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Abstract
We present an algorithm to “reconstruct” a smoothk-
dimensional manifoldM embedded in an Euclidean space
R

d from a “sufficiently dense” point sample from the man-
ifold. The algorithm outputs a simplicial manifold that is
homeomorphic and geometrically close toM. The running
time is O(n log n) wheren is the number of points in the
sample (the multiplicative constant depends exponentially on
the dimension though).

1 Introduction
There are a number of applications in science and engineer-
ing that deal with data points lying on a manifold embedded1

in an Euclidean space. Data collected for scientific anal-
ysis through natural phenomena or simulations lie on such
manifolds. This has led to the problem ofmanifold learning
that, ideally, seeks to approximate a manifold embedded in
an Euclidean space from a point sample [6, 17, 19]. Often, in
practice, the data points are approximated with an appropri-
ate linear flat. Principal component analysis (PCA) and the
multidimensional scaling (MDS) are two prevalent methods
used for this probelm [16, 18]. Although these are useful
techniques, they are not appropriate to approximate points
that come from a non-linear class such as smooth manifolds.
The cases for two and three dimensions where the manifold

has co-dimension one have recently been solved [1, 2, 3, 7,
10] starting with the work of Amenta, Bern and Eppstein
[2] in two dimensions and Amenta and Bern [1] in three
dimensions. Dey, Giesen, Goswami and Zhao [11] gave an
algorithm that detects the dimension of a manifold in any
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Euclidean space from its point sample. This algorithm also
can reconstruct a curve or a surface in three dimensions thus
solving the general problem in three dimensions. Giesen and
Wagner [15] gave an improved algorithm in terms of time
and space complexities. However, these algorithms cannot
reconstruct the manifolds in higher dimensions in the sense
of producing an approximation manifold that is topologically
equivalent and geometrically close to the sampled one.
In this paper we present an algorithm that solves the gen-

eral manifold reconstruction problem. Specifically, givena
sufficiently dense point sampleS of a smoothk-dimensional
manifoldM ⊂ R

d, the algorithm can produce a triangula-
tion T interpolatingS so thatM and the underlying space of
T , denoted|T |, are homeomorphic. Furthermore, the Haus-
dorff distance betweenM and |T |, and the (appropriate)
distance between their respective normal spaces are prov-
ably small. The algorithm runs in timeO(n log n) (the hid-
den constant depends exponentially on the dimension of the
space). The algorithm builds on thecoconealgorithm for
surface reconstruction by Amenta, Choi, Dey and Leekha
[3] and the sliver exudation technique to remove certain type
of flat simplices, calledslivers, from a simplicial mesh by
Cheng, Dey, Edelsbrunner, Facello and Teng [8]. Intuti-
tively, the Delaunay complex restricted toM (see defini-
tions in next section) is a good candidate for a reconstruc-
tion. However, asM is not known, it cannot be directly
computed: the difficulty lies in that Voronoi cells dual to
(k+1)-dimensional simplices may lie nearM and then make
the extraction of DelM(S) ambiguous and difficult. The idea
borrowed from [8] is that an assignment of weigthsŜ to the
points, as a way of perturbation, moves any such Voronoi
cell away fromM and then extracting DelM(Ŝ) from the
Delaunay complex becomes essentially trivial.
The algorithm is not practical, mainly because it requires a

very dense and noise-free sample, but also because it makes
use of (weighted) Delaunay triangulation in higher dimen-
sions (but note that in the finalO(n log n) time algorithm,
not all of the triangulation need to be computed). It is, how-
ever, the first such algorithm solving the general embedded
manifold reconstruction problem. In proving the correctness



of the algorithm, we extend several ideas in sliver exudation
and surface reconstruction to higher dimensions, which are
interesting on their own. The main theorem to be proved is
(precise definitions follow later):

THEOREM 1.1. There existε > 0 such that ifS is a (ε, δ)-
sampling of a compactk-manifoldM ⊂ R

d with a positive
local feature size, then there is a weight assignment toS such
thatDelM Ŝ is a “faithful” reconstruction ofM and can be
“efficiently” computed.

Faithful means that it has the right topology and it is a close
geometric approximation (both in normal and distance) of
M. Theε obtained in the analysis is exponentially small in
the dimension. Efficiently means timeO(n log n), but the
hidden constant is very large.

Contents. Section 2 contains definitions and some prelim-
inary facts. The basic algorithm is described in Section 3.
Sections 4-8 develop geometric facts needed to extend the
method of sliver exudation. Sections 10-12 develop further
geometric facts needed to verify the correctness of the output
produced by the algorithm. Section 13 describes how the al-
gorithm is modified to achieve the running timeO(n log n),
and how it can be extended to other less restrictive sampling
conditions. Because of space limitation, several proofs have
been omitted. They can be found in an extended version of
this paper.

