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Abstract

Our goal is to find an approximate shortest path for a point robot moving in a planar
subdivision with n vertices. Let ρ > 1 be a real number. Distances in each face of this
subdivision are measured by a convex distance function whose unit disk is contained in a
concentric unit Euclidean disk, and contains a concentric Euclidean disk with radius 1/ρ.
Different convex distance functions may be used for different faces, and obstacles are allowed.
These convex distance functions may be asymmetric. For any ε ∈ (0, 1) and for any two
points vs and vd, we give an algorithm that finds a path from vs to vd whose cost is at

most (1 + ε) times the optimal. Our algorithm runs in O
(

ρ2 log ρ
ε2 n3 log

(

ρn
ε

)

)

time. This

bound does not depend on any other parameters; in particular it does not depend on the
minimum angle in the subdivision. We give applications to two special cases that have
been considered before: the weighted region problem and motion planning in the presence
of uniform flows. For the weighted region problem with weights in [1, ρ] ∪ {∞}, the time

bound of our algorithm improves to O
(

ρ log ρ
ε

n3 log
(

ρn
ε

)

)

.

1 Introduction

The problem of computing a shortest path between two points arises naturally in geographic
information systems, VLSI design, logistics, and motion planning. Another area of application
for shortest paths algorithms is computer graphics, where the geometric properties of short-
est paths along a surface can be exploited for mesh cutting and editing. (See the article by
Surazhsky et al. [20].) The path lies in a geometric environment in all these applications. This
environment is usually represented by a polygonal (or polyhedral) subdivision. Different metrics
may be used in different regions of the subdivision in order to model friction, wind, steepness,
or any other mechanical constraint.

Due to these applications, and the variety of possible geometric environments and metrics,
algorithms for geometric shortest paths problems have been extensively studied. We mention
the most relevant work here and refer the interested reader to the survey by Mitchell [12] for
more details.
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In the weighted region problem [13], a point robot moves within a planar subdivision T , each
face f of T being associated with a weight wf > 0. The cost of a path within a face f is the length
of this path multiplied by wf . Assume that the faces of the subdivision T are all triangular.
(We can make this assumption as any planar subdivision can be triangulated by introducing a
linear number of edges.) We denote by n the number of vertices of T . The first approximation
scheme for the weighted region problem was given by Mitchell and Papadimitriou [13]. It runs
in O(n8L) time, where L represents the maximum number of bits of the input numbers (such
as the integer coordinates of the vertices of the subdivision, and the weights). This algorithm
is a continuous version of the Dijkstra’s algorithm for finding shortest paths in a graph. Other
algorithms for the weighted region problem discretize the search space by placing Steiner points,
and by finding a shortest path in a graph whose nodes are Steiner points or input vertices, and
whose edges are line segments. In particular, Aleksandrov et al. [2] and Sun and Reif [19]
gave algorithms that have linear dependency in n. However, their time bounds depend on the
minimum angle in T (and the weights too in the algorithm by Aleksandrov et al. [2]).

The main limitation of the weighted region model is that it only models situations where the
metrics are isotropic. It cannot account for the effect of wind, current, or any other force field
that favors some directions of travel. A more general model was introduced by Reif and Sun for
motion planning in the presence of uniform flows [16]. In each face f of T , the velocity of the
robot is the sum of a flow ~vf and a control velocity chosen by the robot. It allows one to model
friction and a uniform flow within each region. Reif and Sun [16] showed that this problem is
PSPACE hard in 3D, and gave a FPTAS for the 2D case. (Some geometric parameters were
treated as constant, such as the minimum angle in T ).

As pointed out by Aleksandrov et al. [2], one challenge is to remove the dependence on
parameters other than n and ε in the running time. It is also desirable to handle more general
types of metrics in order to model a larger class of problems that arise in applications. (See
the article of Sellen [17] on the direction-weighted problem, where the cost is proportional to a
continuous function of the direction.) We make progress in both aspects in this paper.

1.1 Our Results

We consider a generalization of Reif and Sun’s model for motion planning in the presence of
uniform flows [16]. A point robot moves within a planar subdivision from a source point vs to
a target point vd. The planar subdivision T may have holes in order to model obstacles. The
distance within each face f of the subdivision is measured according to a possibly asymmetric
convex distance function [4]. (See Section 2.2 for a definition of convex distance functions.)
Different convex distance functions may be used for different faces. The cost of a path is
measured according to these distance functions. (See Section 2 for the case of a polygonal path
and Section 6 for the case of a rectifiable path.) Let Bf denote the unit “disk” of the distance
function of a face f . We assume that Bf is contained in a concentric unit Euclidean disk and
that Bf contains a concentric Euclidean disk with radius 1/ρ. In other words, there exists ρ > 1
such that the speed of the robot in any direction and within any face of T is in the interval
[1/ρ, 1]. The weighted region problem and the problem of path planning in the presence of
uniform flows are special cases in our model.

We assume that the distance between two points under any of the convex distance functions
can be computed in O(1) time. Our model of computation is the standard real–RAM model [15]
in which the operations (+,−,×, /) can be performed in constant time.
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Our main results include an algorithm that computes in time O
(

ρ2 log ρ
ε2 n3 log

(

ρn
ε

)

)

a polyg-

onal path whose cost is at most (1 + ε) times the optimal. This is the first algorithm that can
handle general convex distance functions. For the weighted region problem, the time bound

improves to O
(

ρ log ρ
ε

n3 log
(

nρ
ε

)

)

. Our time bounds have the nice feature that they do not de-

pend on the geometry of T . It is not obvious that an optimal path exists in our model. Indeed,
we give an example in which no polygonal path is optimal. Nevertheless, using the theory of
length spaces [3, 10], we can prove that there exists an optimal rectifiable path. (A rectifiable
path is a path with finite Euclidean length.) Furthermore, we show that there exists a (1 + ε)-
approximate shortest path that is polygonal and has O(ρn2/ε) links. This is instrumental to
establishing the correctness and the complexity of our algorithm.

Our approach is the following. We define a k-link path to be a polygonal path with at most
k edges, each edge being contained in a face of T and having its endpoints on the boundary
of this face. (Our definition is different from the one given by Daescu et al. [5].) We first
give approximation algorithms that return a polygonal path with cost at most (1 + ε) times
the cost of any k-link path. (See Section 3.) In the weighted region problem, Mitchell and
Papadimitriou [13] showed that there exists a shortest path that is a k-link path with k = Θ(n2),
so we apply our algorithm with k = Θ(n2) and obtain the result stated above. In the general
case, we show that for any polygonal path P , there exists a (21ρn2/ε)-link path with cost at
most (1 + ε) times the cost of P . (See Sections 4 and 5.) Thus, by choosing k = 21ρn2/ε, our
algorithm returns a path with cost at most (1+ ε) times the cost of any polygonal path. Then,
in Section 6, we prove that there exists an optimal rectifiable path, and show that there exists a
polygonal path with cost arbitrarily close to the optimal. It follows that our algorithm returns
a (1 + ε) approximate shortest path within the class of rectifiable paths.

1.2 Comparison with Previous Work

A direct comparison cannot be made with any previous result because our algorithm is the
first that can handle general convex distance functions. Anisotropic shortest paths problems
have been studied on terrains [11, 18] in a special case that models some common mechanical
constraints on a mobile robot. This model cannot account for the presence of flows (even
uniform flows), so it is not more general than ours. On the other hand, our algorithm applies to
planar subdivisions, not terrains. The problems of navigating through weighted regions and in
the presence of uniform flows are special cases in our model. So we compare with the previous
results for these problems.

Weighted Region Problem. In this case, ρ is equal to the ratio of the maximum weight to
the minimum weight. Other than the dependence on n and ε, there is a factor of Ω(1/θmin) in the
worst-case running times of the algorithms by Aleksandrov et al. [1, 2] and Sun and Reif [19],
where θmin is the minimum angle in T . The worst-case running time of the algorithms by
Aleksandrov et al. [1, 2] depend on ρ too. Our running time is independent of the geometry
of T , although it has a higher dependence on n, ε, and ρ. The algorithm of Mitchell and
Papadimitriou [13] has a running time of O(n8 log nNρ

ε
), where the input vertices have integer

coordinates in [0, N ]. In comparison, our algorithm works in the standard real RAM model;
and our algorithm has a smaller dependence on n, but a higher dependence on ε and ρ.
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Figure 1: The underlying space |T | is shaded. The path P1 is a 7-link path, and thus it is
T -respecting. The path P2 is a T -respecting path with 8 links, but it is not an 8-link path.

