Towards Adaptive Information Merging Using
Selected XML Fragments

Ho-Lam Lau and Wilfred Ng

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong
{lauhl, wilfred}@cse.ust.hk

Abstract. As XML information proliferates on the Web, searching XML
information via a search engine is crucial to the experience of both casual
and experienced Web users. The returned XML fragments in the list is
not directly usable, if not confusing, to the users, since in most cases the
XML fragments extracted from a large XML repository are incomplete,
scattered and redundant. Thus, it is necessary to re-iterate the search-
ing process based on user preferences in order to obtain more complete,
detailed and usable results. In this paper, we propose a unifying frame-
work which takes searching, merging and user preferences into account.
We view search queries and fragment labeling as an input in an on-going
searching process, in which the relevant XML fragments are merged into
a concise form and returned to the user a ranked result list.

1 Introduction

As the amount and use of XML data continue to grow, searching and ranking
XML data has been an important issue studied in both database and informa-
tion retrieval communities [1-4, 6, 7, 10]. Following the usual practice of handling
results in Web search engines, the search results of these proposals are usually
presented as a ranked list of small XML fragments to the users [1,3, 11]. In prac-
tice, users do not have the schema knowledge of the underlying XML sources
or have very little information of the data sources, therefore, highly structured
XML queries such as XQuery FT expressions for searching are not easy for them
to formulate. In addition, we recognize that the usual approach adopted by web
search engines, which return a once-off list of items as the answers for a search
query, is not adequate in XML setting. There are three reasons for the inad-
equacy. First, the target information may be scattered on the ranked list and
thus it is not directly useful for the users. Second, the XML fragments can be
duplicated in different ways. Third, a once-off query may not contain all de-
sired information. In this paper, we propose a unifying framework which takes
searching, merging and user preference into account.

Figure 1 shows the conceptual overview of our proposed framework. First, the
user submits a query to the system and the system returns a list of fragments
to the user. Then, the user selects the preferred fragments as feedback, the
feedback will be merged and contribute as new search query which enlarge the

2 Ho-Lam Lau, Wilfred Ng

feedback

search | XML
source

fragments Qualt
with quality metrics

Fig. 1. A conceptual overview of the proposed framework

user

set of candidate fragments for the next iteration. Finally, the merged fragment
and the new search results are returned to the user with our previously proposed
notions of Quality Metrics (QMs) [9] which help users to judge the quality of
fragments. We do not repeat the details in [9] here but mention that the QMs
proposed are simple but effective metrics to assess the quality of individual data
source or a combination of data sources, and are natural metrics to measure
different dimension of the structure, data and subtrees. We contribute two main
ideas related to searching XML information.

Unifying Framework We propose a unifying framework that searches and
merges XML fragments in a ranked result list. The search is based on a
fragment, which is viewed as a set of path-key pairs.

Adaptive Merging We propose an adaptive merging approach and four direc-
tional searching techniques, that are able to support progressive merging the
search results according to the users’ continuing feedback. With the combina-
tion of searching and merging, we provide flexibility on merging that match
different users’ preferences.

Paper Organization. Section 2 presents an overview of the unified framework
for searching and merging techniques. Section 3 illustrates the merging tech-
niques and introduces the merging approach for adopting the user feedback. We
conclude the framework and discuss future work in Section 4.

2 The Unifying Framework for Searching and Merging

In this section, we present an overview of our unifying framework for searching
and merging. A path-key pair is an ordered pair (p, k), where p is a path from
the root to the parent node of the keyword, k. Thus, a path-key pair can be
viewed as a simplified form of XPath [5]. An XML fragment is a sequence of
non-repeated path-key pairs.

Figure 2 depicts the basic ideas of our framework which is able to incorporate
the user preference and to support iterative searching and merging. Initially, the
user submits a query to the search engine. We view the sources as the underlying
XML database which collects XML fragments in a repository. Due to the space
limitation, we do not describe the implementation details and the searching and
ranking mechanism of the databases. However, we remark that our approach of
searching and ranking techniques of XML fragments are similar to the recent
work in [1,3,4,7,10].

The search engine returns the list of ranked XML fragments as the raw list.
The raw list is decomposed into “candidate path-key pairs” sorted by the fre-
quency in the raw list. The top k path-key pairs is then displayed to the user (By

Towards an Adaptive Information Merging Using Selected XML Fragments 3

\ User]

——
Initial Query @ A User bae | canicate
| — path-key
Fragment ,:ecg)dbacks paits
v

I
Search Engine ‘ Preference Analyst ‘ Metric Calculator ‘
‘ Tags Statistic / Schema Information ‘ II ﬁ
‘ ‘ ‘ @ Additive

Increment

s]
'iiﬁﬁiitg o
==

Fragment Decomposer |

A}
O-PF=0 O | A =
00y Y Cebel

A
XML XML XML @ returned G XML Merger

Database A Database B Database C fragments
Fig. 2. Overview of searching and merging XML information via key-tags

default, k = 10). Initially, we categorize all the path-key pairs as “unclassified”.
The user feedback can be collected when he/she selects the preferred path-key
pairs from the “candidate path-key pairs”, which is similar to collecting the
clickthrough data in the case of HTML data [8]. However, the main difference
between searching HTML data in the mentioned work and searching XML data
in our approach is that an XML fragment returned can be further used as a sam-
ple for re-querying. The user feedback is collected by the “Preference Analyst”
and is re-classified into two categories as follows: preferred, and unclassified.

