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Abstract

We consider a competitive facility location problem with two players. Players alter-
nate placing points, one at a time, into the playing arena, until each of them has
placed n points. The arena is then subdivided according to the nearest-neighbor
rule, and the player whose points control the larger area wins. We present a win-
ning strategy for the second player, where the arena is a circle or a line segment.
We also consider a variation where players can play more than one point at a time
for the circle arena.

1 Introduction

The classical facility location problem [6] asks for the optimum location of a
new facility (police station, super market, transmitter, etc.) with respect to a
given set of customers. Typically, the function to be optimized is the maximum
distance from customers to the facility — this results in the minimum enclosing
disk problem studied by Megiddo [9], Welzl [13] and Aronov et al. [2].

Competitive facility location deals with the placement of sites by competing
market players. Geometric arguments are combined with arguments from game
theory to see how the behavior of these decision makers affect each other.
Competitive location models have been studied in many different fields, such
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as spatial economics and industrial organization [1,10], mathematics [7] and
operations research [4,8,12]. Comprehensive overviews of competitive facility
locations models are the surveys by Friesz et al. [12], Eiselt and Laporte [4]
and Eiselt et al. [5].

We consider a model where the behavior of the customers is deterministic in
the sense that a facility can determine the set of customers more attracted to
it than to any other facility. This set is called the market area of the facility.
The collection of market areas forms a tessellation of the underlying space.
If customers choose the facility on the basis of distance in some metric, the
tessellation is the Voronoi Diagram of the set of facilities [11].

We address a competitive facility location problem that we call the Voronoi
Game. It is played by two players, Blue and Red, who place a specified num-
ber, n, of facilities in a region U . They alternate placing their facilities one
at a time, with Blue going first. After all 2n facilities have been placed, their
decisions are evaluated by considering the Voronoi diagram of the 2n points.
The player whose facilities control the larger area wins.

More formally, let {bi}
n
i=1

and {ri}
n
i=1

be the respective locations of the blue
and red points and set

B= |{u ∈ U : min
i

d(u, bi) < min
i

d(u, ri)}|,

R= |{u ∈ U : min
i

d(u, ri) < min
i

d(u, bi)}|

where d(u, v) is an underlying metric and | · | indicates the area of a set. Blue
wins if and only if B > R, Red wins if and only if R > B and the game ends
in a tie if B = R.

The most natural Voronoi Game is played in a two-dimensional arena U using
the Euclidean metric. Unfortunately nobody knows how to win this game, even
for very restricted regions U . In this note we present strategies for winning one-
dimensional versions of the game, where the arena is a circle or a line segment,
and variations. In other words, we consider competitive facility location on
circles and intervals.

The next section discusses the simplest game, on the circle. It is obvious that
the second player, Red, can always achieve a tie by playing on the antipode of
Blue’s move. One might try to tweak this strategy such that it results in a win
for Red. This doesn’t seem to work, and we present instead a quite different
winning strategy for Red.

Section 3 describes how this strategy remains a winning strategy even if the
rules of the game are drastically relaxed.
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In Section 4 we finally turn to the line segment arena. It would appear that
Blue has an advantage here, because he can play the midpoint of the segment
in his first move. We show that this doesn’t help, and prove that Red still has
a winning strategy. The strategy is quite similar to the one for the circle case,
but its analysis (because of a loss of symmetry) is more detailed.

In Section 5 we discuss whether Red can win by a higher margin than our
strategies permit. It turns out that this is not the case, as we can give a
defense stragegy for Blue that allows him to get as close to a tie as he wishes.

2 The basic circle game

There are two players, Blue and Red, each having n points to play, where
n > 1. They alternate placing these points on circle C, with Blue placing
the first point, Red the second, Blue the third, etc., until all 2n points are
played. We assume that points cannot lie upon each other. Let {bi}

n
i=1

be the
locations of the blue points and {ri}

n
i=1

be those of the red ones. After all of
the 2n points have been played each player receives a score equal to the total
circumference of the circle that is closer to that player than to the other, that
is, Blue and Red have respective scores

B= |{x ∈ C : min
i

d(x, bi) < min
i

d(x, ri)}|

R= |{x ∈ C : min
i

d(x, ri) < min
i

d(x, bi)}|

The player with the highest score (the larger circumference) wins.

