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Abstract

We present an algorithm to compute a Delaunay mesh conforming to a polyhedron pos-
sibly with small input angles. The radius-edge ratio of most output tetrahedra are bounded
by a constant, except possibly those that are provably close to small angles. Furthermore,
the mesh is not unnecessarily dense in the sense that the edge lengths are at least a constant
fraction of the local feature sizes at the edge endpoints. This algorithm is simple to imple-
ment as it eliminates most of the computation of local feature sizes and explicit protective
zones. Our experimental results validate that few skinny tetrahedra remain and they lie
close to small acute inputs.

1 Introduction

The need for meshing a polyhedral domain with well shaped tetrahedra occurs as an important
problem in finite element methods. Mainly there are two approaches known for the problem,
octtree based refinement [1, 12] and the Delaunay refinement [6, 8, 10, 11, 14, 15]. Among these
two, often the latter is preferred for its directional independence and better quality meshing in
general.

The Delaunay refinement techniques developed with the work of Chew [5] and Ruppert [14]
who showed how to mesh a polygonal domain in 2D with quality triangles. Shewchuk extended
the technique to polyhedral domains in three dimensions [15]. This extension has two short-
comings. First, it guarantees bounded radius-edge ratio but not bounded aspect ratio. The
radius-edge ratio of a tetrahedron is the ratio of its circumradius to its smallest edge length.
Bounded radius-edge ratio eliminates all kinds of poor tetrahedra but not slivers. Second, the
Delaunay refinement works only with input domains where no angle is smaller than π

2 . The
sliver exudation method of Cheng et al. [3] addressed the sliver problem though for unbounded
domains. Chew [6] and Li and Teng [10] proposed non-deterministic point placement to elim-
inate slivers for bounded domains. Cheng and Dey [2] combined the sliver exudation method
with the Delaunay refinement to give a deterministic algorithm for meshing bounded domains
with tetrahedra having bounded aspect ratio.
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However, these works did not address the problem of small angles, specifically input angles
less than π

2 . Shewchuk [16] addressed the problem of small angles with constrained Delaunay
triangulation though without any guarantees about the shape quality of the tetrahedra. The
question of handling small angles with Delaunay refinement was left open. Murphy, Mount and
Gable [13] and Cohen-Steiner, de Verdière and Yvinec [7] presented algorithms that can trian-
gulate any polyhedral domain with Delaunay tetrahedra though without any quality guarantee.
Recently, Cheng and Poon [4] proposed a Delaunay meshing algorithm that can handle small
angles with quality guarantees. The output mesh is graded, and the radius-edge ratio of all
tetrahedra are bounded by a constant. The constant depends on the smallest input angle in
the vicinity of input edges, but it is independent of the input domain elsewhere. Although this
algorithm is a significant theoretical progress for dealing with small angles, its practical viabil-
ity is doubtful. The main reason is that they construct a protecting region (a union of balls)
around each input edge explicitly, which is complicated and time intensive. This construction
involves computing a feature related quantity called the local gap size for a number of points
on the edges, intersections among spheres and input facets, and intersections among spheres.
Moreover, the subsequent refinement has to deal with curved edges and spherical surfaces.

In this paper we present a new algorithm for meshing polyhedra which has similar guar-
antees as that of [4], but it is much simpler to implement. Our algorithm produces a graded
Delaunay mesh. The radius-edge ratio of most output tetrahedra are bounded by a constant.
Any remaining tetrahedron of poor shape are provably close to some small input angle. In
this new algorithm, we get rid of the explicit construction of any protecting region, and limit
the computation of local feature sizes at the input vertices only. The elimination of these
computations has enabled us to implement the algorithm. We present experimental results
to demonstrate that our algorithm indeed handles polyhedra with small angles. The results
validate our claim on the quality of the output tetrahedra and show that few skinny tetrahedra
remain.

2 Preliminaries

Basic definitions. We need the following definitions most of which have been introduced in
earlier works.

Skinny tetrahedra. Let R, ℓ be the circumradius and shortest edge length respectively of a
tetrahedron τ . Let ρ(τ) = R/ℓ. We say τ is ρ0-skinny or simply skinny if ρ(τ) > ρ0.

Input domain. We assume that the input domain is a polyhedron bounded by a 2-manifold
which is the underlying space of a piecewise linear complex, or PLC in short. A PLC is a
collection of closed elements which are vertices, edges and facets that form a complex in the
following sense. The intersection of any two elments is either empty or is a collection of lower
dimensional elements. We adopt the convention that an edge includes its endpoints, and a facet
includes its vertices and edges. Also, we assume that the boundary of each facet is a collection
of simple polygonal cycles.

Incident and adjacent elements. Let ∂F denote the boundary of an element F ∈ P. We say that
an element F ∈ P is incident to an element G ∈ P if either F ⊆ ∂G or G ⊆ ∂F . Two elements
of P are adjacent if either they are incident or they are non-incident but their intersection is
non-empty.
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Local feature size. The local feature size for P is a function f : R
3 7→ R where f(x) is the radius

of the smallest ball centered at x intersecting two non-adjacent elements of P.

Input angles. We define two types of input angles at each vertex u of P. For any two incident
edges of u, we measure the angle between them. We call such angles edge-edge angles. For any
edge uv and a facet F incident to u such that uv is neither incident on F nor coplanar with
F , the angle between uv and F is min{∠puv : p ∈ F, p 6= u}. We call such angles edge-facet
angles. At an edge of P, we measure the internal and external dihedral angles at the edge.
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Figure 1: There are two edges and one isolated vertex in F1 ∩ F2.

The remaining angles involve two adjacent non-coplanar facets F1 and F2. Let H1 and H2

be the support planes of F1 and F2, respectively. Notice that Fi may cross the line H1∩H2 and
the intersection of F1 and F2 may be disconnected; see Figure 1. In general, F1 ∩F2 consists of
a sequence of edges and isolated vertices along the line H1 ∩H2. The planes H1 and H2 divide
R

3 into four regions. We call a region a wedge of F1 and F2 if it contains points on both F1

and F2 other than those on the line H1 ∩ H2. The dihedral angle subtended by the wedge at
the line H1 ∩ H2 is called its wedge angle.

Throughout this paper, we use αm to denote the minimum input angle in P. We will need
the following lemma about the angles between a line segment and a plane that it is attached
to.

Lemma 2.1 Let ab be a line segment. Let H be a plane that contains b but not a. Let a′ be
the orthogonal projection of a onto H. Then for any point x ∈ H other than b, cos ∠abx =
cos ∠aba′ · cos ∠a′bx.

Proof. Let i, j, and k be three orthonormal vectors with origin at b such that i lies on a′b, j
is normal to H and on the same side of H as ab, and k is on the same side of a′b as bx. Then

cos ∠abx =
(a − b)

‖a − b‖ · (x − b)

‖x − b‖
= (i cos ∠aba′ + j sin ∠aba′) · (i cos ∠a′bx + k sin ∠a′bx)

= cos ∠aba′ · cos ∠a′bx.

Lemma 2.1 implies that if we rotate a ray around b in H starting from the direction of
a′ − b, the angle between ab and the ray increases continuously until the ray is collinear with
a′b. After that the angle decreases continuously until it returns to a′ − b. See Figure 2.
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Figure 2: As the ray bx rotates a full circle in clockwise order starting from ba′, ∠abx strictly
increases as x goes from a′ to c, and then strictly decreases as it goes from c to a′.

Sharp features. We call an edge sharp if the internal or external dihedral angle at the edge
is acute. Sharp edges can be identified by taking the dot product of the outward normals of
their incident facets. If the dot product is negative, the edge is sharp.

We call a vertex u sharp if an edge-edge angle or an edge-facet angle at u is acute, or if u
is an endpoint of a sharp edge. Two edges uv and uw form an acute angle if the dot product
(v −u) · (w− u) is positive. Checking if an edge uv forms an acute angle with an incident facet
F of u requires a bit more work. We first check that uv is not incident to F and uv is not
coplanar with F . Then the angle between uv and F is acute if and only if ∠vuw is acute for
some vertex w of F .

We call a wedge sharp if its wedge angle is acute. Our algorithm only needs to identify sharp
vertices and sharp edges. That is, our algorithm only works with edge-edge angles, edge-facet
angles, and dihedral angles. The wedges, wedge angles, and the minimum input angle αm are
used in the analysis only.

3 Algorithm

The algorithm has three distinct phases, an initialization phase called Initialize, a protection
phase called Protect and a refinement phase called Refine. In Initialize we protect the
sharp vertices and compute the initial Delaunay triangulation. In Protect, we first refine
edges and facets so that the the 3D Delaunay triangulation conforms to P. Then, we determine
certain protecting balls around sharp edges. Some points are disallowed to be inserted in the
Refine phase in these protecting balls and the vertex balls around sharp vertices. Notice
that there is no explicit construction of a protecting region. After Protect, Refine starts
splitting skinny tetrahedra which may trigger more splitting of the edges and facets. The
algorithm maintains a vertex set V which is updated along with its Delaunay triangulation
DelV as more vertices are generated.

At any generic step of the algorithm, the vertices on any edge of P divide it into subseg-
ments. The subsegments inside the vertex balls are protected by the vertex balls, so we are not
concerned about them. We call a subsegment sharp if it lies outside the vertex balls and on a
sharp edge. It is non-sharp otherwise. A circumball of a subsegment is a ball with the subseg-
ment endpoints on its boundary. The diametric ball of a subsegment is its smallest circumball.
A point p encroaches a subsegment if p is not an endpoint of the subsegment and lies on or
inside its diametric ball. This definition of subsegment encroachment is stricter than the usual
one as it includes the case where p lies on the ball boundary. This helps to simplify proofs later.

When no subsegment is encroached by any vertex in V, the facets are decomposed into
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subfacets defined as follows. For each facet F of P, consider the 2D Delaunay triangulation of
the vertices in V ∩ F . The Delaunay triangles in F are its subfacets. Thanks to the stricter
definition of subsegment encroachment, the circumcenters of subfacets lie strictly in the interior
of F , see Cheng and Dey [2]. A circumball of a subfacet h is a ball with the vertices of h on
its boundary. The diametric ball of h is its smallest circumball. A point p encroaches h if p lies
inside its diametric ball. Notice that we cannot use the stricter definition of encroachment as
in the subsegment case because more than three vertices in V ∩ F may lie on the same empty
circle. In this case, the 2D Delaunay triangulation of V ∩ F is degenerate.

There are several subroutines used by our algorithm. We describe them in Sections 3.1–3.5
and then give the algorithm in Section 3.6.

