
Using Index to Manage the Ordering Structure of XML Data
in the Nested Relational Sequence Database System

Lau Ho Lam and Wilfred Ng
Department of Computer Science

The Hong Kong University of Science and Technology, Hong Kong

lauhl@ust.hk wilfred@cs.ust.hk

ABSTRACT
In this poster, we introduce the mechanism of handling the
ordering structure of XML data by using the Nested Relational
Sequence Database System (NRSD), which is built upon the
Nested Relational Sequence Model (NRSM) we developed earlier
on. We demonstrate that the storing and querying of XML data
are desirable over an NRS relation, which we incorporate an index
system into the NRSD. Our preliminary experimental results show
that the NRSD provides benefits of minimizing the storage size
while maintaining the following three types of order in XML data:
the ancestor order, the sibling order and the value order.

Keywords
Nested Relation Sequence Model, XML Databases, XML Query.

1. INTRODUCTION
We have proposed the Nested Relational Sequence Model
(NRSM) in [2, 3], which is an extension of the well-established
Nested Relational Data Model (NRDM) [4] in order to cater for
nesting structure and node ordering of XML data. The NRSM
supports composite and multi-valued attributes, which are
essential for representing hierarchically structured data objects in
XML documents. In addition, the NRSM extends the NRDM to
support ordering of XML data elements by allowing nested tuple
sequences to be defined in an NRS relation.

We developed the Nested Relational Sequence Database System
(NRSD) [2,3], which is built upon the NRSM. An important
feature in the NRSD is that XML data that has the same label
along the same path can be merged together and stored in the
same index table. This eliminates a substantial amount of
redundancy of XML data in the database. Another feature of the
NRSM is that it preserves the following three types of order: the
value, sibling and ancestor orders. Figure 1 illustrates an XML
tree and its corresponding NRS relation showing these three types
of order. In the sequel we will explain how these orders are
preserved in the NRSD by using an index system. We also present
the experimental results concerning the resources needed for
storing XML documents in the NRSD.

2. INDEX AND ORDER
An NRS relation is stored as a corresponding set of index tables in
the NRSD. The schema of the NRS relation is mapped as a global
index table and the data value are mapped as various value index
tables. The NRS relation in Figure 1 is mapped into the tables
shown in Figure 2.

Figure 1. A XML tree and its corresponding NRS relation.

Figure 2. The index tables corresponding to the NRS relation
given in Figure 1.

The ordering feature of data is an important aspect in an XML
document. However, existing database systems provide
inadequate facilities to manage the order structures in XML data.
In the NRSD, we use indexes to keep track the order of XML
data. In [1], the order between nodes is represented in a separate
column with the index. In our approach, we capture different
kinds of order by generating distinct and meaningful index value
and store all the index values in a single column, So our approach
can further reduce the storage size compared with the mapping
suggested in [1]. The NRSM incorporates three types of order: (1)
the value order resulting from the sequence of data elements in a
data node; (2) the sibling order resulting from the left to right
sides for those label nodes which share the same parent; (3) the
ancestor order resulting from the tree levels of the label nodes.
When we map XML documents into RDBMS, we use two
mechanisms to handle these three types of order, which are
supported by the following tables: one ordering scheme is stored
in the global index table and another one is stored in a collection
of value index tables.

The global index table represents the overall structure of an XML
document. We assign the root tag with index 1. For each child tag,
we assign log2k bits to represent its sibling order, where k is the

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

mailto:cpeglam@ust.hk
mailto:wilfred@cs.ust.hk

number of its sibling nodes, and concatenate it after the index of
its parent. For example, in Figure 1, “stud”, whose index is 1010,
has three children, then we assign two bits for each of its children,
therefore, the binary indexes of its children is 101000, 101001 and
101010 and we have the corresponding decimal indexes 40, 41
and 42 as the child of “stud” in the global index table as shown in
Figure 2. We do not need to search the whole index but just the
prefix of an index. If necessary we can incrementally extend the
prefix until we can identify a unique node. When we look up for
the parent node, we can simply use the longest bit match
algorithm to find out the corresponding parent. By using this
ordering scheme, we maintain the ancestor order and the sibling
order of the XML document in a straightforward way.

In the value index tables, the indexes are assigned by using the dot
notation. We illustrate the idea by using the example shown in
Figure 2: the index for the “stud Lam” in v3 is 1.1.1.2. From the
global index table, we can trace that v3 has the path
“people/prof/stud/~stud”. The index “1.1.1.2” means that the
value “Lam” belongs to the first “people” tag in the XML
document, the first “prof” tag of “people” and so on.