Movement in the Presence of Uniform Flows. Assume that there is a uniform flow of
velocity ~vf in each face f of T . The robot can apply a control velocity ~vr in any direction such
that ‖~vr‖ is at most some constant cf . For each face f , we define a convex distance function
whose unit “disk” Bf is a Euclidean disk with radius cf and centered at O + ~vf , where O is
the origin. Thus, Bf is contained in a disk with radius cf + ‖~vf‖ and centered at O, and Bf

contains a disk with radius cf −‖~vf‖ and centered at O. Let vmin = min{cf −‖~vf‖ : f ∈ T }. Let
vmax = max{cf + ‖~vf‖ : f ∈ T }. Assuming that vmin > 0, we can model the problem with ρ =

vmax/vmin, and find an approximate shortest path in time O
(

ρ2 log ρ
ε2 n3 log

(

ρn
ε

)

)

. An algorithm

by Reif and Sun runs in O
(

nCskew

ε
(log Cskew

ε
)(log Cskew

ε
+ log n)

)

time [16], where Cskew is defined

as follows. Let λ = max{cf/cf ′ : adjacent faces f and f ′}. Let ρmin = min{cf/‖~vf‖ : f ∈ T }.
Let θmin be the minimum angle in T . Then Cskew = Θ

(

λ(ρmin+1)
θmin(ρmin−1)

)

. Reif and Sun’s algorithm

requires ρmin > 1, which is equivalent to our condition of vmin > 0. Our running time does not
depend on θmin, but Reif and Sun’s running time has a better dependence on n, ε, and ρ.

2 Notation and Preliminaries

2.1 Environment

We model the environment T in which the point robot can move by a simplicial complex [6]: it
is a collection of triangles such that any two triangles can only intersect along a common edge
or vertex or not at all. A face of T is a triangle in T . We consider faces to be closed subsets
of R

2. A vertex (resp. an edge) of T is a vertex (resp. an edge) of some face of T . (We do not
allow dangling edges or vertices; that is, all edges and vertices must be edges or vertices of a
face of T .) The underlying space |T | ⊂ R

2 of T is the union of its faces. (See Figure 1). We
assume that |T | is connected, but we allow |T | to have holes. The point robot is free to move
inside |T | but it cannot move outside |T |. We use n to denote the number of vertices in T , and
we assume that n is finite.

For any two points p, q ∈ R
2, we denote by pq the closed, oriented line segment from p to q.

In particular, when p 6= q, we have pq 6= qp. We denote by ‖pq‖ the Euclidean distance between
p and q. For any two points p, q ∈ |T |, the geodesic distance between p and q is the Euclidean
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length of the shortest polyline in |T | with endpoints p and q. We use ‖pq‖T to denote this
geodesic distance.

For each face f of T , we denote by int(f) (resp. bd(f)) the interior (resp. boundary) of
f according to the usual topology of R

2. For a segment pq, we use int(pq) to denote the open
line segment from p to q. When X is a polyline with endpoints p, q, we use int(X) to denote
X \ {p, q}. A chord of a face f of T is an oriented line segment pq such that int(pq) ⊂ int(f)
and {p, q} ⊂ bd(f). If pq ⊂ bd(f), we say that pq is a boundary segment.

2.2 Convex Distance Functions

Each face f of T is associated with a compact convex set Bf ⊂ R
2 that contains the origin O

in its interior. The convex distance function associated with f is defined by

∀x, y ∈ f, df (x, y) = min{λ ∈ [0,+∞) : y ∈ x + λBf}.

This type of distance function has been studied before [4, 7] in the context of Voronoi diagrams.
A convex distance function is not necessarily a metric as it may be asymmetric. Still, df satisfies
the triangle inequality, and the shortest path from p to q is the oriented line segment pq.

If int(pq) ⊂ int(f) for some face f , the cost of pq is defined as cost(pq) = df (p, q). If pq is
contained in an edge e of T that is adjacent to exactly one face f , we also define cost(pq) to
be df (p, q). On the other hand, if e is adjacent to two faces f1 and f2, we define cost(pq) to be
min(df1

(p, q), df2
(p, q)).

We assume that there exists ρ > 1 such that, for any face f , the set Bf contains a Euclidean
disk with radius 1/ρ centered at the origin, and Bf is contained in the unit Euclidean disk
centered at the origin. Intuitively, it means that the speed allowed in any direction is always
in the interval [1/ρ, 1]. It implies that, for any face f and for any points p, q ∈ f , we have
‖pq‖ 6 cost(pq) 6 ρ ‖pq‖. Another useful consequence is that for any two chords ps and qr of
the same face f , we have

cost(ps) = df (p, s) 6 df (p, q) + df (q, r) + df (r, s)

= df (p, q) + cost(qr) + df (r, s)

6 ρ ‖pq‖ + cost(qr) + ρ ‖rs‖. (1)

A similar derivation shows that the above inequality also holds when ps and qr are boundary
segments contained in the same edge of T . (If the edge containing ps and qr is incident to two
faces f1 and f2, one needs to replace df (x, y) by min(df1

(x, y), df2
(x, y)) for any x and y in the

above derivation.)

2.3 Polygonal Paths

We consider paths from a point vs to a point vd in |T |. Without loss of generality, we can
assume that vs and vd are vertices of T . If not, we can force vs and vd to be vertices by
splitting the triangle(s) containing them into smaller triangles. (These smaller triangles inherit
their convex distance functions from the triangles containing them.)

A polygonal path is a polyline in |T | with endpoints vs and vd. A link is an edge of a
polygonal path and a node is a vertex of a polygonal path—we use this terminology to avoid
confusion with edges and vertices of T . We identify a polygonal path with its sequence of
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nodes. So if a polygonal path P has the node sequence (vs = p0, p1, . . . , pm = vd), we write
P = (p0, p1, . . . , pm). We do not require the nodes of P to be distinct. The length of P is
defined as length(P ) =

∑m
i=1 ‖pi−1pi‖.

A T -respecting path is a polygonal path P such that each link of P is contained in a face of
T . (See Figure 1). The cost of a T -respecting path P is simply the sum of the costs of its links
when P is traversed from vs to vd. Therefore, we have cost(P ) =

∑m
i=1 cost(pi−1pi). It implies

that cost(P )/ρ 6 length(P ) 6 cost(P ). We also define cost(P ) when P is an arbitrary polygonal
path. We first obtain a T -respecting path P ′ by introducing new nodes at the intersections
between the links of P and the edges of T . We then define cost(P ) = cost(P ′).

For any integer k, a k-link path is a polygonal path with at most k links, and whose links
are either chords or boundary segments. (See Figure 1.) In particular, a k-link path is T -
respecting, and none of its nodes lies in the interior of a face. Our definition is different from
previous work [5] on k-link paths, where the path is not required to be T -respecting. By our
definitions, a T -respecting path can have a node in the interior of a face of T , but a k-link path
cannot.

3 Approximation Algorithms

We present algorithms for approximating a shortest k-link path for some given ε ∈ (0, 1) and
k. The cost of the output polygonal path is less than (1 + ε) times the cost of any k-link
path, but the output path is allowed to have more than k links. After showing the existence
of an approximate shortest path with few links, we can use these algorithms to find (1 + ε)-
approximate shortest paths.

We first present a simple algorithm in Section 3.1, which discretizes the environment with
a graph and then computes a shortest path in the graph. Unlike the previous discretization
schemes [1, 2], our discretization makes use of the global geodesic distance ‖vsvd‖T . In Sec-
tion 3.2, we show another simple idea to space out the graph vertices that are far away from
vs and vd. It results in a reduction of the graph size and hence an improvement of the run-
ning time. We show that it is possible to improve the running time further by working with
the graph vertices alone (without computing the graph edges), by employing the algorithm
BUSHWHACK [19].

3.1 A Simple Algorithm

In this section we present a simple algorithm that computes an approximate k-link shortest
path. It is based on two ideas. First, we observe that any 4

3 -approximate shortest path lies in
a region delimited by an ellipse with diameter 4

3ρ ‖vsvd‖T . Second, we discretize the problem
by placing Steiner points uniformly along the portion of each edge of T that lies inside this
ellipse. With an appropriate spacing of the Steiner points, we show that there is an approximate
shortest path whose nodes are all Steiner points or vertices of T . We find one such path by
computing a shortest path in a graph whose nodes are the Steiner points and the vertices of T ,
using Dijkstra’s algorithm.

Let k > 2n − 4 denote an integer. Because T is a planar graph with n vertices, it has at
most 2n− 4 faces [14]. It implies that there exists a k-link path from vs to vd. Therefore, there
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E

vdvs

Figure 2: The white points are the Steiner points. The polygonal path is a 9-link path whose
nodes are all Steiner points or vertices of T .

exists a k-link path P ε
k such that for any ε > 0,

cost(P ε
k ) 6

(

1 +
ε

3

)

inf{cost(Pk) : Pk is a k-link path}.