After the (re-classification) process, the two categories of path-key pairs are
passed to the AIM. The preferred path-key pairs from the user contribute the
merging process in twofold. First, the AIM establishes the “result fragment” by
merging the “preferred” path-key pairs. The result fragment is then returned to
the user. Second, they are served as new queries (i.e. re-queries) that are sent
to the four searchers of Upward, Downward, Forward and Backward. The search
results of the “re-queries” will be decomposed, added into the “candidate path-
key pairs” and then displayed to the user in the next iteration. More details
about AIM and Directional Searching will also be given in Section 3.

3 The Merging and Searching Approaches

In this section, we explain our approach, the Adaptive Increment Merging (AIM)
approach, which supports further decomposing the selected fragments from users
into path-key pairs. We also discuss the four directional searchings which are able
to enrich the set of candidate path key pairs in the re-querying process.

3.1 The Adaptive Increment Merging Approach

The inputs of AIM are two lists: the “preferred” and “unclassified” path-key
pairs and the outputs are the “result fragment”, R, and a list of reordered
candidate path-key pairs, C. R is an XML fragment resulting from merging
the path-key pairs in the “preferred” list, which is possible to grow during the
merging process. C' is a list of path-key pairs displayed to the users for user
feedback in each iteration. The path-key pairs in C are grouped according to
their data sources and are sorted according to the their frequency among the
list of fragments returned by the search engine. The AIM approach is shown in
Algorithm 1.

4 Ho-Lam Lau, Wilfred Ng

Algorithm 1: Adaptive Increment Merging Approach

Input: R — the result fragment; P — a set of positive path-key pairs; U — a set of
unclassified path-key pairs; ¢ — a quota variable; S[] — an array of sets which
represent the sources; w| | — an array of weights for the sources; // e.g. wl[j] is the
weight of source S|[j]

Output: R — the result fragment; C' — a list of candidate path-key pairs display for next

iteration;
1 for each source S[j] do
2 ‘ Sl =10;
3 Mark S[j] as negative source;
4 end
5 C =0
6 for each path-key pairs p; € P do
7 R = RUp;;
8 if p; is originated from source S[j] then
9 ‘ S[5] U pss
10 Mark S[j] as positive source;
11 end
12 end
13 for each negative source S[j] do
14 | w[j] = w51/
15 end

16 for each positive source S[j] do
1—3 weights of negative sources |

17 wli] = number of positive sources ’
18 C = CU top-(g X w[j]) path-key pairs in S[j];
19 end

20 Perform Directional Searching using (P, U);
21 Return R and C;

Consider the following example, given a query, Q = (//author : Mary, //title
: XML) and the fragments returned by the search engine is shown as trees in
Figure 3(a).

The first step of AIM is to decompose the fragments into candidates path-
key pairs and allows user to select his/her desired path-key pairs as shown
in Figure 3(b). In this example, we have three sources, Fy, F> and Fj are
from the sources, S4, Sp and S¢ respectively. We can see that the path-key
pairs are sorted according to their frequency (i.e. the number of their appear-
ance in the raw list). For example, three path-key pairs whose path equal to
“/r/pub/author” are at position 1 to 2 of the source S4. At the first iteration,
the weights for the sources are {0.3333, 0.3333, 0.3333}, therefore the top-3 path-
key pairs from each source will be displayed to the user in next iteration. Since
there are only nine path-key pairs in this case, we need an additional path-key
pair in order to have ten path-key pairs for user to select, we may simply add
the fourth path-key pair from either S4, Sg or S¢, and in this example, we add
the fourth path-key pairs from S4. The ten candidate path-key pairs for next
iteration is shown in bold letters in Figure 3(b).

Now, assume the user selects all path-key pairs from Sp and Sc. The result
fragment is shown in Figure 3(c). We can see that the result fragment is built
as expected. With the user feedback, the weight of S4 is halved and Sp and S¢
share the decreased weight of S4, the new weights are {0.1667,0.4167,0.4167}.
The candidate path-key pairs are shown in bold in Figure 3(d).

