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Abstract

We propose a novel Partition Path-Based (PPB) grouping strategy to store com-
pressed XML data in a stream of blocks. In addition, we employ a minimal indexing
scheme called Block Statistic Signature (BSS) on the compressed data, which is a simple
but effective technique to support evaluation of selection and aggregate XPath queries
of the compressed data. We present a formal analysis and empirical study of these tech-
niques. The BSS indexing is first extended into effective Cluster Statistic Signature
(CSS) and Multiple-Cluster Statistic Signature (MSS) indexing by establishing more
layers of indexes. We analyze how the response time is affected by various parameters
involved in our compression strategy such as the data stream block size, the number of
cluster layers, and the query selectivity. We also gain further insight about the compres-
sion and querying performance by studying the optimal block size in a stream, which
leads to the minimum processing cost for queries. The cost model analysis provides
a solid foundation for predicting the querying performance. Finally, we demonstrate
that our PPB grouping and indexing strategies are not only efficient enough to support
path-based selection and aggregate queries of the compressed XML data, but they also
require relatively low computation time and storage space when compared with other
state-of-the-art compression strategies.

Index Terms: Data Compression, Query processing, Cost Model, Markup Languages

1 Introduction

XML is, by nature verbose, since repeated tags and structures are needed to specify element
items in the document. As a result, XML data are larger in size than the original data format.
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For example, the file size of the Weblog obtained from [24] expands by three times when its
log format is converted to XML. The size problem of XML documents hinders their practical
usage, since the size substantially increases the costs of storing, processing and exchanging
data.

In this paper, we propose a Partition Path-Based (PPB) data grouping strategy to address
the size problem. The term “stream” used in our subsequent discussion originated from our
XCQ compression methodology proposed in [12]. In a nut shell, given an XML document,
we achieve the compression using a DTD Tree and SAX Event Stream Parsing (DSP) tech-
nique. This DSP algorithm takes as input the DTD tree and the SAX event stream created
by the DTD Tree Building module and the SAX Parser module, respectively. The objectives
of the DSP algorithm are to extract the structural information [18] from the input XML doc-
ument that cannot be inferred from the DTD during the parsing process, and to group data
elements in the document based on their corresponding tree paths in the DTD tree.

By structural information, we mean the information necessary to reconstruct the tree
structure of the XML document. By data elements, we mean the attributes and PCDATA
within the document. The output of the DSP algorithm is a stream of structural information,
which we call the structure stream, and streams of XML data elements, which we call the
data streams. The generated structure stream and data streams are compressed and packed
into a single file. (cf. a full explanation of the DSP algorithm and a detailed example of
generating the structure and data streams can be found in Sections 3.2 and 3.3 in [12].)

In Figure 1, we show that the structure stream derived from a given DTD is stored and
compressed separately from the data streams. Each PPB data stream corresponds to a partic-
ular path structure in the DTD labeled by a key, and all data elements in the data stream are
the elements that match the path structure. In addition, each PPB data stream is partitioned
into its set of data blocks with a pre-defined block size, which helps to increase the overall
compression ratio (cf. [9, 10, 16, 17]). A data block in a PPB data stream is able to be com-
pressed or decompressed as an individual unit. This partitioning strategy allows us to access
the data in a compressed document by decompressing only those data blocks that contain the
data elements relevant to the imposed query. We term this a partial decompression strategy.

d4: /library/entry/num_copy/text()

streams:
Keys for path−based grouped data

Structure Stream

d0 d1 d2 d3 d4

d0: /library/entry/author/@name
d1: /library/entry/title/text()
d2: /library/entry/year/text()
d3: /library/entry/publisher/text()

Figure 1: A Conceptual Diagram of Partitioned Path-Based Data Grouping

For example, if the block size has n records per block, the first batch of n records in the
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stream, d0, are packed in the first data block while the next batch of n records are packed
in the subsequent block. As such, each data block in the data stream contains a certain
number of elements in the order listed in their corresponding data streams, which are under
the same tree path in the DTD tree as shown in Figure 2, where name is an attribute node;
author, title, year, publisher and num copy are element nodes; and paper,
course notes and book are empty elements.

library

entry*

bookpaper

course_notes

PCDATA
Key: Element Nodes

Attribute Nodes

name

yeartitle publisher? | num_copyauthor

Figure 2: A Library DTD XML Tree

The data blocks in the data streams are compressed individually using Gzip [23]. The
low-level compressor can be replaced by another generic one such as Bzip2 library as re-
ported in [12], which could gain a better compression ratio at the expense of compression
time. The underlying idea of query evaluation is that, by utilizing the structure stream, we
only need to decompress on the fly the data streams that are relevant to the query evaluation.
This partial decompression accessing strategy significantly reduces the decompression delay
and storage overhead and is similar in spirit to some recent XML compressors [21, 15, 4, 1].
We do not present the query evaluation algorithms and the technical details of implementa-
tion for our query processor as they are described in another submitted paper.

Some preliminary ideas about the query evaluation strategy were highlighted in our ear-
lier study [12], in which the PPB engine was developed to support the logical operators
of core XPath queries: “not”, “or” and “and”; along with the comparison operators: “=”,
“6=”, “>”, and “<”. The PPB engine also supports “CONTAINS” (i.e., for a substring) and
“STARTS-WITH” for strings. We call this class of path-based queries collectively the se-
lection queries. The PPB engine also implements the core library functions: “COUNT”,
“SUM”, “AVG”, “MIN” and “MAX”, which are standard aggregation operators. These ag-
gregation operators can be embodied in the core XPath queries as predicates. We call this
class of path-based queries collectively the aggregate queries.

For the sake of clarity, we only illustrate how and why PPB is useful to tackle single
path expressions that consist of at most one occurrence of a descendant axis “//”, since such
expressions are fundamental to current XML query languages such as XPath and XQuery
[28, 29]. Nevertheless, the efficient support of complex path expressions (i.e., more than
one descendant axis or having branch expressions in a path) over XML data can be naturally
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extended with some decomposition and execution plan. For example, a complex path ex-
pression, “p1[/p2]//p3”, where p1, p2 and p3 are single path expressions, can be supported
as follows. We can first decompose the expression into “p1/p2” and “p1//p3”. Then the
query processor will first retrieve those results that satisfy p1 and evaluate p3 among the
descendants of the result from p1 as the first set of immediate answers. The second set of
immediate answers is only an execution of a single path expression “p1/p2”. The final result
can be obtained by performing the set intersection or some sophisticated join techniques as
illustrated in existing XML query evaluation techniques [1, 2, 15]. In principle, it would
also be straightforward to modify the PPB engine to handle IDREF or IDREFS in DTDs
by building a DTD graph rather than a DTD tree in the structure stream. When parsing a
document against the DTD graph, the graph would still be traversed in depth-first order in
order to determine the correct data stream.

The main contributions of this paper are as follows. First, we clarify how the evaluation of
an important class of XPath queries (selection and aggregate queries) is affected by various
parameters involved in the compression strategy, such as the data stream block size, the
number of cluster layers, the cost of scanning the indexes, the cost of decompressing a block,
and the query selectivity. Second, we establish a solid foundation on which to optimize the
block size in a stream, which leads to the minimum processing cost for a query. Finally, we
verify our results by carrying out an extensive experimental study to test the performance
of the PPB engine. Our empirical result presented in this paper demonstrates that our PPB
engine prototype performs well when compared with two existing compressors, XMill and
XGrind, and, importantly, our PPB cost model predicts the trend of the query response time
correctly. To the best of our knowledge, our PPB cost model is the first analytical model of
the cost of XML compression.

