-1

More Dynamic B-trees

Yet another B-tree (Y-tree) [Jermaine, Datta, Omiecinski, 99]

Buffer tree [Arge, 95]

7-2

More Dynamic B-trees

Yet another B-tree (Y-tree) [Jermaine, Datta, Omiecinski, 99]

Insertion: O(1
b

log n
m

), pretty fast since b � log n
m

typically, but
not that fast; if O(1

b
) insertion required, query becomes O(bε + k

b
)

Buffer tree [Arge, 95]

Query: O(log n
m

+ k
b
), much worse than the static B-tree’s O(1+ k

b
);

if O(1 + k
b
) query required, insertion cost becomes O(b

ε

b
)

7-3

More Dynamic B-trees

Yet another B-tree (Y-tree) [Jermaine, Datta, Omiecinski, 99]

Insertion: O(1
b

log n
m

), pretty fast since b � log n
m

typically, but
not that fast; if O(1

b
) insertion required, query becomes O(bε + k

b
)

Buffer tree [Arge, 95]

Query: O(log n
m

+ k
b
), much worse than the static B-tree’s O(1+ k

b
);

if O(1 + k
b
) query required, insertion cost becomes O(b

ε

b
)

Deletions? Standard trick: inserting “delete signals”

7-4

More Dynamic B-trees

Yet another B-tree (Y-tree) [Jermaine, Datta, Omiecinski, 99]

Insertion: O(1
b

log n
m

), pretty fast since b � log n
m

typically, but
not that fast; if O(1

b
) insertion required, query becomes O(bε + k

b
)

No further development in the last 10 years. So, seems we can’t
do better, can we?

Buffer tree [Arge, 95]

Query: O(log n
m

+ k
b
), much worse than the static B-tree’s O(1+ k

b
);

if O(1 + k
b
) query required, insertion cost becomes O(b

ε

b
)

Deletions? Standard trick: inserting “delete signals”

8-1

Main Result

For any dynamic range query index with a query cost of q+O(k/b)
and an amortized insertion cost of u/b, the following tradeoff holds{

q · log(u/q) = Ω(log b), for q < α ln b, α is any constant;
u · log q = Ω(log b), for all q.

8-2

Main Result

For any dynamic range query index with a query cost of q+O(k/b)
and an amortized insertion cost of u/b, the following tradeoff holds{

q · log(u/q) = Ω(log b), for q < α ln b, α is any constant;
u · log q = Ω(log b), for all q.

Current upper bounds:
q u

log n
m log n

m

1 (nm)ε

(nm)ε 1

8-3

Main Result

For any dynamic range query index with a query cost of q+O(k/b)
and an amortized insertion cost of u/b, the following tradeoff holds{

q · log(u/q) = Ω(log b), for q < α ln b, α is any constant;
u · log q = Ω(log b), for all q.

Current upper bounds:
q u

log n
m log n

m

1 (nm)ε

(nm)ε 1

Assuming logb
n
m

= O(1), all the bounds are tight!

8-4

Main Result

For any dynamic range query index with a query cost of q+O(k/b)
and an amortized insertion cost of u/b, the following tradeoff holds{

q · log(u/q) = Ω(log b), for q < α ln b, α is any constant;
u · log q = Ω(log b), for all q.

Current upper bounds:
q u

log n
m log n

m

1 (nm)ε

(nm)ε 1

Assuming logb
n
m

= O(1), all the bounds are tight!

The technique of [Brodal, Fagerberg, 03] for the predecessor prob-
lem can be used to derive a tradeoff of

q · log(u log2 n
m) = Ω(log n

m).