The question that we address here is, Does either player have a winning strat-
egy and, if yes, what is it? We will see below that the second player, Red,
always has a winning strategy.

Before giving the strategy we introduce some definitions. We parameterize the
circle using the interval [0, 1], where the points 0 and 1 are identified. Arcs on
the circle are written as [x, y] implying the clockwise arc running from x to y,
as in [.5, .6] or [.9, .1].

Definition 1 The n points ui = i
n
, i = 0, 1, . . . , n − 1 are keypoints.

Figure 1 shows the keypoints for n = 4.

We call an arc between two clockwise consecutive red/blue points an interval.
The interior of an interval is free of red/blue points. At any given time during
the game the circle is partitioned into intervals. An interval is monochromatic
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Fig. 1. There are four keypoints when n = 4.

if its endpoints have the same color, and bichromatic if they have different
colors. A blue interval is a blue monochromatic one, a red interval a red
monochromatic one. We denote the total length of all red intervals by Rm,
and the total length of all the blue intervals by Bm. An interval is called a key
interval if both of its endpoints are keypoints.

The important thing to notice is that at the end of the game the length of each
bichromatic interval is divided equally among the two players, so R − B =
Rm − Bm and Red wins if and only if Rm > Bm. We devise our strategy to
force this to happen.

Since we can parameterize the circle arbitrarily, we can assume without loss
of generality that Blue plays his first point on 0 and thus on a keypoint. We
now describe Red’s winning strategy. Figure 2 shows an example.

Red’s Keypoint Strategy

Stage I: If there is an empty keypoint then Red plays onto the keypoint.
Stage I ends after the last keypoint is played (by either Red or Blue).

Stage II: If there is no empty keypoint and it is not Red’s last move then
Red plays her point into a largest blue interval. We call this breaking the
blue interval.

Stage II ends when Blue plays his last point.
Stage III: Red’s last move. There are two possibilities:

(i) if there exists more than one blue interval then Red breaks a largest
one by placing her point inside.

(ii) if there is only one blue interval define ` < 1

n
to be its length. Red’s

move is to go to a bichromatic key interval and claim a red interval
of length larger than ` by placing a red point closer than 1

n
− ` to

the blue endpoint of the bichromatic key interval.

The two following lemmas will be needed.

Lemma 1 Let B be a set of b blue points and let R be a set of r red points
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Fig. 2. There are four points to be played for both Blue and Red. The white dots
represent Blue’s points and the black dots represent Red’s points. We label the dots
in chronological order.

currently on the circle with b ≥ r. Let n(R) be the number of red intervals they
form and n(B) the number of blue ones. Then n(B) − n(R) = b − r.

Proof: The proof will be by induction on r. If r = 0 then b blue points form
b blue intervals so n(B) = b, n(R) = 0 and the condition n(B)−n(R) = b− r
is satisfied.

Now suppose that the lemma is true for all configurations of b blue points and
r − 1 red ones. Deleting any red point p from R leaves b blue and r − 1 red
points, so n(B) − n(R − {p}) = b − r + 1. We now add the red point p back
into the configuration and ask how the monochromatic intervals can change.
There are three possible placements of p :

(i) inside a red interval, increasing n(R) by one and leaving n(B) unchanged.
(ii) inside a blue interval, decreasing n(B) by one and leaving n(R) un-

changed.
(iii) inside a bichromatic interval, increasing n(R) by one and leaving n(B)

unchanged.

After all three of these cases we find that n(B)−n(R) = n(B)−n(R−{p})−1 =
b − r.

Lemma 2 Suppose that all n keypoints are covered and Blue has just moved
(possibly covering the last keypoint). If there is only one blue interval and this
interval has length < 1

n
, then there exists a bichromatic key interval.