The remainder of this paper is organized as follows. The rest of this section is devoted
to a description of related work. Section 2 presents the Block Statistic Signature (BSS) in-
dexing scheme, which is adopted in the PPB system to aid in partial decompression. Section
3 establishes the cost model for the PPB data grouping and presents a preliminary analysis
of the optimal query processing cost. Section 4 studies the impacts of varying the selec-
tivity and block size on the processing cost for path-based selection and aggregate queries.
Section 5 improves BSS by introducing a level of clustering of the blocks and the Clus-
ter Statistic Signature (CSS) indexing scheme in a data stream. We then further generalize
CSS by considering cases when there is more than one level of clustering, which we term
the Multiple-cluster Statistic Signature (MSS). Section 6 uses real XML datasets to verify
various predictions from our model. Finally, we offer concluding remarks in Section 7.

4



1.1 Related Work

The motivation for supporting direct querying compressed XML documents is in related to
studies on traditional data compression [19, 5, 30]. We are able to save in bandwidth and
achieve more efficient query processing over compressed data, due to the fact that more
information can be carried by a given data size. In addition, compression techniques are
particularly important in dealing with the verbosity of XML files. Most well-known XML-
conscious compression technologies have been recently proposed (cf. see our recent survey
in [13]). These technologies are able to achieve good compression performance. They in-
clude XMill and Millau [10, 20]. However, these systems are solely optimized for better
compression but do not support querying of the compressed data. The more recently pro-
posed XML compressors, such as XGrind [21], XPress [15], skeleton compression [2], XCQ
[12], XQzip[4], and XQuec [1] (all these compressors except XGrind do not have released
code) are able to support querying. However, their foundations are not sufficiently adequate
from the analytical point of view. In particular, various underlying cost factors involved in
processing queries over compressed data have not yet been introduced in these compressors.
It is worth mentioning that XGrind and XPress are able to encode XML data items individu-
ally and to preserve the XML structure. Thus, both compressors possess the desirable feature
that their querying operations can be executed without fully decompressing the document.
However, the compression ratio and time performance of XMill is much better than XGrind
and XPress (see Figures 12 and 13 in [21]).

2 BSS Indexing in PPB Data Streams

In this section, we describe the Block Statistic Signature (BSS) indexing scheme used in the
PPB engine. The indexing scheme is designed for supporting data values from numerical
or string domains and is minimal in the sense that it requires very small amounts of storage
space and time resources in the PPB engine. This indexing scheme simplifies signature file
indexing approaches [7, 11, 6]. Like projection signature indexing in [6], BSS indexing is
used to index block-oriented compressed data.

Definition 2.1 (BSS Index and Value Range) Assume that there are n blocks. The Block
Statistic Signature (BSS) index of an ith block is given by Bi = 〈sβ

i , bβ
i 〉, where bβ

i represents
the data items in the compressed block and the BSS index value, sβ

i = 〈min(bβ
i ), max(bβ

i ),

sum(bβ
i ), count(bβ

i )〉. We define the value range for a BSS indexed block, Bi, denoted as
lβi , as 〈min(bβ

i ),max(bβ
i )〉. From now on, we use more handy notation such as sβ, bβ and lβ

when there is no ambiguity in the block labelling.
Figure 3 depicts the underlying idea of the BSS indexing scheme. In the PPB engine, a

statistical signature is generated for each compressed data block for a document. The signa-
ture summarizes the data values inside a particular block. When a query is being evaluated,
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the compressed data blocks in the corresponding data streams are accessed by the PPB en-
gine. A filtering process is carried out by the PPB engine as follows. Before a data block
is fetched from the disk, the PPB engine consults the corresponding BSS index and ignores
those data blocks that do not contain the required record(s). To do this, the PPB engine
checks the BSS signature of the data block and decides whether the value range of that block
overlaps with the value range specified in the interval query. If these two ranges overlap,
which means that the data block may contain the required record(s), then the data block is
fetched and decompressed for evaluation. If the two ranges do not overlap, the block does
not contain the required records, and in this case the data block is not fetched.

10
18
27
5

Min:5
Max: 27
Sum: 60
Count:4

0
1210
100

 10000
10

Min:0
Max: 10000 
Sum: 11320
Count:5

Compressed
Data Blocks

Block
Statistics

Signatures
(BSS)

Figure 3: BSS Indexes in a PPB Data Stream

If more statistical information is stored in the block signature, we may have the benefit
of having better knowledge about the compressed data block content, which helps in the
block scanning and filtering processes during query evaluation. However, this additional
information requires additional resources to generate, scan and store the block signatures,
which will have a negative effect on the compression time, the query response time and the
compression ratio. The BSS indexing scheme requires low computation overhead. It is easy
to compute and generate the indexes in the compression phase and it is quick to scan the
indexes during query processing. The operations of generating and scanning a signature can
be done in linear time, O(n). In the case of signature generating, n is the number of elements
in the data stream. In the case of signature scanning, n is the number of compressed data
blocks in the PPB data stream. We consider the following selection query of a compressed
XML document that conforms to the DTD given in Figure 2 (we skip the full path of the
queries for simplicity,):

(Q1): entry[author/@name=“Lam” and publisher =“X Ltd.”].
This query, Q1, selects those XML fragments that satisfy the two given predicates. We

define the selectivity as the percentage of XML fragments (e.g., the entry fragments in Fig-
ure 2) returned in the query result compared to the total number of XML fragments in the
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compressed document. Two data streams, d0 and d3, are involved during the process of
query evaluation. The PPB engine first returns the XML fragments that have matched “en-
try” elements. Assuming there are m records satisfying the first predicate, the PPB engine
then needs to find the blocks in d3 that contain the corresponding m “publisher” records to
evaluate the second predicate. The structure stream directs the engine to these two streams.
The query predicates can be Exact Matching (equality comparison only) or Range Matching
(inequality comparison involved).

Consider also the following aggregate query that finds the sum of (paper, book or course
notes) copies based on the data elements that satisfy some specified predicates inside a single
data stream. The query aims at finding aggregate information related to a particular path.

(Q2): SUM(//num copy ≥2).
This query, Q2, selects only those elements in the data stream, d4. The PPB engine needs

to find the data elements that satisfy the predicate “num copy≥2” and then return the sum of
the num copy. The BSS index in d4 is scanned in the filtering process and those data blocks
that contain the data elements are fetched from the disk. This helps the PPB engine to avoid
fetching the compressed data blocks that do not contain relevant records or the statistical
parameters in the signature can be used directly to evaluate the query.

3 PPB Data Grouping Analysis

In this section, we study the process of checking data elements in the PPB data grouping
against the selection predicate of a given query. This paves the way to study the optimization
of the PPB engine to run selective and aggregative queries.

We begin by discussing the cost of running a selection query that has a simple range-
matching, open-interval predicate, such as entry[num copy > 1]. We then extend the basic
result to other queries. We now assume that the PPB data stream is finite with N data
elements, each of which has a fixed and uniform probability, P , of being selected by the
query predicate and there is only a single predicate that selects data elements from the range
lp.

Definition 3.1 (BSS Hit and Missed Blocks) We compare lβi of a compressed block, Bi,
in a BSS indexed PPB data stream, 〈B1, . . . , Bn〉, with lp in a query and check if these two
intervals overlap (i.e., when lβi ∩lp 6= ∅). If they overlap, we say that a BSS hit occurs at block
Bi (or simply Bi is a hit block). A BSS miss occurs at block Bi (or simply Bi is a missed
block) if they do not overlap. A block is decompressed for further comparison of elements
with lp iff it is hit.