3.1 Sharp vertex protection

First, we protect the sharp vertices with empty protecting balls called vertex balls. Points are
disallowed to be inserted inside these vertex balls at later stages. This will mean that certain
skinny tetrahedra are not removed since their removal causes insertions of vertices inside these
vertex balls. Because of this constraint we compute the feature sizes at the sharp vertices
explicitly and use it to compute the vertex balls. This allows us to argue that the skinny
tetrahedra that we left out lie near the sharp vertices and edges of the input.

For each sharp vertex u, we compute its distance from all elements of P which are not
incident to u. This distance is the local feature size f(u) at u. We put a ball û with radius
f(u)/4. (In the rest of this paper, we use x̂ to denote a ball centered at a point x. When x is a
vertex of P, x̂ refers to its vertex ball.) The points where the boundary of û intersects edges of
P are inserted into the vertex set V. We protect a subset of û∩P using the method of Cohen-
Steiner, de Verdière and Yvinec [7]. At any generic step of the algorithm, V contains vertices
on the arc where a facet F incident to u intersects the boundary of û. The segments connecting
consecutive points on such an arc form shield subsegments. Let ab be a shield subsegment. If
the angle of the sector aub on F is at least π or ab is encroached, it is split by the following
method called SOS according to Cohen-Steiner et al. [7]. If the angle of the sector aub on F
is at least π, we insert the midpoint x on the arc between a and b on the boundary of û ∩ F .
The subsegment ab is replaced with two shield subsegments ax and bx; see Figure 3(a). So this
type of splitting happens at most once for u, in which case a and b lie on the boundary edges
of F incident to u. If the angle of the sector aub is less than π and ab is encroached, we insert
the midpoint x on the shorter arc between a and b on the boundary of û. The subsegment ab
is replaced with two shield subsegments ax and bx; see Figure 3(b).

When no shield subsegment corresponds to a sector at u with angle π or more, the shield
subsegments around u create a set of shield subfacets incident to u. Figure 3(c) shows an
example. It turns out that the diametric ball of a shield subfacet lies in the union of the vertex
ball û and the diametric ball of the corresponding shield subsegment. Since û is kept empty
throughout the algorithm, it is sufficient to keep the diametric balls of shield subsegments empty
to ensure that shield subfacets appear in DelV.

In Initialize, we only insert the points where the incident edges of u intersects the boundary
of û, and split shield subsegments that correspond to sectors with angles π or more. The
encroachment of shield subsegments is handled in the next phase Protect. The following
technical lemma will be useful.

Lemma 3.1 Let u be a vertex. Let B be the ball centered at u with radius f(u)/2. Then
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Figure 3: Shield subsegment, shield subfacet, and splitting.

(i) The diametric ball of any shield subsegment inside û lies in B.

(ii) B is disjoint from any vertex ball other than û.

(iii) B is disjoint from any edge or facet not incident to u.

Proof. The diametric ball of any shield subsegment inside û has radius at most f(u)/4. So
any point in it is at distance f(u)/2 or less from u. This proves (i). For any vertex ball ŵ 6= û,
its radius is equal to f(w)/4 ≤ ‖u − w‖/4. Also, radius(B) = f(u)/2 ≤ ‖u − w‖/2. So the
distance from B to ŵ is at least ‖u − w‖/4. This proves (ii). The correctness of (iii) follows
from the fact that the distance between u and an non-incident edge or facet is at least f(u).

3.2 Edge splitting

Edges are split in both the Protect and Refine phases using a subroutine SplitEdges,
which recovers the edges of P as union of Delaunay edges. SplitEdges splits any subsegment
(sharp, non-sharp or shield) that is encroached using SplitE until no such segment exists.

SplitE(e)

If e is a shield subsegment, split it with SOS else insert the midpoint
of e in DelV.

Notice that any point inserted by SplitE cannot encroach the vertex balls of sharp vertices.
When SplitEdges terminates, each edge of P appears as a union of Delaunay edges.

3.3 Facet splitting

After we recover all the edges, we start splitting facets using a subroutine SplitFacets so
that they appear in DelV as union of subfacets. Standard Delaunay refinement insists that no
encroached subfacet exists. With small input angles, such a condition may never be satisfied
for all subfacets. Instead, we check only that the subfacets appear in DelV. We argue that
such a condition can be satisfied for a polyhedron after sufficient but finite amount of splitting.

Let h be a subfacet that does not appear in DelV. Certainly, h cannot be a shield subfacet
since there is no encroached shield subsegment when the algorithm reaches the facet splitting
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step. We basically insert the circumcenter of h if h 6∈ DelV, but some exception handling is
needed if the circumcenter encroaches a subsegment. The procedure SplitF below gives the
details.

SplitF(h)

(i) Compute the circumcenter c of h;

(ii) If c does not encroach any subsegment, insert c into DelV. Other-
wise, let F be the facet containing h.

(a) pick a subsegment g encroached by c with preference for those
in ∂F or on F (shield subsegment), and

(b) call SplitE(g).

3.4 Ball splitting

In the Protect phase, after all the edges and facets are recovered, further splittings are
done using the subroutine SplitBalls to reduce the diametric balls of the sharp subsegments
roughly to the order of local feature sizes. In order to avoid the computation of local feature
sizes, this is achieved in a roundabout way. SplitBalls splits any subfacet or subsegment
h that is encroached by the midpoint of a sharp subsegment s provided that h and s are
contained in disjoint elements of P. The intuition is that some of the new vertices inserted to
split these subfacets or subsegments will encroach s and cause s to be split. We claim (Proof of
Theorem 4.1) that, at the end of SplitBalls, all diametric balls of sharp subsegments become
small.

At the end of the Protect phase, for each sharp subsegment, we double the radius of
its diametric ball with the center fixed and call this a protecting ball. These protecting balls
and the vertex balls at the sharp vertices constitute the entire set of protecting balls for the
Refine phase. Although sharp subsegments may be subdivided further in the Refine phase,
the protecting balls always refer to those computed at the end of the Protect phase.

3.5 Refinement of tetrahedra

As in usual Delaunay refinement we attempt to insert the circumcenters of the skinny tetrahedra
in this phase. But, some modifications are needed to handle small angles. We disallow the
insertion of the circumcenters of skinny tetrahedra inside any protecting ball. The reason is
that once these points are allowed to be inserted, they can cause perpetual splittings of the
subsegments or subfacets. The tetrahedra incident to the vertices and edges of P sustaining
small enough angles can never satisfy the radius-edge ratio condition. So, at some stage of the
algorithm, these tetrahedra should not be split. This means that some skinny tetrahedra may
remain at the end. We prove that all such tetrahedra lie close to sharp vertices or edges.

3.6 QMesh

The following algorithm QMesh triangulates P with the claimed theoretical guarantees. QMesh
uses the following subroutine Encroach to test whether a point c can be inserted and if not,
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return the appropriate point to be inserted.

Encroach(c)

• If c does not encroach any subsegment or subfacet, return c.

• If c encroaches some subsegment, return its midpoint.

• If c encroaches some subfacet h, return the circumcenter p of h if p
does not encroach any subsegment. Otherwise, return the midpoint
of a subsegment encroached by p.

QMesh(P)

Initialize. Initialize V to be the set of vertices of P. Compute the vertex balls.
Insert the intersections between their boundaries and the edges of P into V. If
any shield subsegment forms a sector with angle π or more, split it with SOS.
Compute DelV.

Protect. Repeatedly apply a rule from the following list until no rule is applicable.
Rule i is applied if it is applicable and no rule j with j < i is applicable.

Rule 1(SplitEdges). If there is an encroached subsegment e, call SplitE(e).

Rule 2(SplitFacets). If there is a subfacet h that does not appear in DelV,
call SplitF(h).

Rule 3(SplitBalls). Let s be a sharp subsegment on an edge e. If the
midpoint of s encroaches a subsegment or subfacet h, where h and e are
contained in disjoint elements of P, split h accordingly using SplitE(h)
or SplitF(h).

At the end of Protect, we double the sizes of the diametric balls of sharp
subsegments. These expanded balls and the vertex balls are the protecting
balls. The sharp subsegments may be split further in the next phase, but the
locations and sizes of these protecting balls do not change.

Refine. Repeatedly apply a rule from the following list until no rule is applicable.
Rule i is applied if it is applicable and no rule j with j < i is applicable. The
parameter ρ0 > 2/(1 − tan(π/8)) is a constant chosen a priori.

Rule 4 (SplitEdges). If there is an encroached subsegment e, call SplitE(e).

Rule 5 (SplitFacets). If there is a subfacet h that does not appear in DelV,
call SplitF(h).

Rule 6 (SplitTet). Assume that there is a tetrahedron with radius-edge
ratio exceeding ρ0. Let z be its circumcenter. If z does not lie on or inside
any protecting ball, then

• compute p :=Encroach(z), and

• insert p into V.

4 Analysis

In this section, we prove that Qmesh terminates with a graded Delaunay mesh. All tetrahedra
have bounded radius-edge ratio, except possibly those near sharp vertices and edges (in terms of
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local feature sizes). In sections 4.1 and 4.2, we analyze some critical distances when subsegments
and subfacets are considered for splitting. These results are instrumental to proving that rules
1, 2, 4, and 5 never insert any vertex too close to existing ones. Then, in sections 4.3.1, 4.3.2,
and 4.3.3 we lower bound the distances among the vertices created in Protect and Refine.
These lower bounds allow us to prove the termination and the mesh quality in Section 4.3.4.
Recall that αm > 0 denotes the smallest input angle in P.

First of all, we show that the vertex balls of sharp vertices are kept empty.

Lemma 4.1 Throughout Qmesh, no vertex is inserted inside the vertex ball of any sharp ver-
tex.

Proof. Only rules 2 and 5 may possibly insert a vertex inside a vertex ball û. In this case,
the vertex inserted is the circumcenter x of a subfacet h. We show that this is impossible by
deriving a contradiction.

Let F be the facet containing h. Since no subsegment is encroached when rule 2 or 5 is
applied, x lies in the interior of F . The facet F is incident to u; otherwise, F is disjoint from
û by Lemma 3.1(iii), contradicting the fact that x ∈ F lies inside û.

Let x lie inside a sector on û∩F bounded by au and bu, where ab is a shield subsegment. If
x lies inside the shield subfacet abu, a vertex of h would have encroached ab, contradicting the
fact that no subsegment is encroached. If x does not lie inside abu, x would have been rejected
for encroaching ab, contradicting the fact that x is inserted by rule 2 or 5.

4.1 Critical distances: subsegments

In this section, we study the effects of splitting an encroached subsegment in some situations.
Our goal is to show that the distances from the inserted vertex x to other vertices of P are
Ω(f(x)). In Lemma 4.2, we first tackle the case of splitting a shield subsegment, and we study
encroachment due to points on the edges of P. We extend this result in Lemma 4.3 to all
subsegments, shield and non-shield.