2 Definitions and Preliminaries
Weighted points. A weighted point̂p ∈ R

d × R
+ is ad-

ball with the centerp ∈ R
d and weight (radius)P ∈ R

+;
we write p̂ = (p, P ). Unweightedpoints correspond to
points with zero radius. Theweighted distanceof x̂ from
p̂ is πbp(x̂) = ‖x−p‖2−X2−P 2. If πbp(x̂) = 0, we say that
p̂ and x̂ areorthogonal. If πbp(x̂) is greater (smaller) than
0, we say that̂x is further (closer) than orthogonalfrom p̂.
The bisector planeof p̂ and q̂ is the locus of (unweighted)
pointsx at equal weighted distances from̂p and q̂, that is,
πbp(x) = πbq(x). Equivalently,x is in the bisector if there is a
weightX such that̂x = (x, X) is orthogonal tôp andq̂. We
useŜ to denote the set of pointsS with certain assignment
of weights. We say that̂S hasweight property[ω] if for each
point p ∈ S, P ≤ ω · N(p), whereN(p) is the distance to
the closest point inS different fromp.

Weighted Voronoi and Delaunay. We assume points in
general position. For a set of weighted pointŝS, the
weighted Voronoi cellVbs of ŝ ∈ Ŝ is Vbs = {x ∈
R

d |πbs(x) ≤ πbr(x) for all r̂ ∈ Ŝ}. The weighted Voronoi
cells and theirk-dimensional faces,0 ≤ k ≤ d form a

polyhedral complex, denoted Vor̂S, that decomposesRd.
The(d − j)-dimensional faces are the nonempty cellsV bT =⋂

bs∈ bT Vbs, where T̂ ⊆ Ŝ with |T̂ | = j (so bothVbs and
V{bs} denote the Voronoi cell of̂s). The weighted Delaunay

triangulationDel Ŝ of Ŝ is thedual to the weighted Voronoi
diagram ofŜ. That is, a simplexτ is inDel Ŝ iff Vvert(τ) 6= ∅,
where vert(τ) is the set of vertices ofτ . Alternatively, a
simplexτ is in Del Ŝ if there is a sphere (weighted points),
calledorthosphere, orthogonal to each weighted vertex and
further than orthogonal from all other weighted points inŜ.
For simplicity of notation, we writeVτ instead ofVvert(τ),
when τ is known. Also for simplicity, other variations in
the notation appear later; for exampleVqr is V{q,r}. The
meaning will be clear in the context. VorS andDel S refer
to the unweighted Voronoi and Delaunay complexes.

Sampled Manifold. We assume that the sampledk-
dimensional manifoldM ⊂ R

d is compact, smooth and has
no boundary. For any pointx ∈ M, Tx andNx denote the
tangent space and the normal space atx, respectively. The
medial axis ofM is the closure of the centers of the maximal
balls that meetM only tangentially at two or more points.
These balls are calledmedial balls. The local feature size
f(x) at a pointx ∈ M is the distance ofx to the medial axis
of M. We require thatf(x) > 0 for all x ∈ M. The local
feature size is 1-Lipschitz, that is,f(x) ≤ f(y) + ‖x − y‖
for any two pointsx, y in M.

(ε,δ)-Sampling. A set S of points on M is a (ε, δ)-
sampling [11] if (i) for each pointx ∈ M, there is a sample
p ∈ S such that‖p − x‖ ≤ εf(x), and (ii) for anyp, q ∈ S,
‖p−q‖ ≥ δf(p). We assume thatε andδ is within a constant
factor. That is,ε/δ is a constant. An alternative condition is
(ε, `)-sampling in which we have (ii’) for anyp ∈ S, the
number ofq with ‖p − q‖ ≤ εf(p) is at most̀ , instead of
(ii). This allows for some but limited locally dense sampling.

Restricted Voronoi and Delaunay. The restricted
(weighted) Voronoi cellVM,p is given byVM,p = Vp ∩M.
A simplex τ with the vertex setR is in the restricted
(weighted) Delaunay triangulationDelM Ŝ if the restricted
Voronoi cells of the vertices inR have a non-empty intersec-
tion. An important fact [12] that we use later is that if each
restricted Voronoi cell is topologically a ball, thenDelM Ŝ

is homeomorphic toM.

Cocone. If the sampling is dense, then for a sample point
p, its neighbors in the sample relevant for creating a recon-
struction can be found nearTp. More precisely, within a cone
of apertureθ0 aroundTp whereθ0 = O(ε). This can also be
viewed as the complement of a cone –cocone– aroundNp



(and we follow [11] in refering to it as cocone). Algorithmi-
cally, the cocone is determined as follows [11]. First, a way
to estimateTp is needed. TheVoronoi subpolytopesfor a
sample pointp ∈ M are special subsetsV i

p ⊆ Vp, i = 1, .., d

of the Voronoi cellVp, defined inductively as follows. For
the base case letV d

p = Vp. Inductively, assume thatV i
p is

already defined. Letvi
p be the farthest point inV i

p from p.
We call vi

p the pole of V i
p and the vectorvi

p = vi
p − p its

pole vector. If V i
p is unbounded,vi

p is taken at infinity, and
the direction ofvi

p is taken as the average of all directions
given by unbounded edges. The Voronoi subpolytopeV i−1

p

is the intersection ofV i
p and the hyperplane(x−p) ·vi

p = 0.
It is shown in [11] thataff(V k

p ) approximatesTp within an
angleO(ε). This carries over for a weighted Voronoi di-
agram given the weight property. (In the definitions here,
Vp stands for the Voronoi cell of the weighted pointp.) If
k is not known in advance, then it can actually be deter-
mined through this construction, for appropriately uniform
sampling [11]. Letp ∈ S be a sample point fromM where
M has dimensionk. Thecoconeof p, Cp, is defined as the
set of all pointsx ∈ Vp so that the segment connectingx and
p makes an acute angle less thanπ

