
An Efficient Co-operative Framework for
Multi-Query Processing over Compressed XML

Data

Juzhen He1, Wilfred Ng2, Xiaoling Wang1, and Aoying Zhou1

1 Department of Computer Science and Engineering, Fudan University, Shanghai
200433, China

{juzhenhe, wxling, ayzhou}@fudan.edu.cn
2 Department of Computer Science, Hong Kong University of Science and

Technology, Hong Kong
wilfred@cs.ust.hk

Abstract. XML is a de-facto standard for exchanging and presenting
information on the Web. However, XML data is also recognized as ver-
bose since it heavily inflates the size of the data due to the repeated
tags and structures. The data verbosity problem gives rise to many chal-
lenges of conventional distributed database technologies. In this paper,
we study the XML dissemination problem over the Internet, where the
speed of information delivery can be rather slow in a server-client archi-
tecture which consists of a large number of geographically spanned users
who access a large amount of correlated XML information. The problem
becomes more severe when the users access closely related XML frag-
ments, and in this case the usage of bandwidth is inefficient. In order to
save bandwidth and process the queries efficiently, we propose an archi-
tecture that incorporates XML compression techniques and exploits the
results of XPath containment. Within our framework, we demonstrate
that the loading of the server is reduced, the network bandwidth can be
more efficiently used and, consequently, all clients as a whole can benefit
due to savings of various costs.

1 Introduction

XML has become the standard for data exchange on the Web, and database
servers are employed to store large amounts of XML documents, such as XML
digital libraries and XML dissemination systems. In these applications, XML
repositories are employed to support queries from many clients. However XML
data are verbose due to their repeated tags and structures. Most XML documents
in the servers are compressed in order to reduce the storage size. Many previous
works have studied techniques for efficient evaluation of XML path expression
[11, 14], and other works have focused on different kinds of XML compression
technologies [1, 6, 9, 10, 12, 13, 19]. However, these works do not consider how to
process compressed XML documents in XML subscribe/dissemination applica-
tions, such as the RSS (Really Simple Syndication) news distribution system,

which supports processing multiple queries imposed by a group of clients. As-
sume that there are co-operative relationships among clients, as Fig. 1 shows.
The server keeps the compressed large-scale XML document, and clients co-
operate to obtain information or news from the server. In this scenario, it is
important to adopt distributed techniques and XML compression approaches to
save bandwidth in result delivery. For example, the server is in London and users
from Beijing pose queries to the server. After query processing and result pub-
lication, some results on the users’ local machines may be reusable in response
to the subsequent queries posed from Shanghai.

Client F

Client B

Client D

Client I

Client G

Client A

Client H

Client E
Client C

Result Publication

Query Submission

QI

QE

QG

QF

QA

QD

QH

QB
QC

Qi

R
R

R

R

RR

R

R R

R
Server

Fig. 1. Architecture of a Co-operative Framework

One might also find that distributed SQL query techniques in traditional
RDB have been extensively studied [2] and applied in server-client architectures.
However, these conventional database techniques are not directly applicable to
distributed XML query processing, especially over compressed XML documents.
To our knowledge, this is the first paper to address the problem of efficiently
processing XML queries over a co-operative framework with XML compression
techniques. The main contributions of this paper can be summarized as follows:

– We propose a co-operative framework for multi-query processing over com-
pressed XML data. We study how to process these XML queries in Internet-
scale XML data dissemination applications, such as the RSS news dissemi-
nation system.

– We exploit XML compression technology to reduce the system’s bandwidth
consumption. Though some previous works have studied various XML com-
pression techniques, none of them has studied how to handle co-operative
clients to gain efficient dissemination on the Web.

– We develop a special index structure QIT, which helps the server to process
queries efficiently and helps clients to obtain results from compressed XML

fragments reserved by other clients. This technique is shown to benefit all
clients as a whole, since the average network cost is greatly reduced.

– We carry out an empirical study. Our experimental results show that the
proposed methods are efficient and practical.The loading of the server is re-
duced, the network bandwidth can be more efficiently used and consequently,
all clients as a whole can benefit due to savings in various costs.