Lemma 4.2 Let ab be a shield subsegment that lies on a facet F of P. Assume that ab is
encroached by either an endpoint of a subsegment or the midpoint of a sharp subsegment, which
is different from ab. Let x be the vertex to be inserted to split ab. There is a constant λ1 > 0
such that:

(i) For any element E of P such that E 6= F and E 6⊆ ∂F , the distance between x and E is
at least λ1f(x).

(ii) For any vertex v ∈ V, ‖v − x‖ ≥ λ1f(x).

Proof. We prove the lemma for the constant λ1 = sin2 αm sin(π/4)/10. Let u be the sharp
vertex whose vertex ball contains ab. By the Lipschitz condition, f(x) ≤ f(u) + ‖u− x‖. Also,
‖u − x‖ = f(u)/4. This gives

f(u) ≥ 4

5
f(x). (4.1)
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Figure 4: Splitting a shield subsegment.

We first lower bound ‖a − x‖ in the case where the sector aub on F has angle less than π
and ab is not encroached by u. See Figure 4(c). Let p be the point encroaching ab (subsegment
endpoint or midpoint of a sharp subsegment). Let m be the midpoint of ab and let m̂ be the
diametric ball of ab. Notice that the sector aub lies on the sector û ∩ F . By Lemma 3.1(iii), m̂
cannot intersect the edges in ∂F other than the two edges incident to u, which bound û ∩ F .
By Lemma 3.1(i) and (iii), p must lie on some input edge e incident to u. Also, p lies outside
û: if p is a subsegment endpoint, p does not lie inside û by Lemma 4.1; otherwise, p is the
midpoint of sharp subsegment and no sharp subsegment lies inside a vertex ball by definition.
We claim that e is not a boundary edge of F . Suppose the contrary. Then p lies on e which
bounds the sector û ∩ F , and p lies outside û. But m̂ does not intersect the bounding edges of
the sector û ∩ F outside û. So p cannot lie on or inside m̂, a contradiction. This proves our
claim that e is not a boundary edge of F . Also, it cannot be coplanar with F . Otherwise, for
p ∈ e to encroach m̂, e would have to cut through the sector aub which is impossible. It follows
that the angle between e and F is an input angle which is at least αm. Since p lies on or inside
m̂, ‖a − m‖ ≥ ‖p − m‖. Since p does not lie inside û, ‖p − u‖ ≥ f(u)/4. Thus the distance
between p and F is at least f(u) sin αm/4, which implies that ‖p −m‖ ≥ f(u) sin αm/4. Hence

‖a − x‖ ≥ ‖a − m‖ ≥ sin αm

4
f(u)

(4.1)

≥ sin αm

5
f(x). (4.2)

This finishes the proof of the lower bound of ‖a − x‖ in the case of Figure 4(c).

We proceed to prove (i). Let E be an element of P such that E 6= F and E 6⊆ ∂F . There
are two cases.

Case 1: E is disjoint from F . Then the distance between E and x is at least f(x).

Case 2: E is adjacent to F . We claim that x is not further from au and bu than all the edges
of F . First, by Lemma 3.1(iii), we only need to prove the claim for the bounding edges of
the sector û ∩ F . Since the sector aub lies on the sector û ∩ F , the shortest line segment
connecting x to the bounding edges of û ∩ F must link to u or intersect au or bu. This
proves our claim.

We show that the distance D between x and au is at least f(x) sin αm sin(π/4)/5. Refer
to Figure 4. In the case of Figure 4(a), the angle of the sector aub is π or more, so
D ≥ ‖u − x‖ = f(u)/4 which is at least f(x)/5 by (4.1). In the cases of Figures 4(b)
and (c), the angle of the sector aub is less than π. So the nearest point on au to x lies in the
interior of au. In the case of Figure 4(b), u lies on or inside m̂, so ∠aux ≥ ∠aub/2 ≥ π/4.
Thus D ≥ ‖u − x‖ sin(π/4) = f(u) sin(π/4)/4 which is at least f(x) sin(π/4)/5 by (4.1).
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In the case of Figure 4(c), u does not lie inside m̂, so ∠xau ≥ 3π/8 > π/4. Thus
D ≥ ‖a − x‖ sin(π/4) which is at least f(x) sin αm sin(π/4)/5 by (4.2).

If E and F are coplanar, the distance between x and E is at least D > λ1f(x). If E and
F are not coplanar, the angle of any wedge induced by E and F is at least αm. It follows
that the distance between x and E is at least D sinαm > λ1f(x).

Next, we prove (ii). There are two cases.

Case 1: the sector aub has angle π or more, or ab is encroached by u. We have only executed
Initialize and possibly Rule 1 in Protect so far. Thus all vertices in V lie on input edges
or the intersections between boundaries of vertex balls and facets. By Lemma 3.1(iii),
the vertex nearest x is either u or a vertex on an incident edge e of u. In the first case,
by (4.1), ‖u − x‖ = f(u)/4 ≥ f(x)/5 > λ1f(x). Consider the second case. If e is not
a boundary edge of F , the distance between x and e is at least λ1f(x) by (i). If e is a
boundary edge of F , we have shown in proving (i) that the distance from x to ∂F is at
least the distance from x to au, which is at least f(x) sin αm sin(π/4)/5 > λ1f(x).

Case 2: ab is not encroached by u. Then ∠aub ≤ π/2. Any vertex encroaching m̂ must lie on
an element of P; otherwise, such a vertex would have been rejected by QMesh. It follows
that any vertex in V\F are further away than the distance lower bound in (i). Consider the
vertices in V ∩F . We claim that m̂∩F does not contain any shield subsegment endpoint
other than a and b. Clearly, all shield subsegments inside û∩F other than ab lie outside m̂.
Since the shield subsegments outside û lie inside other vertex balls, they are disjoint from
m̂ by Lemma 3.1(i) and (ii). This proves our claim. Since m̂∩F does not contain any shield
subsegment endpoint other than a and b, m̂ does not contain any vertex in the interior of
F because such a vertex would have been rejected by QMesh. Thus the distance from x
to any vertex in V ∩F is at least the distance from x to the boundary of m̂. This distance
is equal to ‖a−x‖(sin(∠axu)−cos(∠axu)) ≥ ‖a−x‖(sin(3π/8)−cos(3π/8)) > ‖a−x‖/2.
By (4.2), we conclude that the distance from x to any vertex in V ∩ F is greater than
λ1f(x).

Next, we extend the intervertex distance lower bound in Lemma 4.2 to all subsegments,
shield and non-shield.

Lemma 4.3 Let x be the vertex that splits a subsegment ab. Let p be an endpoint of a sub-
segment or the midpoint of a sharp subsegment, which is different from ab. Suppose that p
encroaches ab. Then for all v ∈ V, ‖v − x‖ = Ω(f(x)).

Proof. If ab is a shield subsegment, Lemma 4.2(ii) implies that ‖v−x‖ = Ω(f(x)) for all v ∈ V.
Suppose that ab is a non-shield subsegment. Let e be the edge containing ab. We first show
that ‖p − x‖ = Ω(f(x)). There are two cases.

Case 1: p lies on an edge e′ of P (including its endpoints). Then e 6= e′ in order that p
encroaches ab. If e and e′ are disjoint, then ‖p − x‖ ≥ f(x). If e and e′ are adjacent,
they must make an acute angle in order that p encroaches ab. Let u be the sharp vertex
e ∩ e′. As x lies outside û, ‖u − x‖ ≥ f(u)/4. The Lipschitz condition implies that
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f(x) ≤ f(u) + ‖u − x‖ ≤ 5 ‖u − x‖. Since the angle between e and e′ is at least αm,
‖p − x‖ ≥ ‖u − x‖ sin αm ≥ f(x) sin αm/5.

Case 2: p lies in the interior of a facet F of P. So p was inserted on the boundary of a vertex
ball ŵ to split a shield subsegment on F . In order that p encroaches ab, w cannot be an
endpoint of e, which implies that both f(x) and f(w) are at most ‖w−x‖. Thus ‖p− x‖
is at least the distance from x to ŵ which is ‖w − x‖ − f(w)/4 ≥ 3‖w − x‖/4 ≥ 3f(x)/4.

Since p encroaches ab, the above analysis implies that the radius of the diametric ball of ab is
Ω(f(x)). Let v be any vertex in V. If v does not lie inside the diametric ball of ab, then clearly
‖v − x‖ = Ω(f(x)). Otherwise, v encroaches ab. It follows that v must lie on an element of P;
otherwise, v would be the circumcenter of some skinny tetrahedron, and Qmesh would have
rejected v for encroaching ab. Since v lies on an edge or facet, we can apply the same analysis
in cases 1 and 2 to show that ‖v − x‖ = Ω(f(x)).

4.2 Critical distances: subfacets

Our goal is to show that when a non-Delaunay subfacet h splits, the distances from its circum-
center x to the existing vertices and the elements of P are Ω(f(x)). The major challenge is to
show that the circumradius of h is Ω(f(x)). Due to our new strategy of splitting non-Delaunay
subfacets, the analysis for the standard Delaunay refinement does not apply.

In this section, we focus on the case where the circumballs of h contain vertices on the
elements of P only, and defer the full analysis until Section 4.3. We first look at some important
special cases in Section 4.2.1 and lower bound the distance from x to any encroaching point. In
Section 4.2.2, we apply these results to lower bound the circumradius of h. The lower bounds
on the distances from x to the existing vertices and the elements of P then follow. The next
lemma on the distance between x and sharp vertices will be useful.

Lemma 4.4 Let x be the circumcenter of a subfacet on a facet F . For any sharp vertex w of
F , ‖w − x‖ ≥ f(x)/9.

Proof. Let h be the subfacet with the circumcenter x. Let C be the circumcircle of h. We
claim that for any sharp vertex w of F , ‖w − x‖ ≥ f(w)/8. Otherwise, since w does not
lie inside C, radius(C) ≤ ‖w − x‖ < f(w)/8. Thus the vertices of h lie inside the vertex
ball ŵ, but this contradicts Lemma 4.1. By the claim, the Lipschitz condition implies that
f(x) ≤ f(w) + ‖w − x‖ < 9 ‖w − x‖.

4.2.1 Splitting subfacets: special cases

The next three lemmas show that the distance between the circumcenter x of a subfacet from
an encroaching point is Ω(f(x)) under some special conditions. These special cases will arise
in the analysis in Section 4.2.2 and Section 4.3.

Lemma 4.5 Assume that no subsegment is encroached by a vertex. Let E and F be two non-
coplanar adjacent facets. Let x be the circumcenter of a subfacet on F . Let q be the closest
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point to x on the intersection line of the support planes of E and F . Suppose that one of the
the following holds:

(i) qx intersects an edge in ∂F disjoint from E.