This path has the following property.

Lemma 3.1 If k > 2n − 4 and ε ∈ (0, 1), then cost(P ε
k ) 6

4ρ

3
‖vsvd‖T .

Proof. Let G = (g0, g1, . . . , gm) be a T -respecting path with length ‖vsvd‖T and such that m
is minimum. The path G cannot have two links inside the same face of T : if there were two
such links, say gi−1gi and gjgj+1 with i 6 j, we could remove from G the nodes (gi, . . . , gj).
It would yield a polygonal path with at most the same length, but fewer nodes. As we noted
above, T has at most 2n − 4 faces. Therefore, G is a (2n − 4)-link path and hence a k-link
path. We conclude that cost(P ε

k ) 6
(

1 + ε
3

)

cost(G) 6
4
3 cost(G) = 4

3

∑m
i=1 cost(gi−1gi) 6

4
3

∑m
i=1 ρ ‖gi−1gi‖ 6

4ρ
3 length(G) = 4ρ

3 ‖vsvd‖T .

Let E denote the following elliptic region:

E =

{

x ∈ R
2 : ‖vsx‖ + ‖vdx‖ 6

4ρ

3
‖vsvd‖T

}

.

Since length(P ε
k ) 6 cost(P ε

k ), we know by Lemma 3.1 that P ε
k ⊂ E. For each edge e of T ,

we place a maximal set of equally spaced points on int(e ∩ E). (See Figure 2.) The spacing
is δ = ε

6ρk
‖vsvd‖T . The following lemma shows that our Steiner points give an accurate

discretization.

Lemma 3.2 If k > 2n − 4 and ε ∈ (0, 1), there exists a k-link path Sk such that cost(Sk) 6

(1 + ε) cost(Pk) for any k-link path Pk, and all the nodes of Sk are Steiner points or vertices of

T .

Proof. Let (p0, p1, . . . , pm) be the node sequence of P ε
k . For any i ∈ [0,m], we associate a point

si to pi as follows. If pi is a vertex of T , we set si = pi. Otherwise, since P ε
k is a k-link path,
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pi lies in the interior of some edge e of T . Thus, there is a Steiner point x ∈ int(e) such that
‖xpi‖ 6 δ. We set si = x. We denote Sk = (s0, s1, . . . , sm). (It is possible that si−1 = si for
some i, in which case the link si−1si degenerates to a point.) By construction, for any i ∈ [1,m],
the links pi−1pi and si−1si either are chords of the same face of T , or are contained in the same
edge of T . Therefore, Sk is a k-link path, and inequality (1) implies that

cost(Sk) 6

m
∑

i=1

ρ ‖si−1pi−1‖ + cost(pi−1pi) + ρ ‖sipi‖ (2)

6 cost(P ε
k ) + 2ρmδ (3)

= cost(P ε
k ) +

mε

3k
‖vsvd‖T (4)

By definition, P ε
k is a k-link path. So m 6 k, and thus cost(Sk) 6 cost(P ε

k ) + ε
3 ‖vsvd‖T . Since

‖vsvd‖T 6 length(P ε
k ) 6 cost(P ε

k ), we have cost(Sk) 6 (1 + ε/3) cost(P ε
k ). Thus, for any k-link

path Pk, cost(Sk) 6 (1 + ε/3)2 cost(Pk) 6 (1 + ε) cost(Pk).

The Steiner graph is the directed weighted graph defined as follows. Its nodes are the Steiner
points and the vertices of T . There is a directed edge (p, q) between any two nodes p and q
that lie on the boundary of the same face of T . The edge (p, q) is assigned the weight cost(pq).

Here is the pseudo-code of our approximation algorithm.

Approximate(T , k, ε)

1. Compute ‖vsvd‖T .

2. Compute the Steiner graph.

3. Compute a weighted shortest path S in the Steiner graph.

4. Output S.

In the analysis of this algorithm, we use the standard real-RAM model [15] and assume that
for any points p and q in the same face of T , we can compute cost(pq) in O(1) time. We obtain
the following result:

Lemma 3.3 If k > 2n− 4 and ε ∈ (0, 1), then Approximate(T , k, ε) computes a polygonal path

S such that cost(S) 6 (1+ε) cost(Pk) for all k-link path Pk. The algorithm can be implemented

to run in O
(

nk2ρ4/ε2
)

time.

Proof. Correctness follows from Lemma 3.2. The geodesic distance computation in Line 1
can be performed in O(n2) = O(nk) time [12]. The diameter of E is 4

3ρ ‖vsvd‖T , so each edge
e of T contains O(kρ2/ε) Steiner points. Therefore, the Steiner graph has O(nkρ2/ε) nodes
and O(nk2ρ4/ε2) edges. Using a Fibonacci heap, Dijkstra’s algorithm can be implemented to
compute single-source shortest paths in O(|E| + |V | log |V |) time for a graph with |V | nodes
and |E| edges [8]. We use this method to implement step 4 and, thus, we obtain the desired
running time.
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3.2 A Sparser Steiner Graph

We can speed up the above algorithm by reducing the number of Steiner points. The idea is
to place Steiner points more sparsely on portions of edges that are far from vs and vd. So we
introduce a family of elliptic regions. For 0 6 i 6 ⌈log ρ⌉, each region is defined as

Ei = {x ∈ R
2 : ‖vsx‖ + ‖vdx‖ 6

4ρ

2i 3
‖vsvd‖T }.

For convenience, we take E⌈log ρ⌉+1 to denote the empty set.

We construct a set of Steiner points as follows. For each edge e of T and for any integer i
such that 0 6 i 6 ⌈log ρ⌉, we insert the intersection points between e and the boundary of Ei,
and then we place a maximal set of points on int(e ∩ (Ei \ Ei+1)) with uniform spacing δi =

ε
2i+1 6k

‖vsvd‖T . After obtaining the new set of Steiner points, the Steiner graph is constructed
as before. Observe that now, the number of Steiner graph nodes per edge is O((kρ log ρ)/ε),
instead of O(kρ2/ε). Therefore, the size of the Steiner graph is O((nk2ρ2 log2 ρ)/ε2) and the
running time improves to O((nk2ρ2 log2 ρ)/ε2).

It remains to prove that this new algorithm is correct. Let j denote the largest integer
such that P ε

k ⊂ Ej . (There is such an integer because P ε
k ⊂ E0 = E by Lemma 3.1.) For

every edge e of T , the distance between two consecutive Steiner points along e ∩ Ej is at most
δj . Thus, using the derivation in inequalities (2) and (3) in the proof of Lemma 3.2, we can
show that cost(Sk) 6 cost(P ε

k ) + ρε ‖vsvd‖T /(2j+1 3). As P ε
k is not contained in Ej+1, we

have length(P ε
k ) > 4ρ ‖vsvd‖T /(2j+1 3) and thus cost(Sk) 6 (1 + ε/4) cost(P ε

k ). Recall that
cost(P ε

k ) 6 (1+ε/3) cost(Pk) for any k-link path Pk. It follows that cost(Sk) 6 (1+ε) cost(Pk).
Therefore, we have proved the following result:

Lemma 3.4 If k > 2n − 4 and ε ∈ (0, 1), we can compute in O((nk2ρ2 log2 ρ)/ε2) time a

polygonal path S such that cost(S) 6 (1 + ε) cost(Pk) for any k-link path Pk.

3.3 Further Improvement

We can improve the running time further if we can avoid computing explicitly the edges of the
Steiner graph. It means that, instead of using Dijkstra’s algorithm, we need to use an algorithm
that does not require these edges to produce a shortest path. BUSHWHACK, an algorithm by
Sun and Reif [19], does exactly this, provided that the cost function is pseudo-Euclidean.

The cost function is pseudo-Euclidean if it meets the following two conditions. First, it
obeys the triangle inequality in the interior of each face (in other words, a shortest path in the
interior of a face is a line segment). Second, let p be a point inside a face f and let e be an edge
of f such that p /∈ e. Let ϕp,e : e → R be the function defined by ϕp,e(x) = cost(px). For any p
and e, this function is required to have the following property: we can compute in O(1) time a
partition of e into O(1) subsegments such that ϕp,e is monotone along each such subsegment.

The convexity of the distance functions in T implies that ϕp,e has only one local extremum,
which is a global minimum. (In degenerate cases, when Bf is not strictly convex, this minimum
can be achieved over a closed segment and not just at a single point). So if we assume that this
minimum can be computed in O(1) time, our metric is pseudo-Euclidean.