The rest of the paper is organized as follows. Related work is introduced in
Section 2. Section 3 describes the preliminaries. Sections 4 and 5 present our
approaches of building the index structure on the server side and processing
queries over compressed XML. Section 6 gives the experimental results related
to the efficiency of our framework. Finally, Section 7 concludes and discusses
future work.

2 Related Works

Recently, several methods have been proposed for query optimization of an
XML document [14], in which the structural index is an efficient approach for
path/structure queries. There are also some research results [15, 16] that com-
bine a structure index with keyword search for XML document retrieval. For
example, the index introduced in [16] integrates both the advantages of a struc-
tural index and inverted lists. However, there is no previous work on efficient
multi-query processing over compressed XML documents. We need to establish
a better framework that is able to handle both structure and text queries in
a smaller storage space. There are a few XML compression techniques [1, 6, 9,
10, 12, 13, 19] that can be classified into two categories according to whether the
encoded document can be queried directly or not. XMill [6], which is an example
of the first category, aims to minimize the size of the XML document as much as
possible and achieves the highest compression ratio of all compressors. XGRIND
[1] and XPRESS [9], two examples of homomorphism compressors in the second
category, both support directly querying of compressed data by retaining the
document structure after compression. XGRIND uses dictionary encoding and
Huffman encoding for tags and data separately, whereas XPRESS adopts re-
verse arithmetic encoding and diverse encoding methods depending on the data
type, which allows XPRESS to achieve a better compression ratio and higher
query efficiency than XGRIND. In this paper, we design our framework based
on XPRESS techniques to disseminate compressed XML documents over the
co-operative server-client architecture.

3 Preliminaries

XPath, widely accepted as the core component of XML query languages, is
adopted as our query language. We constrain our XPath in XP {/,//,∗} in this
paper. The grammar of XP {/,//,∗} is given as:

q → l| ∗ |.|q/q|q//q (1)

where “l” is the label of XML document, “∗” is a wildcard and “.” denotes
current tag. “/” and “//” means child and descendant, respectively.

There exists containment relationships among different queries in XP {/,//,∗},
and it is necessary to exploit this containment relationship to speed up the
publication of the query result. If query QA contains query QB after computing,
we can send QA’s result to corresponding client CA and ask CA to send QB ’s
result to client CB to avoid the server sending QB ’s result to both CA and CB .
This approach reduces the server’s load and saves the server’s bandwidth.

Definition 1 (Containment of XPath). For XPath Q1 and Q2, if the result
of Q1 is always contained in the result of Q2 for every XML instance, we say
Q1 is contained by Q2, and denote this fact as Q1 ⊂ Q2.

The containment of the XP {/,//,∗} expression is a CO-NP problem, and [7]
gives an efficient but not complete PTIME algorithm to compute the contain-
ment. Each XPath expression can be expressed as a one-arity pattern tree, and
vice versa (as Fig. 2 shows, p and p′ are pattern trees of XPp and XPp′ respec-
tively). Thus XPath expressions can be translated into tree patterns, and the
containment is evaluated based on the homomorphism between the correspond-
ing pattern trees. When there is a homomorphism between pattern trees, there
also exists a containment relationship between these XPath queries.[7]

Definition 2 (Pattern Homomorphism). For two tree patterns p and p′, if
there exists a homomorphism h : p′ → p, then p ⊂ p′.

And one can determine in O(|p||p′|) whether a homomorphism exists [7]. Fig. 2
is an example of one homomorphism from pattern tree p′ to p. Thus, the query
XPp′ contains the query XPp.

a

c
d

a c

ab

p = a

b
*

a c

b

= p'

XPp: /a[//c]/d[c]//a[a]/b XPp': /a[//b]/*[c]//a/b

Fig. 2. A homomorphism from p′ to p

Based on the containment relationship in Definition 2, we design a query-
index in order to store these relationships. Fig. 3 shows that a query index tree
is built on the server side to store this containment among queries.