We make the following assumptions to establish cost equations related to query process-
ing.
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1. The cost of scanning the value range of a block, B (which includes checking lβ against
lp), denoted as Cs, is relatively small compared with the cost of decompressing the
block.

2. We assume that Cs is constant and independent of the block size. We also assume that
the average cost of decompressing a data element in a block, denoted as Cd, is also
constant and independent of the block size.

3. Elements in a block have the same inherent probability, P , of satisfying the predicate
specified in a given query.

The first assumption is needed because decompressing a block is a costly operation as
the whole block is fetched from the disk into the main memory. The glossary used in our
model is given in Table 1.

Notation Definition

lp The range specified in a query predicate.
π The hitting probability of a compressed block in a PPB data stream.
N Number of data elements in a data stream.
P Probability that a data element in a stream satisfies the predicate.
K Number of data elements in a block of a data stream.
L Number of blocks in a data stream specified by a PPB path.
X Number of blocks being hit (i.e., lβ and lp overlap in these blocks).
Cq Total cost of processing a query q.
Cs Cost of scanning a BSS range of a block.
Cd Average cost of decompressing a data element.
Y Unit processing cost of processing a query.

Table 1: Notation Used in the Cost Processing Analysis

As N data elements with the same semantics in a PPB data stream are divided into L

compressed data blocks, we have K = N
L

data elements in each block. The probability
that all the elements in a block do not fall within lp is equal to (1 − P )K , where P is the
selectivity of the predicate. It follows that the probability that some blocks are hit is equal to
(1− (1− P )K). Let us call π = 1− (1− P )K the hitting probability of a compressed data
block in a PPB data stream (or simply the block hitting probability). The distribution that X

blocks are hit satisfies a binomial distribution as follows.
The probability that X blocks are hit in a stream = CL,X ·πX(1−π)L−X , where CL,X =
L!

X!(L−X)!
and X ∈ {0, 1, . . . , L} for some positive integer L.

As the mean of the distribution is equal to πL, we have the expected number of hit blocks,
E(X) = πL, which are decompressed for further checking of the data elements against lp.
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We ignore the cost of checking the decompressed items that are already fetched into the
main memory. Thus, the total cost of processing a query in the data streams is equal to the
sum of the costs of scanning the BSS indexes in a data stream and decompressing X blocks
(i.e., L · Cs + K · X · Cd). The expected cost of running the selection query is given by
E(Cq) = L · Cs + K ·E(X) · Cd. Let us call the expression Yq = E(Cq)

N
(or simply Y if q is

clear in the context) the unit processing cost with respect to the query, q.
We now give the following formula that expresses Y in terms of the block size, K, and

the selectivity, P :

Y =
Cs

K
+

(
1− (1− P )K

) · Cd. (1)

In Figures 4(a) and 4(b), we sketch the unit processing cost function against the block size
under different selectivity values, in which we assume Cs = Cd = 1 in plotting the charts
for the sake of easy illustration. These charts help to give further insights for developing our
cost model. Note that if the block size is large, then there are virtually no missed blocks
(i.e., we need to decompress the whole document) and thus the unit processing cost function
converges to the unit decompressing cost, Cd (i.e., as shown in Figure 4(a) K →∞, Y → Cd

in our case). We can see that the cost function can take three values, depending on the
selectivity values. First, the curves for high selectivity values in Figure 4(b) are generally
decreasing (e.g., P ≥ 0.5) and, in these cases, the larger the block size, the lower the unit
processing cost. There is also comparatively little difference in these curves. Second, the
curves for low selectivity values have a local minimum (e.g., P = 0.4) but the value may
still be higher than the asymptotic value, Cd. Third, the curves for sufficiently low selectivity
values have a global minimum (e.g., P = 0.2) (i.e., the minimum value is smaller than Cd).

0 10 20 30 40 50 60 70 80
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Block Size K 

U
ni

t P
ro

ce
ss

in
g 

C
os

t  
Y

P =0.5 

0.4 

0.3 

0.2 

0.1 

Cs =1; Cd =1 

Cd 

(a) Low Selectivity Selection Queries

0 10 20 30 40 50 60 70 80
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Cs =1; Cd =1 

Block Size K 

U
ni

t P
ro

ce
ss

in
g 

C
os

t  
Y

P = 0.5 to 0.9

Cd 

(b) High Selectivity Selection Queries

Figure 4: Cost Analysis of the Unit Processing Cost for Selection Queries

We formally show that there exists an optimal query processing cost if and only if the
selectivity value is within a certain threshold. The theorem helps to clarify the unit cost
processing function shown in Figures 4(a) and 4(b).

Theorem 3.1 The following statements are true for the unit processing cost, Y .
1. Y has a local minimum if and only if P ≤ 1− e−

4Cd
Cs

e−2

.

9



2. Y has a global minimum if and only if P ≤ 1− e−
Cd
Cs

e−1

.
Proof. We let x = (1− P ) where 0 ≤ x ≤ 1 and we have the unit processing cost function
as follows:

Y =
Cs

K
+ (1− xK)Cd. (2)

In order to establish the result in Part 1, we proceed to find the extreme points of Y by
differentiating it with respect to K. We then set the derivative to zero and thus have the
equation:

dY

dK
= − Cs

K2
− xKCd ln x

= 0. (3)

It follows from Equation 3 that we have

K2xK =
−Cs

Cd ln x
. (4)

Note that the parameter K exists only on the right-hand side. In order to solve Equation
3, we define a function on K by F (K) = K2xK and find the maximum of F first. By solving
the equation dF

dK
= 2KxK + K2xK lnx = 0, we obtain the (unique) extreme value of F at

K = KF = −2
ln x

. We conclude that KF is at the global maximum point from the evidence
d2F
dK2 = −2xK < 0 for all K. Therefore, there exists a root for x if and only if the following
equation holds:

K2
F xKF ≥ −Cs

Cd ln x
. (5)

The intuition behind Equation 5 is that, given α and x, the horizontal line (with respect
to K) F ′ = −α

ln x
cuts the curve F if and only if the line is lower than or equal to the maximum

value of F . When the line is higher than F (KF ), there is no intersection between F and F ′

and therefore no solution for Equation 3. By substituting KF = −2
ln x

into Equation 5, we then

have x ≥ e−
4Cd
Cs

e−2

. It follows that P ≤ 1− e
−4Cd

Cs
e−2

.
In order to prove Part 2, we need to compare the minimum value of Y in Equation 2 with

the asymptotic value of Y when K is large (i.e., Y∞ = Cd ). We define

Ylocal min =
Cs

K∗ + (1− xK∗
)Cd, (6)

where K∗ is the minimum point corresponding to Ylocal min.
If Ylocal min ≤ Cd, then Ylocal min is in fact the global minimum of Y occurring at some

finite K value (cf. Figure 4(a)).
We therefore have the condition Ylocal min ≤ Cd. By Equation 6, we further simplify this

condition and obtain the following equation:

Cs

K∗ ≤ Cdx
K∗

. (7)
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Bear in mind that K∗ is the root of Equation 3. By using Equations 4 and 7, we have the
following condition:

−K∗ ln x ≤ 1. (8)

From Equation 8, we substitute K∗ in Equation 4 and obtain the inequality condition
ln

(
−Cs ln x

Cd

)
≥ −1. After simplifying the logarithmic terms, it follows that P ≤ 1−e−

Cd
Cs

e−1

,
which is a stricter condition than the counterpart of the local minimum, since we have 4 > e.
¤

As illustrated in Figure 4(a), Y has the local minimum and the smaller the selectivity, the
lower the local minimum. The local minimum is in fact the global one if it is smaller than
Cd. This can be proved by using Equations 6 and 7 as follows:

dYlocal min

dP
= Cd(K

∗(1− P )K∗−1) > 0. (9)

It follows from Equation 2 that when K → ∞, we have Cs

K
+ (1 − xK)Cd → Cd,

which means that Y can be brought arbitrarily close to Cd by choosing a sufficiently large K

value. On the other hand, we find the expression of K that gives rise to the optimal Y for a
sufficiently small K value in Corollary 3.2.

