
ar
X

iv
:1

20
7.

43
82

v2
 [

cs
.D

S]
 2

5
Se

p
20

12

The Space Complexity of 2-Dimensional Approximate Range

Counting

Zhewei Wei
∗

Ke Yi
†

Abstract

We study the problem of 2-dimensional orthogonal range counting with additive error. Given
a set P of n points drawn from an n× n grid and an error parameter ε, the goal is to build a
data structure, such that for any orthogonal range R, the data structure can return the number
of points in P ∩ R with additive error εn. A well-known solution for this problem is the ε-
approximation. Informally speaking, an ε-approximation of P is a subset A ⊆ P that allows us
to estimate the number of points in P ∩ R by counting the number of points in A ∩ R. It is
known that an ε-approximation of size O(1

ε
log2.5 1

ε
) exists for any P with respect to orthogonal

ranges, and the best lower bound is Ω(1
ε
log 1

ε
).

The ε-approximation is a rather restricted data structure, as we are not allowed to store any
information other than the coordinates of a subset of points in P . In this paper, we explore
what can be achieved without any restriction on the data structure. We first describe a data
structure that uses O(1

ε
log 1

ε
log log 1

ε
logn) bits that answers queries with error εn. We then

prove a lower bound that any data structure that answers queries with error O(log n) must
use Ω(n logn) bits. This lower bound has two consequences: 1) answering queries with error
O(log n) is as hard as answering the queries exactly; and 2) our upper bound cannot be improved
in general by more than an O(log log 1

ε
) factor.

1 Introduction

Range counting is one of the most fundamental problems in computational geometry and data
structures. Given n points in d dimensions, the goal is to preprocess the points into a data structure,
such that the number of points in a query range can be returned. Range counting has been studied
intensively, and a lot of work has focused on the space-query time tradeoff or the update-query
tradeoff of data structures. We refer the reader to the survey by Agarwal and Erickson [1] for
these results. In this paper, we look at the problem from a data summarization/compression point
of view: What is the minimum amount of space that is needed to encode all the range counts
approximately? Approximation is necessary here, since otherwise we will have to remember the
entire the point set. It is also easy to see that relative approximation will not help either, as it
requires us to differentiate between empty ranges and those containing only one point. Thus, we
aim at an absolute error guarantee. As we will be dealing with bit-level space complexity, it is
convenient to focus on an integer grid. More formally, we are given a set of n points P drawn from
an n × n grid and an error parameter ε . The goal is to build a data structure, such that for any

∗Center for Massive Data Algorithmics (MADALGO), Aarhus University. zhewei@cs.au.dk
†Department of Computer Science and Engineering, The Hong Kong University of Science and Technology.

yike@cse.ust.hk

1

http://arxiv.org/abs/1207.4382v2

orthogonal range R, the data structure can return the number of points in P ∩ R with additive
error εn.

We should mention that there is another notion of approximate range counting that approxi-
mates the range, i.e., points near the boundary of the range may or may not be counted [3]. Such
an approximation notion clearly precludes any sublinear-space data structure as well.

1.1 Previous work

ε-approximations. Summarizing point sets while preserving range counts (approximately) is
a fundamental problem with applications in numerical integration, statistics, and data mining,
among many others. The classical solution is to use the ε-approximation from discrepancy theory.
Consider a range space (P,R), where P is a finite point set of size n. A subset A ⊆ P is called an
ε-approximation of (P,R) if

max
R∈R

∣

∣

∣

∣

|R ∩A|

|A|
−

|R ∩ P |

|P |

∣

∣

∣

∣

≤ ε.

This means that we can approximate |R∩P | by counting the number of points in R∩A and scaling
back, with error at most εn.

Finding ε-approximations of small size for various geometric range spaces has been a central
research topic in computational geometry. Please see the books by Matousek [14] and Chazelle [8]
for comprehensive coverages on this topic. Here we only review the most relevant results, i.e., when
the range space R is all orthogonal rectangles in 2 dimensions. This question dates back to Beck
[5], who showed that there are ε-approximations of size O(1ε log

4 1
ε) for any point set P . This was

later improved to O
(

1
ε log

2.5 1
ε

)

by Srinivasan [20]. These were not constructive due to the use of
a non-constructive coloring with combinatorial discrepancy O(log2.5 n) for orthogonal rectangles.
Recently, Bansal [4] proposed an algorithm to construct such a coloring, and therefore has made
these results constructive. On the lower bound side, it is known that there are point sets that
require ε-approximations of size Ω(1ε log

1
ε) [5].

Combinatorial discrepancy. For a range space (P,R) and a coloring function χ : P → {−1,+1},
we write χ(P ∩ R) =

∑

p∈P∩R χ(p). The combinatorial discrepancy of the range space (P,R) is
defined as

disc(P,R) = min
χ

max
R∈R

|χ(P ∩R)| ,

namely, we are looking at the coloring that minimizes the color difference of any range in R.
Taking the maximum over all point sets of size n, we say that the combinatorial discrepancy of R
is disc(n,R) = max|P |=n disc(P,R).

There is a close relationship between combinatorial discrepancy and ε-approximations, as ob-
served by Beck [5]. For orthogonal ranges, the relationship is particularly simple: The combinatorial
discrepancy is at most t(n) if and only if there is an ε-approximation of size O(1ε t(

1
ε)). In fact, all the

aforementioned results on ε-approximations follow from the corresponding results on combinatorial
discrepancy. So the current upper bound on the combinatorial discrepancy of orthogonal rectangles
in 2 dimensions is O(log2.5 n) [20]. The lower bound is Ω(log n) [5], which follows from the Lebesgue
discrepancy lower bound (see below). Closing the Θ(log1.5 n) gap between the upper and the lower
bound remains a major open problem in discrepancy theory. In d ≥ 3 dimensions, the current best
upper bound is O(logd+1/2 n) by Larsen [13], while the lower bound is Ω((log n)(d−1)/2+η), where
η = η(d) is a small constant depending on d [7].

2

Lebesgue discrepancy. Suppose the points of P are in the unit square [0, 1)2. The Lebesgue
discrepancy of (P,R) is defined to be

D(P,R) = sup
R∈R

∣

∣|P ∩R| −
∣

∣R ∩ [0, 1)2
∣

∣

∣

∣ .

The Lebesgue discrepancy describes how uniformly the point set P is distributed in [0, 1)2. Taking
the infimum over all point sets of size n, we say that the Lebesgue discrepancy of R is D(n,R) =
inf |P |=nD(P,R).