QA = /a
 QB = /a/c/d
 QC = /a/*/d
 QD = /a//e
 QE = /a/d/q
 QF = /a/c/*/e
 QG = /a/d
 QH = /a/*/d/e
 QI= /a/d/q/e

QA,begin,end,P/I

QA: Query ID
begin: beging point in doc
end: ending point in doc
P/I: precise or imprecise

QC,begin,end,P/I QD,begin,end,P/I QG,begin,end,P/I

QB,begin,end,P/I QF,begin,end,P/I QH,begin,end,P/I QE,begin,end,P/I

QI,begin,end,P/I

Compressed doc at server

Fig. 3. An Example of QIT (Query Index Tree)

On the other hand, in order to minimize the document’s size and save band-
width, we adopt an XML compression approach. We choose XPRESS [9] to be
the compression tool in our framework. We also extend “intervals” technique to
speed up the query processing. The “intervals”, which are used to encode tags
in XPRESS, are helpful to process the query on the compressed document. The
containment among “intervals” indicates the containment of the suffix for simple
paths, thus “intervals” technique can be used in complex query processing. The
interval of a tag is computed based on the probability of this tag in the XML doc-
ument, and each tag in the document has a simple path that contains its parent
and ancestors. For a simple path /p1/p2/. . . /pn, assuming that the probability
of pi is probi, the original interval before compression of pi is [MINio,MAXio)
and the compressed interval is [MINi,MAXi), where

MINio =
i−1∑

k=1

probk,MAXio =
i∑

k=1

probk (2)

MINi = MINio + probi ∗MINi−1,MAXi = MINio + probi ∗MAXi−1 (3)

For example, there are “a”, “b”, and “c” three different elements in an XML
document. Assuming their probabilities are 0.3, 0.3 and 0.4, and their original
intervals before compression are [0.0, 0.3), [0.3, 0.6) and [0.6, 1.0) respectively.
For query QA: //c, whose interval is [0.6, 1.0), and query QB : /a/c, with interval
[0.6 + 0.4 ∗ 0.0, 0.6 + 0.4 ∗ 0.3), that is [0.6, 0.72), because [0.6, 0.72) is contained
in [0.6, 1.0), QB ’s results is contained in QA’s result. Thus, by interval encoding
approach, the containment relationship of XPath expressions can be obtained
by the computation of interval values. We will further discuss in Section 5 how
to use intervals for compressed XML fragments dissemination.

4 Building QIT and Sub-index

In this section we discuss the concept of QIT, which exploits the containment
relationship for XPath expressions in order to avoid server sending repeated
result fragments and to support more efficient multi-query evaluation.

4.1 Query Index Tree

Definition 3 (Query Index Tree). A Query Index Tree (QIT) is an index in
a server. Suppose that there are n XPath queries Q1, Q2, . . .Qn. According to
the containment relationship among these queries, the query tree is defined as:

1. The root is marked as the queried document D; all the queries are its de-
scendants.

2. Each node has a set of descendants (except the leaf node) whose queries are
contained by the query of current node.

3. Each node is represented by “(Qid, begin, end, P/I)”, where Qid denotes
the query submitted by a client; “begin” and “end” record the locations of
the result fragments in the original document; “P/I” means if the result is
precise or imprecise, where an imprecise result means that the result is not
exact for user’s query and is a larger one.

QIT reveals the containment among queries and compressed result. The re-
sult locations, which are the values of “begin” and “end”, in QIT is for queries
processing at intermediate clients. As Fig. 3 shows, clients from CA to CI submit
queries from QA to QI . According to the containment among these queries, the
corresponding QIT is obtained according to Definition 3. In next section, we will
describe the algorithm for building QIT.