Proof: We apply the pigeon hole principle: At most 2n − 1 points have been
played, n of them on keypoints. Consider the n circle arcs of length 1

n
formed

by the n keypoints. Since the blue interval has length < 1

n
, at least one of its

endpoints is inside an arc. That leaves only n − 2 points to have been played
inside the n − 1 remaining arcs. Therefore, one of the arcs must be free of

5



points, forming a key interval. Since there is only one blue interval, there is
no red interval by Lemma 1. Therefore, this key interval is bichromatic.

Theorem 1 The keypoint strategy is a well-defined winning strategy for Red.

Proof: We start with a simple observation. Since the circle contains only n
keypoints and Blue’s first move covers the first keypoint, Red will play onto
at most n − 1 keypoints. Thus Stage I always ends before Red plays her last
point.

Consider Stage II. Lemma 1 implies that after each play by Blue (b = r + 1)
there is always at least one blue interval on the circle, so Stage II of the
strategy is indeed well defined.

We make two observations concerning the situation after Stage II, when Red
has played her n − 1’st point. The first is that there is no blue key interval.
Let k be the number of keypoints played by Blue during the game. Red has
covered the remaining n−k keypoints by the end of Stage I. If k = 1 (the only
case in which Red skips Stage II), then there certainly is no blue key interval
as there is only one blue keypoint. When k > 1, Blue can define at most k− 1
blue key intervals with its k keypoints (since Red has at least one keypoint).
Note that since all keypoints are played by the end of Stage I, all intervals in
Stages II and III have length at most 1

n
. In particular a blue key interval is

longer than any other blue interval. Since Red plays k − 1 points in Stage II,
all blue key intervals are broken during Stage II.

The second observation concerning the situation after stage II is that all red
intervals are key intervals. This statement is true at the end of Stage I, as Red
has so far only played onto keypoints, and all keypoints are covered. During
Stage II, Red uses her points to break blue intervals, and therefore creates
bichromatic intervals only. Blue cannot create red intervals, and so, at the end
of Stage II, all red intervals are indeed key intervals.

We now show why Stage III is well defined and why Red wins. Suppose that
Blue has just played his last point and it is now time for Stage III, Red’s last
move. From Lemma 1 we know that n(B) ≥ 1.

If n(B) > 1 before Red’s last move then the strategy is well defined: Red
breaks a largest blue interval. This decreases n(B) by 1 so the game ends
with n(B) ≥ 1. By Lemma 1 we have n(R) = n(B) ≥ 1. But now note that
from the observations in the preceding paragraphs all existing red intervals
are key intervals while all existing blue intervals have length strictly less than
1

n
. Since all red intervals are longer than all blue intervals and there are the

same number of red ones and blue ones we find that Rm > Bm and Red wins.
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If n(B) = 1 before Red’s last move the strategy requires that the unique blue
interval has length ` < 1

n
, and that there exists a bichromatic key interval. The

first fact was already observed above, the second fact follows from Lemma 2.

After Red places her last point Blue still has one blue interval of length ` while
Red has one red interval of length > `. Thus Rm > ` = Bm and Red wins.

3 A modified circle game

The basic game can be modified in many different ways. The simplest modi-
fication allows the players to play more than one point at a time. More com-
plicated modifications permit the players (both or one) to choose before each
turn, how many points they play.

Suppose that there are k ≤ n rounds. Let βi and γi be the numbers of points
that Blue and Red play respectively in round i. Suppose that the following
restrictions are placed.

• ∀1 ≤ i ≤ k, βi, γi > 0.
• ∀1 ≤ j ≤ k,

∑j
i=1 βi ≥

∑j
i=1 γi.

•
∑k

i=1
βi =

∑k
i=1

γi = n.
• β1 < n.

Then Red still wins by following exactly the same strategy as in the previous
section of first filling in the keypoints and then breaking the largest blue
intervals until Red plays it’s last point when it follows the Stage III rules. The
proof that the strategy is well defined and wins is almost exactly the same as
the one in the previous section so we will not repeat it here.

Note that this generalization includes both the original game and the “batched”
version in which each player plays the same number (> 1) of points at each
turn. Note, too, that k, βi, and γi need not be fixed in advance. For example,
Blue may decide at every move how many points he will play and then Red
plays the same number.