9-1

Lower Bound Model: Dynamic Indexability

Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

9-2

Lower Bound Model: Dynamic Indexability

Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

4 7 9 1 2 4 3 5 8 2 6 7 1 8 9 4 5

Objects are stored in disk blocks of size up to b, possibly with
redundancy.
Redundancy r = (total # blocks)/dn/be

9-3

Lower Bound Model: Dynamic Indexability

Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

4 7 9 1 2 4 3 5 8 2 6 7 1 8 9 4 5

Objects are stored in disk blocks of size up to b, possibly with
redundancy.
Redundancy r = (total # blocks)/dn/be

a query reports {2,3,4,5}

9-4

Lower Bound Model: Dynamic Indexability

Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

4 7 9 1 2 4 3 5 8 2 6 7 1 8 9 4 5

Objects are stored in disk blocks of size up to b, possibly with
redundancy.
Redundancy r = (total # blocks)/dn/be

a query reports {2,3,4,5}

The query cost is the minimum number of blocks that can
cover all the required results (search time ignored!).
Access overhead A = (worst-case) query cost /dk/be

cost = 2

9-5

Lower Bound Model: Dynamic Indexability

Indexability: [Hellerstein, Koutsoupias, Papadimitriou, 97]

4 7 9 1 2 4 3 5 8 2 6 7 1 8 9 4 5

Objects are stored in disk blocks of size up to b, possibly with
redundancy.
Redundancy r = (total # blocks)/dn/be

a query reports {2,3,4,5}

The query cost is the minimum number of blocks that can
cover all the required results (search time ignored!).
Access overhead A = (worst-case) query cost /dk/be

cost = 2

Similar in spirit to popular lower bound models: cell probe
model, semigroup model

10-1

Previous Results on Indexability

Nearly all external indexing lower bounds are under this model

10-2

Previous Results on Indexability

2D range queries: r = Ω(log(n/b)
logA) [Hellerstein, Koutsoupias,

Papadimitriou, 97], [Koutsoupias, Taylor, 98], [Arge, Samoladas, Vitter, 99]

Nearly all external indexing lower bounds are under this model

10-3

Previous Results on Indexability

2D range queries: r = Ω(log(n/b)
logA) [Hellerstein, Koutsoupias,

Papadimitriou, 97], [Koutsoupias, Taylor, 98], [Arge, Samoladas, Vitter, 99]

2D stabbing queries: A0A
2
1 = Ω(log(n/b)

log r) [Arge, Samoladas, Yi, 04]

Refined access overhead: a query is covered by A0+A1 ·dk/be blocks

Nearly all external indexing lower bounds are under this model

10-4

Previous Results on Indexability

2D range queries: r = Ω(log(n/b)
logA) [Hellerstein, Koutsoupias,

Papadimitriou, 97], [Koutsoupias, Taylor, 98], [Arge, Samoladas, Vitter, 99]

2D stabbing queries: A0A
2
1 = Ω(log(n/b)

log r) [Arge, Samoladas, Yi, 04]

Refined access overhead: a query is covered by A0+A1 ·dk/be blocks

1D range queries: A = O(1), r = O(1) trivially

Nearly all external indexing lower bounds are under this model

10-5

Previous Results on Indexability

2D range queries: r = Ω(log(n/b)
logA) [Hellerstein, Koutsoupias,

Papadimitriou, 97], [Koutsoupias, Taylor, 98], [Arge, Samoladas, Vitter, 99]

2D stabbing queries: A0A
2
1 = Ω(log(n/b)

log r) [Arge, Samoladas, Yi, 04]

Refined access overhead: a query is covered by A0+A1 ·dk/be blocks

1D range queries: A = O(1), r = O(1) trivially

Adding dynamization makes it much more interesting!

Nearly all external indexing lower bounds are under this model

11-1

Dynamic Indexability

Still consider only insertions

11-2

Dynamic Indexability

Still consider only insertions

4 5time t:

memory of size m

4 7 9 ← snapshot1 2 7

blocks of size b = 3

11-3

Dynamic Indexability

Still consider only insertions

4 5time t:

memory of size m

4 7 9 ← snapshot1 2 7

blocks of size b = 3

4 5time t+ 1: 4 7 91 2 6 7 6 inserted

11-4

Dynamic Indexability

Still consider only insertions

4 5time t:

memory of size m

4 7 9 ← snapshot1 2 7

1 2 6 7

8 inserted

blocks of size b = 3

4 5time t+ 1: 4 7 91 2 6 7 6 inserted

1 2 5time t+ 2: 4 7 9 6 8

11-5

Dynamic Indexability

Still consider only insertions

4 5time t:

memory of size m

4 7 9 ← snapshot1 2 7

1 2 6 7

8 inserted

blocks of size b = 3

4 5time t+ 1: 4 7 91 2 6 7 6 inserted

1 2 5time t+ 2: 4 7 9 6 8

transition cost = 2

11-6

Dynamic Indexability

Still consider only insertions

4 5time t:

memory of size m

4 7 9 ← snapshot1 2 7

1 2 6 7

8 inserted

blocks of size b = 3

4 5time t+ 1: 4 7 91 2 6 7 6 inserted

1 2 5time t+ 2: 4 7 9 6 8

transition cost = 2

Redundancy (access overhead) is the worst redundancy (access
overhead) of all snapshots

11-7

Dynamic Indexability

Still consider only insertions

4 5time t:

memory of size m

4 7 9 ← snapshot1 2 7

1 2 6 7

8 inserted

blocks of size b = 3

4 5time t+ 1: 4 7 91 2 6 7 6 inserted

1 2 5time t+ 2: 4 7 9 6 8

transition cost = 2

Redundancy (access overhead) is the worst redundancy (access
overhead) of all snapshots

Update cost: u = the average transition cost per b insertions

12-1

Main Result Obtained in Dynamic Indexability

Theorem: For any dynamic 1D range query index with access
overhead A and update cost u, the following tradeoff holds, pro-
vided n ≥ 2mb2:{

A · log(u/A) = Ω(log b), for A < α ln b, α is any constant;
u · logA = Ω(log b), for all A.

12-2

Main Result Obtained in Dynamic Indexability

Theorem: For any dynamic 1D range query index with access
overhead A and update cost u, the following tradeoff holds, pro-
vided n ≥ 2mb2:{

A · log(u/A) = Ω(log b), for A < α ln b, α is any constant;
u · logA = Ω(log b), for all A.

Because a query cost O(q + dk/be) implies O(q · dk/be)

12-3

Main Result Obtained in Dynamic Indexability

Theorem: For any dynamic 1D range query index with access
overhead A and update cost u, the following tradeoff holds, pro-
vided n ≥ 2mb2:{

A · log(u/A) = Ω(log b), for A < α ln b, α is any constant;
u · logA = Ω(log b), for all A.

Because a query cost O(q + dk/be) implies O(q · dk/be)

The lower bound doesn’t depend on the redundancy r!

13-1

The Ball-Shuffling Problem

→
b balls A bins

13-2

The Ball-Shuffling Problem

→
b balls A bins

→ cost = 1

13-3

The Ball-Shuffling Problem

→
b balls A bins

→ cost = 1

→ cost = 2

cost of putting the ball directly into a bin = # balls in the bin + 1

14-1

The Ball-Shuffling Problem

→
b balls A bins

14-2

The Ball-Shuffling Problem

→
b balls A bins

→ cost = 5
Shuffle:

14-3

The Ball-Shuffling Problem

→
b balls A bins

→ cost = 5

Cost of shuffling = # balls in the involved bins

Shuffle:

14-4

The Ball-Shuffling Problem

→
b balls A bins

→ cost = 5

Cost of shuffling = # balls in the involved bins

Shuffle:

Putting a ball directly into a bin is a special shuffle

14-5

The Ball-Shuffling Problem

→
b balls A bins

→ cost = 5

Cost of shuffling = # balls in the involved bins

Shuffle:

Putting a ball directly into a bin is a special shuffle

Goal: Accommodating all b balls using A bins with minimum cost

15-1

Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

A

cost lower bound

15-2

Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

A

cost lower bound

1

b2

15-3

Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

A

cost lower bound

1

b2

b4/3

2

15-4

Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

A

cost lower bound

1

b2

b4/3

2 log b

b log b

15-5

Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

A

cost lower bound

1

b2

b4/3

2 log b

b log b

bε

b

15-6

Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

A

cost lower bound

1

b2

b4/3

2 log b

b log b

bε

b

Tight (ignoring constants in big-Omega)
for A = O(log b) and A = Ω(log1+ε b)

16-1

The Workload Construction

round 1:

keys

time

16-2

The Workload Construction

round 1:

round 2:

keys

time

16-3

The Workload Construction

round 1:

round 2:

keys

time

round 3:

· · ·

round b:

16-4

The Workload Construction

round 1:

round 2:

keys

time

round 3:

· · ·

round b:

Queries that we require the index to cover with A blocks
queries ≥ 2mb

16-5

The Workload Construction

round 1:

round 2:

keys

time

round 3:

· · ·

round b:

Queries that we require the index to cover with A blocks
queries ≥ 2mb

snapshot

snapshot

snapshot

snapshot

Snapshots of the dynamic index considered

17-1

The Workload Construction

round 1:

keys

time

round 2:

round 3:
· · ·

round b:

There exists a query such that

• The ≤ b objects of the query reside in ≤ A blocks
in all snapshots

• All of its objects are on disk in all b snapshots (we
have ≥ mb queries)

• The index moves its objects ub times in total

18-1

The Reduction

An index with update cost u and access overhead A gives
us a solution to the ball-shuffling game with cost ub for
b balls and A bins

18-2

The Reduction

An index with update cost u and access overhead A gives
us a solution to the ball-shuffling game with cost ub for
b balls and A bins

Lower bound on the ball-shuffling problem:

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

18-3

The Reduction

An index with update cost u and access overhead A gives
us a solution to the ball-shuffling game with cost ub for
b balls and A bins

Lower bound on the ball-shuffling problem:

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

{
A · log(u/A) = Ω(log b), for A < α ln b, α is any constant;
u · logA = Ω(log b), for all A.

⇒

19-1

Ball-Shuffling Lower Bound Proof

{
Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

19-2

Ball-Shuffling Lower Bound Proof

{
Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

Will show: Any algorithm that handles the balls with an average
cost of u using A bins cannot accommodate (2A)2u balls or
more. ⇒
b < (2A)2u, or u > log b

2 log(2A) , so the total cost of the algorithm

is ub = Ω(b logA b).

19-3

Ball-Shuffling Lower Bound Proof

{
Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

Will show: Any algorithm that handles the balls with an average
cost of u using A bins cannot accommodate (2A)2u balls or
more. ⇒
b < (2A)2u, or u > log b

2 log(2A) , so the total cost of the algorithm

is ub = Ω(b logA b).

Prove by induction on u

u = 1: Can handle at most A balls.

19-4

Ball-Shuffling Lower Bound Proof

{
Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

Will show: Any algorithm that handles the balls with an average
cost of u using A bins cannot accommodate (2A)2u balls or
more. ⇒
b < (2A)2u, or u > log b

2 log(2A) , so the total cost of the algorithm

is ub = Ω(b logA b).

Prove by induction on u

u = 1: Can handle at most A balls.

u→ u+ 1
2 ?

20-1

Ball-Shuffling Lower Bound Proof (2)

Need tol show: Any algorithm that handles the balls with an av-
erage cost of u+ 1

2 using A bins cannot accommodate (2A)2u+1

balls or more. ⇔

To handle (2A)2u+1 balls, any algorithm has to pay an average
cost of more than u+ 1

2 per ball, or(
u+

1
2

)
(2A)2u+1 = (2Au+A)(2A)2u

in total.

20-2

Ball-Shuffling Lower Bound Proof (2)

Need tol show: Any algorithm that handles the balls with an av-
erage cost of u+ 1

2 using A bins cannot accommodate (2A)2u+1

balls or more. ⇔

To handle (2A)2u+1 balls, any algorithm has to pay an average
cost of more than u+ 1

2 per ball, or(
u+

1
2

)
(2A)2u+1 = (2Au+A)(2A)2u

in total.