4.2 QIT Construction in the Server

QA QB QC

QD QE QF

QG QH QI

QA

QB QC QD

QE QF QG

QH QI

QA

QB

QC

QD QE

QF QG

QH QI

a.Submitted
 queries

b.queryQA contains
other queries

c. classify
other queries

QA

QB

QC QD

QEQF

QH QI

QA

QB

QC QD

QF

QG

QH

QI

QG

QE

d. repeat the
classification process

e. all queries are classified
and QIT is built

Fig. 4. Procedure of Building QIT

The main goal of QIT is to build a hierarchical structure among queries
based on their containment relationship. This problem is analogous to building
hierarchy classification tree, such as Yahoo taxonomy. If query QA contains query
QB , QA is the parent of QB . In Fig. 4a, QA contains all the other queries. Thus,
node QA is the root as shown in Fig. 4b. In Fig. 4c, queries from QB to QI are
classified into three classes. Then, the larger queries which contain smaller ones

Algorithm 1 BuildingQIT (Query Set QS, node R)
Input: QS is a set containing simplified queries; node R is current root
Output: QIT tree

1: set up a new stack and add the first query into it;
2: for each query Q in QS do
3: for each existing stack S do
4: if Q contains S’s top then
5: S.push(Q);
6: continue to check whether other stack tops are contained by Q and combine

them;
7: else if Q is contained by S’s top then
8: push Q into S and keep current top unchanged;
9: break;

10: end if
11: end for
12: if Q has not classified into existing stacks then
13: set up a new stack and push Q into it as top;
14: tops of current stacks become the children of R;
15: end if
16: end for
17: for each stack S′ do
18: if S′ has elements other than top then
19: BuildingQIT (queries in this stack expect top, top of this stack);
20: end if
21: end for

in each class is determined, shown in Fig. 4d. Finally, queries are organized as a
tree in Fig. 4e.

We use stacks to implement this procedure where each stack represents one
class, and the algorithm is described in Algorithm 1.

Initially, an empty stack is built and the first query is pushed into the stack.
When a new query comes, we compare it to the tops of all current stacks. If
this query is contained by the top query of a stack, it will be classified into that
stack and the current stack top will remain unchanged (Steps 7–9). If this query
contains the top query of a stack, we not only put it as the current stack top,
but also continue to compare it with other stack, because there might exist other
stack tops contained by this query. If that happens, we combine these two stacks
and put this query as the new top (Steps 4–6). If there is no stack top that has
containment with the current query, we have to set up a new stack for it (Steps
12–14). After all queries have been processed, each stack is a separate class. For
the class that has more than one query, we recursively classify the queries and
build the hierarchy according to the containment relationship (Steps 17–21).
Then, the whole QIT is constructed.

The time complexity for BuildingQIT is O(n2) in the worst case, which hap-
pens when there is no containment relation among all the queries.

4.3 Sub-Index Construction for Clients

In the procedure of result delivery, the naive traditional approach in the dis-
tributed environment is to evaluate queries in the server and extract the results
for each client. However, this approach is time consuming and creates heavy
loading on the server. Our framework is able to reduce the server workload and
bandwidth with the help of intermediate clients to transmit some compressed
results according to the containment described in QIT.

In order to obtain child queries’ results at intermediate(inner) clients in QIT
as quickly as possible, a sub-index is present for each client. This sub-index
is to record the result location of subsequent queries. Each result fragment sent
to an intermediate client is always affiliated with the corresponding sub-index.
When intermediate clients need to publish their offspring’s results contained in
their own result fragments, the corresponding sub-index will help the clients to
locate and extract required results quickly.

Definition 4 (Sub-index). A sub-index of query Q is the sub-tree rooted at Q
in the QIT. This index includes all the result-location information of node Q’s
children in the QIT.

For example, in Fig. 4e, when we send QD’s result to client CD, the sub-tree
rooted at node QD will be attached. This sub-tree includes all result-location
information for QD’s children. When client CD receives the result fragment, it
scans the sub-index first, and extracts the corresponding part for clients CF and
CH (rather than decompressing the XML fragments and evaluating queries QF

and QH), and then extracts sub-indices for CF and CH , respectively. This ex-
plains how and why a sub-index helps efficient query processing over compressed
XML fragments.

5 Multi-Query Evaluation

In this section, we discuss two issues related to query evaluation in our frame-
work. One is how to evaluate queries using QIT over compressed XML docu-
ments. The other is how to support intermediate clients to locate results and
corresponding sub-indices for its child clients. These two problems are related to
how to use QIT for query processing. Here, our algorithm for query evaluation
based on QIT is presented.