32 with V k
p .A simplexτ in

Del S is aCp-simplex, if Vτ intersectsCp. In particular, ifτ
is an edgepq, we callpq aCp-edgeandq acocone neighbor
of p.

Simplex Shape.The circumsphereof a simplexτ is the
smallest circumsphere of its vertices; itscircumcenterand
its circumradius, denotedRτ , are the center (which lies in
aff(τ)) and circumradius of the circumsphere. The length
of the shortest edge ofτ is denotedLτ , Thecircumradius-
edgeratio Rτ/Lτ is a measure of the quality ofτ . Still, a
simplexτ with O(1) circumradius-edge ratio may be “very
flat”. This is captured by the concept of sliver simplices. For
a (j − 1)-simplexτ ′ and a pointp not in aff(τ ′), the join
p ∗ τ ′ of p andτ ′ is the convex hull ofp andτ ′, aj-simplex.
For aj-simplexτ and a vertexp of τ , let τp be the(j − 1)-
dimensional boundary simplex ofτ such thatτ = p ∗ τp.
The property of being sliver is quantified with a constantσ,
to be chosen later. We define slivers by induction on the
dimension: 0- and 1-simplices are not slivers; forj ≥ 2, a
j-simplexτ is aj-sliver if none of its boundary simplices is
a sliver and for some vertexp of τ , vol(τ) < σLτvol(τp)

holds. Thus, if neitherτ nor any of its boundary simplices is
a sliver, thenvol(τ) ≥ σLτvol(τp) for every vertexp of τ .

(ε, δ)-Sampling Properties. We henceforth assume that
M is a smooth manifold with nonzero local feature size and
thatS is an(ε, δ)-sample ofM. Given a line segmentpq,
∠(pq, Tp) denotes the angle betweenpq andTp. We will use

the following result due to Giesen and Wagner [15].

LEMMA 1.

(i) The distance betweenp ∈ S and its nearest neighbor in
S − {p} is at most 2ε

1−εf(p).

(ii) For any pointsp, q ∈ M such that‖p− q‖ = tf(p) for
some0 < t < 1, sin ∠(pq, Tp) ≤ t/2.

(iii) Let p be a point inM. Let q be a point inTp such that
‖p − q‖ ≤ tf(p) for some0 < t ≤ 1/4. Let q′ be the
point onM closest toq. Then‖q − q′‖ ≤ 2t2f(p).

3 Algorithm
In this section, we present the basic reconstruction algorithm.
Section 13 describes how to modify it to achieve running
time O(n log n). The input is an(ε, δ)-sampling from the
manifoldM with ε sufficiently small (to be determined in
the analysis). The algorithm proceeds as follows:

1. Construct VorS and DelS.

2. Determine the dimensionk of M.

3. “Pump up” the sample point weights to remove allj-
slivers,j = 3, . . . , k + 1, from all point cocones.

4. Extract all cocone simplices as the resulting output.

Step 1 uses any standard algorithm, step 2 uses the algo-
rithm in [11], and step 4 is essentially trivial (simply select
the cocone simplices according to the definition). We elab-
orate now on step 3. This follows [8]. The algorithm iter-
atively assigns real weights to the sample points in an arbi-
trary order. Letp be the sample point being processed. As in
sliver exudation [8], using theσ predicted by the theoretical
result in section 8 would be extremely pessimistic. Instead,
for eachj-dimensionalCp-simplexτ , 3 ≤ j ≤ k + 1, we
compute the intervalW (τ) of weight for whichτ appears in
the triangulation and the sliver measure

σ(τ) = min
q

vol(τ)

Lτvol(τq)
,

where the min is over all vertices ofτ , We include allCp-
simplices in the weighted Delaunay triangulations generated
by varying the weight ofp and keeping all other weights
fixed. The weight (radius) ofp is varied within the range
[0, ωN(p)]. As the weight is increased from zero, all sim-
plices in the weighted Delaunay triangulations incident top

are generated by repeated flip operations. For each simplexτ

currently incident top, we keep it in a priority queue indexed



by the weight ofp at whichτ will be destroyed for the first
time. Thus the minimum weight in the priority queue tells
us the next event time. It is easy to extract theCp-simplices
from the entire set of simplices incident top.
After we generate allCp-simplices in all the weighted