(ii) q ∈ E and an edge in ∂F intersects qx at x or in its interior.

(iii) q is an isolated vertex in E ∩ F .

Then for any point u ∈ E, ‖u − x‖ = Ω(f(x)).

Proof. Consider (i) (Figure 5(a)). Let p be the intersection point of qx and the edge in ∂F .
Since this edge is disjoint from E, max{‖p − x‖, ‖u − x‖} ≥ f(x). If ‖u − x‖ ≥ f(x), we are
done. Otherwise, ‖p − x‖ ≥ f(x) and ‖q − x‖ ≥ ‖p − x‖ ≥ f(x). If the wedge of E and F
containing u and x is sharp, then ‖u − x‖ ≥ ‖q − x‖ sin αm ≥ f(x) sin αm. If the wedge is
non-sharp, then ∠uqx ≥ π/2 and so ‖u − x‖ ≥ ‖q − x‖ ≥ f(x).

x

u

E

F

q

p
x

u

E

F

q w

e

(a) (b)

Figure 5:

Consider (ii) (Figure 5(b)). Let e be the edge in ∂F intersecting qx at x or in its interior.
We assume that (i) does not apply, so e is incident to a vertex w in E ∩ F . We show that
‖q − x‖ = Ω(f(x)), which implies that ‖u − x‖ = Ω(f(x)) as in case 1. The angle between qw
and e is acute. As q ∈ E, this angle is at least an input angle at w. So w is sharp and this
angle is at least αm. Thus ∠xwq ≥ αm. By Lemma 4.4, ‖w − x‖ ≥ f(x)/9. It follows that
‖q − x‖ ≥ ‖w − x‖ sin αm ≥ f(x) sin αm/9.

Consider (iii) (Figure 6). We assume that (ii) does not apply. So no edge of F intersects qx
at x or in its interior. As x is the circumcenter of a subfacet, x lies in the interior of F . So qx
does not lie on an edge of F . Let ℓ be the intersection line of the support planes of E and F .
We first show that q is a sharp vertex. There are two cases.

Case 1: E does not lie strictly on one side of ℓ locally at q. So a halfline f on ℓ delimited by q
intersects E locally at q. As qx ⊆ F and x lies in the interior of F , the quadrant formed
by qx and f on the plane of F must contain an edge e of F . See Figure 6(a). The edge e
makes an acute angle with E. So q is sharp.

Case 2: E lies strictly on one side of ℓ locally at q. Let g be the halfline on the support plane
of E that is delimited by q and perpendicular to ℓ. If the two edges of E incident to q
lie in one of the quadrants formed by ℓ and g, then they make an acute angle at q. See
Figure 6(b). So q is sharp. Suppose that the two edges of E incident to q lie in different
quadrants formed by ℓ and g. There are two cases.
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Figure 6:

Case 2.1: F does not lie strictly on one side of ℓ locally at q. A halfline f on ℓ delimited
by q intersects F locally at q. The quadrant formed by f and g contains an edge e
of E incident to q. See Figure 6(c). Thus e makes an acute angle with F and q is
sharp.

Case 2.2: F lies strictly on one side of ℓ locally at q. Then the four edges of E and F
incident to q form a convex cone with apex q. See Figure 10(d). The sum of the four
face angles of the convex cone is less than 2π, which implies that at least one face
angle is acute. So q is sharp.

This finishes the proof of q being sharp. By Lemma 4.4, ‖q − x‖ ≥ f(x)/9. If the wedge of
E and F containing u and x is sharp, then ‖u − x‖ ≥ ‖q − x‖ sin αm ≥ f(x) sin αm/9. If the
wedge is non-sharp, then ∠uqx ≥ π/2 and so ‖u − x‖ ≥ ‖q − x‖ ≥ f(x)/9.

Lemma 4.6 Assume that no subsegment is encroached by a vertex. Let E and F be two non-
coplanar adjacent facets. Let x be the circumcenter of a subfacet h on F . Let u be a point on
E such that u and x lie on a sharp wedge of E and F . Let q be the closest point to x on the
intersection line of the support planes of E and F . Suppose that qu intersects an edge e in ∂E.
Also, suppose that e is incident to a vertex w in E ∩ F such that ‖w − x‖ = Ω(f(x)). Then
‖u − x‖ = Ω(f(x)).

Proof. Let x′ be the orthogonal projection of x onto the support plane of E. Since u and x lie
on a sharp wedge of E and F , x′ lie on this sharp wedge too. There are two cases.

Suppose that the angle between e and qw is greater than or equal to ∠x′wq. See Figure 7(a).
By Lemma 2.1, ∠uwx is greater than the angle between e and wx. The angle between e and
wx is at least an input angle which is at least αm. So ∠uwx ≥ αm, which implies that
‖u − x‖ ≥ ‖w − x‖ sin ∠uwx = Ω(f(x)).
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Figure 7:

Suppose that the angle between e and qw is less than ∠x′wq. See Figure 7(b). The angle
between e and wx is at least αm. By Lemma 2.1, ∠qwx is greater than the angle between e
and wx, which implies that ∠qwx ≥ αm. Thus, ‖q − x‖ = ‖w − x‖ sin ∠qwx = Ω(f(x)). Then
‖u − x‖ ≥ ‖x − x′‖ ≥ ‖q − x‖ sin αm = Ω(f(x)).

Lemma 4.7 Assume that no subsegment is encroached by a vertex. Let E and F be two non-
coplanar adjacent facets. Let h be a subfacet on F with circumcenter x. Suppose that the
diametric ball of h contains a point u on E such that u does not encroach any subsegment.
Then the following hold:

(i) F contains the segment joining x and the orthogonal projection of u onto the support
plane of F .

(ii) If the wedge of E and F containing u and x is non-sharp, then ‖u − x‖ = Ω(f(x)).

(iii) Suppose that the wedge of E and F containing u and x is sharp. Let q be the nearest point
to x on the intersection line of the support planes of E and F . If q 6∈ E ∩ F or q lies on
a non-sharp edge in E ∩ F , then ‖u − x‖ ≥ δf(x) for some constant δ > 0.

Proof. Let B and C be the diametric ball and circumcircle of h, respectively. Let ℓ be the
intersection line of the support planes of E and F . Let u′ be the orthogonal projection of u
onto the support plane of F .

Consider (i). Note that u′ lies inside C as u lies inside B. Assume to the contrary that (i)
is false. So an edge e in ∂F separates x and u′ inside C. By the emptiness of C, e contains a
chord ab of C, which lies within a subsegment on e. See Figure 8(a). The point u lies outside
the diametric ball of ab as u does not encroach any subsegment by assumption. The bisector of
B and the diametric ball of ab is the plane H through ab perpendicular to F . Since ab separates
u′ and x, H bounds an open halfspace H− such that u′ ∈ H− and x 6∈ H−. Since u does not
lie inside the diametric ball of ab but inside B, u 6∈ H−. But this contradicts the fact that u′

is the orthogonal projection of u.

Consider (ii). Since the wedge of E and F containing u and x is non-sharp, u′ and x do not
lie on the same side of ℓ. No edge in E ∩ F intersects C. Otherwise, such an edge crosses C
completely (due to the emptiness of C) and as this edge lies on ℓ, it must cross xu′, contradicting
(i). Since B contains u ∈ E, B must intersect an edge e in ∂E above F such that e is closer
to x than u. See Figure 8(b). If e is disjoint from F , then ‖u − x‖ ≥ f(x) as e is closer to x
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than u. If e is incident to a vertex w of F , then w lies on ℓ and outside C. Observe that the
angle between e and ℓ is acute. Since ℓ intersects xu′ ⊆ F , this angle is at least an input angle
at w. So w is sharp and ‖w − x‖ ≥ f(x)/9 by Lemma 4.4. The angle between e and wx is at
least αm. The distance between x and e is at least ‖w − x‖ sin αm ≥ f(x) sin αm/9, and so is
‖u − x‖.

There are two cases in proving (iii).

Case 1: qu 6⊆ E. Then an edge e in ∂E intersects qu at u or in its interior. Suppose that e is
disjoint from F . Let p = qu ∩ e. By considering the triangle qux in Figure 9(a), we have
max{‖u − x‖, ‖q − x‖} ≥ ‖p − x‖ ≥ f(x). If ‖u − x‖ ≥ f(x), we are done. Otherwise,
‖q − x‖ ≥ f(x) implies that ‖u − x‖ ≥ ‖q − x‖ sin αm ≥ f(x) sin αm.

Suppose that e is adjacent to F . So e is incident to a vertex w in E ∩ F . We prove that
w is sharp. Then by Lemma 4.4, ‖w − x‖ ≥ f(x)/9 which allows us to apply Lemma 4.6
to show that ‖u − x‖ = Ω(f(x)). Let H be the plane through w orthogonal to ℓ.

If e lies on H or e lies on the same side of H as x, let g be the halfline in the intersection
of H and the support plane of F such that g is delimited by w and lies on the same side
of ℓ as qx. See Figure 9(b). Lemma 2.1 implies that the angle between e and g is acute
as it is less than the right angle between qw and g. As e lies on H or e lies on the same
side of H as x, the quadrant formed by g and qw contains the orthogonal projection of e
onto the support plane of F . Then Lemma 2.1 implies that the angle between e and wx
is less than one of the angles that e makes with qw and g. So the angle between e and
wx is acute. Since x ∈ F , the angle between e and wx is at least an input angle at w. So
w is sharp.

If e and x lie on opposite sides of H, since qu intersects e, u and e lie on the same side
of H. See Figure 9(c). The argument in the previous paragraph can be applied again to
show that the angle between e and wu′ is acute. As u′ ∈ F by (i), we conclude that w is
sharp.

Case 2: qu ⊆ E. So q ∈ E. If qx 6⊆ F , an edge of F intersects qx at x or in its interior. So
‖u − x‖ = Ω(f(x)) by Lemma 4.5(ii). Suppose that qx ⊆ F . Then q ∈ E ∩ F . The
assumption of the lemma implies that q lies on a non-sharp edge, say e, in E ∩ F . The
two conditions qu ⊆ E and qx ⊆ F imply that a dihedral angle of e is equal to the angle
of the wedge of E and F containing u and x. This is a contradiction as the wedge is sharp
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Figure 9:

and e is non-sharp.

4.2.2 Splitting subfacets: general cases

We are to show that if a subfacet h is non-Delaunay and its circumballs contain vertices on the
elements of P only, then its circumradius is Ω(f(x)), where x is the circumcenter of h. The
analysis consists of three steps. The first step is a technical result (Lemma 4.8) to be used
later. Second, we prove in Lemma 4.9 that h has a non-empty circumball with radius Ω(f(x)).
Third, we prove in Lemma 4.10 that if h has a large non-empty circumball, its circumradius is
Ω(f(x)). This further implies that the distances from x to the elements of P are Ω(f(x)).