The Lebesgue discrepancy for orthogonal rectangles is known to be Θ(log n) in 2 dimensions.
The lower bound is due to Schmidt [18], while there are many point sets (e.g., the Van der Corput
sets [21] and the b-ary nets [19]) that are proved to have O(log n) Lebesgue discrepancy. It is well
known that the combinatorial discrepancy of a range space cannot be lower than its Lebesgue dis-
crepancy, so this also gives the Ω(log n) lower bound on the combinatorial discrepancy of orthogonal
rectangles mentioned above.

Approximate range counting data structures. The ε-approximation is a rather restricted
data structure, as we are not allowed to store any information other than the coordinates of a
subset of points in P . In this paper, we explore what can be achieved without any restriction on
the data structure. In 1 dimension, there is nothing better: An ε-approximation has size O(1ε),
which takes O(1ε log n) bits. On the other hand, simply consider the case where the n points are
divided into groups of size εn, where all points in each group have the same location. There are
n1/ε such point sets and the data structure has to differentiate all of them. Thus log(n1/ε) = 1

ε log n
is a lower bound on the number of bits used by the data structure.

1.2 Our results

This paper gives almost matching upper and lower bounds on the space needed by any data structure
that encodes all the orthogonal range counts with error εn. We first describe a data structure that
uses O(1ε log

1
ε log log

1
ε log n) bits. This is a Θ(log1.5 1

ε) (ignoring O(log log 1
ε) factors) improvement

from ε-approximations. Of course, we will store some extra information other than the coordinates
of the points.

On the lower bound side, we prove that there exists a constant c, such that any data structure
that answers queries with error c log n must use Ω(n log n) bits. This lower bound has two conse-
quences: 1) answering queries with error O(log n) is as hard as answering the queries exactly; and
2) our upper bound cannot be improved in general by more than an O(log log 1

ε) factor.

Our lower bound is information-theoretic: We show that there is a collection P∗ of 2Ω(n logn)

point sets that are pairwise “different enough” in terms of range counts. More precisely, we show
that the union of any two point sets in P∗ has high combinatorial discrepancy, i.e., at least c log n.
Then, for any two point sets P1, P2 ∈ P∗, if disc(P1 ∪ P2,R2) ≥ c log n, where R2 is the set of all
orthogonal rectangles, that means for any coloring χ on P1 ∪ P2, there must exist a rectangle R
such that |χ(R)| ≥ c log n. Consider the coloring χ where χ(p) = 1 if p ∈ P1 and χ(p) = −1 if
p ∈ P2. Then there exists a rectangle R such that |χ(R)| = ||R ∩ P1| − |R ∩ P2|| ≥ c log n. This
implies that a data structure that answers queries with error c

2 log n have to distinguish P1 and P2.

To distinguish all the 2Ω(n logn) point sets in P∗, the data structure has to use at least Ω(n log n)
bits.

While point sets with low Lebesgue discrepancy or high combinatorial discrepancy have been
extensively studied, we have constructed a large collection of point sets in which the pairwise

3

union has high combinatorial discrepancy. This particular aspect appears to be novel, and our
construction could be useful in proving other data structure lower bounds. It may also have
applications in situations where we need a “diverse” collection of random point sets.

2 Data Structure

In this section, we build a data structure that supports approximate range counting queries. Given
a set of n points on an n×n grid, our data structure uses O(1ε log

1
ε log log

1
ε log n) bits and answers

an orthogonal range counting query with error εn.
First note that it is sufficient to only consider two-sided ranges. A two-sided range is a rectangle

of the form [0, x)× [0, y), where (x, y) is called the query point. By the inclusion-exclusion principle,
a 4-sided range counting query can be expressed as a linear combination of four two-sided range
counting queries, so a data structure that answers two-sided queries with error εn/4 can be used
to answer 4-sided queries with error εn.

Our data structure is based an ε-net for orthogonal rectangles. For a range space (P,R), a
subset A ⊆ P is called an ε-net of P if for any range R ∈ R that satisfies |P ∩R| ≥ εn, there is
at least 1 point in A ∩R. Note that an ε-approximation is an ε-net, but the converse may not be
true.

The size of the smallest ε-net for orthogonal rectangles in 2 dimensions has been recently settled.
Aronv, Ezra and Sharir [2] gave an algorithm for constructing an ε-net of size O(1ε log log

1
ε) for

any P , while a matching lower bound was given by Pach and Tardos [15].

The data structure. Consider a set P of n points on an n×n grid. We first construct an ε-net Pε

of P for orthogonal rectangles. Let m = c1ε log log
1
ε denote the size of this ε-net, for some constant

c. For simplicity we assume m is a power of 2. Let {ui = (xi, yi) | i = 1, . . . ,m} denote the points
in Pε, in which the points are sorted on their x-coordinates. We call a point p ∈ P an ε-net point
if p ∈ Pε.

The key ingredient of our structure is a bit array attached to each ε-net point, which can be
used to determine whether or not to include this point in our estimation during the query process.
More precisely, After constructing an ε-net Pε, we will associate a bit array Ci of logm bits to each
point ui ∈ Pε. The l-th bit of Ci, denoted Ci(l), is called the l-indicator of ui. To construct Ci, we
need the following definition of dyadic rectangles:

Definition 2.1. For 1 ≤ l ≤ logm, we define dyadic rectangles at level l to be rectangles of the form

[xa2l , x(a+1)2l)×[0, y) , for a = 0, . . . , n/2l−1 and y ≥ 0. We use Ry
a,l to denote the dyadic rectangle

[xa2l , x(a+1)2l)×[0, y). In particular, we use R∞
a,l denote the dyadic rectangle [xa2l , x(a+1)2l)×[0,∞).

For 1 ≤ l ≤ logm, the l-indicators of the ε-net points are determined as follow. Let R∞
a,l =

[xa2l , x(a+1)2l) × [0,∞) be a dyadic rectangle at level l. We use Pa,l = {p1, . . . , ps} to denote the
set of points of P in R∞

a,l, in which the points are sorted in their y-coordinates. We divide Pa,l into
chunks of size εn. For each chunk, we find the lowest ε-net point (there must exist one due to the
ε-net property, except possibly the highest chunk if it contains less than εn points in P) and set its
l-indicator to 1. The l-indicators of the other ε-net points in Pa,l are set to 0. See Figure 1. Then
we do so for each dyadic rectangle R∞

a,l and for all 1 ≤ l ≤ logm.