Delaunay triangulations, eachτ can be represented by a
rectangleW (τ) × [σ(τ), +∞), whereW (τ) is the weight
interval foτ . That is, if the weight ofp is set to a value within
W (τ), τ may appear and the quality of simplices incident
to p is at bestσ(τ). We take the union of the rectangles
corresponding to allCp-simplices. This produces a skyline
and the highest point in the skyline yields the best weight to
be assigned top. As in sliver exudation, there is an apparent

ξ

1/30

)p(ω

Figure 1: The skyline (borrowed from [8]).

difficulty of readmitting somej-dimensionalCp-simplexτ

eliminated earlier when we process a different sample point
q later. Note thatσ(τ) is a symmetric measure, regardless
whether we viewτ as aCp- or Cq-simplex. The theoretical
result guarantees that there is aσ such that the weight we
assign toq makesσ(τ) ≥ σ. Thus this readmittedCp-
simplexτ cannot be worse than what the theoretical result
guarantees forp. In all there is no harm done.
If ε is sufficiently small, at the end of the pumping step,

there are noj-slivers,j ≤ k + 1, in the cocones, and the last
step proceeds without problem.

Running Time. Letn be the number of sample points. The
time is dominated by the construction of the Voronoi dia-
gram, which has worst-case running timeO(ndd/2e).2 The
following sections show that under the sampling condition,
the number ofCp-simplices incident to a samplep in all
weighted Delaunay triangulations isO(1), and so the run-
ning time is dominated by the first step. In the last section,
we discuss how to improve the running time.

Correctness. We claim that the algorithm actually outputs
DelMŜ and that this is homeomorphic to the original man-

2Actually, for an(ε, δ)-sampling, the worst-case size of its Delaunay
triangulation may not be as large asΩ(ndd/2e) as in the general case. This
is known for dimension 3 [5].

ifold M. The first part is verified in section 9. It depends
on the success of the sliver removal step to eliminate cocone
j-slivers forj ≤ k + 1, which is verified in section 8. More
precisely, it is shown that (i) forσ sufficiently small, there is
a weight assignment to the sample points so that no cocone
j-simplex,j ≤ k+1, is a sliver, and that (ii) forε sufficiently
small, any cocone(k + 1)-simplex must be a sliver.
For the homeomorphism, we show that each restricted

Voronoi cell is a topological ball [12]. The argument
proceeds in three steps: (i) The normal spaces of points close
onM are close (section 10); (ii) for anyj-simplexτ , j ≤ k,
if its circumradius isO(εf(p)) and neitherτ nor its boundary
simplices is a sliver, the normal space ofτ is close to the
normal space ofM at any vertex ofτ ; (iii) each cell in
VorM Ŝ is a topological ball (section 12). Result (ii) also
shows that the output approximatesM well in normal. With
small extra effort, the distance approximation also follows.

4 Voronoi Cell Width
In this section, for each samplep ∈ S, we bound the width
of Cp ∩ Vp. We first need a technical result.

LEMMA 2. Let y be a point insideCp such that‖p − y‖ =

cεf(p) for some constantc with cε ≤ 1/5. Let q be the
orthogonal projection ofy ontoTp. Letq′ be the point onM
closest toq. Then

(i) ‖q − q′‖ ≤ c2ε2f(p)/2.

(ii) ‖q − y‖ ≤ cεf(p)/10 and‖q′ − y‖ ≤ cεf(p)/4.

(iii) ‖p− q′‖ ≥ cεf(p)/4.

LEMMA 3. Assume that̂S has weight property[ω]. For each
point x ∈ Cp ∩ Vp, ‖p − x‖ ≤ c1εf(p) for c1 = 160 and
ε ≤ 1/5c1.

5 Cocone Neighbors
There are many possible weight assignments toS that has the
weight property[ω]. Each such weight assignment produces
a possibly different set of cocone neighbors forp. We
defineGp to be the set ofCp-edges that arise inall weight
assignment with weight property[ω]. In this section, we
study the lengths of edges inGp, the cardinality ofGp, and
the angle between any edge inGp andTp.

LEMMA 4. Assume that̂S has weight property[ω]. For
any edgepq ∈ Gp, ‖p − q‖ ≤ c2εf(p) where c2 =

c1(1 + 1/
√

1 − 4ω2) is a constant.



LEMMA 5. Assume that̂S has weight property[ω]. Let pq

andpr be edges inGp. Then

(i) ‖p− q‖ ≤ ν · ‖p− r‖ whereν = c2(ε/δ) is a constant.

(ii) ∠(pq, Tp) ≤ arcsin(c2ε/2) ≤ c2ε.

LEMMA 6. For ε > 0 sufficiently small, there are at mostλ

edges inGp, whereλ = (2ν2 + 1)d is a constant.