Divide all balls into 2A batches of (2A)2u each.

20-3

Ball-Shuffling Lower Bound Proof (2)

Need tol show: Any algorithm that handles the balls with an av-
erage cost of u+ 1

2 using A bins cannot accommodate (2A)2u+1

balls or more. ⇔

To handle (2A)2u+1 balls, any algorithm has to pay an average
cost of more than u+ 1

2 per ball, or(
u+

1
2

)
(2A)2u+1 = (2Au+A)(2A)2u

in total.

Divide all balls into 2A batches of (2A)2u each.

Accommodating each batch by itself costs u(2A)2u

21-1

Divide all balls into 2A batches of (2A)2u each.

Accommodating each batch by itself costs u(2A)2u

Ball-Shuffling Lower Bound Proof (3)

21-2

Divide all balls into 2A batches of (2A)2u each.

Accommodating each batch by itself costs u(2A)2u

Ball-Shuffling Lower Bound Proof (3)

The “interference” among the 2A batches costs > A(2A)2u

21-3

Divide all balls into 2A batches of (2A)2u each.

Accommodating each batch by itself costs u(2A)2u

Ball-Shuffling Lower Bound Proof (3)

If a batch has at least one ball that is never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

The “interference” among the 2A batches costs > A(2A)2u

21-4

Divide all balls into 2A batches of (2A)2u each.

Accommodating each batch by itself costs u(2A)2u

Ball-Shuffling Lower Bound Proof (3)

If a batch has at least one ball that is never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

The “interference” among the 2A batches costs > A(2A)2u

There are at most A bad batches

21-5

Divide all balls into 2A batches of (2A)2u each.

Accommodating each batch by itself costs u(2A)2u

Ball-Shuffling Lower Bound Proof (3)

If a batch has at least one ball that is never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

The “interference” among the 2A batches costs > A(2A)2u

There are at most A bad batches

There are at least A good batches

21-6

Divide all balls into 2A batches of (2A)2u each.

Accommodating each batch by itself costs u(2A)2u

Ball-Shuffling Lower Bound Proof (3)

If a batch has at least one ball that is never shuffled in later
batches, it is a bad batch, otherwise it is a good batch.

The “interference” among the 2A batches costs > A(2A)2u

There are at most A bad batches

There are at least A good batches

Each good batch contributes at least (2A)2u to the “interfer-
ence” cost

22-1

Lower Bound Proof: The Real Work

{
Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

22-2

Lower Bound Proof: The Real Work

{
Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

The merging lemma: There is an optimal ball-shuffling algo-
rithm that only uses merging shuffles

22-3

Lower Bound Proof: The Real Work

{
Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

Let fA(b) be the minimum cost to accommodate b balls with
A bins

The merging lemma: There is an optimal ball-shuffling algo-
rithm that only uses merging shuffles

22-4

Lower Bound Proof: The Real Work

{
Ω(A · b1+Ω(1/A)), for A < α ln b where α is any constant;
Ω(b logA b), for any A.

Let fA(b) be the minimum cost to accommodate b balls with
A bins

The recurrence

fA+1(b) ≥ min
k,x1+···+xk=b

{fA(x1 − 1) + · · ·+ fA(xk − 1)

+kx1 + (k − 1)x2 + · · ·+ xk − b}

The merging lemma: There is an optimal ball-shuffling algo-
rithm that only uses merging shuffles

23-1

Open Problems and Conjectures

1D range reporting

Current lower bound: query Ω(log b), update Ω(1
b log b). Im-

prove to (log n
m , 1

b log n
m)?

23-2

Open Problems and Conjectures

1D range reporting

Current lower bound: query Ω(log b), update Ω(1
b log b). Im-

prove to (log n
m , 1

b log n
m)?