Query process. Given a query point q = (qx, qy), we initialize a counter Q = 0. Let uiq be the
ε-net point such that xiq ≤ qx < xiq+1. We note that the range [0, xiq)× [0, qy) can be decomposed

4

kεn

(k + 1)εn

(k + 2)εn

x
a2l

x(a+1)2l

Figure 1: Illustration of the construction of the l-indicators. The solid dots represent ε-net points,
and the crosses represent ε-net points with l-indicators set to 1.

into at most logm dyadic rectangles, and we use Rq denote the set of these dyadic rectangles. For
each dyadic rectangle R

qy
a,l ∈ Rq and ε-net point ui ∈ R

qy
a,l, we add εn to the counter Q if Ci(l) = 1.

After all dyadic rectangles in R have been processed, we have

Q =
∑

R
qy

a,l
∈Rq

∑

ui∈Pε∩R
qy

a,l

εn · Ci(l).

Then the data structure returns Q as the approximated count. Since the focus of the paper is
on the space complexity, we have ignored query time. In fact, by precomputing some appropriate
prefix counts on the Ci(l)’s, Q can be computed in O(log 1

ε + log log n) time; we omit the details to
avoid digression.

Analysis. We now analyze the error of the above estimation. We claim that Q estimates the
number of points of P inside [0, qx)× [0, qy) with error at most (logm+1)εn. The following lemma
gives an upper bound of the error in a single dyadic rectangle.

Lemma 2.1. Given a dyadic rectangle Ry
a,l, The following inequality holds:

0 ≤
∑

ui∈Pε∩R
y

a,l

εn · Ci(l)−
∣

∣

∣
P ∩Ry

a,l

∣

∣

∣
≤ εn.

Proof. Recall that we divided the points in P ∩R∞
a,l into chunks of size εn, and set the l-indicator of

the lowest ε-net point to be 1. Thus, each such ε-net point represents exactly εn points in P ∩Ry
a,l,

except the highest one, which may represent less than εn points. The lemma then follows.

Since there are at most logm dyadic rectangles in Rq, Q is an estimator of
∣

∣P ∩ [0, uiq]× [0, qy)
∣

∣

with error at most εn logm. We also note that there is no ε-net point in (uiq , qx) × [0, qy), so the
error from this rectangle is at most εn. This proves that Q estimates |P ∩ [0, qx)× [0, qy)| with
error (logm + 1)εn = (log(c1ε log log

1
ε) + 1)εn. It is easy to see that our data structure uses

O(1ε log log
1
ε log n) bits, which is dominated by the coordinates of the ε-net points. By using

ε′ = ε/(log(c1ε log log
1
ε) + 1) in place of ε in the construction, we obtain a data structure that uses

O(1
ε′ log

1
ε′ log log

1
ε′ log n) bits and answers two-sided range counting queries with error ε′n.

5

Theorem 2.1. Given a set of n points drawn from an n × n grid, there is a data structure that

uses O(1ε log
1
ε log log

1
ε log n) bits and answers orthogonal range counting query with additive error

εn.

3 Lower Bound

As argued in the introduction, our lower bound follows from the following theorem.

Theorem 3.1. Let P denote the collection of all n-point sets drawn from an n × n grid. There

exists a constant c and a sub-collection P∗ ⊆ P of size 2Ω(n logn), such that for any P1, P2 ∈ P∗,

disc(P1 ∪ P2,R2) ≥ c log n.

In the rest of this section, we will focus on proving Theorem 3.1. We will use the a collection
of point sets called binary nets as a ground set to derive the point sets that satisfy the conditions
in Theorem 3.1. Binary nets are a special type of point sets under a more general concept called
(t,m, s)-nets, which are introduced in [14] as an example of point sets with low Lebesgue discrep-
ancy. See the survey by Clayman et. al. [9] or the book by Hellekalek et. al. [12] for more results
on (t,m, s)-nets. In this paper we will show that binary nets have two other nice properties: 1) A
binary net has high combinatorial discrepancy, i.e., Ω(log n); 2) there is a bit vector representation
of every binary net, which allows us to extract a sub-collection by constructing a subset of bit
vectors. In the following sections, we will define binary nets, and formalize these two properties.

3.1 Definitions

For ease of the presentation, we assume that the n× n grid is embedded in the square [0, n)2. We
partition [0, n)2 into n× n unit squares. We assume the grid points are placed at the mass centers
of the n2 unit squares, that is, each grid point has coordinates (i+1/2, j+1/2), for i, j ∈ [n], where
[n] denote the set of all integers in [0, n). For the sake of simplicity, we define the grid point (i, j)
to be the grid point with coordinates (i+1/2, j +1/2), and we do not distinguish a grid point and
the square it resides in.

Now we introduce the concepts of (a, b)-cell and k-canonical cell.

Definition 3.1. A (a, b)-cell at position (i, j) is the rectangle [i2a, (i+1)2a)× [j2b, (j +1)2b). We

use Ga,b(i, j) to denote the (a, b)-cell at position (i, j), and Ga,b to denote the set of all (a, b)-cells.

Definition 3.2. A k-canonical cell at position (i, j) is a (k, log n − k)-cell with coordinates (i, j).
We use Gk(i, j), to denote the k-canonical cell at position (i, j), and Gk to denote the set of all

k-canonical cells.

Figure 2 is the illustration of (a, b)-cells and canonical cells. Note that the position (i, j) for a
(a, b)-cell takes value in [n/2a]×[n/2b]. In particular, we call G0(i, 0) the i-th column and Glog n(0, j)
the j-th row. Note that for a fixed k, Gk partitions the grid [0, n)2 into n rectangles. Based on the
definition of k-canonical cells, we define the binary nets:

Definition 3.3. A point set P is called a binary net if for any k ∈ [log n], P has exactly one point

in each k-canonical cell.

6

2a

2b

Number of (a, b)-cells: n/2a

Ga,b(3, 3)

G0

G2 G3

n/2b
G1

Figure 2: Illustrations of (a, b)-cells and canonical cells.

Let P0 denote the collection of binary nets. In other word, P0 is the set

{P | |P ∩Gk(i, j)| = 1, k ∈ [log n], i ∈ [n/2k], j ∈ [2k]}.

It is known that the point sets in P0 have Lebesgue discrepancy O(log n); below we show that
they also have Ω(log n) combinatorial discrepancy. However, the union of two point sets in P0 could
have combinatorial discrepancy as low as O(1). Thus we need to carefully extract a subset from
P0 with high pairwise union discrepancy.

3.2 Combinatorial Discrepancy and Corner Volume

We first prove that the combinatorial discrepancy of any point set in P0 is large. To show this, we
need the following definition of corner volume:

Definition 3.4. For a point set P ∈ P0 and a k-canonical cell Gk(i, j), let q be the point in

P ∩ Gk(i, j). Define the corner volume VP (k, i, j) to be the volume of the orthogonal rectangle

defined by q and its nearest corner of Gk(i, j). We use SP to denote the summation of the corner

volumes over all possible triples (k, i, j), that is,

SP =

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

VP (k, i, j).