Corollary 3.2 Y has a global minimum at K =
√

Cs

PCd
when P is sufficiently small.

Proof. From Theorem 3.1, it follows that the global minimum value of Y exists if P is
sufficiently small. In this case, we have the approximation (1 − xK) ≈ KP . Using this
approximation, we reduce Equation 1 to the following equation:

Y ≈
(

Cs

K
+ KPCd

)
. (10)

We differentiate Equation 10 with respect to K, by which we are able to find the optimal
Y value. So we have the following equation:

dY

dK
= PCd − Cs

K2
= 0. (11)

Thus, Y has the extreme value at K ≈
√

Cs

PCd
, which is a global minimum, since d2Y

dK2 =
2Cs

K3 > 0 for all K. ¤

To summarize, we present three main findings that involve the unit processing cost, the
block size, and the scanning and the unit decompressing cost in our analysis.

1. For low selectivity queries: if the selectivity satisfies P ≤ Plocal min = 1 − e−
4Cd
Cs

e−2

as shown in Part 1, Theorem 3.1, then the optimal unit processing cost, Y , occurs, in
the case K ≈

√
Cs

PCd
as shown in Corollary 3.2.
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2. For high selectivity queries: if the selectivity satisfies P > Pglobal min = 1 − e−
Cd
Cs

e−1

as shown in Part 2, Theorem 3.1, the optimal unit processing cost, Y , approaches Cd

as K → ∞, as shown in Figure 4(b). In practice, this means that the larger the block
size, the more efficient the query processing.

3. For sufficiently large K, the unit processing cost, Y , of a selection query approaches
the unit decompressing cost, Cd, irrespective of the P values.

4 Processing Interval Queries

In this section, we discuss the hitting probabilities of selection and aggregate queries. We
then present an analysis of their unit processing costs.

4.1 Modified Block Hitting Probability

We now consider the block hitting probability used in selection and aggregate queries with
open or closed intervals as selective predicates.

Selection Queries. We classify the selection query intervals on data values specified by the
selective predicate into two categories.

1. Open Interval Queries. The interval specified by the selection predicate has an open
end. For example, the following query, which seeks the “byte count” in an compressed
XMLised Weblog document [24], has an open interval used in the selection predicate:

(Q3): element[byteCount > 1000].

2. Closed Interval Queries. The interval specified by the selection predicate has two
closed ends. For example, the following query, which seeks the byte counts in an com-
pressed XMLised Weblog document [24], has a closed interval used in the selection
predicate.

(Q4): element[2000 > byteCount > 1000].

In Section 3 we simply assumed that hitting a block in a stream occurs when lp and lβ

overlap, which is given by the block hitting probability π = 1− (1− P )K . The parameter π

is essential for us to deduce the expected number of blocks to be decompressed in a stream.
However, we have not tackled two issues. The first is if π is applicable to the open and closed
intervals; the second is if π is applicable to the selection and aggregation queries.

We now consider the case of an open interval predicate. There are two cases of overlap-
ping between lβ and lp, as shown as Cases B and C in Figure 5. It is clear that these two
cases happen if and only if there exist some data elements in a block falling in the interval
lp. In other words, we only need to exclude the probability of the event that no data element
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falls in lp (i.e., reject Case A), which is equal to (1− P )K . Thus, our assumption of using
π = 1− (1− P )K in Equation 1 is justified.

Interval of Index

Interval of Index

Interval of Index

BSS Index Scanning Only

BSS Index Scanning + Block Decompressing

BSS Index Scanning + Block Decompressing

lp��������Open Query Interval of the
Selection Predicate

Range of Data Values
in a PPB Data Stream

(Miss) Case A:

(Hit) Case B:

(Hit) Case C:

Figure 5: Overlapping BSS Index and Open Interval Selection Query

However, there are three cases of overlapping, Cases B, C and D, in the case of closed
interval queries as shown in Figure 6. Notably, in Case D, it may happen that all the data
elements in a block are not actually in the range of the interval lp, but the block is still a
hit. This is because, even when lp and lβ overlap, we still cannot determine whether the
data elements fall in lp, la or lb. In other words, the hitting parameter π does not reflect the
outcomes in Case D.

Interval of Index

Interval of Index

Interval of Index
BSS Index Scanning Only

BSS Index Scanning + Block Decompressing

BSS Index Scanning + Block Decompressing

lp

(Miss) Case A:

(Hit) Case B:
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Interval of Index(Hit) Case D: BSS Index Scanning + Block Decompressing

la ������Closed Interval of the
Selection Predicate

lb

[ ]
a b�Range of Values in

a PPB Data Stream ��
Figure 6: Overlapping BSS Index and Closed Query Intervals for Selection Queries

In order to modify the expression of π to π∗, we take into account the possibility that
some data elements may fall in la or lb in Case D as follows:

13



π∗ = the probability of having at least one element in the interval of lp (i.e.,
related to Cases B and C and (part of) D ) + the probability of having at
least one element at la but others at lb (i.e., related to (part of) Case D)
+ the probability of having at least one element at lb but others at la (i.e.,
related to (part of) Case D).

We assume that the elements in a PPB data stream are distributed with the probabilities
Pa and Pb in the intervals of la and lb, respectively. Thus, we have the following equation:

π∗ = (1− (1− P )K) + (1− P )K(1− (1− Pa)
K)(1− (1− Pb)

K). (12)

Note that P + Pa + Pb = 1 in Equation 12. The probability values of P, Pa and Pb

depend on the data distribution in the range [a, b]. If we assume that the probability for the
distribution of the data elements is uniform in the range, then we have the simple ratio for
the probabilities, Pa = (1− P )( la

la+lb
) and Pb = (1− P )( lb

la+lb
).

Aggregate Queries. There is one fundamental difference between aggregate and selection
queries in estimating the processing cost, Cq. It may not be necessary to decompress a hit
block in a PPB data stream. For example, consider the following aggregate queries, which
are modified from the selection queries Q3 and Q4:

(Q5): element[COUNT(byteCount > 1000)].
(Q6): element[COUNT(2000 > byteCount > 1000)].
To process the above queries, we do not need to decompress the block if the comparison

satisfies the condition that lβ is contained in lp. We have to exclude the decompressing cost
arising from Case C. We now modify the expression of π to π∗ in order to take account of
this savings in decompression.

In the case of an open interval query, we have the following hitting probability:

π∗ = the probability of having at least one element in the interval of lp (i.e.,
Cases B and C) − the probability of having all elements in lp (i.e., reject
Case C).