When there are m Steiner points per edge, the BUSHWHACK algorithm runs in time
O(mn log(mn)), instead of O(m2n + mn log(mn)) for Dijkstra’s algorithm. The algorithm
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presented in Section 3.2 uses m = O((kρ log ρ)/ε) Steiner points per edge. So, we obtain this
improved algorithm:

Theorem 1 If k > 2n − 4 and ε ∈ (0, 1), we can compute in time O
(

nkρ log ρ
ε

log
(

kρ
ε

))

a

polygonal path S such that cost(S) 6 (1 + ε) cost(Pk) for any k-link path Pk.

3.4 Applications

In the weighted region problem, each face f is associated with a weight wf ∈ [1, ρ] (assuming
that the minimum weight is scaled to 1). According to our terminology, for each face f , the
set Bf is the Euclidean disk centered at the origin with radius 1/wf . Obstacles (holes in
|T |) are still allowed; in other words, we allow weights to be in [1, ρ] ∪ {+∞}. Mitchell and
Papadimitriou [12, 13] proved that, in the weighted region problem, the shortest path is an
O(n2)-link path. Substituting this bound for k into Theorem 1 yields the following result:

Corollary 1 Consider the weighted region problem in a planar subdivision with n vertices and

with weights in [1, ρ]∪{+∞}. For any ε ∈ (0, 1), we can compute a (1+ε)-approximate shortest

path in time O
(

ρ log ρ
ε

n3 log
(

nρ
ε

)

)

.

To realize the 1+ε approximation bound in Corollary 1, one would need to extract from [13]
the constant c0 hidden in the O(n2) bound on the number of links. Nevertheless, the proof of
Lemma 3.2 reveals that even if k is set to be c1n

2 for some constant c1 < c0, the approximation
ratio is still 1 + O(ε).

In the anisotropic setting where each face f is associated with a convex distance function
df , no bound on the number of links in the shortest path was known before. In Theorem 2
in Section 5 and Corollary 4 in Section 6, for any ε ∈ (0, 1), we prove a bound of 21ρn2/ε
on the number of links in a polygonal path whose cost is at most (1 + ε) times the optimal.
Substituting this bound for k into Theorem 1 yields the following result:

Corollary 2 Consider the anisotropic shortest path problem in a planar subdivision with n
vertices. For any ε ∈ (0, 1), we can compute a (1 + ε)-approximate shortest path in time

O
(

ρ2 log ρ
ε2 n3 log

(

ρn
ε

)

)

.

As we mentioned in the introduction (Section 1.2), the shortest path problem in the presence
of uniform flows can be solved using Corollary 2.

Corollary 3 Consider the shortest path problem in the presence of uniform flows as defined in

Section 1.2. Assume that vmin > 0. For any ε ∈ (0, 1), we can compute a (1 + ε)-approximate

shortest path in time O
(

ρ2 log ρ
ε2 n3 log

(

ρn
ε

)

)

, where ρ = vmax/vmin.

4 Cost-Preserving Path Transformations

In this section we show how to transform a T -respecting path into another T -respecting path
that has at most the same cost and is free of some undesirable features. This result is used
in Section 5 to show that any polygonal path can be converted into a polygonal path with
O(ρn2/ε) links such that the cost increases by a factor of at most 1 + ε.
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4.1 Preliminaries

Let P = (vs = p0, . . . , pm = vd) be a polygonal path. We allow pi = pi+1; in this case, we call
pipi+1 = {pi} a degenerate link. The path P is self-intersecting if

• there exist i < j such that pi−1pi ∩ pjpj+1 6= ∅, or

• there exists i such that pi−1 ∈ pipi+1 or pi+1 ∈ pi−1pi.

The path P is simple if it is not self-intersecting. The points in which P self-intersects are not
necessarily nodes of P .

To describe the cost-preserving transformations, we give a classification of nodes in P . The
vertices of T that are nodes of P are called the nodes of P inherited from T . The endpoints of
degenerate links are called degenerate nodes. The other nodes are classified as follows. (Figure 3
shows some examples.)

• Transversal node : pi ∈ int(e) for some edge e, and pi−1pi∩int(f) 6= ∅ and pipi+1∩int(g) 6=
∅, where f and g are the two faces incident to e.

• Critical node of entry : pi ∈ int(e) and int(pipi+1) ∩ e 6= ∅ for some edge e and pi−1pi ∩
int(f) 6= ∅ for a face f incident to e.

• Critical node of exit : pi ∈ int(e) and int(pi−1pi) ∩ e 6= ∅ for some edge e, and pipi+1 ∩
int(f) 6= ∅ for a face f incident to e.

• Reflective node: pi ∈ int(e) for some edge e, and pi−1pi∩int(f) 6= ∅ and pipi+1∩int(f) 6= ∅
for a face f incident to e.

• Interior node : pi ∈ int(f) for some face f .

• Linear node: pi ∈ int(e), int(pi−1pi) ∩ e 6= ∅ and int(pipi+1) ∩ e 6= ∅ for some edge e.

In the definition of a linear, interior or reflective node pi, we allow pi−1pi and pipi+1 to overlap.
We call a polygonal path non-redundant if it does not contain any degenerate, reflective, interior,
or linear node. Some intermediate results of the cost-preserving transformations may be self-
intersecting paths, so our classification of nodes does not assume simplicity. Our classification
does not assume paths to be T -respecting either.

Our cost-preserving transformations manipulate polygonal paths by modifying sub-paths
and concatenating polygonal paths. Recall that, for convenience, we use the same notation for
a polygonal path and its sequence of nodes. For any integers i, j such that 0 6 i 6 j 6 m,
we use P [i, j] to denote the sub-path (pi, . . . , pj). Given two sub-paths A = (a1, . . . , am′) and
B = (b1, . . . , bm′′), we denote by A · B = (a1, . . . , am′ , b1, . . . , bm′′) the concatenation of A and
B.

4.2 Splitting a Path

Let P = (p0, . . . , pm) be a polygonal path. The procedure Split converts P into a T -respecting
path with the same cost. This procedure operates as follows. For each vertex v that lies in the
interior of a link of P , it splits this link at v and makes v a node of P . For each crossing point
x between an edge of T and a link of P , it splits the link at point x, and introduces the node x.

11



Transversal node Critical node of entry Critical node of exit

Reflective node Interior node Linear node

Figure 3: Different types of nodes of P other than degenerate nodes and nodes inherited from
T .

Split(Polygonal path P )

1. If there exist a vertex v of T and a link pipi+1 of P such that v ∈ int(pipi+1),
then return Split(P [0, i] · (v) · P [i + 1,m]).

2. If there exist an edge e of T , a link pipi+1 of P and a point x such that
x = int(e) ∩ int(pipi+1), then return Split(P [0, i] · (x) · P [i + 1,m]).

3. Return P .

The following lemma describes the effect of Split.

Lemma 4.1 For any polygonal path P , the path P ′ returned by Split(P ) is T -respecting and

cost(P ′) = cost(P ).

4.3 Reducing a Path

Let P = (p0, . . . , pm) be a T -respecting path. The procedure Reduce eliminates some locally
non-optimal features in P , including degenerate, reflective, interior, and linear nodes, as well
as self-intersections.

Reduce(T -respecting path P = (p0, . . . , pm))

1. If there exists i such that pi = pi+1,
then return Reduce(P [0, i − 1] · P [i + 1,m]).

2. If a node pi is a reflective, interior, or linear node,
then return Reduce(P [0, i − 1] · P [i + 1,m]).

12



3. If P self-intersects, then we are in one of the following two cases:

(a) There exist i < j and x ∈ |T | such that x ∈ pi−1pi ∩ pjpj+1.
Then return Reduce(P [0, i − 1] · (x) · P [j + 1,m]).

(b) There exists i such that pi−1 ∈ pipi+1 or pi+1 ∈ pi−1pi.
Then return Reduce(P [0, i − 1] · P [i + 1,m]).

4. Return P .

It is clear that the number of nodes in P decreases after one application of step 1, 2 or 3.
It implies that Reduce terminates.

Recall that the input path is assumed to be T -respecting. Clearly, this condition continues
to hold after applying step 1, 2 or 3 any number of times. In addition, when Reduce terminates,
the output path P ′ returned by Reduce(P ) is simple and non-redundant.

Lemma 4.2 Let P be a T -respecting path. The path P ′ returned by Reduce(P ) is simple, non-

redundant, and T -respecting. If P ′ 6= P , then P ′ has fewer links than P and cost(P ′) 6 cost(P ).