Lemma 4.8 Assume that no subsegment is encroached by a vertex. Let h be a subfacet on a
facet F . Let p be a vertex on an element E of P. If p lies inside some circumball of h, then
E 6= F , E 6⊆ ∂F , and E and F are non-coplanar.

Proof. Assume to the contrary that E = F , or E ⊆ ∂F , or E is coplanar with F . Then p
actually lies inside the circumcircle of h. If E = F or E ⊆ ∂F , this contradicts the emptiness of
the circumcircle of h. If E and F are coplanar, the circumcircle of h must cross a subsegment
in ∂F in order to contain p. But then p encroaches this subsegment, a contradiction.

Lemma 4.9 Assume that no subsegment is encroached by a vertex. Let x be the circumcenter
of a subfacet h such that h 6∈ DelV. Let F be the facet of P containing h. Suppose that all
vertices inside the diametric ball of h lie on the elements of P. Then there is a circumball B
of h that contains vertices u, v ∈ V such that:

(i) u lies on some element of P.

(ii) v and the center of B lie in the same open halfspace bounded by the plane of F , and u
lies in the other open halfspace.

(iii) If v lies on some element of P, then radius(B) ≥ λ2f(x) − D where D is the distance
between x and the center of B, and λ2 > 0 is some constant.
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Proof. Since h 6∈ DelV, the diametric ball of h is non-empty. Let H be the support plane of F .
Let H− be an open halfspace bounded by H that contains some vertices inside the diametric
ball of h. Let H+ be the opposite open halfspace.

By assumption, all vertices in H− inside the diametric ball of h lie on some elements of P.
If we move the center of the diametric ball of h in the normal direction of H into H+, we obtain
a system of circumballs of h passing through C. Since h 6∈ DelV, one of these circumballs B
contain vertices on both sides of H, say u ∈ H− and v ∈ H+. It follows that (i) and (ii) are
correct.

Let E1 be a facet of P containing u (u may lie on its boundary). Suppose that v lies on an
element of P. Then v lies on some facet E2 of P (including the boundary of E2). By Lemma 4.8,
neither E1 nor E2 is coplanar with F .

Let z be the center of B. If any two of E1, E2, and F are disjoint, then radius(B) ≥ f(z).
The Lipschitz condition implies that radius(B) ≥ f(z) ≥ f(x) − D and we are done. The
remaining possibility is that E1 and E2 are identical or adjacent, and both are adjacent to
F . In the rest of the proof, it suffices to lower bound ‖u − x‖ or ‖v − x‖ as radius(B) ≥
max{‖u − x‖, ‖v − x‖} − D by triangle inequality. For i = 1 and 2, let qi be the closest point
to x on the intersection line between the support planes of Ei and F . There are several cases.

If the wedge of E1 and F containing u and x is non-sharp. then ‖u − x‖ = Ω(f(x)) by
Lemma 4.7(ii). Suppose that the wedge of E1 and F containing u and x is sharp.

Case 1: ‖qi − x‖ ≥ f(x) sin(αm/2)/18 for i=1 or 2. Without loss of generality assume that
‖q1 − x‖ ≥ f(x) sin(αm/2)/18. Since the angle of the wedge of E1 and F containing u
and x is at least αm, ‖u − x‖ ≥ ‖q1 − x‖ sin αm = Ω(f(x)).

Case 2: ‖qi − x‖ < f(x) sin(αm/2)/18 for i = 1 and 2. If q1 6∈ E1 ∩ F or q1 lies on a non-sharp
edge in E1 ∩ F , then ‖u − x‖ = Ω(f(x)) by Lemma 4.7(iii). If q1 is an isolated vertex in
E1 ∩F , then ‖u− x‖ = Ω(f(x)) by Lemma 4.5(iii). The remaining case is that q1 lies on
a sharp edge e1 in E1 ∩ F .

E1

e 1
w

e

x

v

u

1q

C

Figure 10:

Case 2.1: E1 = E2. In order that B contains u and v which are on opposite sides of
F , B must intersect the support plane of E1 in a circle C which contains u, v,
and q1. By the emptiness of the circumcircle of h, e1 crosses C completely. Since
u, v ∈ E1, the segment uv intersects e1 as well as another edge e in ∂E1. If e1

and e are disjoint, then radius(B) ≥ f(z). The Lipschitz condition implies that
radius(B) ≥ f(z) ≥ f(x)−D and we are done. Suppose that e1 and e are adjacent.
So e1 and e share a vertex w in E1 ∩ F . Recall that e1 is sharp and so its endpoint
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w is also sharp by definition. See Figure 10. Since ‖q1 − x‖ < f(x) sin(αm/2)/18
by the assumption of case 2, Lemma 4.4 implies that ‖q1 − x‖ < ‖w − x‖/2. By
triangle inequality, we get ‖w − q1‖ ≥ ‖w − x‖ − ‖q1 − x‖ ≥ ‖w − x‖/2, which
is at least f(x)/18 by Lemma 4.4. The angle between e1 and e is at least αm.
So ‖q1 − v‖ ≥ ‖w − q1‖ sin αm ≥ f(x) sin αm/18. Since the wedge of E1 and F
containing u and x is sharp by assumption, ∠xq1v is non-acute. It follows that
‖v − x‖ ≥ ‖q1 − v‖ = Ω(f(x)).

q
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q
2 e2

q
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q
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we1
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Figure 11: The possible configurations for case 2.2.1.

Case 2.2: E1 6= E2. There are two cases depending on whether q2 ∈ E2.

Case 2.2.1: q2 ∈ E2. If q2 6∈ E2 ∩ F , an edge in ∂F must intersect q2x at x or
its interior. So Lemma 4.5(ii) implies that ‖v − x‖ = Ω(f(x)). Suppose that
q2 ∈ E2 ∩ F . If q2 is an isolated vertex in E2 ∩ F , Lemma 4.5(iii) implies that
‖v − x‖ = Ω(f(x)). The remaining possibility is that q2 lies on an edge e2 in
E2 ∩ F . Observe that e1 6= e2; otherwise, e1 would be incident to three distinct
facets E1, E2, and F , violating the fact that P is a polyhedron. If e1 and e2 are
disjoint, then max{‖q1 − x‖, ‖q2 − x‖} ≥ f(x), contradicting the assumption of
case 2. If e1 and e2 share an endpoint, say w, then w is sharp as it is an endpoint
of the sharp edge e1. See Figure 11. The angle between e1 and e2 is at least
αm, and wx makes an angle at least αm/2 with e1 or e2. But then Lemma 4.4
implies that max{‖q1 − x‖, ‖q2 − x‖} ≥ ‖w − x‖ sin(αm/2) ≥ f(x) sin(αm/2)/9,
contradicting the assumption of case 2.

Case 2.2.2: q2 6∈ E2. Then an edge e in ∂E2 intersects q2v at v or its interior. If e
is disjoint from F , let p = q2v ∩ e. By considering the triangle q2vx, we have
max{‖v −x‖, ‖q2 −x‖} ≥ ‖p−x‖ ≥ f(x), which implies that ‖v− x‖ ≥ f(x) by
the assumption of case 2. Suppose that e is adjacent to F . So e is incident to
a vertex w in E2 ∩ F . We claim that ‖w − x‖ ≥ f(x)/9. If w is an endpoint of
e1, then w is sharp as e1 is sharp. So ‖w − x‖ ≥ f(x)/9 by Lemma 4.4. If w is
not an endpoint of e1, then max{‖q1 − x‖, ‖w − x‖} ≥ f(x), which implies that
‖w − x‖ ≥ f(x) by the assumption of case 2. This proves our claim.
If the wedge of E2 and F containing x and v is sharp, we have satisfied the
conditions of Lemma 4.6, which implies that ‖v − x‖ = Ω(f(x)). Assume that
the wedge is non-sharp. Let G be the plane through w that is orthogonal to the
intersection line of the support planes of E2 and F . If x and v do not lie on the
same side of G, then ∠xwv ≥ π/2. See Figure 12(a). So ‖v − x‖ ≥ ‖w − x‖ ≥
f(x)/9. If x and v lie on the same side of G, e and x also lie on the same side
of G as q2v intersects e. See Figure 12(b). By Lemma 2.1, ∠xwv is at least the
angle between e and wx, which is at least αm. So ‖x − v‖ ≥ ‖w − x‖ sin αm ≥
f(x) sin αm/9.
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Based on the large circumball guaranteed by the previous lemma, we go on to show that
the circumradius of the non-Delaunay subfacet is also large. This also yields a lower bound on
the distances from the circumcenter to the elements of P.

Lemma 4.10 Assume that no subsegment is encroached by a vertex. Let x be the circumcenter
of a subfacet h on a facet F of P. Suppose that there is a circumball B of h centered at z and
B contains a vertex u such that:

• u lies on some element of P,

• u and z lie in the different open halfspaces bounded by the plane of F , and

• radius(B) ≥ cf(x) − ‖x − z‖ for some constant c.

Let k1(c) = min{ c tan αm

2+tan αm
, δ} and let k2(c) = sinαm√

2
k1(c), where δ is the constant in Lemma 4.7(iii).

Then

(i) The circumradius of h is at least k1(c)f(x).

(ii) Let E be an element of P such that E 6= F and E 6⊆ ∂F . If x does not encroach upon
any subsegment in ∂F , the distance between x and E is at least k2(c)f(x).

Proof. Let C be the circumcircle of h. Let E1 be the element of P containing u. By Lemma 4.8,
E1 is not coplanar with F . Without loss of generality, assume that F is horizontal and u is
above F . Let H be the support plane of F . Let D = ‖x − z‖. Let u′ be the orthogonal
projection of u onto H. Note that u′ lies inside C as u lies inside B, and u and z are in the
different halfspaces bounded by H. We first prove (i).

Case 1: E1 is an edge. If E1 and F are disjoint, then ‖u − x‖ ≥ f(x). Since u and z lie on
opposite sides of F , radius(C) ≥ ‖u − x‖ ≥ f(x) and we are done. If E1 and F are
adjacent, E1 ∩ F is a vertex w. Let L be the plane through u, u′, and w. Refer to
Figure 13 which shows the cross-section on L.

Since w lies outside C, w lies outside B ∩ L. We have

tan φ ≤ r

D
≤ radius(C)

D
.

20



E 1

R

φ

w H L

B L

U

U

D
r

Figure 13: Cross-section on L.

By triangle inequality, radius(C) ≥ radius(B) − D. Since radius(B) ≥ cf(x) − D by
assumption, we have

radius(C) ≥ cf(x) − 2D

≥ cf(x) − 2 radius(C)

tan φ
,

which implies that radius(C) ≥ c tan φ
2+tan φf(x). By Lemma 4.7(i), u′ ∈ F , so φ ≥ αm as it is

at least an input angle at w. It follows that radius(C) ≥ c tan αm

2+tan αm

f(x) ≥ k1(c)f(x).

