
Positioning-Based Query Translation between SQL and
XQL with Location Counter

Joseph Fong*, Wilfred Ng+, San Kuen Cheung*, Ivan Au*

*Computer Science Department, City University of Hong Kong, Hong Kong
Email:csjfong@cityu.edu.hk

+Computer Science Department, Hong Kong University of Science and Technology
Email:Wilfred@cs.ust.hk

The need for interoperation and data exchange through the Internet has made
Extensible Markup Language (XML) a dominant standard language. Much
work has already been done on translating relational data into XML documents
and vice versa. However, there is not an integrated method to combine them
together as a unifying technology for database interoperability on the Internet.
Users may not be familiar with various query language syntax. We propose
database gateways built on the top of a Relational Database (RDB) and an
XML Database (XMLDB). Users can access both databases at the same time
through the query language SQL or XQL (an XML query language) to access
data stored in either RDB or XMLDB. The translation process adopts query
graph translation between a RDB and an XMLDB. Thus, a stepwise procedure
of query translation is devised and amenable to implementation. The procedure
also provides an XML interface to a RDB as well as a relational interface to
XMLDB. A location counter sequence number is used to position tuples in a
RDB for subsequent transforming the tuples into the corresponding positioning
element instances in the XML documents. As a result, both XMLDB and RDB
can co-exist, and be accessible by the users.

1 Introduction

This paper proposes a stepwise approach to query translation that constructs a
gateway between relational and XML database systems. One of the keys to success in
migration strategy is the ability that copes with the changes imposed by business
requirements. We address the issue of such changes by partitioning the process of
database migration and query translation into three phases as shown in Figure 1.
Phase I is the translation of the source relational schema into a target XML schema.
Phase II is an inverse mapping that is represented as augmented views. These
augmented views are similar to relational views but it is more flexible for users to
select their root-based XML documents. Phase III transforms a query from relational
SQL into an equivalent XQL query over the target XML database. The rationale for
defining phases I and II is that a relational schema is not wholly compatible with an
XML schema. As a result, we need to partition a relational schema into an augmented
view of XML tree structure in order to make them compatible. A methodology is

2 Joseph Fong*, Wilfred Ng+, San Kuen Cheung*, Ivan Au*

developed to allow users to interoperate RDB and XMLDB through query translation.
The database gateways receive the input queries before they are sent to the underlying
databases. Query translation will be done through the gateways. The translated query
will be sent to the appropriate database. Users can rely on one data model and his or
her familiar query language to access data in both the RDB and the XMLDB.

Figure 1 The three steps for database reengineering query translation

The query translation process consists of two main steps of schema translation and
query translation. The system allows users to input SQL query which is translated into
XPath for selecting the data on XMLDB. The architecture composes of two gateways,
the XML Gateway and the Relational Gateway, as shown in Figure 2. There is a
common interface between these gateways, which connect to a XMLDB server and a
RDB server.

 Figure 2 XML and Relational Gateways

1.1 Related Work

Shanmugasundaram 2 presents three inlining algorithms that focus on the table level
of the schema while Florescu and Kossmann 3 investigate various performance issues
among five algorithms that focus on the attribute and value level of the schema. They
all transform the given XML DTD to a relational schema. Collins 4 describes two
algorithms for mapping relational and network models schemas into XML schema
using the relational mapping algorithm. Such an approach allows the data in the
relational and network database system. Tatarinov 5 studies how XML's ordered data
model can be supported using an unordered RDB system. They propose three order
encoding methods (Global Order, Local Order and Dewey Order) for representing
XML in the relational model. Tseng and Hwung 6 developed a system called XML
meta-generator (XMG) that is an extraction scheme to store and retrieve XML
documents through object-relational databases. WebReader 7 is a middleware for
automating the search and collecting information and manipulation in XSL,
WebReader also provides the users with a centralized, structured, and categorized
means to specify for querying web information.

Positioning-Based Query Translation between SQL and XQL with Location Counter 3

2 Methodology of Query Translation between SQL and XQL

As shown in Figure 1, we need to abstract an augmented view of the target XML tree
structure into a relational schema in phases I and II. We have a compatible tree
structure in a partitioned relational schema and a mapped target XML schema. Then
in phase III, we translate an SQL to XQL according to the mapped XML schema.
Similarly, we can translate an XQL to SQL according to the partitioned relational
schema. These three phases are further detailed in the subsequent subsections.