See Figure 3 for the illustration of corner volumes. The following lemma relates the combina-
torial discrepancy of P with its corner volume sum SP .

Lemma 3.1. There exists a constant c, such that for any point set P ∈ P0 that satisfies

SP ≥ cn2 log n,

we have disc(P,R2) = Ω(log n).

By Lemma 3.1, we can prove that the combinatorial discrepancy of a binary net is large by
showing its corner volume sum is large. In particular, we have the following lemma:

7

q

2k

n/2k

x x + u

x + v

x + u + v

Gk(i, j)

Gk(i, j)UL

Gk(i, j)LL

Gk(i, j)UR

Gk(i, j)LR

Y (k, i, j)

X(k, i, j)

Figure 3: Illustration of the corner volume and the four analogous points. The area in shadow
represents the corner volume VP (k, i, j).

Lemma 3.2. For any point set P ∈ P0, we have disc(P,R2) = Ω(log n).

Strictly speaking, Theorem 3.1 does not depend on Lemma 3.2 and Lemma 3.1, but these
lemmas give us some insight on the binary nets. Moreover, a key lemma to proving Theorem 3.1
(Lemma 3.4) shares essentially the same proof with Lemma 3.1. We defer the proof of Lemma 3.1
and Lemma 3.2 to the Appendix in order to avoid digression into technicalities.

3.3 A bit vector representation for P0

Another nice property of P0 is that we can derive the exact number of point sets in it. The following
lemma is from the book [10]:

Lemma 3.3 ([10]). The number of point sets in P0 is 2
1
2
n logn.

We sketch the proof of Lemma 3.3 here, as it provides a bit vector presentation of each binary
net, which is essential in our lower bound proof.

Proof of Lemma 3.3. It is equivalent to prove that the number of possible ways to place n points
on the n× n grid such that any k-canonical cell Gk(i, j) has exactly 1 point is 2

1
2
n logn. We prove

it by induction on n. Let P0(n) denote the collection of binary nets of size n in a n× n grid.
Observe that the line y = n/2 divides the grid [0, n)2 into two rectangles: the upper grid

[0, n)× [n/2, n) and the lower grid [0, n)× [0, n/2). For i even, let Ri denote the rectangle defined
by the union of i-th and (i + 1)-th columns G0(i, 0) and G0(i + 1, 0). Note that the line y = n/2
divides Ri into G1(i/2, 0) and G1(i/2, 1), and therefore defines four quadrants. By the definition
of P0, for any point set P ∈ P0, the two points in G0(i, 0) and G1(i + 1, 0) must either reside in
the lower left and upper right quadrants or in the lower right and upper left quadrants. There
are in total n/2 even i’s, so the number of the possible choices is 2n/2. See Figure 4. Note that
after determining which half the point in each column resides in, the problem is divided into two
sub-problems: counting the number of possible ways to place n/2 points in the upper grid and the

8

G0(0, 0) G0(1, 0) G0(n− 2, 0) G0(n− 1, 0)

ZP (0, 0, 0) =

0

1
ZP (0, n/2− 1, 0) =

0

1

. . .

. . .⇒

n points in a n× n grid n
2
points in n

2
×

n
2
grid

. . .⇒

. . .

Figure 4: Illustration of the partition vector of G0.

lower grid. It is easy to show that each sub-problem is identical to the problem of counting the
number of point sets in P0(n/2), so we have the following recursion:

|P0(n)| = 2
n
2 · |P0(n/2)|

2 .

Solving this recursion with P0(1) = 1 yields that |P0(n)| = 2
1
2
n logn.

A critical observation is that the proof of Lemma 3.3 actually reveals a bit vector representation
for each of the point sets in P0, which will allow us to refine the collection P0. To see this, we define
the partition vector ZP for a point set P ∈ P0 as follows. For any (k, i, j) ∈ [log n]× [n/2k+1]× [2k],
consider the k-canonical cells Gk(2i, j) and Gk(2i + 1, j) and (k + 1)-canonical cells Gk+1(i, 2j)
and Gk+1(i, 2j + 1). The two k-canonical cells overlap with the two (k + 1)-canonical cells, which
defines four quadrants. By the definition of binary nets, there are two points in P contained in
these quadrants. We define ZP (k, i, j) = 0 if the two points are in the lower left and upper right
quadrants and ZP (k, i, j) = 1 if they are in the lower right and upper left quadrants. See Figure 4.
We say the k-canonical cells Gk(2i, j) and Gk(2i+1, j) is associated with bit ZP (k, i, j). Note that
we use the triple (k, i, j) as the index into ZP for the ease of presentation; we can assume that the
bits in ZP are stored in for example the lexicographic order of (k, i, j). Since the number of triples

(k, i, j) is 1
2n log n, the total number of bits in ZP is 1

2n log n. Let Z0 = {0, 1}
1
2
n logn denote the set

of all possible partition vector ZP ’s. By the proof of Lemma 3.3, there is a bijection between Z0

and P0.

3.4 Combinatorial discrepancy and corner volume distance

Although we have proved that binary nets have large combinatorial discrepancy, it does not yet
lead us to Theorem 3.1. In this section, we will refine P0, the collection of all binary nets, to derive
a collection P∗, such that the union of any two point sets in P∗ has large combinatorial discrepancy.

9

In order to characterize the combinatorial discrepancy of the union of two point sets, we will need
the following definition of corner volume distance.

Definition 3.5. For two point sets P1, P2 ∈ P0, the corner volume distance of P1 and P2 is the

summation of |VP1
(k, i, j) − VP2

(k, i, j)|, over all (k, i, j). In other words, let ∆(P1, P2) denote the

corner volume distance of P1 and P2, then

∆(P1, P2) =

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

|VP1
(k, i, j) − VP2

(k, i, j)| .

The following lemma (proof in the Appendix) relates the combinatorial discrepancy of the union
of two point sets with their corner volume distance:

Lemma 3.4. Let P∗ be a subset of P0. If there exists a constant c, such that for any two point

sets P1, P2 ∈ P0, that their corner volume distance satisfies ∆(P1, P2) ≥ cn2 log n, then disc(P1 ∪
P2,R2) = Ω(log n).