After compressing the XML document using XPRESS [9], the information on
compression related to process queries is reserved. We use an “Interval Table”
to keep the mapping of simple paths to the intervals. Each simple path in the
document has a unique interval, which can be obtained from this Interval Table.

XPath expressions in our algorithm are considered as P , P1//P2, P1/ ∗ /P2,
P1//P2/∗/P3, P1/∗/P2//P3, . . . , where Pi is a simple path like /pi1/pi2 . . . /pin,
and pij is a label in the XML document. Thus, the Pi can be translated into
“intervals” by using the Interval Table.

Algorithm 2 TestNodes(Interval I, QuerySet QNodes, Boolean B,
Structure PS)
Input: I is the given interval; QNodes is a set containing the query nodes which have
not been tested; B indicates test all children in QNodes (“true”) or only complex
ones (“false”); PS is the structure of I’s tag.
Output: add matched children into PS.SatNodes and partly matched children into
PS.WaitNodes.

1: for each query Qc in QNodes do
2: if (Qc is a simple path) && (I is contained Qc’s interval) then
3: add Qc into PS.SatNodes;
4: TestChildren(I, Qc.children, “true”, PS);
5: else if (Qc contains “∗” or “//”) && (I is contained by Qc’s first interval)

then
6: add (Qc,2) into PS.WaitNodes;
7: TestChildren(I, Qc.children, “false”, PS);
8: end if
9: end for

For XPath query containing double slash, such as P1//P2, it is translated
into a group of intervals. Thus, XPath query P1//P2 is separated into P1 and
P2 by “//”, and interval values of these two parts are obtained from the Interval
Table. For example, “/a/b//c/d” will be separated into “/a/b” and “/c/d”, and
intervals of “/a/b” and “/c/d” will be looked up in the Interval Table

For XPath query containing wildcard, such as P1/ ∗ /P2, it is separated into
P1, “∗”, P2, where Pi = /pi1/pi2 . . . /pin (i = 1, 2). Then, we translate these
three parts into their corresponding intervals. For example, “/a/b/ ∗ /c/d” is
transformed into “/a/b”, “∗” and “/c/d”.

XPath queries encoded into intervals by using Interval Table can be evaluated
directly on the compressed document.

Before introducing the QueryEvaluation algorithm in Algorithm 3, we in-
troduce four data structures.

UnsatNodes keeps the root of the sub-trees that cannot be matched with the
current tag. Once the root cannot be matched, all its descendants cannot be
matched according to the containment relationship.

WaitNodes For nodes whose queries contain “∗” or “//”, if parts of their in-
tervals have been matched at or before this tag, WaitNodes keeps the next
parts of unsatisfied intervals, and these parts will be tested with coming tags.

SatNodes keeps the query nodes that are matched with the current tag.
PathStack is a stack that keeps structures that contains the current tag, and

its UnsatNodes, SatNodes and WaitNodes.

In Algorithm 3, a null PathStack is initially set up, and all child nodes of
QIT’s root are inserted into UnsatNodes of the root element(Steps 1–4). In pro-
cessing of a start tag (encoded into an interval), WaitNodes and UnsatNodes of
its parent element will be checked (Step 7). The nodes in these two structures

Algorithm 3 QueryEvaluation(Compressed doc Doc, Query tree QIT)
Input: Doc is the compressed XML doc; QIT contains all submitted queries
Output: QIT containing all result locations

1: initiate PathStack into empty;
2: create a path structure rootPS for root element of Doc;
3: insert all children of QIT ’s root into rootPS.UnsatNodes;
4: push rootPS into PathStack;
5: begin to parse Doc:
6: for each coming interval I of start tag T do
7: set parentPS as the top of PathStack;
8: create a path structure PS for T ;
9: TestNodes(I, parentPS.UnsatNodes, “true”, PS); {call Alogorithm 2}