4.4 Sliding Sub-paths

We call (i, j) a critical pair if pi is a critical node of exit, pj is a critical node of entry, i < j, and
all of the nodes in the interior of the sub-path P [i, j] are transversal nodes. (See Figure 4.) We
introduce a procedure Slide to remove a critical pair in P , if there is one. The same technique of
sliding sub-paths was used by Mitchell and Papadimitriou [13]. Because Reduce will be applied
before applying Slide, we assume that P is a simple, non-redundant, T -respecting path.

Slide(simple, non-redundant, T -respecting path P )

1. Look for a critical pair (i, j) in P .

2. If no critical pair is found, return P .

3. Slide P [i, j] in a direction such that cost(P ) does not increase, until one of the
following situations occurs:

(a) pi−1 = pi. Then return P [0, i − 1] · P [i + 1,m].

(b) pj = pj+1. Then return P [0, j − 1] · P [j + 1,m].

(c) P self-intersects or P [i, j] hits a vertex of T . Then return P .

We explain the sliding operation in step 3 in more detail. Refer to Figure 4. Sliding P [i, j]
means shifting pi, all of the transversal nodes on P [i, j], and pj along the corresponding edges
in such a way that the links in P [i, j] remain parallel to their original positions. The links
pi−1pi, pjpj+1, and those in P [i, j] may lengthen or shrink. Let ∆ be the signed distance of the
sliding of pi from its original position. We take ∆ to be positive (resp. negative) if pi slides
to the right (resp. left). Take a sliding link papa+1. As the slope of papa+1 is kept constant,
the cost of papa+1 is an affine function of ∆. Clearly, the costs of pi−1pi and pjpj+1 are also
affine functions of ∆. Thus, the total change in cost(P ) is an affine function of ∆. Since the
value of an affine function is minimized at the boundary of its domain, we conclude that there
is a direction in which we can slide P [i, j] without increasing cost(P ). The stopping criteria
in step 3 exhausts all the possibilities in which (i, j) no longer satisfies the criteria of being a
critical pair or P ceases to be simple. The following lemma describes the effect of Slide.
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pj+1 pj+1 pj pj+1

pipi

pj

pi−1pi−1 pi−1

pi

pj

Figure 4: A critical pair (i, j). The sub-path P [i, j] can slide to the left or to the right.

Lemma 4.3 Let P be a simple, non-redundant, T -respecting path. The path P ′ returned by

Slide(P ) satisfies the following properties:

(i) P ′ is a T -respecting path.

(ii) cost(P ′) 6 cost(P ) and P ′ has no more links than P .

(iii) If P ′ 6= P and P ′ has as many links as P , then P ′ is self-intersecting or P ′ has more

nodes inherited from T than P does.

4.5 Combining the Transformations

We define a procedure Simplify that makes use of the previous procedures. The input is a
polygonal path P .

Simplify(Polygonal path P )

1. Q1 := Split(P ).

2. Q2 := Reduce(Q1).

3. Q0 := Slide(Q2). If Q0 6= Q2, set Q1 := Q0 and go back to step 2.

4. Return Q0.

Lemma 4.4 Let P be a polygonal path. The path Q0 returned by Simplify(P ) has the following

properties:

(i) cost(Q0) 6 cost(P ).

(ii) Q0 is a simple, non-redundant, T -respecting path.

(iii) Q0 has no critical pair and has at most 2n critical vertices of entry or exit.

Proof. We first show the termination of Simplify. By Lemmas 4.2 and 4.3, the number of links
in the path never increases at steps 2 and 3. If the number of links stays the same in step 3,
then Lemma 4.3 says that Q0 is self-intersecting or it has more nodes inherited from T than Q2

does. If Q0 is self-intersecting, the number of links in the path decreases when Reduce is called
in the next step. So if steps 2 and 3 iterate without decreasing the number of links in the path,
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v3

c1

v1

v2
c3

c2

Figure 5: An example of a simplified path Q0. There are two critical nodes c2 and c3 between
vertices v2 and v3.

it means that the path remains simple and the number of nodes inherited from T increases
from iteration to iteration. But this can happen at most n − 2 times before all vertices of T
lie on the path. Therefore, the number of links in the path must decrease after at most n − 1
iterations of steps 2 and 3. Clearly, the number of links cannot decrease below one, so Simplify

must terminate.

Let (q0, . . . , qm) be the node sequence of Q0. Property (i) follows from the fact that Split,
Reduce and Slide do not increase the cost. Property (ii) follows from Lemma 4.2. The termina-
tion of Simplify implies that no critical pair is detected by Slide. So if we walk along Q0 from
vs to vd and encounter a critical node of exit qi, we will see a node qi′ inherited from T before
encountering any critical node of entry or exit. We charge qi to qi′ . The node qi′ can only be
charged once, so there are at most n critical nodes of exit in Q0. By a symmetric argument
(following Q0 backward from vd to vs), we can show that there are at most n critical nodes of
entry. Hence, the total number of critical nodes is at most 2n.

In fact, the proof of Lemma 4.4 shows even more. Between any two consecutive nodes of
Q0 inherited from T , there is at most one critical node of entry and one critical node of exit.
In case these two critical nodes are present, they lie on the same edge e, and the path enters
and exits e from the same side. (See Figure 5.) All of the other nodes (between these two
consecutive inherited nodes) are transversal nodes.

5 Path Complexity

In this section we show that any polygonal path P can be approximated by an (21ρn2/ε)-
link path with cost at most (1 + ε) cost(P ). This result, combined with the algorithms for
approximating k-link shortest paths that we presented in Section 3, allows us to compute a

polygonal path with cost at most (1 + ε) cost(P ) in time O
(

ρ2 log ρ
ε2 n3 log

(

ρn
ε

)

)

.

5.1 Shortcut near Vertices

We introduce a procedure Shortcut that removes nodes in the vicinity of vertices of T . Shortcut

takes as input a polygonal path P , a real number δ > 0, and a vertex v of T . Shortcut will be
invoked repeatedly, starting with the output of Simplify. The path may no longer be simple or
non-redundant after several applications of Shortcut.
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Figure 6: (a) The δ-neighborhood of v is shaded. (b) The effect of Shortcut(P , δ, v). The
subpath P [i − 1, j + 1] is replaced by the dashed subpath (pi−1, v, pj+1).

Let v be a vertex of T . The δ–neighborhood of v is the intersection of the δ-radius Euclidean
disk centered at v with the union of the faces that contain v. (See Figure 6a.) Shortcut(P , δ,
v) checks if P has a node in the interior of the δ–neighborhood of v. If so, let pi and pj be
the first and last nodes of P , respectively, in the interior of the δ-neighborhood of v—here the
interior is taken in the topological sense. Then Shortcut replaces P [i−1, j+1] with the sub-path
(pi−1, v, pj+1). (See Figure 6b.) The nodes pi−1 and pj+1 lie on the boundary of a face incident
to v, so the new path is still inside |T |. The links pi−1v and vpj+1 introduced by Shortcut may
make the path redundant or self-intersecting. Here is the pseudo-code of Shortcut.

Shortcut(Polygonal path P , δ > 0 , vertex v)

1. If no node of P is in the interior of the δ–neighborhood of v, return P .

2. Let pi and pj be the first and last nodes along P , respectively, that lie in the
interior of the δ–neighborhood of v. Let p0 and pm be the first and last nodes
of P .

3. If v = p0, return (v) · P [j + 1,m].

4. If v = pm, return P [0, i − 1] · (v).

5. Return P [0, i − 1] · (v) · P [j + 1,m].

The following lemma gives a bound on the cost of the path obtained by applying Shortcut.

Lemma 5.1 Let P be a T -respecting path. The path returned by Shortcut(P, δ, v) has cost less

than cost(P ) + 2ρδ.

Proof. Either pi−1pi is a chord of a face incident to v, or it is contained in an edge incident to
v. In any case, as ‖piv‖ < δ, we have cost(pi−1v) < cost(pi−1pi) + ρδ. Similarly, we can prove
that cost(vpj+1) < cost(pjpj+1) + ρδ.

Remark: Reif and Sun [19] also used a disk neighborhood. Their disk radius is related to
the local geometry around the vertex v and the disk is completely contained in the union of the
faces incident to v. In our construction, the disk radius will be set to be proportional to the
global path cost. (See the procedure Convert in the next section.) As shown in Figure 6, our
disk may not be contained in the union of faces incident to v.
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5.2 Path Conversion

The pseudo-code below describes a procedure Convert that transforms a polygonal path P
into another polygonal path R. We show that R has 21ρn2/ε links and its cost is at most
(1 + ε) cost(P ). We denote by {v1, v2, . . . , vn} the vertices of T in the following pseudo-code.

Convert(Polygonal path P , ε ∈ (0, 1))

1. Q0 := Simplify(P ).

2. δ := ε cost(P )/(2ρn).