2.1 Phase I: Schema Translation between Relational and XML Data

We add a sequence number into a relational table for data position in XML document.
For any table that is used for query translation, an extra column - seqno is required.
This column is used by the XML gateway described as follows:

For each table, the last column is seqno. This seqno column is used to ensure that the
records returned from database are in the right order. The column is also used for
translation of XQL location index functions (e.g. position()). The seqno column is
incremented by one for each new record of the same key value and maintained by
using the insert trigger. The records in the repository table
node_tablecolumn_mapping is used for mapping the column of the table that is used
for maintaining the seqno value.

node_tablecolumn_mapping Table
Table name

CLIENTACCOUNTEXECUTIVE Table

On inserting a new record into a table, the insert trigger first locates that the column is
used for counting seqno from the node_tablecolumn_mapping table. Then, the trigger
selects the maximum seqno value for the new record. The maximum seqno value plus
one is assigned as the seqno value of the new record. There is no need to update the
seqno value in case the record is deleted. In XQL, the location index function (e.g.
position()) counts the order of the record relative to the parent node. Given receiver’s
relations R1(A1, A3) and R2(A2, A4, *A1) with an FD (functional dependency):
R2.A1 → R1.A1. R1 and R2 are classified and joined into a relation R(A1, A2, A3,
A4), which is then translated into a single sub-element topological XML document by
mapping parent relation R1 into element E1, and child relation R2 into sub-element
E2 as shown in Figure 3.

Node key
column

CLIENT ClientID
CLIENTACCOUNTEXECUTIVE ClientID
ACCOUNTEXECUTIVE AEID
BALANCE ClientID

ClientID AEID Seqno
600001 AE0001 1
600001 AE0002 2
600002 AE0001 1
600003 AE0003 1

4 Joseph Fong*, Wilfred Ng+, San Kuen Cheung*, Ivan Au*

*

Figure 3 Translation of Functional Dependency between Relational and XML Schemas

2.2 Phase II: Select Augmented View of Target XML Schema in Mapping
 RDB to XML Schema
To convert a relational database into an XML document tree, we integrate the
translated XML document trees into an XML document tree, select an element as root
and put its relevant information into a document. We load the relational database into
the object instances of the XML documents. Each XML document focuses on a root
class upon user requirements. The selection is driven by some business requirements.
Relevance concerns elements that are related to a root selected by the users among the
integrated XML document tree (DOM tree). Figure 4(a) shows an integrated XML
document tree. The user can select root A1 with its relevant classes to form a
partitioned XML document tree.

Figure 4 Select augment view of target (a) XML schema and (b) relational schema in cycle

Select augmented view of target RDB schema in mapping XML to RDB schema.
Similar to convert an XML schema to RDB schema, we allow user select an
augmented view of the EER model of target RDB schema as shown in Figure 4(b).

2.3 Phase III: Query Translation between XQL and SQL

2.3.1 Query Translation from SQL to XQL

Positioning-Based Query Translation between SQL and XQL with Location Counter 5

In query transformation, a syntax-directed parser converts the SQL into multi-way
trees. The transformation process is performed, based on the subtree matching and
replacement technique. The process of SQL query transformation is given in Figure 5.

Figure 5 Process for SQL to XQL Transformation

Translation of SQL Query to XPath Query
After the schema is done, SQL query can be translated to XPath query by the
following steps:

Step 1 Decompose SQL Query Transaction: The basic syntax SQL SELECT
statement is given as follows:

SELECT {attribute-list-1} FROM {relation-list}
WHERE {join-condition} AND / OR {search-condition-1}
ORDER BY {attribute-list-2} GROUP BY {attribute-list-3}
HAVING {search-condition-2}

Step 2 Create the SQL Query Graph: Based on the relation-list and the join-
condition in the SQL query transaction, the SQL query graph is created. The join
condition is based on the natural join or based on the search condition specified in the
SQL query [1].

Step 3 Map the SQL Query Graph to XPath Query Graph: The SQL query
graph is mapped to the XPath query graph. The table joins from the SQL query graph
forms the XPath location path, which are the steps for navigating down the document
tree from root node.

Step 4 Transform SQL to XPath Query: In this step, the SQL query is
transformed into XPath syntax as follows:

/root/node1[@attribute1=condition]/…/node2[@attribute2=condition]/@attribute3

The attribute-list in the SQL query is mapped to the leaf attribute node at the bottom
of the document tree. If all the attributes of the element node are selected, “@*” is
mapped to select all the attributes from the leaf element node. If more than one
attributes are selected, the union operator is used to get the result. For example:

6 Joseph Fong*, Wilfred Ng+, San Kuen Cheung*, Ivan Au*

/root/node1/@attribute1 | /root/node1/@attribute2
Step 5 Transform XPath Query Data into SQL Query Data: The XML
document returned from XMLDB is formatted into tables before the document
returning to user. The format of the result is based on the data stored in the table
table_column_seq (prepared in pre-processed schema translation).

2.3.2. Query Translation from XQL to SQL
To translate query from XQL to SQL, document tree nodes in XQL query are
replaced by the relational JOIN in SQL. The XQL allows data retrieval using path
expressions, and data manipulation using methods. A syntax-directed parser converts
the XQL into multi-way trees. The transformation process is performed, based on the
subtree matching and replacement technique. The process of XQL query
transformation is given in Figure 6.