Towards an Adaptive Information Merging Using Selected XML Fragments 5

/r/pub/author : Sai

/ripub/author : Strong

/r/pub/key : RJ-2736

/r/publyear : 1980

/r/publtitle : XML Index Path ...

authors /r/ISigmodRecord/article/authors/author : Mary. C
/r/SigmodRecord/article/authors/author : Ken

r

SigmodRecord S,

year

r XML Sy /riSigmodRecord/article/title: XML Search
RJ- Sai Strong XMLndex 1980 Search /r/SigmodRecord/issue/articles/article/initPage: 42
2736 Path... o MaryGC Ken /r/SigmodRecord/issue/articles/article/endPage: 65
F, publication F, /ripublication/authors/author : Mary. F
s /r/publication/authors/author : Peter. L
are: i authors C /ripublication/titie: XML Joins

/r/publication/area: XML

(b)

Fy
S, /ripubftitle : XML Index Path ...
" /riSigmodRecord/article/initPage: 42
title authorygary ¢ Ken S /r/SigmodRecord/article/endPage: 65
XML Search m,2) ﬁ\ S Iripublication/area: XML
XML Joins (m, 3) Mary. F Peter. L
() (d)

Fig. 3. (a)The returned fragments by the query @, (b) the corresponding decomposed
path-key pairs (c) merged result fragment and (d) candidate path-key pairs after the
first iteration

3.2 Four Directional Searching Approaches

In this section we introduce four directional searching approaches used in the
re-querying process. They are upward, downward, forward and backward search-
ings.

Upward Searching. The objective of upward searching is to find a set of frag-
ments with similar structure but different data values. Given a query, @, and the
list of preferred path-key pairs in previous iteration, P. We formulate a re-query,
gi, for each path-key pair in P, f; = (p;, ki) € P, where p; is the path from the
root to the parent node of the keyword, k;. We check if p; is located at the root
of the document. If yes, we stop, since we cannot go up anymore, otherwise, the
re-query is given by “po//pn : *”, where pg is the root of p; and p,, is the parent
node of k;.

Downward Searching. The objective of downward searching is to find a set
of fragments which can provide further details according to user preference. We
formulate a re-query which aims at the children or siblings of the “preferred”
path-key pairs. Given a query, @), and the list of preferred path-key pairs in
previous iteration, P. We formulate a re-query, g;, for each path-key pair in P,
fi = (pi, ki) € P, where p; is the path from the root to the parent node of the
keyword, k;. The re-query, ¢; is given by “po//pn/* : k;”, where pg is the root
of p; and p,, is the parent node of k;.

The Forward Searching. The core idea of forward searching is to search rel-
evant fragments that are ignored in the initiate query (i.e. the query submitted
by the user at the very beginning) by providing more detailed query for more
accurate results. Given the initiate query, @), and the preferred path-key pairs
in previous iteration, P. For each path-key pairs f; = (p;, ki) € P, if f; does

6 Ho-Lam Lau, Wilfred Ng

not exactly match with any path-key pairs in @), we submit the re-query, r;, as
“//pn : ki, where p, is the parent node of k;.

The Backward Searching. The backward searching is similar to forward
searching but in “opposite direction”. Backward searching aims to find infor-
mation that match the initiate query, @, but are different from the path-key
pairs in P. Given a query, @), and the list of preferred path-key pairs in pre-
vious iteration, P. For each path-key pairs f; = (pi,k;) € P, if f; does not
exactly match with any path-key pairs in @), we submit the re-query, r;, as “
QU //pn: (NOT k;)”, where p,, is the parent node of k;.

4 Conclusions

An interesting contribution in our proposed framework is to unify the processes
of searching XML fragments and merging the users’ preferred XML fragments
returned from the ranked result list. We suggest rewriting the queries using
path-keys of the set of core paths in order to increase the searching coverage.
We proposed the approaches of Additive Increment Merging and Directional
Searching in order to generate more usable results in a progressive manner.

The ideas presented in this short paper pave the way to promote a wider
use of XML data, since fragment search is simple enough for existing users to
search the XML information systems. In addition, the merger provides more
usable and quality information according to the users’ preferences. This paper is
a ground work for many interesting issues for further study. For example, we can
further examine several schemes in order to estimate path-key similarity in the
merging process. This also allows us to extend our framework for searching and
merging XML and HTML data, which serves as a more useful tool for searching
heterogenous Web data.

References

1. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman. Structure
and content scoring for xml. In Proc. of VLDB, 2005.
2. J. Bremer and M. Gertz. XQuery/IR: Integrating XML document and data re-
trieval. In WebDB, 2002.
3. D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer. Searching XML
documents via XML fragments. In SIGIR, pages 151-158, 2003.
4. T. T. Chinenyanga. Expressive and eflicient ranked querying of XML data, 2001.
5. World Wide Web Consortium. Xquery 1.0 and xpath 2.0 full-text.
6. N. Fuhr and K. Grojjohann. XIRQL: An extension of XQL for information re-
trieval, 2000.
7. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents, 2003.
8. T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD ’02.
9. Ho-Lam Lau and Wilfred Ng. A unifying framework for merging and evaluating
XML information. In DASFAA, pages 81-94, 2005.
10. A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava. Adaptive processing of
top-k queries in XML. In ICDE, pages 162-173, 2005.
11. Martin Theobald, Ralf Schenkel, and Gerhard Weikum. An efficient and versatile
query engine for topx search.