3. For i = 1 to n, Qi := Shortcut(Qi−1, δ, vi).

4. R := Qn.

5. Return R.

The procedure Convert has the following properties.

Lemma 5.2 Let R = (r1, . . . , rℓ) be the path returned by Convert(P, ε).

(i) cost(R) 6 (1 + ε) cost(P ).

(ii) R is a T -respecting path with distinct nodes.

(iii) If {ri, ri+1} contains no vertex of T , then riri+1 is a link of Q0.

(iv) If v is a vertex of T and ri lies in the interior of an edge incident to v, then ‖riv‖ > δ.

Proof. By Lemma 5.1, the path cost increases by at most 2ρδ = ε cost(P )/n for each call
to Shortcut. By Lemma 4.4, cost(Q0) 6 cost(P ), thus cost(R) 6 cost(Q0) + ε cost(P ) 6

(1 + ε) cost(P ). By Lemma 4.4 again, Q0 is a T -respecting path with distinct nodes. Each call
to Shortcut preserves these two properties. It proves (ii). Properties (iii) and (iv) follow from
the working of Shortcut.

We prove a technical lemma which essentially says that, for any edge e, the transversal
nodes in the output of Convert(P, ε) that lie on e are sparse.

Lemma 5.3 Let R = (r1, . . . , rℓ) be the path returned by Convert(P, ε). Consider an edge e of

T and a node ri ∈ int(e). Suppose that the following conditions hold:

• There exists a node rj ∈ int(e) with j > i + 1. If there are several such nodes we choose

j to be the minimum.

• All nodes in int(R[i, j]) are transversal nodes.

Then cost(R[i, j]) > δ.

Proof. We denote by ℓe the support line of e, and we denote by x the first intersection point
between R[i, j] and ℓe. If x 6= rj , then x /∈ int(e) as R is T -respecting. (See Figure 7a.) By
Lemma 5.2(iv), we know that ‖rix‖ > δ and so cost(R[i, j]) > ‖rix‖ > δ.
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Figure 7: In (a), the sub-path R[i, j] intersects ℓe outside e at point x. In (b), the node v′ is in
the interior of the region Ri delimited by R[i, j] and rirj .

We now assume that x = rj, and thus int(R[i, j]) lies entirely on one side of ℓe. We denote
by Ri the region delimited by R[i, j] and rirj. (See Figure 7b.) We first prove that there exists
an edge e′ of T with one endpoint v′ inside Ri. Let E denote the set of edges of T that contain
a node of R[i, j]. Pick an edge of E. If this edge has an endpoint inside Ri, we are done.
Otherwise, this edge crosses int(R[i, j]) transversally, so it separates a portion of Ri away from
e. By recursively applying the argument on this portion of Ri, we must find an edge e′ ∈ E
that has an endpoint inside Ri.

Let rk denote a node of R[i, j] that lies on e′. Because no vertex of T lies on R[i, j],
Lemma 5.2(iv) implies that ‖rkv

′‖ > δ. It follows that length(R[i, j]) > ‖rkv
′‖ > δ. Hence,

cost(R[i, j]) > length(R[i, j]) > δ.

We are now ready to derive a pseudo-polynomial bound on the path complexity.

Theorem 2 For any ε ∈ (0, 1) and for any polygonal path P , there exists a path P ε with at

most 21ρn2/ε links such that cost(P ε) 6 (1 + ε) cost(P ). In addition, P ε can be chosen to be

simple and non-redundant.

Proof. Let Q0 = Simplify(P ), R = Convert(P, ε), and P ε = Reduce(R). By Lemmas 4.2, 4.4,
and 5.2, we know that:

• P ε is simple, non-redundant, and T -respecting.

• cost(P ε) 6 cost(R) 6 (1 + ε) cost(P ).

Reduce does not increase the number of links. Hence, it suffices to prove that R has 21ρn2/ε
nodes. By Lemma 5.2(ii), R is a T -respecting path with distinct nodes.

Take an edge e of T . We denote by Ne the set of nodes ri ∈ int(e). We show below that
|Ne| 6 4ρn/ε + 3n + 4. We assume that |Ne| > 2; otherwise, we are done. Let ri and rj, i < j,
be two nodes in Ne that are consecutive in the order along R.

Case 1: ri−1 is a vertex of T . Because ri ∈ int(e), ri−1 must be one of the four vertices of
the two triangles incident to e. So there are at most four such ri’s in Ne.

Case 2: There is a vertex v of T in R[i, j]. We charge ri to v, thus there are at most n such
ri’s in Ne.
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Case 3: j = i + 1. As ri, ri+1 ∈ int(e), ri and ri+1 are not vertices of T . Neither is ri−1

as case 1 does not apply. By Lemma 5.2(iii), (ri−1, ri, ri+1) is a subpath of Q0. We have
riri+1 ⊂ int(e) as ri, ri+1 ∈ int(e). It follows that ri is a critical node in Q0 because Q0 is
non-redundant and T -respecting.

Case 4: There is no vertex of T in R[i, j], but there is a critical node rk in int(R[i, j]). We
charge ri to rk. Lemma 5.2(iii) implies that R[i, j] is a subpath of Q0. So rk is also a critical
node in Q0.

Case 5: There is no vertex of T in R[i, j] and no critical node in int(R[i, j]). Again,
Lemma 5.2(iii) implies that R[i, j] is a subpath of Q0. Because Q0 is T -respecting and non-
redundant, all of the nodes in int(R[i, j]) are transversal nodes. By Lemma 5.3, we have
cost(R[i, j]) > δ. Because cost(R) 6 (1 + ε) cost(P ) < 2 cost(P ) and δ = ε

2ρn
cost(P ), we get

cost(R[i, j]) > ε
4ρn

cost(R). So there are at most 4ρn/ε such ri’s in Ne.

Cases 1, 2 and 5 contribute at most 4ρn/ε + n + 4 nodes to Ne. The nodes in cases 3 and 4
are critical nodes in Q0. By Lemma 4.4(iii), there are at most 2n critical nodes in Q0, so cases 3
and 4 contribute at most 2n nodes to Ne. In all, |Ne| 6 4ρn/ε+3n+4. The number of edges is
at most 3n − 6 for a planar graph with n vertices. Summing over all edges of T and including
the vertices of T , the number of nodes in R is at most n+(3n−6)(4ρn/ε+3n+4) 6 21ρn2/ε.

6 General Paths

The statement of Theorem 2 is not entirely satisfactory. For instance, it does not tell us whether
there exists a shortest path and if so, whether it is a polygonal path. We give an example in
Section 6.1 in which the shortest path cannot be polygonal. Nonetheless, we show that there
exists a shortest rectifiable path. Intuitively, a path is rectifiable if its length is finite; for
example, the class of rectifiable paths includes piecewise C1 paths. Furthermore, we show that
for any α > 1, there exists a polygonal path with cost at most α times the optimal. These
results imply Corollary 2 in Section 3.4.

Throughout this section we do not require the endpoints of a path to be vs and vd. Also,
we do not restrict paths to be polygonal unless stated explicitly otherwise.

6.1 Example of a Non-polygonal Shortest Path

There may not be any (exact) shortest polygonal path. We give an example in Figure 8 in
which ρ =

√
2 and there is no shortest polygonal path.

We prove it by contradiction. Consider the points x and c in Figure 8. Assume that the last
link of a polygonal path P is xvd. Then, if we insert the node c between x and vd in P (thus
replacing the sub-path (x, vd) by (x, c, vd)), we obtain a polygonal path with strictly smaller
cost than P . The same argument shows that the shortest path intersects some edge an infinite
number of times.

A similar example can be constructed for any ρ > 1, by changing Bfi
into a regular polygon

with enough edges and by placing a larger number of faces around vd.
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Figure 8: Bf1
is a square centered at the origin and with edge length

√
2. Bfi

is obtained
by rotating Bf1

by an angle (i − 1)π/6. We know that the shortest path from vs to vd is not
polygonal. We conjecture that the shortest path from vs to vd is an infinite sequence of line
segments, forming a spiral around vd.

6.2 Rectifiable Paths

Intuitively, a path is rectifiable if it has finite length. The length of a path can be defined
as the supremum of the length of the polygonal paths inscribed in this path. This definition
is a common way of introducing the length of a curve. (For instance, see Guggenheimer’s
book [9].) It allows one to define the length of a curve that is not necessarily piecewise C1. It
can also be proved that, for a C1 curve, the length defined in this way coincides with the other
usual definition through calculus, where the length is obtained by integrating the norm of the
derivative of the curve [9, Theorem 2-3].