Proof. Let pr be any edge inGp. Let u be the nearest
neighbor ofr. We first show thatru is an edge inGr. It
suffices to show thatru is a Cr-edge with respect to the
unweighted Delaunay triangulation ofS. Observe thatr
andu define a non-empty Voronoi facetVru. Observe that
the edgeru stabsVru (let x be the midpoint ofru and
suppose thatq is closer tox thanr andu, then‖r − q‖ ≤
‖r − x‖ + ‖x − q‖ < ‖r − x‖ + ‖r − x‖ < ‖r − u‖,
which is a contradiction). By Lemma 4 and Lemma 1(ii),
∠(ru, Tr) ≤ arcsin(c2ε/2). Thus, whenε is sufficiently
small, ru lies insideCr. It follows that Vru intersectsCr

and soru is aCr-edge.
We are ready to bound|Gp|. Without loss of generality,

assume that the shortest edge inGp has unit length. Since
‖p − r‖ ≥ 1, Lemma 5(i) implies that‖r − u‖ ≥ 1/ν.
Thus if we place a ballBr with centerr and radius1/(2ν)

for every edgepr in Gp, these balls are disjoint. Note that
vol(Br) = Kd(

1
2ν )d, whereKd is the volume of the unit

d-ball. All suchBr’s lie inside a bigger ballB with center
p and radiusL + 1/(2ν), where L is the length of the
longest edge inGp. By Lemma 5(i),L ≤ ν. Therefore,
vol(B) ≤ Kd(

2ν2+1
2ν )d = (2ν2 + 1)dvol(Br). Hence there

are at most(2ν2 + 1)d edges inGp.

6 Orthoradius-Edge Ratio
In this section, we bound the orthoradius-edge ratio ofCp-
simplices. The orthoradius-edge ratio of a simplexτ is
R′

τ/Lτ , whereR′
τ is the radius of the smallest orthosphere

of τ (its center lies inaff(τ)), andLτ is the shortest edge
length of τ . Note that the smallest orthosphere ofτ is
not necessarily further than orthogonal from other weighted
vertices in Ŝ. Also note that the circumradius-edge and
orthoradius-edge ratios may be quite different.

LEMMA 7. Assume that̂S has weight property[ω]. For any
Cp-simplexτ , R′

τ ≤ ρLτ , whereρ = 5ν(ε/δ) is a constant.

7 Weight Interval
When we pump a vertexp of a sliverτ , τ may remain aCp-
simplex for a while. In this section, we bound the length of

the weight (radius) interval forp such thatτ remains aCp-
simplex. We first prove two technical results.

LEMMA 8. Assume that̂S has weight property[ω]. Let
τ = p ∗ τp be a Cp-simplex. The distance between the
orthocenter ofτ and aff(τp) is at mostc3εf(p) for the
constantc3 = c1 + c2(1 + ω + ρν).

For a simplexτ and a vertexq of τ , let Dq be the distance
from q to aff(τq) (recallτ = q ∗ τq).

LEMMA 9. Assume that̂S has weight property[ω]. Let
τ be a j-dimensionalCp-simplex. If τ is a sliver, then
Dq < jσLτ , for some vertexq of τ . If neither τ nor its
boundary simplices are slivers, thenDq ≥ jσLτ for each
vertexq.

We are ready to bound the weight interval.

LEMMA 10. Let τ be a j-dimensionalCp-simplex. Ifτ is
a sliver, τ remains aCp-simplex in an interval of squared
weight that has length at most4c2c3jσε2f(p)2.

Proof. Let p be a vertex ofτ such thatDp < jσLτ . Let
ξ(P 2) be the signed distance of the orthocenterz of τ from
aff(τp) whenp has squared weightP 2 (see figure).ξ(P 2)

is positive if the orthocenter ofτ andp lie on the same side
of aff(τp); otherwiseξ(P 2) is negative. It has been proved

ζ

z

Figure 2: The orthosphere of three weighted points on the
plane shown and a fourth one off but close to the plane. The
distance of the orthocenterz to the plane is very sensitive to
change in the weight of the fourth point (borrowed from [8]).

in [8] that

ξ(P 2) = ξ(0) − P 2

2Dp
.

By Lemma 8, forτ to be aCp-simplex,|ξ(P 2)| ≤ c3εf(p).
Substituting into the above, we get

2Dp(ξ(0) − c3εf(p)) ≤ P 2 ≤ 2Dp(ξ(0) + c3εf(p)).

This implies that the length of the squared weight interval is
at most4c3εDpf(p). Using Lemma 9 and Lemma 4, we get
4c3εDpf(p) ≤ 4c3jσεLτf(p) ≤ 4c2c3jσε2f(p)2.



8 Pumping Slivers
Our strategy is to pump slivers in increasing order of their
dimensions. That is, we first pump all 3-slivers, then 4-
slivers, and so on. Therefore, when we consider aj-simplex
τ , all the boundary simplices ofτ are guaranteed not to be
slivers. This will allow us to invoke Lemma 10.
Consider a samplep. By Lemma 6 and Lemma 10,

jλj · 4c2c3σε2f(p)2 is an upper bound on the total length
of the squared weight intervals for thej-slivers to remain
Cp-simplices. Summing over the range[3, k + 1] for j, we
obtain an upper bound of

(k + 1)λk+2 · 4c2c3σε2f(p)2.