Figure 6 Process for XQL to SQL Transformation

2.3.3. Query Translation from XPath to SQL
XPath views a document as a tree of nodes consisting of elements and attributes.
Based on the generated XML schema, the XPath query graph of node navigation is
converted to SQL query graph of table joins. Below is a stepwise procedure of how
XPath query is translated to SQL query:

Step 1 Decompose the XPath Transaction: Each slash-separated (/) path component
of XPath query is a step. The following nodes and predicates are identified from the
descendent axis:
1. * - selects all element children of the context node
2. @name – selects the name attribute of the context node
3. @* - selects all the attributes of the context node
4. [method] – built-in functions to create more expressive queries. They are

text(), position()=n, or last() where n is index of the location of element
instance starting from 0.

5. [@name=“attributeValue＂] – the value of the name attribute is equal to
“attributeValue＂

Positioning-Based Query Translation between SQL and XQL with Location Counter 7

Step 2 Create XPath Query Graph: The query graph of the XPath expression or
query is created in this step. Based on the translated XML schema, a navigation path
is created to indicate the relationship between nodes by stepping down the XML
document tree hierarchy. From the node_sequence table, all the nodes down from the
root element are identified.

Step 3 Map the XPath Query Graph to SQL Query Graph: From the XPath
query graph, the root node and its descendant child node are located. For each node,
the elements are mapped to their corresponding relation in the RDB.

Step 4 Translate XPath Query to SQL Queries: From the mapped XML schema,
each XML document has a key for retrieving the data for each element node. A key
cursor is created for first retrieving the keys for the XML documents. This key is
stored in the table xml_document_key and each value fetched from this cursor is used
subsequently for each translated SQL query. It is constructed by the following
replacements:
• Replacing XML document tree node navigation path by SQL join relations path.
• Replacing the XML tree elements by their corresponding SQL relations.
• Replacing XML document tree node filtering by SQL WHERE clause.
• Replacing the XML document instance location index function by embedded

SQL query cursor. By counting the number of time result set is fetched from
cursor, the location index of XML document is emulated.

Step 5 Map the Retrieved Relation Data into XML Document Format: The
result set returned from SQL query is mapped into the translated XML schema. The
tags for the data returned from SQL query are identified from the table
xml_document_node. The result is formatted into XML document returned to user[1],

3 Conclusions

This paper describes a methodology that translates XQL query to SQL query and vice
versa. Sequence numbers are applied to indicate the position of the relational tuples
that are involved in the schema translation. The approach provides flexibility for users
to query on a selected (focused on root based) XML view of a relational database
when translating SQL to XQL, or to query a set of selected relational tables in
translating XQL to SQL. The benefit of our approach is that the sequential processing
of both the relational database and the XML database are compatible due to the added
positioning SEQNO in the relational side. Our approach has a distinct feature that
XDB and RDB are able to co-exist, and XQL and SQL can be employed to access
both systems. As shown in Figure 7, a prototype of the database gateways is
developed. It shows that query translation between SQL and XQL with the proposed
methodology is feasible. For example, we want to fetch its second tuple of the
following Execution table:

8 Joseph Fong*, Wilfred Ng+, San Kuen Cheung*, Ivan Au*

Orderid Exe_sequence Quantity Price Time Seqno
300001 1 10000 21.6 200204031001 1
300002 1 2000 10.85 200204031002 1

Figure 7 XQL Query with Position Value Translated into SQL

References

[1] Ivan Au, Feasibility Study of Query Translation between SQL and XQL,
M.Sc. dissertation of C.S. Department at City University of Hong Kong, 2002
[2] Jayavel Shanmugasundaram et al, RDBs for Querying XML Documents:

Limitations and Opportunities, 25th VLDB Conference, 1999, Page(s): 302-314.
[3] D. Florescu, and D. Kossman, Storing and Querying XML Data Using an

RDBMS, IEEE Data Engineering Bulletin, 22(3), 1999, Page(s): 27-34
[4] Samuel Robert Collins et al, XML Schema Mappings for Heterogeneous
Database Access, Information and Software Technology, Volume 44, Issue 4, March
2002, Page(s): 251-257
[5] Igor Tatarinov et al, Storing and Querying Ordered XML Using a RDB System,

2002 ACM SIGMOD int’l conference on Management of data, June 2002
[6] Frank S. C. Tseng and Wen-Jong Hwung, An Automatic Load/Extract Scheme

for XML Documents through Object-Relational Repositories, Journal of
Systems and Software, Volume 64, Issue 3, December 2002, Page(s): 207-218

[7] J. Chan and Q. Li, WebReader: A Mechanism for Automating the Search and
Collecting Information from the World Wide Web, 1st International Conference
on Web Information Systems Engineering, Volume 2, 2000, Page(s): 47-56