We conclude this section by noting that the condition β1 < n is essential since
otherwise Blue would play the keypoints, forcing a tie.
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4 The line segment version

We now move on to the version of the game played on a line segment. We
consider it to be horizontal and parameterized as [0, 1]. The scoring is the
same as in the basic circle game except that the player with the leftmost
point claims everything between 0 and the point, and the player with the
rightmost point claims everything between the point and 1. We assume that
n > 1, and points cannot lie upon each other. When n = 1, Blue wins by
placing onto 1

2
.

We modify some of the old definitions and introduce new ones:

Definition 2 The n points ui = 1

2n
+ i

n
, i = 0, 1, . . . , n − 1 are keypoints.

The left segment is the segment from 0 to the leftmost red or blue point. The
right segment is the segment from the rightmost red or blue point to 1. The
border interval is the union of the left and right segments. An interval is a
section of the line segment with red/blue endpoints and no red/blue points in
its interior. We consider the border interval an interval. An interval, including
the border interval, is monochromatic if its endpoints have the same color,
and bichromatic if they have different colors. With this definition of intervals,
Lemmas 1 and 2 are true for the line segment as well.

We denote the total length of all of the blue intervals—including, if appropri-
ate, the border interval—by Bm, the total length of all of the red intervals—
again including, if appropriate, the border interval—by Rm. When the border
interval is bichromatic, we use Bb to denote the length of the left/right segment
with a blue endpoint and Rb to denote the length of the left/right segment with
a red endpoint. If the border interval is monochromatic, then Bb = Rb = 0.
Since all bichromatic non-border intervals are equally shared by both players
R−B = (Rm + Rb)− (Bm + Bb) and, as in Section 2, we design our strategy
so that Red finishes with the right hand side of the equation > 0.

We now introduce the line strategy, a modified version of the circle strategy.
Figure 3 shows an example.

Red’s Line strategy

Stage I: If there is an empty keypoint then Red plays the keypoint. If u0

or un−1 have not yet been played then Red should play onto one of them
first. Stage I ends after the last keypoint is played by either Red or Blue.
Note that the game may finish in Stage I.

Stage II: If there is no empty keypoint and it is not Red’s last move then
(i) if there exists at least one blue non-border interval, then Red should

break a largest blue non-border interval by placing her point inside.
(ii) if the border interval is the only blue interval, then there are two
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Fig. 3. There are four points to be played for both Blue and Red. The white dots
represent Blue’s points and the black dots represent Red’s points. We label the dots
in chronological order.

possible cases:
(a) One of the blue endpoints of the blue border interval is a key-

point:
Without loss of generality assume that it is u0 (the other case
is symmetric) and the other endpoint is 1− `. From Stage I the
other endpoint cannot be the keypoint un−1 so ` < 1

2n
. Red now

places her new point at x where x is anywhere in (`, u0).
(b) Neither of the endpoints of the border interval are keypoints:

Let ` be the length of the blue border interval; ` < 1

n
. There

must then exist a bichromatic key interval (Lemma 2). Red
places her new point in that interval to form a new red interval
of length > `.

Stage II ends after Blue plays his last point.
Stage III: If Red is placing her last point, we have two mutually exclusive

cases:
(i) if there exists more than one blue interval, then Red should break a

largest non-border one.
(ii) if there exists only one blue interval, then let its length be `; we will

see below that ` < 1

n
. Red should go to a bichromatic key interval

(one will exist from Lemma 2) and claim a red interval of length > `
as follows.

· If the bichromatic key interval is not the border interval, Red
can do this by creating a new red interval of length > `.

· If the bichromatic key interval is the border interval, then Red
already possesses 1

2n
of it because she has all of either [0, u0] or

[un−1, 1]. Red can therefore go to the side she does not possess,
and grab enough length to have a red border interval of length
> `.