By the(ε, δ)-sampling, the maximum weight ofp is at least
ω2δ2f(p)2. Therefore, if we chooseσ such that

σ <
1

(k + 1)λk+2
· ω2

4c2c3
·
(

δ

ε

)2

,

then we can assign a weight top such that noCp-simplex is
a sliver. (Recall thatδ/ε is a constant.) Ifk is not known, we
can replacek byd and the resulting choice ofσ is guaranteed
to work, albeit even more pessimistic.
The following lemmas show that, ifε is sufficiently small,

provided its boundary simplices are not slivers, a(k + 1)-
dimensionalCp-simplex is a sliver. Hence after pumping, no
Cp-simplex has dimensionk + 1 or higher. We first bound
the circumradius-edge ratio of a non-sliver.

LEMMA 11. Let τ be aj-dimensionalCp-simplex. Ifτ and
its boundary simplices are not slivers, its circumradius-edge
ratio is bounded by the constantγj = (ν2/σ)2

j−1.

Proof. We prove by induction onj. For j = 1, τ is an
edge. We define the circumradius of an edge to be half of
its length. Then the circumradius-edge ratio is 1/2 which is
less thanγ1 = ν2/σ. Assume thatj > 1. Let z be the
circumcenter andp a vertex ofτ . Recall thatτ = p ∗ τp.
There are two cases to consider. LetR be the circumradius
of τ .
Case 1:z ∈ int(τ). Let H be a(j − 1)-flat in aff(τ) that

passes throughz and is orthogonal topz. Sincez ∈ int(τ),
H separates a vertexq of τ from p. It follows that∠pzq >

π/2 and‖p − q‖ ≥ R. ThusR/Lτ ≤ ‖p − q‖/Lτ ≤ ν, by
Lemma 5(i), which is less thanγj .
Case 2: z 6∈ int(τ). Let az be the radius of the

circumsphere ofτ such thataz is orthogonal toaff(τp). Let
x be the pointaz ∩ aff(τp). Let q be a vertex ofτp. Let R′

be the circumradius ofτp. Sincez 6∈ int(τ), we have

‖a − q‖ ≤
√

2R′ ≤
√

2γj−1Lτp

by induction assumption. Observe thatsin ∠aqx = ‖a −
q‖/(2R). Using the previous inequality and Lemma 5(i), we
get

sin ∠aqx ≤
√

2γj−1Lτp

2R
≤ γj−1νLτ√

2R
.

The volume ofτ is at most1j · vol(τp) · ‖a − q‖ · sin∠aqx.
Let L be the maximum edge length ofτ . Using the previous
inequalities for‖a − q‖ andsin∠aqx, we obtain

vol(τ ) ≤ vol(τp)

j
·
√

2γj−1L · γj−1νLτ√
2R

≤ vol(τp)
γ2

j−1ν
2L2

τ

R
.

Sinceτ is not a sliver,vol(τ) ≥ σLτvol(τp). Substituting
above, we getR/Lτ ≤ γ2

j−1(ν
2/σ). ThusR/Lτ ≤ γj

whereγj = γ2
j−1(ν

2/σ).

LEMMA 12. Let τ be aj-dimensionalCp-simplex. Letx be
a point inτ . If τ and its boundary simplices are not slivers,
then∠(px, Tp) ≤ 4c2γjε.

Proof. Take ad-dimensional medial sphere that touchM
at p. Shrink this sphere towardsp until its radius becomes
f(p). Denote the resulting sphere byM1. Let M2 be
another sphere with radiusf(p) such thatM2 touchesp

at M andp is the midpoint of the centers ofM1 andM2.
The smallest circumsphere ofτ intersectsM1 and M2 at
two hyperspheresC1 and C2, respectively. By Lemma 4
and Lemma 11, the circumradius ofτ is at mostc2γjεf(p).
Thus the angle between the normal of the support hyper-
planes ofC1 and the vector from p to the center ofM1 is
at mostarcsin(c2γjε). The same holds for the normal of
the support hyperplane ofC2. It follows that the support
hyperplanes ofC1 andC2 make a wedge of angle at most
2 arcsin(c2γjε). Since the vertices ofτ lie outsideM1 and
M2, they lie within this wedge. This implies thatpx lie
within the wedge too. SinceTp cuts through the wedge,
∠(px, Tp) ≤ 2 arcsin(c2γjε), which is at most4c2γjε for
sufficiently smallε.

LEMMA 13. Let k = dim(M). Assume thatk ≥ 2,
ε < (k + 1)σ/(1 + 4γk)ν, and Ŝ has weight property[ω].
Let τ be a(k + 1)-dimensionalCp-simplex. If the boundary
simplices ofτ are not slivers,τ is a sliver.

Proof. Let τ be a(k + 1)-dimensionalCp-simplex. Recall
thatk+dim(Np) is equal to the dimension of the underlying
space. Thus, there is some unit normal~n ∈ Np such that
p + ~n ∈ aff(τ). Without loss of generality, we treat~n as the
vertical axis ofaff(τ).