Thus, we have the following equation:

π∗ = (1− (1− P )K)− PK . (13)

From Equation 13, we show in Figures 7(a) and 7(b) the unit processing cost of aggre-
gate queries against block sizes when the selectivity values are low and high, respectively.
The low selectivity case in Figure 7(a) is similar to its counterpart in the selection queries.
However, the high selectivity case in Figure 7(b) also exhibits the minimum unit processing
cost at a certain block size, which is in contrast to what we observe in Figure 4(b).

In the case of a closed interval query, we have the following hitting probability:
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Figure 7: Cost Analysis of the Unit Processing Cost for Aggregate Queries

π∗ = the probability of having at least one element in the interval of lp (i.e.,
Cases B and C) − the probability of having all elements in lp (i.e., reject
Case C) + the probability of having at least one element at la but others at
lb (i.e., Case D) + the probability of having at least one element at lb but
others at la (i.e., Case D).

Thus, we have the following equation:

π∗ = (1− (1− P )K)− PK + (1− P )K(1− (1− Pa)
K)(1− (1− πb)

K). (14)

We summarize the modified block hitting probabilities to be used in the unit cost equa-
tions in Table 2 for different query interval cases.

Query Selection Aggregate

Open Interval π = (1− (1− P )K) Equation 13
Closed Interval Equation 12 Equation 14

Table 2: Modified Block Hitting Probabilities

4.2 Processing Cost and Selectivity

For the sake of clarity, we first transform the unit processing cost equation for selection
queries with an open interval from Equation 1 as follows,

Y = HK − (1− P )KCd, (15)

where HK =
(

Cs

K
+ Cd

)
.

We differentiate Y with respect to P (0 ≤ P ≤ 1). At the extreme cases of P = 0 and
1, we have Y = (HK − Cd) and HK , respectively. This result implies that our partitioning
strategy favors low selectivity queries and the processing cost is bounded by Hk (when all
the blocks are decompressed). The implication is reasonable, since in practice we do not
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enjoy a processing cost benefit if we have to decompress too many blocks in a data stream,
which happens in the cases of high selectivity selection queries. We show the unit processing
cost function in relation to the selectivity of the selection queries in Figure 8(a).

We now study the relationship between the unit processing cost and selectivity for ag-
gregation queries. The unit processing cost equation, in which we use the modified block
hitting probability given in Equation 13, is:

Y = HK − ((1− P )K + PK) · Cd. (16)

Similarly, we differentiate Y with respect to P and then set the corresponding derivative
to zero. Now we have the following equation:

dY

dP
= Cd ·K(1− P )K−1 − CdKPK−1 = 0, (17)

which gives the stationary point at P = Pm = 1
2
. Assuming that K À 1, which is reasonable

in practice, we conclude that Pm is in fact a local maximum point, since we have

d2Y

dP 2

∣∣∣
P=Pm

= −Cd ·K(1− Pm)K−2 − CdK(K − 1)PK−2
m < 0. (18)

By substituting Pm into Equation 16, we obtain the maximum value of Y (Pm) = HK −
2Cd

2K . At the extreme cases of P = 0 and 1, we have the same value given by Y = HK − Cd.
We show the unit processing cost function Y in relation to the selectivity in Figure 8(b). The
graph is remarkably different from that in Figure 8(a) in the region of high selectivity, since
the cost decreases rapidly when the selectivity is high. The difference can be explained as
follows. When a wider selectivity is given, then more data items are selected in a block; the
chance that the lp covers lβ becomes higher (i.e., the occurrence of Case C becomes more
frequent than others). It is therefore less likely that the hit blocks are decompressed.
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Figure 8: Cost Analysis of the Unit Processing Cost against Selectivity

In a given workload, if the distribution of selectivities and queries can be estimated (e.g.,
from the past query log data), then similar differentiation can be straightforwardly applied
to the following extended unit processing cost equation: Y = w1Y1 + w2Y2 + · · · + wnYn,
where wi is the normalized weight and Yi is the cost for the query having Pi.

16



5 A Block Clustering Scheme

In this section, we impose a layer of clusters on the PPB data streams; each cluster consists
of a sequence of an equal number of data blocks. We then extend the BSS indexing scheme
into the Cluster Statistics Signature (CSS) indexing scheme. We further extend the results
obtained from studying the CSS indexing scheme into the general case of the Multiple-cluster
Statistics Signature (MSS) indexing scheme.

5.1 The CSS Indexing Scheme

The CSS index of a given cluster, denoted by sα, is computed from the BSS indexes (recall
Definition 2.1) in the cluster.

Definition 5.1 (CSS Index and Value Range) Assume that there are nj compressed blocks
in a j-th cluster. The Cluster Statistic Signature (CSS) index is given by Cj = 〈sα

j , cα
j 〉, where

cα
j = {b1, . . . , bnj

} is a collection of nj blocks of data items. The index value is given by sα
j =

〈minα
j ,maxα

j , sumα
j , countαj 〉. The parameters are minα

j = Min(min(b1), . . . , min(bnj
)),

maxα
j = Max(max(b1), . . . , max(bnj

)), sumα
j = sum(b1)+ · · ·+sum(bnj

), and countαj =

count(b1)+ · · ·+count(bnj
). Similar to lβ , we define the value range for a CSS index, lαj , as

〈minα
j ,maxα

j 〉. We may use more handy notation such as sα, bα and lα when no ambiguity
arises from the cluster labelling.

The index checking of the compressed data with this new scheme is carried out as fol-
lows. In the first phase, we scan and check the value ranges of the CSS indexes. If there is
an overlap between lp and lα (i.e., when the cluster is hit), then we use the BSS indexes to
scan and check for all blocks that are contained in the hit cluster in the second phase. We
depict the idea of imposing a CSS indexing scheme on a PPB data stream in Figure 9. We
study the unit processing cost while including a level of clusters in the PPB engine. In Table
3, we extend the BSS notation in order to specify the parameters in the CSS layer.

Notation Definition

πc Cluster hitting probability of a PBB data stream.
πb Block hitting probability in a hit cluster.
Kb Number of data elements in a block of a data stream.
Kc Number of data elements in a cluster.
Lb Number of blocks in a cluster.
Lc Number of clusters in a PBB data stream.
Xb Number of hit blocks in a (hit) cluster (i.e., lβ and lp overlap).
Xc Number of hit clusters (i.e., lα and lp overlap in these clusters).

Table 3: Notation Used in the CSS Indexing Scheme
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Figure 9: The CSS Indexing Scheme

Note that, as shown in Figure 9, Xc is equal to the number of clusters that has an overlap
between lα (the CSS index) and lp in a PPB data stream, which is processed in the first phase,
and that Xb is equal to the number of blocks that has an overlap between lβ (the BSS index)
and lp in a hit cluster, which is processed in the second phase. For simplicity, we assume that
the cost of scanning a BSS index is equal to the cost of scanning a CSS index.

We now construct the unit processing cost equation based on the following reasoning:
Total cost of processing a selection query

= Cost of scanning the CSS indexes in a data stream
+ Cost of scanning the BSS indexes in all the hit clusters
+ Cost of decompressing all the hit blocks.

Thus, we have the following cost equation for processing a query using the CSS indexing
scheme: Cq = Lc · Cs + Xc · Lb · Cs + Xc ·Xb ·Kb · Cd.

We extend the notion of the hitting probability to the cluster hitting probability by using
a similar argument leading to the notion of the block hitting probability, which is discussed
in Section 4.1. We now simply state the cluster hitting probability and the block hitting
probability in the following expressions, πc = 1 − (1− P )Kc and πb = 1 − (1− P )Kb ,
respectively. We refer to the case of open interval selection queries. However, other cases
of interval queries can be studied in a similar way, using the respective hitting probabilities
given in Table 2.