We do not restrict paths to be polygonal, so a path is a continuous function π : [a, b] → |T |
where a < b ∈ R. We use π[a, b] to denote {π(t) : a 6 t 6 b} and π(a, b) to denote {π(t) : a <
t < b}. We say that π is a path from x to y if π(a) = x and π(b) = y.

An [a, b]-sequence is a finite increasing sequence σ = (t0, t1, . . . , tm) such that a = t0 < t1 <
· · · < tm = b. A polygonal path inscribed in π is a polyline πσ = (π(t0), π(t1), . . . , π(tm)) such
that σ is an [a, b]-sequence for some a < b. When there is no ambiguity, we abuse notation and

use πσ to denote

m
⋃

i=1

π(ti−1)π(ti).

The length of a path π : [a, b] → |T | is defined as

length(π) = sup{ length(πσ) : σ is an [a, b]-sequence }.

The path π is rectifiable if length(π) is finite.

An inscribed polygonal path πσ is not necessarily contained in |T |. However, there always
exists an inscribed polygonal path contained in |T |:

Lemma 6.1 For any path π : [a, b] → |T |, there exists an [a, b]-sequence σ such that πσ ⊂ |T |.

Proof. Let F denote the set of edges e of T such that e ∩ π(a, b) 6= ∅. We prove the lemma
by induction on |F |. If F = ∅, then π(a, b) lies in a face of T and we are done. Otherwise, let
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S denote the union of the faces that contain π(a). Note that S is star-shaped around a, i.e.,
for any x ∈ S, we have ax ⊂ S. If π(b) ∈ S, we are done (choose σ = (a, b)). Otherwise, let
c = max{t : π(t) ∈ S}. Then π(c, b) does not intersect any edge e in F such that e ⊂ S. So, by
our induction hypothesis, there is a [c, b]-sequence σ′ such that πσ′ ⊂ |T |. Choosing σ as the
concatenation of (a) and σ′, we conclude that πσ ⊂ |T |.

6.3 Cost Distance

We introduce a new distance function and prove some of its properties. This distance function
yields a measure of the cost of a path. We prove that this new cost measure coincides with the
path cost defined in Section 2 in the case of polygonal paths. We also prove the existence of an
optimal rectifiable path under this cost measure, and so the optimal path can be approximated
using our algorithmic result in Section 3.

Let x, y be two points in |T |. The cost distance from x to y, denoted by d(x, y), is defined
as follows.

d(x, y) = inf{cost(P ) : P is a polygonal path from x to y and P ⊂ |T |}.

The distance function d(·, ·) is well defined, as the cost of a polygonal path is well defined
and positive. It has several useful properties, listed in the following lemma. In particular, it is
continuous. On the contrary, cost(xy) may not be continuous in (x, y); for instance, when we
move xy from the interior of a face to its boundary.

Lemma 6.2 The cost distance has the following properties.

(i) For any x, y ∈ |T |, x = y if and only if d(x, y) = 0.

(ii) For any x, y, z ∈ |T |, d(x, z) 6 d(x, y) + d(y, z).

(iii) For any x, y ∈ |T |, ‖xy‖ 6 d(x, y).

(iv) d(·, ·) is continuous over |T |2.

(v) For any x, z ∈ |T |, there exists y ∈ |T | such that d(x, y) = d(y, z) = d(x, z)/2.

Proof. The correctness of (i), (ii) and (iii) follow from the definition of d(·, ·) and the triangle
inequality.

We now prove (iv). Let x0 and y0 be two points in |T |. Let Dδ and D′
δ denote the disks

centered at x0 and y0 with radius δ, respectively. We assume that δ > 0 is sufficiently small so
that Dδ∩|T | and D′

δ∩|T | are star-shaped around x0 and y0, respectively. So, for any x ∈ Dδ∩|T |
and for any y ∈ D′

δ ∩|T | , we have |d(x, y)−d(x0, y0)| 6 d(x, x0)+d(y0, y) 6 ρ ‖x0x‖+ρ ‖y0y‖.
It follows that lim(x,y)→(x0,y0) d(x, y) = d(x0, y0). Thus d(·, ·) is continuous over |T |2.

We now prove (v). By definition, for any n ∈ N, there exists a polygonal path An ⊂ |T |
from x to z such that cost(An) 6 d(x, z) + 2/n. There is a point yn on An such that
the cost of the sub-path from x to yn is cost(An)/2. Then d(x, yn) 6 d(x, z)/2 + 1/n and
d(yn, z) 6 d(x, z)/2 + 1/n. Since |T | is compact, {yn} has a limit point, which we denote by y.
By (iv), the cost distance d(·, ·) is continuous, so d(x, y) 6 limn→∞ d(x, z)/2+ 1/n = d(x, z)/2.
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Similarly, d(y, z) 6 d(x, z)/2. We complete the proof using (ii).

Properties (i) and (ii) show that d(·, ·) is a quasi-metric: it is similar to a metric, except
that it is not symmetric.

6.4 Cost of a Rectifiable Path

We define a measure of path cost using the distance function d(·, ·). Our definition is similar
to the definition of the length of a rectifiable path. The exposition of this section follows the
lecture notes by Lang [10] on metric geometry, and the book by Burago et al. [3]. The results in
these notes and this book do not apply to our problem directly, because d(·, ·) is not a metric,
so we reprove the results we need.

The d-cost of a path π : [a, b] → |T | is defined as

C(π) = sup

{

m
∑

i=1

d(π(ti−1), π(ti)) : σ = (t0, . . . , tm) is an [a, b]-sequence such that πσ ⊂ |T |
}

.

By Lemma 6.1, the above supremum is well defined. We say that π is T -rectifiable if C(π) is
finite.

The above definition of the d-cost works for paths specified as maps. We can extend it
to polygonal paths as follows. Let P = (p0, . . . , pm) be a polygonal path. Construct the
map π : [0, 1] → |T | such that π(i/m) = pi for any integer i ∈ [0,m], and π is affine over
[(i− 1)/m, i/m] for any integer i ∈ [1,m]. Then we define C(P ) = C(π). The following lemma
shows that C(P ) coincides with cost(P ) as defined in Section 2.

Lemma 6.3 For any polygonal path P , we have C(P ) = cost(P ).

Proof. We associate P with a function π : [0, 1] → |T | as explained earlier. Since π[t, t′] is a
polygonal path from π(t) to π(t′), by the definition of d(·, ·), we know that for any t < t′ in
[0, 1], d(π(t), π(t′)) 6 cost(π[t, t′]). It follows that C(P ) 6 cost(P ).

We now prove that C(P ) > cost(P ). We put a ball with radius δ centered at each node
of P , each crossing between P and the edges of T , each crossing between links of P , and each
vertex of T lying on P . We make δ sufficiently small so that the balls are mutually disjoint,
each ball intersects only the link(s) of P that contain the ball center, and each ball intersects
only the edge(s) and face(s) of T that contain the ball center.

Assume that there are k links in P . Since T has O(n) vertices and edges, there are O(k2+kn)
balls. We denote by B the set of points in these balls. Clearly, P \ B is a collection of disjoint
line segments, each lying in the interior of an edge or a face of T .

Pick a line segment xy in P \ B. First, assume that xy lies in the interior of a face f of T .
Let ε be the Euclidean distance between xy and bd(f). Let [a, b] be the subinterval of [0, 1]
such that π[a, b] = xy. Consider any [a, b]-sequence (s0, . . . , sℓ) such that ‖π(si−1)π(si)‖ < ε/ρ

for any i. So cost
(

π(si−1)π(si)
)

< ε for any i. Consider any polygonal path from π(si−1) to

π(si). If the path stays in int(f), its cost is no less than cost
(

π(si−1)π(si)
)

. If the path reaches

bd(f), then the path cost is at least ε > cost
(

π(si−1)π(si)
)

. It follows that d(π(si−1), π(si)) =
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cost
(

π(si−1)π(si)
)

for any i. If xy lies in the interior of an edge of T , let F be the union of

the face(s) incident to e and let ε be the distance between xy and bd(F ) \ int(e). Again, we

obtain d(π(si−1), π(si)) = cost
(

π(si−1)π(si)
)

by considering separately polygonal paths that

stay in int(F ) ∪ int(e) and polygonal paths that reach bd(F ) \ int(e).

Consider any [0, 1]-sequence σ = (t0, . . . , tm) such that πσ ⊂ |T | and for each endpoint x
of a segment in P \ B, there exists i ∈ [0,m] such that π(ti) = x. This implies that if [a, b]
is a subinterval of [0, 1] such that π[a, b] = xy for a segment xy in P \ B, then σ contains a
[a, b]-sequence. Then the result in the previous paragraph implies that

∑m
i=1 d(π(ti−1), π(ti)) >

∑

xy cost(xy), where the second sum runs over all segment xy in P \ B. Since C(P ) = C(π)
is the supremum over all [0, 1]-sequence that yields a polygonal path in |T |, we conclude that
C(P ) = C(π) >

∑

xy cost(xy).