For each vertexr of τ other thanp, let τ = r ∗ τr, as usual,
and letr′ be the projection along~n of r onto aff(τr). We
claim that there is a vertexq 6= p of τ such that the support
line of pq′ intersectsτq at a point other thanp. There are two
cases.
Case 1: there is a verticalk-flat H in aff(τ) throughp and

containing~n such that at least three other vertices ofτ lie
on one sideH+ of H . RotatingH around~n brings it into
contact with two verticesa and b of τ in H+. Let q be
any vertex ofτ in H+ other thana andb. The orthogonal
projection ofpq onto the plane ofabp intersectsabp at a
point other thanp. It follows thatpq′ intersectsτq at a point
other thanp.
Case 2: thek-flat in case 1 does not exist. LetH be anyk-

flat in aff(τ) throughp and containing~n. Sincek ≥ 2, there
must be exactly two vertices ofτ on one sideH+ of H . Let
these two vertices be denoted bya andb. Let H− denote
the side opposite toH+. If we extendap andbp into H−,
we obtain a 2-d coneC in the plane ofabp in H−. For any
vertexq of τ in H−, the projection ofpq onto the plane of
abp must lie inside the 2-d coneC; otherwise, there would be
a k-flat that havea, b, andq on the same side, contradicting
the assumption that case 1 does not apply. Thus, the support
line of the projection ofpq onto the plane ofabp intersects
abp at a point other thanp. It follows that the support line of
pq′ intersectsτq at a point other thanp.
This completes the proof of our claim. Now, letx 6= p

be a point in the intersection of the support line ofpq′ and
τq. By Lemma 12, applied toτq, ∠(pq′, Tp) ≤ 4c2γkε.
By Lemma 4 and Lemma 1(ii),∠(pq, Tp) ≤ arcsin(c2ε/2),
which is at mostc2ε for sufficiently smallε. Asqq′ is parallel
to ~n, we conclude that∠qpq′ ≤ ∠(pq, Tp) + ∠(pq′, Tp) ≤
c2(1 + 4γk)ε.
The height ofq fromaff(τq) is at most‖p−q‖·sin∠qpq′ ≤
‖p − q‖ · sin(c2(1 + 4γk)ε) ≤ c2(1 + 4γk)εL, whereL is
the maximum edge length ofτ . Thus

vol(τ) ≤ c2(1 + 4γk)εL

k + 1
vol(τq).

By Lemma 5(i),L ≤ νLτ . Thus, if

ε <
(k + 1)σ

(1 + 4γk)ν
,

thenτ is a sliver.

9 Algorithm Output
We show that our algorithm actually outputs DelM(Ŝ). Let
X be the set of all simplices output by our reconstruction

algorithm. Recall thatX is the set of cocone simplices.

LEMMA 14. X is DelM(Ŝ).

Proof. The assignment of weights of our algorithm ensures
that no Voronoi cell of dimension less thand − k intersects
the cocone of a pointp in S. So certainly, no Delaunay
simplex of dimension larger thank is in X . Also certainly,
any simplexτ in DelM(Ŝ) is in X because by definition its
dual Voronoi cellVτ intersectsM and henceVτ intersects
the cocone of the vertices ofτ . It remains to see that there is
no Voronoi cellVτ that intersects the coconeCp of a vertex
p of its dual simplexτ , but it does not intersectM. For
the sake of contradiction, letVτ be such a Voronoi cell of
smallest dimensionality and letx be a point ofVτ inside
Cp. Also, let T be the intersection ofTp with aff(Vτ ).
Insideaff(Vτ ), let N be the orthogonal complement ofT

throughx. N must intersectM insideCp. SinceVτ does
not intersectM thenN should intersect insideCp a smaller
dimensional Voronoi cell that boundsVτ and which also
does not intersectM. This is a contradiction.

Section 11 shows that DelM(Ŝ) approximatesM well in
normal, and section 12 shows that DelM(Ŝ) is homeomor-
phic toM.

10 Normal Variation
The proof of the following lemma extends that of a 3-d
version that appears in [1].

LEMMA 15. Letp, q ∈ M such that‖p−q‖ ≤ cεf(p), then
∠NpNq ≤ c4cε for some constantc4.

Proof. Consider the line segmentpq joining p andq and let
p(t) be a linear parametrization ofpq in the interval[0, 1].
For t ∈ [0, 1], let g(t) be the closest point top(t) in M.
Sincepq is away from the medial axis,g(t) is well-defined
(there is a unique closest point) and also one-to-one (ifx

is closest forp′ and p′′ in pq then bothp′x and p′′x are
normal toM at x and hencepq is in the normal space of
M at x; therefore the diametral sphere ofpx is tangent to
M atx, and so‖p − x‖ ≥ 2f(x), which is in contradiction
with ‖p − q‖ ≤ cεf(p) for c and ε sufficiently small).
The functiong(t) is indeed smooth. Letγ be the curve in
M described byg(t), and letdt andds be the lengths of
corresponding infinitesimal segments onpq andγ, that is,
ds = ‖g(t + dt) − g(t)‖. We claim thatds ≤ 4dt. To see
this, first consider the medial ballB tangent toM atg(t) and
with center on the ray fromg(t) towardsp(t). The radius of
B is greater thanf(g(t)) and so greater thanc′f(p) for some