Case 2: E1 is a facet. If E1 and F are disjoint, then ‖u − x‖ ≥ f(x). Since u and z lie on
opposite sides of F , radius(C) ≥ ‖u − x‖ ≥ f(x) and we are done. Assume that E1 and
F are adjacent. The angle of the wedge of E1 and F containing u and x is at least αm.
Let ℓ be the intersection line of the support planes of E1 and F . Let q′ be the nearest
point to u′ on ℓ. There are two cases depending on whether q′ is inside or outside C.

L
U

L
U

L
U

L

U

L

U

θ

B

D

B
K

ab E 1

H
ab

Figure 14: Cross-section on L.

Case 2.1: q′ lies outside C. Let L be the plane through q′, u, and u′. Then we can
apply the analysis in case 1 to the cross-section on L to conclude that radius(C) ≥
k1(c)f(x).

Case 2.2: q′ lies inside C. There are two cases.

Case 2.2.1: E1∩F contains an edge e that stabs C. The emptiness of C implies that
e contains a chord ab of C, and ab is part of a subsegment. It also follows that
q′ ∈ ab. Let Bab be the diametric ball of ab. Let K be the plane that passes
through ∂Bab ∩ ∂B. Let L be the plane through q′, u, and u′. Consider the
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cross-section on L. Refer to Figure 14. Observe that ab lies on K. Since no
subsegment is encroached, u lies outside Bab. As u lies inside B by assumption,
u must lie on the same side of K as z does. This fact with the condition
that u ∈ E1 implies that the angle of the wedge of E1 and F containing u
and x is at most the acute angle between K and H, which is the angle θ in
Figure 14. We have tan θ ≤ radius(C)

D . The triangle inequality implies that
radius(C) ≥ radius(B) − D, which is at least cf(x) − 2D by assumption. Thus
the same analysis in case 1 yields radius(C) ≥ k1(c)f(x).

Case 2.2.2: No edge in E1 ∩F stabs C. Then the closest point to x on ℓ lies outside
E1 ∩ F . Lemma 4.7(ii) and (iii) imply that ‖u − x‖ ≥ δf(x). Since u and z lie
on opposite sides of F , radius(C) ≥ ‖u − x‖ ≥ δf(x).

Consider (ii). If E and F are disjoint, the distance between x and E is at least f(x) and
we are done. Suppose that E and F are adjacent. First, we claim that the distance between
x and ∂F is at least radius(C)/

√
2. If C does not intersect ∂F , the claim is trivially true.

Otherwise, take any subsegment s ∈ ∂F that intersects C (so s crosses C completely). Since
x does not encroach s by assumption, the distance between x and s is at least radius(C)/

√
2.

By our claim, the distance between x and E ∩ F is at least radius(C)/
√

2, which is at least
k1(c)f(x)/

√
2 by (i). The angle of any wedge of E and F is at least αm. Hence, the distance

between x and E is at least sinαm√
2

k1(c)f(x) = k2(c)f(x).

4.3 Termination and mesh quality

In this section, we prove that the inter-vertex distances are above certain thresholds as Qmesh
inserts vertices. This allows to prove the termination of Qmesh by a packing argument. We
then show that any remaining skinny tetrahedron is close to some sharp vertex or edge.

The lower bounds on inter-vertex distances in the Initialize and Protect phases will be
directly related to local feature sizes, while the Refine phase will be handled using an inductive
argument. The inductive argument makes use of a parent-child relation defined as follows.

Let x be a vertex inserted or rejected by Qmesh. The parent of x is an input vertex or
a vertex inserted or rejected by QMesh. If x is a vertex of P or a vertex inserted during
Initialize, its parent is undefined. Otherwise, the parent p is defined as follows.

• If x splits a subsegment (shield or non-shield) or a subfacet, p is the encroaching vertex
nearest to x, among the vertices in the current V as well as any vertex that Qmesh tries
to insert but is going to reject (for encroaching the subsegment or subfacet split by x).

• If x is the circumcenter of a skinny tetrahedron τ , p is one of the endpoints of the shortest
edge of τ . Between the two endpoints of the shortest edge, p is the one that appears in V
later.

It is still possible that x has no parent. This happens when x is inserted to split a subsegment in
rule 3. When a subfacet is split by x in rule 3, x may or may not have a parent. If the diametric
ball of the subfacet is empty, x does not have any parent. But, if this ball is not empty, x has
a parent, namely the vertex in V nearest to x. In the case where x is the circumcenter of a
subfacet h, if the insertion of x is triggered by the circumcenter of a skinny tetrahedron in

22



rule 6, the parent of x is not necessarily the triggering point. This is because the diametric ball
of h may already contain some vertices in V.

The insertion radius rx of x is the distance from x to its nearest neighbor in the current V
when x is inserted or rejected. So it follows from definition that if x is an input vertex, then
rx ≥ f(x).

In Sections 4.3.1–4.3.3, we lowerbound the insertion radii in each phase, which leads to the
proof in Section 4.3.4 that Qmesh terminates. We end this preamble with a technical result
concerning insertion radius.

Lemma 4.11 Let x be a vertex inserted or rejected by Qmesh. Assume that its parent p is
defined. If p is a vertex in V, then rx = ‖p − x‖. Otherwise, the following hold:

(i) If x splits a non-shield subsegment, subfacet, or tetrahedron, then rx is equal to the radius
of the diametric ball of the subsegment or subfacet, and rx ≥ ‖p − x‖.

(ii) If x splits a shield subsegment, then rx is at least (1 − tan(π/8)) times the radius of the

diametric ball of the subsegment, and rx ≥ 1−tan(π/8)
1+tan(π/8) ‖p − x‖.

Proof. Let σ be the subsegment, subfacet, or tetrahedron split by x. Let B be the diametric
ball of σ. If p is a vertex in V, it follows from definition that rx = ‖p−x‖. Otherwise, we know
that B does not strictly contain any vertex.

If σ is a non-shield subsegment or subfacet, then x is the center of B and Qmesh rejects p
for lying inside B. So rx = radius(B) ≥ ‖p − x‖. If σ is a tetrahedron, then x is the center of
B and p lies on the boundary of B. So rx = radius(B) = ‖p − x‖. Suppose that σ is a shield
subsegment. The difference from the previous cases is that x is not the center of B. Let y be
the center of B. Let v̂ be the vertex ball that contains σ. The emptiness of B implies that rx

is at least the distance from x to the boundary of B, which is

radius(B) − ‖x − y‖. (4.3)

Since the parent p is defined, x is not inserted in the Initialize phase. So σ corresponds to
a sector at v with angle less than π. Moreover, v cannot lie inside B as B is empty. Thus σ
subtends at v an angle θ ≤ π/2. This implies that

‖x − y‖ = radius(B) tan(θ/4) ≤ radius(B) tan(π/8). (4.4)

Substituting (4.4) into (4.3) yields rx ≥ (1 − tan(π/8)) radius(B). Also, (4.4) implies that
‖p − x‖ ≤ radius(B) + ‖x − y‖ ≤ (1 + tan(π/8)) radius(B). It follows that rx ≥ (1 −
tan(π/8)) radius(B) ≥ 1−tan(π/8)

1+tan(π/8) ‖p − x‖.

4.3.1 Initialization

Lemma 4.12 During Initialize, for each vertex x ∈ V, rx ≥ sin αm

5 f(x).

Proof. If x is an input vertex, it follows from definition that rx ≥ f(x). Suppose that x is
a vertex inserted by Qmesh. During Initialize, all vertices inserted lie on the boundaries
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of vertex balls. So x lies on v̂ for some sharp vertex v. The Lipschitz condition implies that
f(x) ≤ f(v) + ‖v − x‖ ≤ 5f(v)/4. By Lemma 3.1(ii) and (iii), the nearest neighbor of x is
contained in v̂.

Suppose that x is the intersection between an incident edge of v and the boundary of v̂.
Then the vertices inserted so far are intersections between edges and boundaries of vertex balls.
So either the nearest neighbor of x is v or it lies on another incident edge of v. In the first case,
rx = f(v)/4 ≥ f(x)/5. In the second case, rx ≥ f(v) sin αm/4 ≥ f(x) sinαm/5.

The remaining possibility is that x is inserted to split a shield subsegment ab because ab
corresponds to a sector with angle π or more. It is clear that v is the nearest neighbor of x in
this case. So rx = f(v)/4 ≥ f(x)/5.

4.3.2 Protection

We first lower bound the insertion radius of a vertex that splits a subsegment.

Lemma 4.13 Let x be the vertex inserted to split a subsegment during Protect. Then rx =
Ω(f(x)).

Proof. Let ab be the subsegment split by x. Let p be the point that encroaches ab and triggers
the insertion of x. Notice that during Protect, all vertices in V lie on the elements of P.

If p is a subsegment endpoint or the midpoint of a sharp subsegment, Lemma 4.3 implies
that rx = Ω(f(x)). The remaining possibility is that p is the circumcenter of a subfacet h.
Qmesh attempts to insert p, but rejects p eventually for encroaching ab. It follows that p is
the parent of x and no subsegment is encroached before the attempted insertion of p. Let F be
the facet containing h. Let r be the circumradius of h.

Case 1: h ∈ DelV. In this case, Qmesh tries to insert p in rule 3. Rule 3 applies because the
diametric ball of h intersects a sharp edge disjoint from F . So r ≥ f(p).

Case 1.1: Neither a nor b lies inside the diametric ball of h. By Lemma 4.11, whether ab
is shield or not, rx is asymptotically lower bounded by the radius of the diametric
ball of ab. So rx = Ω(‖a − b‖). Since p lies on or inside the diametric ball of
ab, we have ‖a − b‖/2 ≥ r/

√
2. So rx = Ω(r) = Ω(f(p)). Also, by Lemma 4.11,

rx = Ω(‖p − x‖) whether ab is shield or not. Thus the Lipschitz condition implies
that f(x) ≤ f(p) + ‖p − x‖ = O(rx).

Case 1.2: a or b lies inside the diametric ball of h. The emptiness of the circumcircle of h
implies that ab does not lie on F (including the boundary of F ). Since the diametric
ball of h strictly contains a or b, which lies on some element of P, by shifting the
ball center slightly, we obtain a circumball B of h where radius(B) ≥ r ≥ f(p),
and B satisfies the conditions of Lemma 4.10. By the definition of SplitF, p does
not encroach any subsegment in ∂F in order to cause the splitting of ab. Thus
Lemma 4.10(ii) implies that ‖p − x‖ ≥ k2(1)f(p). The Lipschitz condition implies

that f(x) ≤ f(p) + ‖p − x‖ ≤ 1+k2(1)
k2(1) ‖p − x‖. By Lemma 4.11, ‖p − x‖ = O(rx)

whether ab is shield or not. It follows that f(x) = O(rx).