Here we briefly explain the high level idea for proving Theorem 3.1. By Lemma 3.4, it is
sufficient to find a sub-collection P∗ ⊆ P0, such that for any two point sets in P∗, their corner
volume distance is large. We will choose a subset Z1 ⊆ Z0, and project each vector in Z1 down to a
slightly shorter bit vector T. The collection T of all resulted bit vector T’s induces a sub-collection
P1 ⊆ P0, and each T represents a point set in P1. Then we prove that for any two point sets
P1, P2 ∈ P1, there is a linear dependence between the corner volume distance ∆(P1, P2) and the
hamming distance of their bit vector representations TP1

and TP2
. Finally, we show that there is

a large sub-collection of T with large pair-wise hamming distances, and this sub-collection induces
a collection of point sets P∗ ∈ P1 in which the union of any two point sets has large combinatorial
discrepancy.

We focus on a (k+6, log n− k)-cell Gk+6,logn−k(i, j), for k ∈ {0, 6, 12, . . . , log n− 6}. Note that
Gk+6,logn−k(i, j) only contains (k + l)-canonical cells for l ∈ [7]. Let Fk,i,j(l) denote the set of all
(k + l)-canonical cells in Gk+6,logn−k(i, j), it is easy to see that

Fk,i,j(l) = {Gk+l(2
6−li+ s, 2lj + t) | s ∈ [26−l], t ∈ [2l]}.

Note that |Fk,i,j(l)| = 64 for each l ∈ [7]. Let Zk,i,j(l) denote the set of indices of bits in the
partition vector that are associated with the some (k + l)-canonical cells in Gk+6,logn−k(i, j), for
l ∈ [6], i.e.,

Zk,i,j(l) = {(k + l, 25−li+ s, 2lj + t) | s ∈ [25−l], t ∈ [2l]}.

Define Zk,i,j to be the union of the Zk,i,j(l)’s. Since there are 32 bits in Zk,i,j(l) for each l ∈ [6], the
total number of bits in Zk,i,j is 192 (here we use the indices in Zk,i,j to denote their corresponding
bits in the partition vector of P , with a slightly abuse of notation). The following fact shows the
Zk,i,j’s partition all the 1

2n log n bits:

Fact 3.1. The number of Zk,i,j’s is
1

384n log n; For different (k, i, j) and (k′, i′, j′), Zk,i,j∩Zk′,i′,j′ =
∅.

The proof of the above claims are fairly straightforward: The number of different Zk,i,j’s is equal
to the number of different Gk+6,logn−k(i, j)’s. For a fixed k, the number of different (k+6, log n−k)-
cells is n/64, and the number of different k’s is log n/6, so the total number of different Zk,i,j’s is

10

Gk+6,log n−k(i, j) Gk+3(8i, 8j)

Zk,i,j =

s1
s2

n/2k

2k+6 2k+3

n/2k+3

Figure 5: Illustration of the 64×64 grid. The volume of each cell in Gk+3(8i, 8j) is n/64. The cells
in shadow represent the corner volume difference of s1 and s2.

1
384n log n. For the second claim, we consider the following two cases: If k = k′, we have(i, j) 6=
(i′, j′). This implies that the two (k, log n − k + 6)-cells are disjoint, therefore the bits associated
with the canonical cells inside them are disjoint. For k 6= k′, observe that we choose k and k′ from
{0, 6, . . . , log n− 6}, and Zk,i,j and Zk′,i′,j′ only contain bits associated with (k + l)-canonical cells
and (k′ + l′)-canonical cells, respectively, for l, l′ ∈ [6], so Zk,i,j(l) and Zk′i′j′(l

′) are disjoint, for
l, l′ ∈ [6].

The reason we group the bits in the partition vector into small subsets is that we can view each
subset Zk,i,j as a partition vector of the cell Gk+6,logn−k(i, j), which allows us to manipulate the
positions of the points inside it. More precisely, we can view Gk+6,logn−k(i, j) as a 64 × 64 grid,
with each grid cell being a (k, log n − k − 6)-cell in the original [0, n)2 grid. Moreover, a (k + l)-
canonical cell contained in Gk+6,logn−k(i, j) corresponds to a l-canonical cell in the 64 × 64 grid.
Note that there are 64 points in this grid, and the bits in Zk,i,j correspond to the partition vector
of this 64-point set. Now consider a (k + 3)-canonical cell Gk+3(8i, 8j), which corresponds to the
lower left 8 × 8 grid in Gk+6,logn−k(i, j). For each point set P ∈ P0, there is exactly one point in
Gk+3(8i, 8j), and the bits in Zk,i,j encode the position of the point on the 8×8 grid. Suppose s1 and
s2 are two bit vectors of length 192, such that when the bits in Zk,i,j are assigned as s1 (denoted
Zk,i,j = s1), the point in Gk+3(8i, 8j) resides in the upper left grid cell,; and when Zk,i,j = s2, it
resides in the grid cell to the upper left of the center of Gk+3(8i, 8j) (see Figure 5). Note that
by this definition, the corner volume distance of this two point is at least n/8. Meanwhile, since
there are no constraints on the other 63 points in Gk+6,logn−k(i, j), it is easy to show that such
assignments s1 and s2 indeed exist.

By restricting the assignments of Zk,i,j to {s1, s2}, we have created a subset Z1 of Z0 =

{0, 1}
1
2
n logn:

Z1 = {Z | Zk,i,j = s1 or s2, k ∈ {0, 6, . . . , log n− 6}, i ∈ [n/2k+6], j ∈ [2k]}.

Let P1 denote the sub-collection of P0 that Z1 encode. By Fact 3.1, the number of Zk,i,j’s is
1

384n log n, so |P1| = 2
1

384
n logn. Define a bit vector T of length 1

384n log n, such that T(k, i, j) = 0
if Zk,i,j = s1 and T(k, i, j) = 1 if Zk,i,,j = s2, then a bit vector T encodes a bit vector Z ∈ Z1, and

11

therefore encodes a point set in P1. Let T = {0, 1}
1

384
n logn denote the collection of all bit vectors

T. Then there is a bijection between T and P1, and |T | = |P1| = 2
1

384
n logn.

Consider two point sets P1 and P2 in P1. Let TP1
and TP2

denote the bit vector that encode
these two point sets, respectively. The following lemma relates the corner volume distance of P1

and P2 with the hamming distance between TP1
and TP2

.

Lemma 3.5. Suppose there exists a constant c, such that for any P1, P2 ∈ P1, the hamming

distance H(TP1
,TP2

) ≥ cn log n, then the corner volume distance between P1 and P2, ∆(P1, P2),
is Ω(n2 log n).

Proof. We make the following relaxation on ∆(P1, P2) :

∆(P1, P2) =

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

|VP1
(k, i, j) − VP1

(k, i, j)|

≥
∑

k∈{0,6,...,logn−6}

n/2k+6−1
∑

i=0

2k−1
∑

j=0

|VP1
(k + 3, 8i, 8j) − VP1

(k + 3, 8i, 8j)| .