Theorem 2 The line strategy is a well-defined winning strategy for Red.
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Proof: Note that this strategy differs in at least one major aspect from the
circle strategy: since we have lost circular symmetry it cannot be guaranteed
that Blue plays onto at least one keypoint, and so it is possible that the game
will end in Stage I, with Red playing all n keypoints. In this case, all red
intervals (including, possibly, the border interval) are key intervals and all
blue intervals have length < 1

n
. By Lemma 1 Blue and Red have the same

number of monochromatic intervals, so Bm < Rm. If the border interval is
monochromatic, then Bb = Rb = 0 and Red wins. If the border interval is
bichromatic, then one of its endpoints must be the red point u0 or un−1. This
implies that Bb < Rb = 1

2n
, and Red wins.

In what follows we may therefore assume that Blue plays onto at least one
keypoint during the game. We will show that at the end of the game it will
always be true that Bm < Rm and, if the border interval is bichromatic, then
Bb ≤ Rb. The theorem will follow.

First note that under this assumption Stage I always ends with all keypoints
covered, and Stage III is reached. Note further that Red’s first move is onto
either u0 or un−1.

We consider Stage II. After Blue’s every move there exists at least one blue
interval (possibly the border interval) by Lemma 1. If there is only one such
blue interval, there is no red interval. Thus, one of the two conditions (i) or (ii)
of Stage II holds. The strategy is clearly well defined in cases (i) and (ii)(a),
the validity of (ii)(b) follows from Lemma 2.

We will need one more observation.

Lemma 3 After Blue’s last move, there is no blue key interval.
Proof: Let k be the number of keypoints played by Blue, where 1 ≤ k ≤
dn

2
e. There are therefore at most k − 1 blue key intervals after Stage I.

Red occupies n − k keypoints in Stage I, and so Stage II lasts for k − 1
rounds. This is sufficient for all blue key intervals to be broken, since a
blue key interval is longer than any other blue interval in Stage II (i) and
Stage II (ii)(a).

We now prove that Red wins. There are two cases.

Lemma 4 Assume that case (ii) of Stage II never occurs. Then all red
intervals are key intervals after Blue’s last move.
Proof: After Stage I all red intervals are key intervals, since Red has only
played keypoints and all keypoints are covered. During Stage II Red uses
all her points to break blue intervals (since case (ii)(b) does not occur), and
so creates only bichromatic intervals. As Blue cannot create red intervals,
all red intervals remaining after Stage II are indeed key intervals.
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We examine the result of Stage III, assuming that case (ii) of Stage II did
not occur. Assume first that Red plays case (i) of Stage III. There are then
equal numbers of red and blue intervals left after the last move. Since all blue
intervals have length < 1

n
by Lemma 3, and all red intervals are key intervals

by Lemma 4, we have Bm < Rm. If the border interval is monochromatic, then
Bb = Rb = 0 and Red wins. If the border interval is bichromatic, then its red
endpoint must be u0 or un−1 (since Red plays case (i) of Stage II only), and
so Bb ≤ Rb = 1

2n
and Red wins.

On the other hand, assume now that Red plays case (ii) of Stage III. Then
Blue has total length `, Red has > `, and so Red wins.

We now consider the remaining case, where case (ii) of Stage II does occur.

Lemma 5 Assume that case (ii) of Stage II occurs at least once. After Red’s
last move in Stage II, there is no blue non-border interval and B < R.
Proof: We prove that the statement is true after the last occurrence of
case (ii) in Stage II, and after each subsequent move by Red.

Consider the last occurrence of case (ii). Before Red’s move, the border
interval is the only blue interval.

If Red plays case (ii)(a), there is no blue interval at all after Red’s move.
We have then Bm = Rm = 0 and Bb < Rb, which implies B < R.

If Red plays case (ii)(b), Red claims a red interval longer than the blue
border interval. So after Red’s move we have B < R, as Bm < Rm and
Bb = Rb = 0.

Consider now the remaining moves of Stage II. In all these moves Red
plays case (i), and so we can deduce that Blue uses his move to create a new
blue non-border interval. Red immediately breaks this blue interval. This
leaves Bm, Rm, Bb, and Rb unchanged and destroys the only blue non-border
interval. The claim therefore remains true after each subsequent move by
Red, and in particular after Red’s last move in Stage II.