The intersection P ∩B has a total length of O(δ(k2+kn)). Therefore, cost(P ∩B) 6 cρδ(k2+
kn) for some constant c > 0. By the triangle inequality,

∑

xy cost xy > cost(P )− cρδ(k2 + kn),
which tends to cost(P ) as δ → 0. Hence, C(P ) > cost(P ).

Consider the infimum of C(π) over all rectifiable paths π from a point x to another point y
in |T |. Our goal is to show that some rectifiable path from x to y achieves this infimum and
hence this path is shortest. First, we show that this infimum is equal to d(x, y).

Lemma 6.4 For any x, y ∈ |T |, d(x, y) = inf{C(π) : π is a rectifiable path from x to y}.

Proof. By definition, d(x, y) is the infimum of cost(P ) over all polygonal paths P from x to
y in |T |. A polygonal path P is rectifiable and C(P ) = cost(P ) by Lemma 6.3. Therefore,
d(x, y) > inf{C(π) : π is a rectifiable path from x to y}. Assume to the contrary that d(x, y) >
inf{C(π) : π is a rectifiable path from x to y}. Then there exists a rectifiable path π′ : [a, b] →
|T | from x to y such that d(x, y) > C(π′). It follows from the definition of C(π′) that there
exists an [a, b]-sequence σ = (t0, . . . , tm) such that

d(x, y) >

m
∑

i=1

d(π′(ti−1), π
′(ti)).

However, this is impossible by Lemma 6.2(ii).

Next, we show that T -rectifiability is equivalent to rectifiability. It follows that any rectifi-
able path has a finite d-cost (in particular, any piecewise C1 path).

Lemma 6.5 A path π in |T | is rectifiable if and only if π is T -rectifiable.

Proof. Suppose that a path π : [a, b] → |T | is rectifiable. By definition, C(π) is equal to the
supremum of

∑m
i=1 d(π(ti−1), π(ti)) over all [a, b]-sequences σ = (t0, . . . , tm) such that πσ ⊂ |T |.

By Lemmas 6.3 and 6.4, we have d(π(ti−1), π(ti)) 6 C
(

π(ti−1)π(ti)
)

= cost
(

π(ti−1)π(ti)
)

.

Thus, C(π) 6 supσ cost(πσ) 6 supσ ρ length(πσ). By definition, length(π) > length(πσ).
Therefore, C(π) 6 ρ length(π) which is finite as π is rectifiable. So π is T -rectifiable.

Suppose that a path π : [a, b] → |T | is T -rectifiable. By definition, length(π) = supσ length(πσ)
where the supremum is taken over all [a, b]-sequences. For each such σ, by applying Lemma 6.1
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to successive numbers in σ, we can find an [a, b]-sequence σ′ such that σ is a subsequence
of σ′ (and thus length(πσ) 6 length(πσ′)) and πσ′ ⊂ |T |. Therefore, it is also true that
length(π) = supσ length(πσ) over all [a, b]-sequences σ such that πσ ⊂ |T |. By Lemma 6.2(iii),
we have length(πσ) 6

∑m
i=1 d(π(ti−1), π(ti)) for any σ = (t0, . . . , tm). Therefore, length(π) =

supσ length(πσ) 6 supσ{
∑m

i=1 d(π(ti−1), π(ti))} over all [a, b]-sequences σ = (t0, . . . , tm) such
that πσ ⊂ |T |. By definition, the right hand side is equal to C(π), which is finite as π is
T -rectifiable. So length(π) is finite and π is rectifiable.

We are ready to show that there exists a shortest rectifiable path from x to y. The proof is
analogous to the proof of the midpoint lemma in the lecture notes by Lang [10] and the proof
in the book by Burago et al. [3, Theorem 2.4.16].

Theorem 3 For any x, y ∈ |T |, there exists a rectifiable path π∗ from x to y such that

C(π∗) = inf{C(π) : π is a rectifiable path from x to y}.

Proof. We claim that it suffices to prove the existence of a path π∗ : [0, 1] → |T | from x to
y such that C(π∗) 6 d(x, y). Notice that, if so, π∗ is T -rectifiable and hence rectifiable by
Lemma 6.5. Then d(x, y) 6 C(π∗) by Lemma 6.4 and so C(π∗) = d(x, y). We assume, without
loss of generality, that d(x, y) = 1.

Let U = {i/2j : i, j ∈ N and 0 6 i/2j 6 1}. First, we recursively define π∗ over U ,
starting with π∗(0) = x and π∗(1) = y. By Lemma 6.2(v), we can choose π∗(1/2) such that
d(π∗(0), π∗(1/2)) = d(π∗(1/2), π∗(1)) = 1/2. We repeat this process recursively: we choose
π∗(3/4) such that d(π∗(1/2), π∗(3/4)) = d(π∗(3/4), π∗(1)) = 1/4, and so on. This completes
the definition of π∗ over U .

With this construction, for any r < r′ ∈ U , we have d(π∗(r), π∗(r′)) 6 r′ − r. Thus, by
Lemma 6.2(iii), we have ‖π∗(r)π∗(r′)‖ 6 r′ − r. In other words, π∗ is Lipschitz over U . As U
is dense in [0, 1], we can extend π∗ to a Lipschitz (and thus continuous) function over [0, 1], by
taking

∀t ∈ [0, 1], π∗(t) = lim
r∈U
r→t

π∗(r).

By Lemma 6.2(iv), we know that d(·, ·) is continuous. Thus, as d(π∗(r), π∗(r′)) 6 r′− r for any
r < r′ ∈ U , we conclude that d(π∗(t), π∗(t′)) 6 t′ − t for any t < t′ ∈ [0, 1].

Finally, by definition, C(π∗) = supσ{
∑m

i=1 d(π∗(ti−1), π
∗(ti))} over all [0, 1]-sequence σ =

(t0, . . . , tm) such that πσ ⊂ |T |. We have proved that d(π∗(ti−1), π
∗(ti)) 6 ti − ti−1. So

∑m
i=1 d(π∗(ti−1), π

∗(ti)) 6 1. Hence, C(π∗) 6 1 = d(x, y).

By the definition of a T -rectifiable path, it follows that:

Corollary 4 For any α > 1 and for any x, y ∈ |T |, there exists a polygonal path Sα from x to

y such that cost(Sα) = C(Sα) 6 α C(π∗), where π∗ is a shortest rectifiable path from x to y.

Theorem 3 and Corollary 4 allow us to apply the results in Sections 3 and 5 to approximate
the shortest rectifiable path. We summarize our main results in the following.

• Theorem 3 shows that there is a shortest rectifiable path. Furthermore, Corollary 4 shows
that for any α > 1, there exists a polygonal path with cost at most α times the optimal.
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B2 ~u

a
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Figure 9: The terrain is formed by triangles abvd, avsvd and bvsvd. The ellipses B1 and B2

are the unit balls of faces avsvd and bvsvd, respectively. The vertices a, b and vs are fixed and
the convex distance functions are fixed. When vd goes to infinity in direction ~u, the number of
times a 1.01-approximate shortest path has to turn around the axis (vd, ~u) goes to infinity.

• Corollary 4 and Theorem 2 imply that for any ε ∈ (0, 1), there exists a (21ρn2/ε)-link
path with cost at most (1 + ε) times the optimal.

• Corollary 4 and Theorem 2 allow us to apply Theorem 1 to approximate shortest paths in
anisotropic regions. As stated in Corollary 2, for any ε ∈ (0, 1), we can compute in time

O
(

ρ2 log ρ
ε2 n3 log

(

ρn
ε

)

)

a polygonal path S with cost at most (1 + ε) times the optimal.

7 Conclusion

We have given algorithms for shortest paths problems in planar subdivisions. A natural question
is whether our results can be generalized to higher dimensions. The algorithms for k-link paths
that we presented in Section 3, as well as the proof of the existence of a shortest rectifiable path
(Section 6), generalize directly to the case where T is a two-dimensional simplicial complex
properly embedded in R

d (for any integer d).

However, our bound O(ρn2/ε) on the number of links of an approximate shortest path
(Theorem 2) does not generalize to higher dimensions. It does not even generalize to the case
of a terrain. See the example shown in Figure 9, where n = 4, and ρ is fixed. The number of
edges in a 1.01-approximate shortest path goes to infinity when vd goes to infinity in direction
~u.
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