10: for each element (Qt, loc) in parentPS.WaitNodes do
11: if I is contained by the locth interval of Qt then
12: if locth interval is the final interval of Qt then
13: add Qt into PS.SatNodes.
14: TestNodes(I, Qt.children, “true”, PS);
15: else
16: add (Qt,loc + 1) into PS.WaitNodes;
17: TestNodes(I, Qt.children, “false”, PS);
18: end if
19: end if
20: end for
21: push PS into PathStack;
22: end for

will be classified into simple paths and complex ones. For each query in Wait-
Nodes, the interval of the specific part is tested (Step 11), and when matched,
its next interval of this query will be inserted into WaitNodes of the current tag
(Step 16). However, it is possible that this part is the final part of the corre-
sponding query. Then this query has been totally matched at this tag and should
be inserted into SatNodes of current tag(Step 13). Besides, the child nodes of
this node in QIT need to be checked recursively (Steps 14 and 17).

For UnsatNodes, Algorithm 2 is called at step 9. In Algorithm TestNodes,
for each query, its interval can be evaluated with current tag directly, and once
satisfied, the child nodes of this query in QIT are checked recursively (Steps 2–
4). For complex queries that contain “∗” or “//”, the first interval will be tested.
Once satisfied, the following interval is inserted into WaitNodes and its children
which have complex queries are checked recursively (Steps 5–7).

6 Experiments

In this section, we describe the implementation of this prototype and test our
approach on the well-known XML benchmark XMark [21], whose compression
ratio by XPRESS approach is approximately 60%. We conducted all the exper-

iments on a platform with a machine of Pentium IV, 3.2 G CPU and 2 GB of
RAM. This platform is used to simulate a distributed environment, where clients
are simulated as threads and each client submits one query to the server. The
number of clients ranges from 10 to 70.

The size of the original documents is varied from 1KB to 100MB, and the
number of queries ranges from 20 to 1000. The queries used in our experiment are
extracted randomly from the paths contained in the original XML document. We
study these parts of our framework as follows. The first is to test the efficiency
of query processing on the server side in Sections 6.1 and 6.2. The second is
to verify the efficiency of reducing the server’s load in Section 6.3. Finally, we
compare our approach with a direct XML processing strategy in Sections 6.4
and 6.5, which demonstrate the overall benefits of our approach in terms of cost
savings.

6.1 Time Performance of Building QIT

The objective in this experiment is to study the time cost of using BuildingQIT
versus the synthetic data-set when running on the server side. We vary the
query number and observe the CPU time changes when running BuildingQIT
algorithms, in which the building time includes the cost of determining the con-
tainment relationship and constructing QIT trees for all queries.

As shown in Fig. 5, the time spent on building the query tree is roughly lin-
early scalable to the number of queries submitted to the server. It also indicates
that the time used to build the QIT tree is negligible compared to processing
XPath over a large-scale XML document when the clients increase. We also com-
pare QIT to BloomFilter [17] on building time in order to study the efficiency of
the QIT algorithm. BloomFilter is known to be highly efficient as a new tool used
in XML filtering. The results confirm that the QIT building time is comparable
to the building time in BloomFilter approach.

0
100
200
300
400
500
600
700
800

20 50 100 200 300 400 500 1000

No. of Queries

B
ui

ld
in

g
T

im
e

(m
s)

QIT BloomFilter

Fig. 5. QIT Vs. BloomFilter

0
50

100
150
200
250
300
350

20 100 500 1000

No. of Queries

Q
ue

ry
 E

va
lu

at
io

n
T

im
e

(s
) 1MB 10MB 20MB 50MB 100MB

Fig. 6. Query Evaluation Performance

6.2 Performance of Query Evaluation

We now study the efficiency of query evaluation on the server side. As shown
in Fig. 6, for each specified document size, the time spent on query evaluation
is stable, even though the query number varies greatly from 20 to 1000 and the
XML document size varies from 1MB to 100MB. This desirable feature is due
to the use of QIT which is built for all queries. After translating the XPath ex-
pression into its corresponding encoded interval, the queries over the compressed
document are transformed into computation of interval value according to QIT.
In order to obtain the “begin” and “end” information for QIT, the compressed
document is parsed only once, thus the query processing time by our approach
depends mainly on the document size.