We consider the situation right before Blue’s last move. By Lemma 5, there
is no blue non-border interval, and B < R.

If the border interval is blue before Blue’s last move and Blue uses that move
to create a blue non-border interval move, Red plays case (i) of Stage III. This
breaks the new blue non-border interval, returning B and R to their state
before Blue’s last move, and so Red wins.

In all other cases there is a single blue interval after Blue’s last move. It cannot
be a key interval by Lemma 3, and so, by Lemma 2, there is a bichromatic key
interval. Red claims a red interval longer than the blue interval, and wins.
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5 Blue’s defense

The strategies given in the previous sections allow the second player, Red, to
win the Voronoi game. The margin by which Red wins is very small, however,
and in fact Blue can make it as small as he wants. Is there a strategy that
would allow Red to win by a larger margin? The answer is no, as the following
defense strategy for Blue shows. The same strategy works for the circle.

Blue’s Line defense stragegy

Stage I: If there is an empty keypoint then Blue plays the keypoint, with
u0 being played in the first round. Stage I ends after the last keypoint is
played by either Red or Blue. Note that Blue may play all his points on
keypoints.

Stage II: If there is no empty keypoint then
(i) if there exists at least one red non-border interval, then Blue should

break a largest red non-border interval by placing his point inside.
(ii) if there is no red non-border interval, then there must exist a bichro-

matic non-border key interval (see below). Blue should claim a blue
interval of length > 1

n
− ε by placing his point close to the red end-

point of this key interval.

Theorem 3 For any ε > 0, Blue can apply the defense strategy to capture at
least 1/2 − 2ε of the line segment.

Proof: We first prove that the strategy is indeed well-defined by showing that
in case (ii) of stage II there is indeed a bichromatic non-border key interval.
Let t ∈ {0, 1} be the number of red intervals. Assume m < n rounds have been
played, so 2m ≤ 2n−2 points have been placed, with n of these on keypoints.
If t = 1, then one red point lies left of u0 (as u0 is blue), and so there are at
most 2m − n − t ≤ n − 2 − t points not on keypoints between u0 and un−1.
The n keypoints define n − 1 non-border segments, so at least t + 1 of these
segments contain no points in their interior. By Lemma 1 the number of blue
intervals is t, and one of these t + 1 key intervals must be bichromatic.

We now argue that at the end of the game, all blue intervals are key intervals,
with the exception of at most two blue intervals of length 1

n
−ε. Indeed, case (ii)

of Stage II applies only if at most one red interval exists. By Lemma 1 there
is then at most one blue interval, and so Blue will never create an interval of
length 1

n
− ε if more than one already exists.

Since all red intervals have length at most 1

n
, we have Bm − Rm > −2ε, and

the theorem follows.
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6 Conclusions

We have given strategies for one-dimensional competitive facility location, al-
lowing the second player, Red, to win. We have also shown that the first
player, Blue, can keep the winning margin as small as he wishes. For all prac-
tical purposes, we can conclude that the one-dimensional Voronoi Game ends
in a tie.

In fact, our strategies rely on the continuity of the arena—without continuity
Red cannot win anymore. Imagine, for instance, a game where both players
play 10 points on the line segment, but point locations are restricted to mul-
tiples of 1/100. It is easy to see that Blue’s defense strategy will achieve a
tie.

Similarly, if players are allowed to place points infinitesimally close to their
opponent (that is, on the same location, but indicating a “side”), then Blue’s
defense strategy will guarantee a tie.

Do our findings have any bearing on the two-dimensional Voronoi Game? The
concept of keypoints turned out to be essential to our strategies. We have seen
that a player governing all keypoints cannot possibly lose the game. Surpris-
ingly, the situation in two dimensions is quite different: It can be shown [3]
that for any given set of n blue points in, say, a unit square, we can find a
set of n red points so that the area dominated by Red is at least 1/2 + δ,
for an absolute constant δ > 0 not depending on n (but where n is assumed
sufficiently large).
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