Now consider the bits TP1
(k, i, j) and TP2

(k, i, j). If TP1
(k, i, j) 6= TP2

(k, i, j), then by the
choice of s1 and s2 we have |VP1

(k + 3, 8i, 8j − VP2
(k + 3, 8i, 8j)| ≥ n/8. So the corner volume

distance ∆(P1, P2) is lower bounded by the hamming distance H(TP1
,TP2

) multiplied by n/8, and
the lemma follows.

The following lemma (probably folklore; see a proof in the Appendix) states that there is a
large subset of T , in which the vectors are well separated in terms of hamming distance.

Lemma 3.6. Let N = 1
384n log n. There is a subset T ∗ ⊆ T = {0, 1}N of size 2

1
16

N , such that for

any T1 6= T2 ∈ T ∗, the hamming distance H(T1,T2) ≥
1
4N .

Proof. We embed T into a graph (V,E). Each node in V represents a vector T ∈ T , and there
is edge between two nodes T1 and T2 if and only if H(T1,T2) < 1

4N . By this embedding, it is

equivalent to prove that there is an independent set of size 2
1
16

N in (V,E).
Fix a vector T ∈ T , and consider a random vector T′ uniformly drawn from T . It is easy to

see that the hamming distance H(T,T′) follows binomial distribution. By Chernoff bound

Pr[H(T,T′) <
1

4
N] ≤ e−

1
16

N ≤ 2−
1
16

N .

This implies that the probability that there is an edge between T and T′ is at most 2−
1
16

N . By the
fact that T′ is uniformly chosen from T , it follows that the degree of T is at most d = 2N ·2−

1
16

N =
2

15
16

N . Since a graph with maximum degree d must have an independent set of size at least |V | /d,

there must be an independent set of size at least 2
1
16

N .

Let P∗ denote the collection of point sets encoded by T ∗. By Lemma 3.6, |P∗| ≥ 2
1
16

N =

2
1

6144
n logn. From Lemma 3.4 and Lemma 3.5 we know that for any two point sets P1, 6= P2 ∈ P∗,

the combinatorial discrepancy of the union of P1 and P2 is Ω(log n). This completes the proof of
Theorem 3.1.

12

References

[1] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle,
E. Goodman, and R. Pollack, editors, Discrete and Computational Geometry: Ten Years Later.
Mathematical Society Press, 1997.

[2] B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets for axis-parallel rectangles and boxes.
SIAM Journal on Computing, 39(7):3248–3282, 2010.

[3] S. Arya, T. Malamatos, and D. M. Mount. The effect of corners on the complexity of approx-
imate range searching. In Proc. ACM Symposium on Computational Geometry, pages 11–20,
2006.

[4] N. Bansal. Constructive algorithms for discrepancy minimization. In Proc. IEEE Symposium

on Foundations of Computer Science, pages 3–10. IEEE, 2010.

[5] J. Beck. Balanced two-colorings of finite sets in the square, I. Combinatorica, 1(4):327–335,
1981.

[6] J. Beck and T. Fiala. “Integer-making” theorems. Discrete Applied Mathematics, 3(1):1–8,
1981.

[7] D. Bilyk, M. T. Lacey, and A. Vagharshakyan. On the small ball inequality in all dimensions.
J. Funct. Anal., 254(9):2470–2502, 2008.

[8] B. Chazelle. The Discrepancy Method. Cambridge University Press, 2000.

[9] A. Clayman, K. Lawrence, G. Mullen, H. Niederreiter, and N. Sloane. Updated tables of
parameters of(t, m, s)-nets. Journal of Combinatorial Designs, 7(5):381–393, 1999.

[10] M. Darnall. Results on low discrepancy point sets. ProQuest, 2008.

[11] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete and Computational

Geometry, 2:127–151, 1987.

[12] P. Hellekalek, G. Larcher, and J. Beck. Random and quasi-random point sets, volume 138.
Springer Verlag, 1998.

[13] K. G. Larsen. On range searching in the group model and combinatorial discrepancy. In Proc.

IEEE Symposium on Foundations of Computer Science, 2011.

[14] J. Matoušek. Geometric Discrepancy. Springer, Heidelberg, Germany, 1999.

[15] J. Pach and G. Tardos. Tight lower bounds for the size of epsilon-nets. In Proceedings of the

27th annual ACM symposium on Computational geometry, pages 458–463. ACM, 2011.

[16] K. Roth. On irregularities of distribution. Mathematika, 1(02):73–79, 1954.

[17] K. Roth. On a theorem of beck. Glasgow Mathematical Journal, 27(1):195–201, 1985.

[18] W. Schmidt. Irregularities of distribution. vii. Acta Arith., 21:45–50, 1972.

13

[19] I. Sobol’. On the distribution of points in a cube and the approximate evaluation of integrals.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):784–802, 1967.

[20] A. Srinivasan. Improving the discrepancy bound for sparse matrices: Better approximations
for sparse lattice approximation problems. In Proc. ACM-SIAM Symposium on Discrete Al-

gorithms, pages 692–701. Society for Industrial and Applied Mathematics, 1997.

[21] J. Van der Corput. Verteilungsfunktionen. NV Noord-Hollandsche Uitgevers Maatschappij,
1936.

14

A Appendix

A.1 Proof of Lemma 3.1

Proof. The proof makes use of the Roth’s orthogonal function method [16], which is widely used
for proving lower bounds for Lebesgue discrepacy (see [8, 14]). Consider any point set P ∈ P0 that
satisfies SP ≥ cn2 log n. Given any coloring χ : P → {−1,+1} and a point x = (x1, x2) ∈ [0, n)2,
the combinatorial discrepancy D(x) at a point x is defined to be

D(x) =
∑

p∈P∩[0,x1)×[0,x2)

χ(p).

If we can prove supx∈[0,n)2 |D(x)| = Ω(log n), the lemma will follow.
For k ∈ [log n], define normalized wavelet functions fk as follow: for each k-canonical cell

Gk(i, j), let q denote the point contained in it. We subdivide Gk(i, j) into four equal-size quadrants,
and use Gk(i, j)UR, Gk(i, j)UL, Gk(i, j)LR, Gk(i, j)LL to denote the upper right, upper left, lower
right and lower left quadrants, respectively (See Figure 3). Set fk(x) = χ(q)/n2 over quadrants
Gk(i, j)UR and Gk(i, j)LL, and fk(x) = −χ(q)/n2 over the other two quadrants. We say a function
f : [0, n)2 → R is (a, b)-checkered if for each (a, b)-cell Ga,b(i, j), there exists a color C ∈ {−1,+1}
such that f is equal to C/n2 over Ga,b(i, j)UR and Ga,b(i, j)LL, and f(x) = −C/n2 over the other
two quadrants. Note that the wavelet function fk is (k, log n− k)-checkered. It is easy to see that
the integration of a (a, b)-checkered function over an (a, b)-cell is 0. The following lemma is proved
in the book [8]:

Lemma A.1 ([8]). If f is (a, b)-checkered and g is (a′, b′) checkered, where a < a′ and b′ < b, then
fg is (a, b′)-checkered.