We extend the concept of hit blocks to hit clusters. The number of hit clusters, Xc, is
equal to the number of clusters that have a corresponding CSS value range overlapping with
the predicate range of a query (i.e., lα ∩ lp 6= ∅). The distribution of the event that Xc is hit
satisfies a binomial distribution, which is the first phase of scanning in Figure 9. Thus, the
expected number of hit clusters is given by E(Xc) = πc · Lc. In the second phase, all the
blocks (i.e., Lb blocks) in these hit clusters are scanned and their BSS indexes are checked.

18



The expected number of hit blocks in a hit cluster is given by E(Xb) = πb · Lb.
Based on the above reasoning, we formulate the expected cost equation, which can be

viewed as an extension of Equation 1:

E(Cq) = Lc · Cs + πc · Lb · Lc · Cs + πbπcLbLc
N

LbLc

Cd. (19)

By using the formula N = LbLcKb, we simplify Equation 19 and formulate the following
unit processing cost equation:

Y =
E(Cq)

N
=

(
Cs

Kc

+
πcCs

Kb

+ πbπcCd

)
. (20)

Theorem 5.1 Y has a local minimum value for sufficiently small selectivity values, where
Y is given in Equation 20.
Proof. Consider the case of using small selectivity values in Equation 20 as follows: πb ≈
KbP and πc ≈ KcP . We then obtain the following equation:

Y =
E(Cq)

N
=

(
Cs

Kc

+
CsKcP

Kb

+ CdKbKcP
2

)
. (21)

We now find the partial derivatives with respect to Kb and Kc and then set them to be
zero, in order to obtain the stationary points of the unit processing cost function Y :

∂Y

∂Kb

= −KcPCs

K2
b

+ KcP
2Cd,

∂Y

∂Kc

= − Cs

K2
c

+
CsP

Kb

+ KbP
2Cd. (22)

By inserting ∂Y
∂Kb

= 0 and ∂Y
∂Kc

= 0 into Equation 22, we have the following optimal
choices when, respectively, Kb = Kmin

b and Kc = Kmin
c :

Kmin
b =

√
Cs

CdP
, Kmin

c =

(
Cs

4CdP 3

) 1
4

. (23)

We proceed to prove the claim that (Kmin
b , Kmin

c ) is a local minimum point of Y by
considering the following sufficient conditions (cf. [14]): (1) ∂2Y

∂K2
b

> 0 or ∂2Y
∂K2

c
> 0 and (2)

∂2Y
∂K2

b

∂2Y
∂K2

c
− ( ∂2Y

∂Kb∂Kc
)2 > 0.

From Equation 23, the second derivatives ∂2Y
∂K2

b
and ∂2Y

∂K2
c

are obtained as follows:

∂2Y

∂K2
b

=
2CsPKc

K3
b

,

∂2Y

∂K2
c

=
2Cs

K3
c

, (24)
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which are always positive for all positive parameters. In addition, for sufficiently small P

(ignoring P 2 and other higher power terms), we have

∂2Y

∂K2
b

∂2Y

∂K2
c

−
(

∂2Y

∂Kb∂Kc

)2

=
4C2

s PKc

K3
b K

3
c

−
(

P 2Cd − PCs

K2
b

)2

≈ P

(
4C2

s Kc

K3
b K

3
c

)
, (25)

which is always positive. ¤

We now present in Figure 10 a three-dimensional plot of the unit processing cost, Y , in
relation to the block and cluster sizes in the case of low selectivity.
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Figure 10: Unit Processing Cost in Relation to Block and Cluster Sizes in Low Selectivity
Queries

Notably, there is a minimum point on the surface in Figure 10 from Theorem 5.1. In
fact, we can easily deduce from Equation 23 that in the extreme case of P → 0, we have
Kmin

b →∞ and Kmin
c →∞. There are two further remarks concerning the minimum points

given in Equation 23. First, the parameters Kb and Kc should be some positive integers. In
addition, we assume that Lc = Kc

Kb
, which must be an integer in order to give the whole

number of clusters in a stream. In reality, Kc may not be an exact multiple of Kb and hence
there may be a source of inaccuracy in our modelling. Second, it is interesting to see that the
minimum point (Kmin

b , Kmin
c ) depends only on selectivity P . (Cs and Cd are constant in a

given configuration.)

5.2 The MSS Indexing Scheme

The clustering technique can be generalized to p layers of clusters that are arranged in a top-
down manner. All the statistical parameters of the parent’s cluster layer are computed from
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the indexes of its children’s cluster layers. To visualize this idea, we extend Figure 9 into
Figure 11.
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Let us call this indexing the Multiple-cluster Statistics Signature (MSS) indexing scheme.
The scanning first starts at the outermost layer of clusters. Once we identify the hit clusters
at this level, we then proceed to the scanning of the next level of clusters (i.e., Cp−1

j for
j ∈ {1, . . . , Xn}). The process repeats until it reaches the innermost cluster and finally the
BSS indexes of the blocks (i.e., Bk for j ∈ {1, . . . , Xb} in the hit clusters are scanned and
the hit blocks are collected for decompression).

Definition 5.2 (The MSS Index and Value Range) Assume that there are nj clusters at
level (p − 1) being contained in a j-th cluster at level p. The Multiple-cluster Statis-
tics Signature (MSS) index at the pth level of clusters is given by Cp

j = 〈sp
j , c

p
j〉, where

cp
j = {cp−1

1 , . . . , cp−1
nj
} is a collection of the nj clusters at the immediate lower level (i.e., at

the (p − 1)th level). The index value is given by sp
j = 〈min

αp

j ,max
αp

j , sum
αp

j , count
αp

j 〉.
The parameters are min

αp

j = Min(min
αp−1

1 , . . . , minαp−1
nj

), max
αp

j = Max(max
αp−1

1 , . . . ,

max
αp−1
nj ), sum

αp

j = sum
αp−1

1 + · · ·+sum
αp−1
nj , and count

αp

j = count
αp−1

1 + · · ·+count
αp−1
nj .

Similar to lβ , we define the value range for a MSS indexed cluster at the pth level, denoted
as l

αp

j , as 〈min
αp

j ,max
αp

j 〉.

The searching of the hit clusters and blocks in the MSS indexing scheme is formally
presented as the following pseudo-code algorithm, designated as SEARCH(Cp

j ).

Algorithm 1 (SEARCH(Cp
j ))
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1. begin
2. Result:= ∅;
3. if p = 0 do
4. let C0

j = {B1,j , . . . , Bnj ,j} where Bi,j = 〈sβ
i,j , bi,j〉;

5. for i = 1 to nj do
6. scan(sβ

i,j);
7. if hit(Bi,j) = true do Result := Result ∪{bi,j} ;
8. end for
9. else
10. let Cp

j = {Cp−1
1 , . . . , Cp−1

nj } where Cp−1
j = 〈sαp−1

i,j , cp−1
i,j 〉;

11. for i = 1 to nj do
12. scan(sαp−1

i,j );
13. if hit(Cp

j ) = true do
Result := Result ∪ SEARCH(Cp−1

j );
14. end for
15. return Result;
16. end.