3. QUERYING IN THE NRSD
We now discuss how the index system helps to process querying
XML data in the NRSD. We have defined a set of NRS operations
in the papers [2,3] for querying XML data stored in the NRSM.
Basically, the implementation of the NRS operations in the NRSD
is translated into the following sequence of actions. (1) Lookup
the corresponding row by tracing the path expression. (2) Perform
queries over the reference of the child attribute. (3) Return the
data required.

Since the processing of queries in the NRSD requires referencing
the global index table frequently, to avoid heavy overhead of this
process, we create an in-memory tree for representing the
structure of an XML document before querying. In general, the
size of structure is much smaller than the size of data. For
example, the size of schema of a 28M DBLP XML document is
only about 1KB. Storing this global information as an in-memory
tree does not impose any significant burden on memory, since in
general we store just less then 0.1% of the given XML document.

For example, if we perform the project operation on “stud”,
π[/prof/stud](people). We lookup the child of “stud” and know that it
has three children: 40, 41 and 42. Therefore, we need to join the
values from these three index tables by their indexes. Note that,
during our mapping, the value belongs to the same tuple are
assigned with same index prefix but different indexes. For
example, the two “course” of “stud Lam” are assigned with
indexes “1.1.1.2.1” and “1.1.1.2.2”. So when we retrieve the two
“course” of “stud Lam”, the value order can be correctly
preserved.

4. EXPERIMENTAL RESULTS
In order to show the effectiveness of our system, we have been
running some experiments using real life DBLP [5] XML data on
the NRSD. All queries are conducted on a computer of Pentium
III 550MHz with 256MB RAM and 30GB hard disk. We observe
that in DBLP XML documents, the maximum number of child
tags per element is twelve and the deepest nesting level is four.

In the experiments, we load XML documents having different
sizes into NRSD. Table 1 shows the results of our experiments,

from which we can check that the table spaces required for storing
the XML documents is approximately 85% of the original size of
the documents. With the growth of size, the number of index
tables and the size of the NRS schema become stable. It is due to
the fact that the NRSM collapses data having the same tags label
into the same data nodes, resulting in minimal data redundancy. In
addition, the combination of index and order in handling XML
data further help to reduce the storage.

Table 1. Experimental results of NRSD with different XML
documents

Size of NRS
schemas
(bytes)

Number
of index
tables

Input
XML file
size (KBs)

Required disk
space to store
the input data

414 23 2,404 82.65%
1368 61 9,318 87.56%
1380 63 14,251 87.00%
1404 66 18,817 88.87%
1425 67 28,791 83.62%

We remark that the size reduction is obtained without performing
any compression on the database. This work can serve as a
starting point for applying existing XML data compression
technology on NRS databases. However, we emphasize that we
are able to formulate queries by using a set of algebraic operators,
which is difficult to perform in a compressed domain. We are
improving the grouping algorithm and trying to further decrease
the table space of storing XML data in the NRSD. The data size
reduction in the NRSD is useful in practice for exporting and
exchanging XML database objects on the Web.

5. CONCLUSIONS
In this poster, we discussed two important issues related to the use
of indexes in the NRSD: (1) how to manage different kinds of
order in XML data and (2) how does it affect the storage size in
NRS databases. We explained the relationship between the
indexes and value order and presented the empirical result, which
demonstrates the fact that the table space required for storing
XML data with the NRSD is significantly less than the size of the
original XML documents. This is mainly due to the fact that the
NRSM eliminates the redundant data from XML documents.

REFERENCES
[1] D. Florescu and D. Kossman. A Performance Evaluation of

Alternative Mapping Schemes for Storing XML Data in a
Relational Database. In Proc. of VLDB’99, (1999).

[2] H. L. Lau and W. Ng. Querying XML Data Based on Nested
Relational Sequence Model. In: Proceedings of Poster Track
of WWW, (2002).

[3] H. L. Lau and W. Ng. The Development of Nested Relational
Sequence Model to Support XML Databases. In: Proc. of the
2002 Int. Conf. on Information and Knowledge Engineering
(IKE'02), pp. 374-380, (2002).

[4] M. Levene. The Nested UniversityRelation Database Model.
LNCS Vol. 595, Springer-Verlag, (1992).

[5] M. Ley. Digital Bibliography & Library Project. In:
http://dblp.uni-trier.de/, (2002).

[6] W. Ng. Maintaining Consistency of Integrated XML Trees.
Int. Conf. on WAIM'2002. LNCS Vol. 2419, pp. 145 -157,
(2002).

	INTRODUCTION
	INDEX AND ORDER
	QUERYING IN THE NRSD