The following corollary can be directly derived from Lemma A.1:

Corollary A.1. For 0 ≤ k1 < . . . < kl ≤ log n, the function fk1(x) · · · fkl(x) is a (k1, log n − kl)-
checkered. As a consequence, we have

∫

fk1 · · · fkl = 0.

Note that the range of the integration is [0, n)2 and the variable of integration is dx when not
specified. We define the Riesz product

G(x) = −1 +

logn
∏

k=0

(γfk(x) + 1),

where γ is some constant to be determined later. By the inequality
∣

∣

∣

∣

∫

GD

∣

∣

∣

∣

≤

∫

|GD| ≤ sup
x∈[0,n)2

|D| ·

∫

|G| ,

we can lower bound the combinatorial discrepancy of P as follow:

sup
x∈[0,n)2

|D| ≥

∣

∣

∣

∣

∫

GD

∣

∣

∣

∣

/∫

|G| . (A.1)

15

For the denominator, we have

∫

|G| =

∫

∣

∣

∣

∣

∣

−1 +

logn
∏

k=0

(γfk + 1)

∣

∣

∣

∣

∣

≤ 1 +

logn
∑

l=0

γl
∑

0≤k1<...<kl≤logn

∫

fk1 · · · fkl

= 2 +

logn
∑

l=1

γl
∑

0≤k1<...<kl≤logn

∫

fk1 · · · fkl

= 2. (A.2)

The last equation is due to Corollary A.1.
The numerator

∣

∣

∫

G(x)D(x)dx
∣

∣ can be expressed as follow:

∣

∣

∣

∣

∫

GD

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

(

−1 +

logn
∏

k=0

(γfk + 1)

)

·D

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

γ

logn
∑

k=0

fk +

logn
∑

l=2

γl
∑

0≤k1<...<kl≤logn

fk1 · · · fkl

 ·D

∣

∣

∣

∣

∣

∣

≥γ

∣

∣

∣

∣

∣

logn
∑

k=0

∫

fkD

∣

∣

∣

∣

∣

−

logn
∑

l=2

γl

∣

∣

∣

∣

∣

∣

∑

0≤k1<...<kl≤logn

∫

fk1 · · · fklD

∣

∣

∣

∣

∣

∣

. (A.3)

We consider th integration of a single product fk(x)D(x) over a k-canonical cell Gk(i, j). Recall
that q denotes the point in P that lies in Gk(i, j), and χ(q) denotes its color. Define vectors
u = (2k−1, 0) and v = (0, n/2k+1). Then for any point x ∈ Gk(i, j)LL, points x + u, x + v
and x + u + v are the analogous points in quadrants Gk(i, j)LR, Gk(i, j)UL and Gk(i, j)UR of x,
respectively (see Figure 3). Let Rx denote the orthogonal rectangle defined by x and x + u + v,
and let function R(x) be the indicator function of point q and Rx, that is, R(x) = 1 if q ∈ Rx and
R(x) = 0 if otherwise. We can express the integration as

∫

Gk(i,j)
fk(x)D(x)dx =

∫

Gk(i,j)LL

χ(q)

n2
(D(x)−D(x+ u)

−D(x+ v) +D(x+ u+ v)) dx

=

∫

Gk(i,j)LL

χ(q)

n2
· χ(q)R(x)dx

=
1

n2

∫

Gk(i,j)LL

R(x)dx.

The second equation is because (D(x) −D(x+ u)−D(x+ v) +D(x+ u+ v)) only counts points
inside Rx, which can only be q, or nothing otherwise. Observe that R(x) = 1 if and only if one of

16

x’s analogous points lies inside the rectangle defined by q and its nearest corner (see Figure 3), so
we have

∫

Gk(i,j)
fkD =

1

n2

∫

Gk(i,j)LL

R

=
1

n2
VP (k, i, j). (A.4)

Now we can compute the first term in (A.3):

γ

∣

∣

∣

∣

∣

logn
∑

k=0

∫

fkD

∣

∣

∣

∣

∣

= γ

∣

∣

∣

∣

∣

∣

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

∫

Gk(i,j)
fkD

∣

∣

∣

∣

∣

∣

= γ

∣

∣

∣

∣

∣

∣

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

1

n2
VP (k, i, j)

∣

∣

∣

∣

∣

∣

=
γ

n2
SP

≥ cγ log n. (A.5)

For the second term in (A.3), recall that the function fk1 · · · fkl is (k1, log n−kl)-checkered. Con-
sider a (k1, log n−kl)-cell Gk1,logn−kl . Note that P intersects Gk1,logn−kl(i, j) with at most 1 point.

By similar arguments in the proof of equation (A.4), we find the integration
∣

∣

∣

∫

Gk1,log n−kl
(i,j) fk1 · · · fklD

∣

∣

∣

is 0 if P ∩ Gk1,logn−kl = ∅ and otherwise equal to the corner volume of Gk1,kl(i, j) divide by n2.
In the latter case, we relax the corner volume to the volume of Gk1,logn−kl(i, j), that is, n/2

kl−k1 .
Thus we can estimate the integration as follows:

∣

∣

∣

∣

∣

∫

Gk1,log n−kl
(i,j)

fk1 · · · fklD

∣

∣

∣

∣

∣

≤
1

n2
·

n

2kl−k1
=

1

2kl−k1n
.

Since there are n non-empty (k1, log n− kl)-cells, we have

∣

∣

∣

∣

∫

fk1 · · · fklD

∣

∣

∣

∣

≤ n ·
1

2kl−k1n
=

1

2kl−k1
.