The notation in Algorithm 1 is heavy, since there is more than one cluster at different
levels in general. For example, the term sβ

i,j represents the BSS index value of the ith block
in the jth cluster and the term cp−1

i,j represents the ith cluster at the (p − 1) level, which is a
member in the jth cluster at the p level. In essence, Algorithm 1 performs scanning on MSS
indexes from the outermost level in order to find the hit blocks in the innermost level, which
is done in a depth-first manner. The complexity of Algorithm 1 is O(mn), where m and n

are the number of levels and blocks.
We now state the unit processing cost equation for the MSS indexing scheme, which is a

generalized form of Equation 21. The parameters are naturally extended in a corresponding
way, for example, Ki and πi indicate the number of elements in a cluster and the cluster
hitting probability at the ith MSS layer for i ∈ {1, . . . , n}. When i = 0, K0 = Kb, which
represents the number of data elements in a block.

Yn =
Cs

Kn

+
Kn

Kn−1

CsP +
KnKn−1

Kn−2

CsP
2 + · · ·+ KnKn−1 · · ·K1

K0

CsP
n + CdKn · · ·K0P

n+1

(26)
The following theorem is a generalization of Theorem 5.1 to n clusters.

Theorem 5.2 The unit processing cost, Yn, for n ≥ 1 has a local minimum value for suffi-
ciently small selectivity values.
Proof. Equation 26 can be written in a recursive form as follows,

Y1 =
Cs

K1

+
K1

K0

CsP + CdK1K0P
2, when n = 0;

Yn+1 =
Cs

Kn+1

+ Kn+1P (Yn), when n ≥ 1. (27)
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When the derivative of the above equation is set to zero, we have a solution that will lead
to the second derivative being zero. We proceed with the proof by induction on n.

(Basis): When n = 0, by Theorem 5.1, we have proved that the Y1 has a local mini-
mum for sufficiently small P 1. In other words, we have the minimum of Y1 at (K0, K1) =(√

Cs

Cd
,
(

Cs

4CdP 3

) 1
4

)
.

(Induction): We assume that Yk in Equation 26 has a local minimum at K′ = (K ′
0, . . . , K

′
k)

for k ≥ 1. We need to show that Yk+1 also has a local minimum at K′′ = (K ′′
0 , . . . , K ′′

k+1).
First, there is a solution, K, for the system of equations, ∂Yk+1

∂Ki
= 0, where (k + 1) ≥ i ≥ 1.

Second, the corresponding Hessian of Yk+1 is positive-definite. The use of the Hessian func-
tion is a standard technique used in calculus to verify if the turning point of a function having
multiple variables is a minimum (cf. [14]).

From Equation 27, we express the first-order derivative of Yk+1 for k ≥ i ≥ 1 as follows,

∂Yk+1

∂Ki

= Kk+1P

(
∂Yk

∂Ki

)
. (28)

By the inductive assumption, it follows that ∂Yk

∂Ki
= 0 at K′ = (K ′

0, . . . , K
′
k) for k ≥

i ≥ 1. By Equation 28, it then follows that ∂Yk+1

∂Ki
= 0 for k ≥ i ≥ 1. We now show that

∂Yk+1

∂Ki
= 0 when i = k + 1.

From Equation 27 again, we have the first-order derivative for i = k + 1 as follows,

∂Yk+1

∂Kk+1

= − Cs

Kk+1
2 + P (Yk), (29)

which has the solution of Kk+1 =
√

Cs

PYk(K′) when ∂Yk+1

∂Kk+1
= 0.

It remains for us to show that the k+1 dimensional point K = (K ′
0, . . . , K

′
k, Kk+1) is the

minimum of Yk+1. Equivalently, we show that the Hessian of Yk+1 at K is positive-definite.
We first define the Hessian function, H , of Yk+1 by (cf. see page 252 in [14])

HYk+1(K)(h) =
1

2

k+1∑
i,j=1

∂2Yk+1

∂Ki∂Kj

(K)hihj, (30)

where h = 〈h1, . . . , hk+1〉.
By expanding Equation 30, we have the following expression,

HYk+1(K)(h) =
1

2
(

k∑
i,j=1

∂2Yk+1

∂Ki∂Kj

(K)hihj +
k∑

i=1

∂2Yk+1

∂Ki∂Kk+1

(K)hihk+1 +

k∑
j=1

∂2Yk+1

∂Kk+1∂Kj

(K)hk+1hj +
∂2Yk+1

∂2Kk+1

hk+1hk+1). (31)

1When n = 0 in Equation 27, Y1 is simply the case of CSS as already shown in Equation 21.
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From Equations 28 and 29, we express the Yk+1 derivative in terms of the Yk derivative
as follows,

HYk+1(K)(h) =
1

2
(Kk+1P

k∑
i,j=1

∂2Yk

∂Ki∂Kj

(K)hihj + P

k∑
i=1

∂Yk

∂Ki

(K)hihk+1 +

P

k∑
j=1

∂Yk

∂Kj

(K)hk+1hj +
2Cs

K3
k+1

). (32)

By the inductive assumption, we have ∂Yk

∂Ki
(K) = 0 and therefore the second and third

summation terms are zero. Furthermore, it follows by Equation 30 the first summation term is
equal to Kk+1P (HYk(K)(h)), which is positive-definite by the inductive assumption, since
P and Kk+1 are positive numbers. The fourth term, Cs

K3
k+1

, is simply a fraction of positive
parameters. Therefore, we conclude that HYk+1(K)(h) is positive-definite. ¤

From Equation 27 we now deduce the expression of the minimum cost, Ymin(n), as
follows:

Ymin(n + 1) =
Cs

Kn+1

+ Kn+1P (Ymin(n))

= Cs

√
PYmin(n)

Cs

+ PYmin(n)

√
Cs

PYmin(n)

= 2
√

PCsYmin(n). (33)

Now, we let α = 2
√

PCs and β =
√

Ymin(1) =
√

Cs

K1
+ K1

K0
CsP + CdK1K0P 2. From

Equation 27, we expand the expression of the minimum cost for an n-layer MSS, Ymin(n),
and obtain the expression as follows:

Ymin(n + 1) = α · α 1
2 α

1
4 · · ·α 1

2(n−1)

√
Ymin(1)

= βα2(1− 1
2n ). (34)

We remark that from Equation 34, as n → ∞, Ymin → βα2. In other words, Ymin is a
decreasing function and its range is between βα and βα2.

6 Verification of the PPB Engine

In this section we examine the essential features of the PPB engine, which are developed
based on the techniques introduced in Section 2 and analyzed in Section 3. In particular,
we study the relationship among the query response time, the block size, the selectivity,
and the selection and aggregate queries. The different selectivities in the experiments are
obtained by varying the interval range of the queries. The experiments are run on a notebook
computer that has the following configuration: PIII machine 600MHz, 192 MB RAM main
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memory, 20 GB hard disk (Ultra DMA/66, 4200 rpm, 512KB cache, 12 ms seek time),
and Windows2000 Professional SP2 platform. We assume that the unit processing cost is
proportional to the response time in our system and that the block size used here, which is
measured in records per block, is proportional to the block size we used in Section 3, which
is defined as data items per block. Formally, we have Response time (s) = a1 · Y and Block
Size (records per block) = a2 ·K, where a1 and a2 are the proportional constants determined
by our system configuration.

6.1 PPB Compression Performance

We now study the compression performance of the PPB engine by using the four XML
datasets of Weblog [24], DBLP [22], TPC-H [26] and XMark [27], which are commonly
used in XML research (see the experiments in [3, 10, 21]). Some characteristics of these data
sources are shown in Table 4, where E num and A num refer to the number of elements and
attributes in the document, respectively. We briefly introduce each dataset as below.