Case 2: h 6∈ Del V. By Lemma 4.9, the conditions of Lemma 4.10 are satisfied.
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Case 2.1: ab lies on F (including the boundary of F ). The emptiness of the circumcircle
of h implies that neither a nor b lies inside the diametric ball of h. By Lemmas 4.9
and 4.10(i), r ≥ k1(λ2)f(p). Then we can use the analysis in case 1.1 to obtain
rx = Ω(f(x)).

Case 2.2: ab does not lie on F (including the boundary of F ). By the definition of SplitF,
p does not encroach any subsegment in ∂F in order to cause the splitting of ab. So
‖p − x‖ ≥ k2(λ2)f(p) by Lemmas 4.9 and 4.10(ii). The Lipschitz condition implies

that f(x) ≤ f(p) + ‖p − x‖ ≤ 1+k2(λ2)
k2(λ2) ‖p − x‖. By Lemma 4.11, ‖p − x‖ = O(rx)

whether ab is shield or not. It follows that f(x) = O(rx).

We are ready to give the full analysis of the lower bounds on inter-vertex distances at the
end of the Protect phase. We also show that each point on a sharp subsegment lies inside a
protecting ball that is not too small.

Lemma 4.14 At the end of Protect, there are constants λ3, λ4 > 0 such that

(i) For any vertex x ∈ V, rx ≥ λ3f(x).

(ii) For any point z on a sharp subsegment, a ball centered at z with radius λ4f(z) lies inside
some protecting ball.

Proof. We first prove (i). By Lemma 4.12, for any vertex x inherited from the Initialize
phase, rx ≥ (sin αm/5)f(x). Consider the insertion of a vertex x during Protect. If x splits
a subsegment, then rx = Ω(f(x)) by Lemma 4.13. Suppose that x is the circumcenter of a
subfacet h on a facet F . Thus no subsegment is encroached before the insertion of x, and so x
lies in the interior of F . The vertex x does not encroach any subsegment; otherwise, x would
be rejected.

If h 6∈ DelV, then rx ≥ k2(λ2)f(x) by Lemmas 4.9 and 4.10. Suppose that h ∈ DelV. So
x is inserted by rule 3. Rule 3 applies because the diametric ball of h intersects a sharp edge
disjoint from F . It follows that r ≥ f(x), where r is the circumradius of h. There are several
cases to consider.

Case 1: x has no parent. Then the diametric ball of h is empty and so rx ≥ r ≥ f(x).

Case 2: x has a parent p. So p is a vertex in V inside the diametric ball of h. Thus rx = ‖p−x‖.
Recall that all vertices in V in the Protect phase lie on the elements of P. So p lies on
some facet E (including the boundary of E). By Lemma 4.8, E is not coplanar with F .

If E is disjoint from F , then rx = ‖p − x‖ ≥ f(x). Suppose that E and F are adjacent.
Let q be the nearest point to x on the intersection line of the support planes of E and F .

Case 2.1: q 6∈ E ∩ F . If the wedge of E and F containing p and x is non-sharp, then
rx = ‖p − x‖ = Ω(f(x)) by Lemma 4.7(ii). Otherwise, rx = ‖p − x‖ = Ω(f(x)) by
Lemma 4.7(iii).

25



Case 2.2: q ∈ E ∩F . We claim that ‖q −x‖ ≥ r/
√

2. Let C denote the circumcircle of h.
If q does not lie inside C, then ‖q − x‖ ≥ r. Otherwise, the emptiness of C implies
that q lies on a subsegment s in E ∩ F , and s crosses C completely. In order that
x does not encroach s, the distance from x to s must be at least r/

√
2. This proves

our claim. Since the angle of any wedge of E and F is at least αm, the claim implies
that rx = ‖p − x‖ ≥ ‖q − x‖ sin αm ≥ sinαm√

2
· r ≥ sinαm√

2
f(x).

This finishes the proof of (i).

Consider (ii). Let m be the midpoint of a sharp subsegment ab. For any point z ∈ am,
the ball centered at z with radius ‖a − m‖ lies inside the protecting ball of ab. The Lipschitz
condition implies that

f(z) ≤ f(a) + ‖a − z‖ ≤ f(a) + ‖a − m‖ (4.5)

Next, we relate f(a) and ‖a − m‖ to f(z). We claim that ‖a − b‖ ≥ λ3

1+λ3
f(a). If a was

not inserted before b, then ‖a − b‖ ≥ ra which is at least λ3f(a) by (i). If a was inserted
before b, we have ‖a − b‖ ≥ λ3f(b) similarly. Then the Lipschitz condition implies that
f(a) ≤ f(b) + ‖a − b‖ ≤ 1+λ3

λ3
‖a − b‖. Our claim implies that ‖a − m‖ ≥ λ3

2+2λ3
f(a). Sub-

stituting this into (4.5), we get f(z) ≤ 2+3λ3

λ3
‖a − m‖. Since the ball centered at z with radius

‖a − m‖ lies inside the protecting ball of ab, decreasing its radius to λ3

2+3λ3
f(z) keeps it in-

side.

4.3.3 Refinement

The main difference of the Refine phase from the Protect phase is that skinny tetrahedra
are split in the Refine phase. As in the case of standard Delaunay refinement analysis, we are
to analyze the effect of splitting skinny tetrahedra on insertion radii using an inductive argu-
ment. However, there are issues that have to be addressed first. Due to the splitting of skinny
tetrahedra, some vertices may not lie on the elements of P. This means that Lemma 4.9(iii)
does not apply. So we cannot borrow the proof of Lemma 4.14(i) for the Protect phase to
conclude that the insertion radii of circumcenters of subfacets are also large in the Refine
phase. Furthermore, unlike in the Protect phase, we need to look at circumcenters rejected
by Qmesh as well for the subsequent inductive argument to work. We first tackle these issues
in the next two lemmas. Notice that when Qmesh inserts or rejects a vertex in the Refine
phase, its parent is always defined.

Lemma 4.15 Let h be a subfacet on a facet F . Let C and x be the circumcircle and circum-
center of h, respectively. Suppose that x projects orthogonally to a point y on a sharp edge in
∂F such that ‖x − y‖ ≤ λ4f(x)/(3 + λ4), where λ4 is the constant in Lemma 4.14(ii). Then
the following hold:

(i) f(y) ≥ 3f(x)/(3 + λ4).

(ii) λ4f(y) ≥ 3 ‖x − y‖.

(iii) If h 6∈ DelV, then radius(C) = Ω(f(x)).
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Proof. Substituting the inequality ‖x−y‖ ≤ λ4f(x)/(3+λ4) into f(y) ≥ f(x)−‖x−y‖ proves
(i) and (ii). Consider (iii). First, observe that h is encroached by a vertex of V since otherwise
h would have appeared in DelV. All encroaching vertices of h must lie on elements of P as
vertices not lying on P (circumcenters of tetrahdera) and encroaching a subfacet are rejected in
rule 6. Now we have all conditions of Lemma 4.9 in place. So, there is a circumball B of h such
that B contains two vertices and one of them, say v, lies on the same side of h as the center of
B. If v also lies on some element of P, by Lemmas 4.9(iii) and 4.10(i), radius(C) ≥ k1(λ2)f(x)
and we are done. Suppose that v does not lie on any element of P. So v was inserted as
the circumcenter of a skinny tetrahedron. By Lemma 4.14(ii), a protecting ball contains the
ball centered at y with radius λ4f(y). This implies that v could not be inserted inside it, i.e.,
‖v − y‖ ≥ λ4f(y). Thus

‖v − x‖ ≥ ‖v − y‖ − ‖x − y‖
(ii)

≥ 2λ4f(y)/3

(i)

≥ 2λ4f(x)/(3 + λ4).

By triangle inequality, radius(B) is at least ‖v−x‖ minus the distance between x and the center
of B. So Lemma 4.10(i) applies and yields radius(C) ≥ k1(

2λ4

3+λ4
)f(x).

Lemma 4.16 Assume that no subsegment is encroached by a vertex. Let x be the circumcenter
of a subfacet inserted or rejected during Refine. Let p be the parent of x. If p is a vertex in V
lying on some element of P, then rx ≥ λ5f(x) for some constant λ5 > 0.

Proof. Let h be the subfacet of which x is the circumcenter. Let F be the facet of P that
contains h. Let F ′ be a facet containing p (including the boundary of F ′). By Lemma 4.8, F
and F ′ are non-coplanar.

If F and F ′ are disjoint, then rx = ‖p− x‖ ≥ f(x). Suppose that F and F ′ are adjacent. If
p and x lie on a non-sharp wedge of F and F ′, then rx = ‖p− x‖ = Ω(f(x)) by Lemma 4.7(ii).
From now on, we assume that p and x lie on a sharp wedge of F and F ′. Let y be the closest
point to x on the intersection line of the support planes of F and F ′.

Case 1: y lies on an edge in F ∩ F ′ (including the edge endpoints). If the edge is non-sharp,
then ‖p − x‖ = Ω(f(x)) by Lemma 4.7(iii). Suppose that the edge is sharp. Let W be
the wedge of F and F ′ containing p and x. Recall that W is sharp by assumption. Since
the angle of W is at least αm, we have

‖p − x‖ ≥ ‖x − y‖ sin αm. (4.6)

Also, since ∠pyx is at least the angle of W by Lemma 2.1, we have

‖p − x‖ ≥ ‖p − y‖ sin ∠pyx ≥ ‖p − y‖ sin αm. (4.7)

There are two cases depending on the length of ‖x − y‖. Let C be the circumcircle of h.
Let λ4 be the constant in Lemma 4.14(ii).
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Case 1.1: ‖x − y‖ ≥ radius(C)/2. If ‖x − y‖ ≥ λ4f(x)/(3 + λ4), then by (4.6), rx =
‖p − x‖ = Ω(f(x)) and we are done.

Suppose that ‖x−y‖ < λ4f(x)/(3+λ4). Since radius(C) ≤ 2 ‖x−y‖ by assumption,
Lemma 4.15(ii) implies that λ4f(y) ≥ ‖x − y‖ + radius(C). Combining this with
Lemma 4.14(ii), we conclude that the diametric ball of h lies inside some protecting
ball. Qmesh never inserts the circumcenter of a tetrahedron inside any protecting
ball. It follows that Qmesh attempts to insert x in rule 5 because h 6∈ DelV. Hence,
Lemma 4.15(iii) implies that radius(C) = Ω(f(x)). So ‖x − y‖ ≥ radius(C)/2 =
Ω(f(x)). Substituting this into (4.6) yields rx = ‖p − x‖ = Ω(f(x)).