Now we can estimate the second term in (A.3) :

logn
∑

l=2

γl

∣

∣

∣

∣

∣

∣

∑

0≤k1<...<kl≤logn

∫

fk1 · · · fklD

∣

∣

∣

∣

∣

∣

≤

logn
∑

l=2

γl
∑

0≤k1<...<kl≤logn

1

2kl−k1

=

logn
∑

l=2

γl
logn+1
∑

w=l−1

∑

kl−k1=w

1

2w

(

w − 1

l − 2

)

. (A.6)

For the last equation we replace kl − k1 with a new index w and use the fact that there are
(w−1
l−2

)

ways to choose k2, . . . , kl−1 in an interval of length w. Note that for a fixed w, there are log+1−w

17

possible values for k1, so

logn
∑

l=2

γl
logn+1
∑

w=l−1

∑

kl−k1=w

1

2w

(

w − 1

l − 2

)

=

logn
∑

l=2

γl
logn+1
∑

w=l−1

log n+ 1− w

2w

(

w − 1

l − 2

)

≤

logn
∑

l=2

γl
logn+1
∑

w=l−1

log n

2w

(

w − 1

l − 2

)

= log n

logn
∑

l=2

γl
logn+1
∑

w=l−1

1

2w

(

w − 1

l − 2

)

. (A.7)

By inverting the order of the summation,

log n

logn
∑

l=2

γl
logn+1
∑

w=l−1

∑

kl−k1=w

1

2w

(

w − 1

l − 2

)

=γ2 log n

logn+1
∑

w=1

1

2w

w+1
∑

l=2

(

w − 1

l − 2

)

γl−2

=γ2 log n

logn+1
∑

w=1

1

2w
(1 + γ)w−1

=2γ2 log n

logn+1
∑

w=1

(

1 + γ

2

)w−1

≤
2γ2

1− γ
log n. (A.8)

So from (A.5), (A.6), (A.7) and (A.8) we have

∣

∣

∣

∣

∫

GD

∣

∣

∣

∣

≥ cγ log n−
2γ2

1− γ
log n.

Setting γ small enough while combining with (A.1) and (A.2) completes the proof.

A.2 Proof of Lemma 3.2

Proof. By Lemma 3.1, we only need to prove that the corner volume sum of any point set P ∈ P0

is large. Fix k and consider a k-canonical cell Gk(i, j). Let q denote the point in P ∩Gk(i, j). We
define the corner x-distance of Gk(i, j) to be the difference between the x-coordinate of q and that
of its nearest corner of Gk(i, j). The corner y-distance is defined in similar manner. See Figure 3.
We use X(k, i, j) and Y (k, i, j) to denote the corner x-distance and corner y-distance, respectively.
Note that the corner volume VP (k, i, j) is the product of X(k, i, j) and Y (k, i, j).

Fact A.1. Fix k and i, {X(k, i, j) | j ∈ [2k]} = {j+1/2, j+1/2 | j ∈ [2k−1]}, where both are taken

as multisets.

For a proof, note that the k-canonical cell Gk(i, j) is intersecting with 2k columns: G0(i2
k, 0), . . . , G0((i+

1)2k − 1, 0). There are 2k points in Gk(i, 0), . . . , Gk(i, 2
k − 1), and they must reside in different

columns. Therefore there is exactly one point in the each of the 2k columns, and their corner
x-distances span from 1/2 to 2k−1/2− 1/2, and each value is hit exactly twice. Similarly, we have

18

Fact A.2. Fix k and j, {X(k, i, j) | i ∈ [n/2k]} = {i+ 1/2, i + 1/2 | i ∈ [n/2k+1]}, where both are

taken as multisets.

Now consider the product of X(k, i, j) and Y (k, i, j) over all (i, j) for a fixed k:

n/2k−1
∏

i=0

2k−1
∏

j=0

VP (k, i, j) =

n/2k−1
∏

i=0

2k−1
∏

j=0

X(k, i, j)Y (k, i, j)

=

n/2k−1
∏

i=0

2k−1
∏

j=0

X(k, i, j) ·
2k−1
∏

j=0

n/2k−1
∏

i=0

Y (k, i, j)

=

n/2k−1
∏

i=0

2k−1−1
∏

j=0

(j + 1/2)2 ·
2k−1
∏

j=0

n/2k−1
∏

i=0

(i+ 1/2)2.

The last equation is due to Fact A.1 and Fact A.2. By relaxing i + 1/2 and j + 1/2 to (i + 1)/2
and (j + 1)/2, we have

n/2k−1
∏

i=0

2k−1
∏

j=0

VP (k, i, j) ≥

n/2k−1
∏

i=0

2k−1−1
∏

j=0

(

j + 1

2

)2

·
2k−1
∏

j=0

n/2k−1
∏

i=0

(

i+ 1

2

)2

=

n/2k−1
∏

i=0

(

(2k−1)!

22
k−1

)2

·
2k−1
∏

j=0

(

(n/2k+1)!

2n/2
k+1

)2

.

By the inequality x! ≥ (x/e)x,

n/2k−1
∏

i=0

2k−1
∏

j=0

V (k, i, j) ≥

n/2k−1
∏

i=0

(

(

2k−1

2e

)2k−1)2

·
2k−1
∏

j=0

(

(

n/2k+1

2e

)n/2k+1)2

=

n/2k−1
∏

i=0

(

2k−1

2e

)2k

·
2k−1
∏

j=0

(

n/2k+1

2e

)n/2k

=

(

2k−1

2e

)2k ·n/2k

·

(

n/2k+1

2e

)n/2k·2k

=

(

2k

4e

)n

·

(

n/2k

4e

)n

=
(n

16e

)n
.

Using the inequality of geometric means,

n/2k−1
∑

i=0

2k−1
∑

j=0

VP (k, i, j) ≥n ·

n/2k−1
∏

i=0

2k−1
∏

j=0

VP (k, i, j)

1/n

≥
n2

16e
.

So the corner volume sum SP =
∑logn

k=0

∑n/2k−1
i=0

∑2k−1
j=0 V (k, i, j) is lower bounded by n2 log n/16e,

and the lemma follows.

19

A.3 Proof of Lemma 3.4

Proof. Note that there are two points of P1 ∪ P2 in each k-canonical cell Gk(i, j), and we let q1, q2
denote the two points from P1 and P2, respectively. We will set fk(x) = C/n2 for quadrants
Gk(i, j)UR and Gk(i, j)LL and fk(x) = −C/n2 for the other two quadrants, where C is determined
as follows:

C =

{

χ(q1) if VP1
(k, i, j) ≥ VP2

(k, i, j);
χ(q2) if VP1

(k, i, j) < VP2
(k, i, j).

Let D(x) be the combinatorial discrepancy at x over P1 ∪ P2. By similar argument in the proof of
Lemma 3.1, we get

∫

Gk(i,j)
fkD =

{

1
n2 (VP1

(k, i, j) + VP2
(k, i, j)) if χ(q1) = chi(q2);

1
n2 |VP1

(k, i, j) − VP2
(k, i, j)| if χ(q1) 6= χ(q2).

In either case,
∫

Gk(i,j)
fkD ≥

1

n2
|VP1

(k, i, j) − VP2
(k, i, j)| .

And the rest of the proof follows the same argument in the proof of Lemma 3.1.

20