6.3 Workload of Server

The experiments in this section are executed in the simulated distributed archi-
tecture. We fix the XML document to 1MB size and limit the client number to
70. We show the efficiency of our approach in reducing the server’s load during
the result publication. In Fig. 7, three kinds of size ratios are used to examine
the load effect of the server. The parameters are explained as follows:

Sout is the size of server’s output; Tout is the total data size published in
the network; Uout is the size of the uncompressed results that will be sent by
traditional approach without compression; Dout is presented for comparison to
XML filtering in Sub/Pub mode [3, 4, 17] where the server will send the whole
document once it is proved to match the query. Dout is thus the document size
multiplied by query number.

As shown in Fig. 7, when the client number is small and when there is a
low containment ratio existing among queries, most of the results should be
processed and sent out by the server. In this case the Sout/Tout approaches 1.
When the client number is 10, Sout/Uout is close to the compression ratio of
XPRESS. When the client number becomes larger, the containment ratio will
also increase. As a result, the publication load of the server will be shared by
the intermediate clients. Then, the server’s load in the whole network is reduced.
Compared with the uncompressed cases, the server’s load in our system has the
advantages gained by XML compression and clients’ co-operative transmission.

6.4 Comparison with Simple XML Processing Strategy

In order to gain better insight into the benefits of our approach, we compare our
approach with the simple strategy, which has neither QIT nor co-operation
among clients. For each submitted query, the server directly evaluates on the
original XML document. Here, we adopt SAXParser to parse the document, and
then to obtain the matched results for queries. The XML document used in this
experiment is fixed at 1MB.

In a distributed server-client network, performance of a system will be de-
termined not only by the query processing time, but also by the publishing time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

10 20 30 50 70
No. of Clients

R
at

io

Sout/Tout Sout/Uout Sout/Dout

Fig. 7. Server Output Ratios

0

50

100

150

200

250

10 20 30 40 50 60 70
No. of Clients

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(s

)

Simple Our Approach

Fig. 8. Average Waiting Time

of results or the response time to the client. We use the parameter average
waiting time given below in order to figure out the average response time for
a client to receive the query result.

AverageWaitingT ime =
∑

(Tfi − Ts)
n

(4)

where Tfi is the time when the ith client finishes receiving its result, Ts is the
time the server begins to publish the first result, and n is the number of clients.

As shown in Fig. 8, the server evaluates queries in a linear fashion when using
the simple strategy, thus the waiting time of clients increases linearly with the
total number of clients which submit queries. In our approach, query results are
published by both the server and intermediate clients in a multi-thread fashion.
In addition, the reduced size of the results by compression in our approach
enhances the overall performance.

6.5 Overall Cost Savings

We have already demonstrated how the performance of our system can be en-
hanced by exploiting the containment relationships existing in submitted queries.
The worst case is that no containment can be used and the server has to evaluate
and publish all results as the simple strategy. Whereas we still have the advan-
tage of bandwidth savings due to the XML compression even in worst case. We
now formulate the cost in the worst case W and the cost A in our approach as
follows.

W =
n∑

i=1

(Tpi + Tri) (5)

where Tpi and Tri indicate the query processing time and result publication
time for the ith client, respectively.

And we use A to indicate the actual condition of our approach.

A = Tqit + Tp +
n∑

i=1

Tri (6)

where Tqit is the QIT-building time of Algorithm 1, Tp is the query processing
time of Algorithm 3, and Tri denotes the time of result publication to the ith

client.
We establish a parameter called the saving ratio as follows:

S =
W −A

W
(7)

The saving ratio for querying on a 1MB-size XML document is shown in Fig.
9. When the number of clients increases, the containment ratio increases and so
does the saving ratio. As intermediate clients help the server to publish the con-
tained results in our approach, the response time of the whole network decreases.
We also note in Fig. 9 an interesting phenomenon that the efficiency of query
processing improves when more clients participate in asking and distributing
query results.