Case 1.2: ‖x − y‖ < radius(C)/2. Recall that it is the assumption of case 1 that y lies
on an edge in F ∩ F ′. By the emptiness of C, a subsegment on this edge crosses C
completely. Clip this subsegment within C to obtain a chord s. Notice that y is the
midpoint of s. Since ‖x − y‖ < radius(C)/2, we have the following two inequalities:

length(s) ≥
√

3 radius(C), (4.8)

length(s) ≥ ‖x − y‖ + radius(C). (4.9)

Since p does not encroach the subsegment containing s, p lies outside the diametric
ball of s. It follows that

‖p − y‖ ≥ length(s)/2
(4.8)

≥
√

3 radius(C)/2. (4.10)

If radius(C) ≥ 2λ4f(x)/(3 + λ4), then (4.10) and (4.7) imply that rx = ‖p − x‖ =
Ω(f(x)) and we are done.

Suppose that radius(C) < 2λ4f(x)/(3+λ4). It follows that ‖x−y‖ < λ4f(x)/(3+λ4).
The inequality (4.9) implies that if we double the size of the diametric ball of s, it
contains the diametric ball of h. Therefore, the diametric ball of h lies inside some
protecting ball. As in case 1.1, we conclude that h 6∈ DelV and so Lemma 4.15(iii)
implies that radius(C) = Ω(f(x)). Then (4.10) and (4.7) imply that rx = ‖p− x‖ =
Ω(f(x)).

Case 2: y is an isolated vertex in F ∩ F ′. Then rx = ‖p − x‖ = Ω(f(x)) by Lemma 4.5(iii).

Case 3: y 6∈ F ∩ F ′. If the wedge of F and F ′ containing p and x is non-sharp, we apply
Lemma 4.7(ii); otherwise, we apply Lemma 4.7(iii). In both cases, we conclude that
rx = ‖p − x‖ = Ω(f(x)).

We are ready to apply induction to show that in the Refine phase, the insertion radius of
any vertex inserted or rejected is lower bounded by its local feature size.

Lemma 4.17 If x exists in V before the invocation of Refine or x is inserted or rejected by
Qmesh during Refine, then rx = Ω(f(x)).

Proof. If x exists in V before the invocation of Refine, then rx ≥ λ3f(x) by Lemma 4.14(i).
Assume that x is inserted or rejected during Refine. If x is inserted or rejected in rule i,

28



4 ≤ i ≤ 6, we say that x has type i. We prove a stronger statement by induction: if x has type
i, then rx ≥ f(x)/Ci for some constants C4 > C5 > C6 > 1. In the induction steps, we develop
several inequalities involving C4, C5, and C6 that need to hold for the proof. We set the values
of C4, C5, and C6 at the end to satisfy all the inequalities.

Let p be the parent of x. Suppose that rx ≥ c · rp for some constant c. By Lemma 4.11, if
x has type 5 or 6, then rx ≥ ‖p − x‖ and so

f(x)

rx
≤ f(p)

rx
+

‖p − x‖
rx

≤ f(p)

rx
+ 1 ≤ f(p)

c · rp
+ 1.

Otherwise, x has type 4 and rx ≥ 1−tan(π/8)
1+tan(π/8) ‖p − x‖. So

f(x)

rx
≤ f(p)

rx
+

‖p − x‖
rx

≤ f(p)

rx
+

1 + tan(π/8)

1 − tan(π/8)
≤ f(p)

c · rp
+

1 + tan(π/8)

1 − tan(π/8)
.

Case 1: x has type 4. If p has type 4, p must be inserted and it is an endpoint of a subsegment
(shield or non-shield). By Lemma 4.3, rx ≥ λ6f(x) for some constant λ6 > 0.

Suppose that p has type 5 or 6. Since p encroaches the subsegment split by x, the radius of
the diametric ball of this subsegment is at least rp/

√
2. By Lemma 4.11, rx ≥ 1−tan(π/8)√

2
·rp.

As C5 > C6, by induction assumption, rp ≥ f(p)/C5 regardless of the type of p. This

gives f(x)
rx

≤
√

2
1−tan(π/8) ·

f(p)
rp

+ 1+tan(π/8)
1−tan(π/8) ≤

√
2

1−tan(π/8) · C5 + 1+tan(π/8)
1−tan(π/8) .

So the inequalities β1C5 + β2 ≤ C4 and C4 ≥ 1/λ6 need to hold, where β1 =
√

2
1−tan(π/8)

and β2 = 1+tan(π/8)
1−tan(π/8) .

Case 2: x has type 5. If p is a vertex lying on some element of P, Lemma 4.16 implies that
rx ≥ λ5f(x). Otherwise, p must have type 6. Let h be the subfacet split by x. Let F be
the facet containing h.

We claim that p is not a vertex in V. Assume to the contrary that p is a vertex in V.
This implies that p exists before h is created. The diametric ball of h is contained in the
union of the diametric balls of subfacets on F at any time in Refine before the creation
of h. It follows that p encroached some subfacet when it was inserted. But then Qmesh
should have rejected p, a contradiction.

By the claim, we can infer that Qmesh tries to insert p to split a skinny tetrahedron,
but then it rejects p for encroaching h. And the diametric ball B of h is empty. Since p
lies inside B, radius(B) ≥ rp/

√
2. Thus rx = radius(B) ≥ rp/

√
2. Since rp ≥ f(p)/C6 by

induction assumption, we have f(x)
rx

≤
√

2f(p)
rp

+ 1 ≤
√

2C6 + 1.

So the inequalities
√

2C6 + 1 ≤ C5 and C5 ≥ 1/λ5 need to hold.

Case 3: x has type 6. Let τ be the skinny tetrahedron of which x is the circumcenter. Observe
that rp is at most the shortest edge length of τ . This is because the other endpoint of
this edge was already in V when p was inserted; refer to the definition of p. This implies
that rx = ‖p − x‖ ≥ ρ0rp.

If p exists as a vertex in V before the invocation of Refine, then rp ≥ λ3f(p) by
Lemma 4.14(i). So rx ≥ ρ0λ3f(p). The Lipschitz condition implies that f(x) ≤ f(p) +
‖p − x‖ ≤ ρ0λ3+1

ρ0λ3
· rx.
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Suppose that p is inserted into V during Refine. As C4 > C5 > C6, by induction
assumption, rp ≥ f(p)/C4 regardless of the type of p. This gives f(x)

rx

≤ f(p)
ρ0·rp

+1 ≤ C4

ρ0
+1.

So the inequalities C4/ρ0 + 1 ≤ C6 and C6 ≥ ρ0λ3+1
ρ0λ3

need to hold.

We set C6 = max{ρ0+β1+β2

ρ0−
√

2β1

, 1
λ5

, 1
λ6

, ρ0λ3+1
ρ0λ3

}, C5 =
√

2C6 + 1, and C4 =
√

2C5 + 1. Notice that

Ci > 0 for i = 4, 5, 6 since ρ0 >
√

2β1 = 2
1−tan(π/8) as chosen by Qmesh.

4.3.4 Finale

Theorem 4.1 Qmesh terminates and returns a Delaunay mesh such that for any two mesh
vertices a and b, ‖a − b‖ = Ω(max{f(a), f(b)}). The vertices of any skinny tetrahedron are at
distance O(f(x)) from some sharp vertex x or some point x on a sharp edge.

Proof. For any two vertices a, b ∈ V such that a appears in V not earlier than b, ‖a−b‖ ≥ µf(a)
for some constant µ > 0 (Lemma 4.17). So f(b) ≤ f(a) + ‖a − b‖ ≤ 1+µ

µ ‖a − b‖. In all,
‖a − b‖ = Ω(max{f(a), f(b)}). A packing argument shows that Qmesh terminates.

Let τ be a skinny tetrahedron. Let R be the circumradius of τ . Note that the circumcenter q
lies inside some protecting ball B. If B is the vertex ball at a sharp v, then f(v)/4 ≥ ‖q−v‖ ≥ R.
So the vertices of τ are at distance f(v)/4 + R ≤ f(v)/2 from v. If B is not a vertex ball, B is
twice as large as the diametric ball Bab of some sharp subsegment ab at the end of Protect.
Let x be the midpoint of ab. Let X denote ‖a − b‖/2. It suffices to show that X ≤

√
2f(x).

Assume to the contrary that X >
√

2f(x). Then Bab intersects an edge or a facet of P
disjoint from the edge containing ab. Let E be such an element closest to x. Since ab is not
encroached at the end of Protect, no vertex of E lies inside Bab. It follows that x projects
orthogonally onto a point y in the interior of E. Let h be the subsegment or subfacet on E
that contains y. Let w be the vertex of h closest to y. Since ‖w − x‖ ≥ X >

√
2f(x) and

‖x − y‖ = f(x),
2‖x − y‖2 < ‖w − x‖2. (4.11)

Let ẑ be the diametric ball of h. Since w is the closest vertex of h to y, ∠zyw ≥ π/2. This
implies that ‖y − z‖2 ≤ radius(ẑ)2 − ‖w − y‖2. So

‖x − z‖2 = ‖x − y‖2 + ‖y − z‖2

≤ radius(ẑ)2 + ‖x − y‖2 − ‖w − y‖2

= radius(ẑ)2 + 2 ‖x − y‖2 − ‖w − x‖2,

which is less than radius(ẑ)2 by (4.11). But then rule 3 (SplitBalls) should split h as x lies
inside ẑ, a contradiction.

5 Experimental results

We experimented with a preliminary implementation of QMesh. We protected sharp vertices
with a vertex ball as demanded by the algorithm. We inserted all points where the edges
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intersect the vertex balls, but did not protect the shield subsegments with SOS. Apparently
this does not cause any trouble for the datasets tested so far. It may very well be true that a
more refined analysis can get rid of the SOS from the algorithm.

Figure 15 shows the results. The tables below show that most of the tetrahedra have good
radius-edge ratio. We took ρ0 = 2.2 for the experiments. Tetrahedra with radius-edge ratio
greater than this threshold are shown in the second column of Figure 15. All of them lie near
some small angle region. Third column of the figure shows the triangulation of the input PLC
and some highlights to exhibit how the algorithm copes with small input angles.

Model # input points # sharp elements

Anchor 28 27

Rail 48 24

Wiper 72 58

SimpleBox 32 30

meshtest 60 35

Model # points inserted # tetrahedra with R/ℓ
0.6-1.4 1.4-2.2 > 2.2

Anchor 1260 3156 1254 35

Rail 263 610 125 2

Wiper 1121 2074 785 6

SimpleBox 1334 3181 1131 40

meshtest 300 798 286 0
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