1. Weblog is constructed from the Apache webserver log [24]. The original documents
are not in XML format.

2. DBLP is a collection of the XML documents freely available in the DBLP archive [22].
The documents are already in XML format.

3. TPC-H is an XML representation of the TPC-H benchmark database, which is avail-
able from the Transaction Processing Performance Council [26].

4. XMark is an XML document that models an auction website. It is generated by the
generation tool provided in [27].

Dataset File Size Depth E num A num

Weblog 32.72MB 3 641037 0
DBLP 40.90MB 6 1107711 118028
TPC-H 32.30MB 3 1022976 0
XMark 103.64MB 11 2873293 621490

Table 4: XML Datasets for Studying PPB Compression Performance

Figure 12(a) shows the compression ratio (expressed in the number of bits per byte) that is
achieved by the four compressors. Notably, both XMill and PPB consistently achieve better
compression ratios than Gzip achieves. Figures 12(b) and 12(c) show the compression and
decompression times (expressed in ms), which indicate that Gzip outperforms other com-
pressors. The time overhead can be explained by the fact that both XMill and PPB introduce
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a pre-compression phase for restructuring XML documents to help in the main compression
process. XMill adopts by default an approximation match on a Reversed DataGuide for de-
termining which container a data value belongs to. This group by enclosing tag heuristic
runs faster than the grouping method used in the PPB engine. Thus, XMill runs slightly
faster than PPB, since the compression buffer window size in XMill is solely optimized for
better compression [10]. One observation from Figure 12(c) is that, in general, XGrind re-
quires longer compression and decompression times than other three decompressors, which
agrees with the findings reported in [21].
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Figure 12: Compression Performance of the PPB Engine

6.2 Selection and Aggregate Queries

We study the selection query, Q3, and the aggregate query, Q5, given in Section 4.1 running
on 89MB XMLized Weblog data [24]. Figure 13(a) shows the query response time for eval-
uating low selectivity selection queries under different block sizes. As shown in this figure,
the PPB engine performs as expected and enjoys the benefits of using PPB data streams and
block partitioning. The optimal point depends on the selectivity of the query. Even as the
block size further increases, the response time for evaluating queries that have different selec-
tivities approaches the same value (recall Figure 4(a) and Theorem 3.1). Figure 13(b) shows
the response time for evaluating high selectivity selection queries. We see that the response
time for the queries is similar to our analysis given in Figure 4(b). In essence, the decom-
pression overhead increases when finer partitioning is used. When the block size increases,
the response time decreases due to the fact that the decompression overhead decreases.

Figures 13(c) and 13(d) show the query response time for evaluating aggregate queries
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Figure 13: Query Processing in the PPB Engine

under different block sizes, which are what we expected in Figures 7(a) and 7(b). As we see
in Figure 13(c), for aggregate queries with low selectivity, PPB can take advantage of the
data stream partitioning in processing the queries, which is similar to the case of selection
queries. It should be noted that the query response time has an optimal point as expected.
For an aggregate query to have a high selectivity value (say at the extreme near 100%),
the corresponding query response time is almost zero. The underlying reason is that when
the selectivity of an imposed query is extremely large, the probability that lβ overlaps the
predicate interval, lp, of the imposed query is near unity. In this case, the PPB engine uses
only the BSS indexes to compute the aggregate value without decompressing many blocks.
It is straightforward to see that the optimized block size for the response time of different
queries roughly falls within a short range of 250 to 500 records per block. Thus, we can
further take advantage of this finding for the PPB engine configuration, when block size
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estimation should be done under insufficient or no query information.

6.3 Selectivity and Block Size

Figure 13(e) shows the query response time achieved by the PPB engine for a set of selection
queries having different selectivity values and block sizes. As the selectivity of the imposed
queries increases, the query response time increases. This is due to the fact that more XML
fragments are expected to be selected and returned in the output as the selectivity of an
imposed query increases. Figure 13(f) shows the query response time achieved by the PPB
engine for aggregate queries with different selectivities and block sizes. When the selectivity
of the imposed query is low, the query response times are extremely small. As the selectivity
values of the imposed queries increase, the query response time increases rapidly to its max-
imum value and decreases gradually again as the selectivity further increases. Compared to
Figures 8(a) and 8(b), the trends of the response time in both cases are similar, except that
the decreasing rate in the region of high selectivity aggregate queries seems to depend more
heavily on the block size than expected.
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Figure 14: Processing Selection Queries over Different Datasets in PPB and XGrind
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6.4 Comparing PPB with XGrind

We now compare the performance of XGrind with that of the PPB engine by running the
following queries.

(Q7): /dblp/article[1998 > year > 1950].
(Q8): /table/T[10010 > L ORDERKEY > 10000].
(Q9): /open auctions/open auction[100 > current > 20].
As XGrind only supports processing of exact match and partial match selection queries,

we use these selection queries in the tests. Figures 14(a), 14(b) and 14(c) show the query
response times of XGrind and PPB for processing queries Q7 to Q9 on the respective datasets.
We varied the interval ranges of year, L ORDERKEY and current to obtain different
selectivities for the experiment. Clearly, the query response time obtained by the PPB engine
is consistently shorter than that obtained by XGrind. The savings in response time by PPB
is attributed to the use of partial decompression of data streams and to the BSS indexing
adopted in the PPB engine.

7 Conclusions

In this paper, we developed and analyzed the PPB data grouping strategy in order to support
querying over compressed XML data. We demonstrated that the technique is effective from
both analytical and empirical points of view. We introduced the BSS indexing scheme for
compressed blocks in a data stream. We then presented a critical analysis of partial decom-
pression performance based on the PPB and BSS indexing techniques. Our analysis presents
query processing cost expressions to answer selection and aggregate queries. We showed
that the optimal cost exists in low selectivity selection queries and an asymptotic cost ex-
ists in high selectivity values in Theorem 3.1. We discussed the extension of BSS into CSS
and found that optimal sizes of clusters and blocks exist in the CSS indexing scheme. The
optimal block size and cluster size values are independent of the data size, N , but not of
the selectivity value, P . The CSS indexing scheme can be further generalized into the MSS
indexing scheme. We established the generalized result in Theorem 5.2 that there exists a
local minimum of the unit processing cost for all MSS indexing schemes if the selectivity
and scanning costs are sufficiently low. We demonstrated that the relationship between pro-
cessing time, selectivity and block size is consistent with our analysis in Sections 6.2 and 6.3.
We also showed that the compression performance is comparative to XMill and the querying
performance of PPB is superior to XGrind in the the scope of our study.

Overall, our analysis paves the way to optimize query processing of compressed XML
data within a path-partitioned based framework. We need to go in three directions in our
future work. First, we need to verify empirically how the compression performance is im-
pacted by the MSS indexing scheme, though we proved from the theoretical point of view
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that the processing cost can be reduced. Second, we need to analyze further the cost of using
the PPB technique to handle a wider scope of XML semantics. For example, the join (for
the For clause), semi-join (for the Where clause) and outer-join (for the Return clause) in
standard XQuery expressions [29]. Third, it is indeed challenging and practical to consider
XML query processing over compressed XML documents in distributed applications, such
as the study of distributed XML query processing and result dissemination in a co-operative
framework [8]. However, when the query evaluation is carried out over a network of clients,
the work is more complex and challenging. We need to devise some succinct data struc-
tures and query rewriting efficient techniques in order to organize multi-XML queries from
network clients and support query evaluation of compressed documents.
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