Closely related problems: range sum (partial sum), predecessor
search

24-1

The Grant Conjecture

range reporting

range sum

predecessor

Internal memory (RAM) External memory

O : (log n, log n)
binary tree
Ω : (log n, log n)
[Pǎtraşcu, Demaine, 06]

w: word size b: block size (in words)

24-2

The Grant Conjecture

range reporting

range sum

predecessor

Internal memory (RAM) External memory

O : (log n, log n)
binary tree
Ω : (log n, log n)
[Pǎtraşcu, Demaine, 06]

O : query = update =

min
{

log logn logw
log logw

,
√

logn
log logn

}
Ω : . . .
[Beame, Fich, 02]

w: word size b: block size (in words)

24-3

The Grant Conjecture

range reporting

range sum

predecessor

Internal memory (RAM) External memory

O : (log n, log n)
binary tree
Ω : (log n, log n)
[Pǎtraşcu, Demaine, 06]

O : query = update =

min
{

log logn logw
log logw

,
√

logn
log logn

}
Ω : . . .
[Beame, Fich, 02]

O : (log log w, log w)
O : (log log n, log n/ log log n)
[Mortensen, Pagh, Pǎtraşcu, 05]
Ω : open

w: word size b: block size (in words)

24-4

The Grant Conjecture

range reporting

range sum

predecessor

Internal memory (RAM) External memory

O : (log n, log n)
binary tree
Ω : (log n, log n)
[Pǎtraşcu, Demaine, 06]

O : query = update =

min
{

log logn logw
log logw

,
√

logn
log logn

}
Ω : . . .
[Beame, Fich, 02]

O : (log log w, log w)
O : (log log n, log n/ log log n)
[Mortensen, Pagh, Pǎtraşcu, 05]
Ω : open

w: word size b: block size (in words)

O : (log`
n
m

, `
b

log`
n
m

)

B-tree + logarithmic
method

24-5

The Grant Conjecture

range reporting

range sum

predecessor

Internal memory (RAM) External memory

O : (log n, log n)
binary tree
Ω : (log n, log n)
[Pǎtraşcu, Demaine, 06]

O : query = update =

min
{

log logn logw
log logw

,
√

logn
log logn

}
Ω : . . .
[Beame, Fich, 02]

O : (log log w, log w)
O : (log log n, log n/ log log n)
[Mortensen, Pagh, Pǎtraşcu, 05]
Ω : open

w: word size b: block size (in words)

O : (log`
n
m

, `
b

log`
n
m

)

B-tree + logarithmic
method

Optimal for all three?

24-6

The Grant Conjecture

range reporting

range sum

predecessor

Internal memory (RAM) External memory

O : (log n, log n)
binary tree
Ω : (log n, log n)
[Pǎtraşcu, Demaine, 06]

O : query = update =

min
{

log logn logw
log logw

,
√

logn
log logn

}
Ω : . . .
[Beame, Fich, 02]

O : (log log w, log w)
O : (log log n, log n/ log log n)
[Mortensen, Pagh, Pǎtraşcu, 05]
Ω : open

w: word size b: block size (in words)

O : (log`
n
m

, `
b

log`
n
m

)

B-tree + logarithmic
method

Optimal for all three?

How large does b need
to be for B-tree to be
optimal?

24-7

The Grant Conjecture

range reporting

range sum

predecessor

Internal memory (RAM) External memory

O : (log n, log n)
binary tree
Ω : (log n, log n)
[Pǎtraşcu, Demaine, 06]

O : query = update =

min
{

log logn logw
log logw

,
√

logn
log logn

}
Ω : . . .
[Beame, Fich, 02]

O : (log log w, log w)
O : (log log n, log n/ log log n)
[Mortensen, Pagh, Pǎtraşcu, 05]
Ω : open

w: word size b: block size (in words)

O : (log`
n
m

, `
b

log`
n
m

)

B-tree + logarithmic
method

Optimal for all three?

How large does b need
to be for B-tree to be
optimal?

We now know this is true
for range reporting for
b = (n

m
)Ω(1); false for

b = o(log log n)

25-1

The End

T HANK YOU

Q and A