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70

No. of Clients

Sa
vi

ng
 R

at
io

Fig. 9. Saving Ratios

7 Conclusions and Future Work

In this paper, we tackle the problem of how to process queries efficiently over a
server-client architecture that consists of a large number of geographically dis-
tributed users who access a large amount of correlated XML information. We
present a framework that is able to save bandwidth and process the queries effi-
ciently. The underlying idea is to take advantage of XML compression technology
and the containment relationships among queries in a co-operative client-server
environment to publish XML results on the network. We also discuss some tech-
niques to support query processing in the server side and client sides. Experi-
mental results show that our approach is efficient in Internet-scale XML dissem-
ination. In the future work, we will discuss dynamical maintenance of QIT and
extend our scope of queries further to include more expressive XML queries such
as XQuery. An orthogonal problem related to fast information dissemination is
that we need to exploit the use of cache to aid the sharing of XML data that
have been obtained by clients.

8 Acknowledgement

This work is partially supported by NSFC under grant No. 60496325 and 60403019,
and by RGC CERG under grant No. HKUST6185/02E and HKUST6185/03E.

References

1. Tolani, P. M., Haritsa, J. R.: XGRIND: A Query-Friendly XML Compressor. In
Proc. of the 18th ICDE (2002) 225–234.

2. Chen, Z., Gehrke, J., Korn, F.: Query Optimization in Compressed Database Sys-
tems. In Proc. of SIGMOD (2001) 271–282.

3. Diao, Y., Rizvi, S., Franklin., M. J.: Towards an Internet-Scale XML Dissemination
Service. In Proc. of the 30th VLDB (2004) 612–623.

4. Diao, Y., Altinel, M., Franklin, M. J., et al.: Path Sharing and Predicate Evaluation
for High-Performance XML Filtering. ACM Trans. Database Sys. (2003) 467–516.

5. Buneman, P., Grohe, M., Koch, C.: Path Queries on Compressed XML. In Proc.
of the 29th VLDB (2003) 141–152.

6. Liefke, H., Suciu, D.: XMill: An Efficient Compressor for XML Data. In Proc. of
SIGMOD (2000) 153–164.

7. Miklau, G., Suciu, D.: Containment and Equivalence for an XPath Fragment. Jour-
nal of the ACM. Vol. 51 No. 1 (2004) 2–45.

8. Neven, F., Schwentick, T.: XPath Containment in the Presence of Disjunction,
DTDs and Variables. In Proc. of ICDT (2003) 315–329.

9. Min, J., Park, M., Chung, C.: XPRESS: A Queryable Compression for XML Data.
In Proc. of SIGMOD (2003) 22–33.

10. Cheng, J., Ng, W.: XQzip: Querying Compressed XML Using Structural Indexing.
In Proc. of EDBT (2004) 219–236.

11. Bruno, N., Gravano, L., Koudas, N., et al.: Navigation- vs. Index-Based XML
Multi-Query Processing. In Proc. of the 19th ICDE (2003) 139–150.

12. Ng, W., Lam, Y. W., Wood, P., et al.: XCQ: A Queriable XML Compression
System. In Proc. of WWW (2003).

13. Ng, W., Lam, Y. W., Cheng, J.: Comparative Analysis of XML Compression Tech-
nologies. To appear: World Wide Web Journal (2005).

14. Jiang, H., Lu, H., Wang, W., et al.: XR-Tree: Indexing XML Data for Efficient
Structural Joins. In Proc. of ICDE (2003) 253-263.

15. Amer-Yahia, S., Koudas, N., Marian, A., et al.: Structure and Content Scoring for
XML. In Proc. of VLDB (2005) 361–372.

16. Kaushik, R., Krishnamurthy, R., Naughton, J., et al.: On the integration of struc-
ture indexes and inverted list. In Proc. of SIGMOD (2004) 779–790.

17. Gong, X., Qian, W., Yan, Y., et al.: Bloom Filter-based XML Packets Filtering for
Millions of Path Queries. In Proc. of ICDE (2005) 890–901.

18. XPath. http://www.w3.org/TR/xpath20/.
19. gzip. http://www.gzip.org.
20. XML. http://www.xml.com/.
21. Xmark. http://www.xml-benchmark.org/.