constantc′ (by Lipschitz property off ), and also the ballB′

centered atp(t + dt) and passing throughg(t). Note that
g(t + dt) must lie in the portion ofB′ outsideB (sinceB is
a medial ball and hence its interior is disjoint fromM, and
sinceg(t + dt) cannot be further fromp(t + dt) thang(t)).
This portion lies within distance4dt sin θ from g(t) where
θ is the angle betweenpq andp(t)g(t): Consider the figure,
which shows the 2-flat spanned bypq andp(t)g(t), where
p′ = p(t), p′′ = p(t + dt), dt = ‖p′ − p′′‖, q′ = g(t), z is
the center andR the radius ofB, q′′ is the projection ofq′ on
the line that containszp′′, d = ‖p′ − q′‖ andh = ‖q′ − q′′‖.
An elementary calculation shows that

h ≤ R

R − d
· dt sin θ

which is smaller than2dt sin θ for ε sufficiently small so that
d ≤ R/2. Finally, g(t + dt) lies within distance2h from
q = g(t), that is, within distance4dt sin θ. This is at most
4dt.

p qp’
d

R
B’ B

dt
θ

p’’

q’

q’’
h

z

Figure 3: The point onM closest top′′ = p(t + dt) must
be closer than the closest pointq′ = g(t) to p′ = p(t) and
outside of the medial ballB of M at q′ with center on the
ray fromq′ towardsp′.

Now, for a unit normal~n ∈ Np, let~n(t) be the unit normal
in Ng(t) that forms a smallest angle with~n. Thus,~n(t) is
the normalized projection of~n onNg(t) and~n(0) = ~n. We
claim that ∠~n(t)~n(t + dt) is bounded by(4/c′f(p))ds.
To verify this, consider the set of ballsB~n′ , with radius
R = f(g(t)) and tangent toM at g(t) in the direction~n′,
where~n′ is a normal direction atg(t). Because of the balls
B~n′ , the rate of change of the normal toM in any direction
with respect tods = ‖g(t + dt) − g(t)‖ is bounded by1/R.
So∠~n(t)~n(t + dt) ≤ ds/R. SinceR = f(g(t)) is at least
c′f(p), then∠~n(t)~n(t+ dt) is upper bounded byds/c′f(p),
which is at most4dt/c′f(p) by the argument above. Adding
this bound over[0, 1], we obtain that∠~n(0)~n(1) is at most
4‖|p − q‖/c′f(p), which is at mostc4cε for some constant
c4.

11 Normal Approximation
The conditions on the simplexτ in the following lemma hold
for the simplices computed by our algorithm. The lemma
implies that the reconstruction produced approximatesM
well in the sense of normal approximation. This result is
also useful in proving that the restricted Voronoi cells are
topological balls. In the following proof, the term cocone
refers to the complement of a (usual) double cone around an
specified direction; its aperture isπ/2 minus the aperture of
the cone. For a simplexτ , a vector~nτ is normal toτ if it is
orthogonal toaff(τ).

LEMMA 16. Supposeτ is a j-simplex for j ≤ k, with
vertices onM, circumradiusO(εf(p)), wherep is one of its
vertices, and such that neitherτ nor its boundary simplices
is a sliver. Then for any normal~np ofM atp, τ has a normal
~nτ such that∠~np~nτ is at mostkjε, for some constantkj .

Proof. The proof is by induction onj. Forj = 0, the claim
is trivial. For j ≥ 1, let τ = q ∗ τq as usual and letDq be
the distance fromq to aff(τq). Becauseτ is not a sliver,
Dq ≥ jσLτ ≥ djεf(p) with dj a constant that depends on
j and the dimensiond. By induction,τq has a normal~nτq

such that∠~np~nτ ′ is at mostkj−1ε. Let q′ be the point in
aff(τq) closest toq, let h be the(d − 1)-flat (hyperplane)
containingτq and normal to~nτq

, and letγ be the(d− 2)-flat
in h orthogonal toqq′. Consider now rotatingh around
γ until a hyperplaneh′ that containsq is obtained; note
that its normal is also a normal ofτ , and so we denote it
with ~nτ . We claim that∠~nτq

~nτ is at most(c′/dj)kj−1ε

for some constantc′. This will imply that ∠~n~nτ is at most
kj−1ε + (c′/dj)kj−1ε and so at mostkjε wherekj is a so-
lution to the recurrencekj = kj−1(1 + c′/dj). To complete
the proof, we verify the claim as follows.q is in a cocone
Cq around~nτq

of aperture2kj−1ε: it is in a cocone around
~np of aperturecε by the dense sampling, and since we are
changing the reference to~nτq

, then we need to increase the
aperture bykj−1ε (we setc0 = c so thatc ≤ kj−1). We
want to see thatq is also in awedgeω aroundγ, obtained
by pivoting h aroundγ, with an angleα that is at most
(c/dj)kj−1ε. An elementary geometric computation shows
that if q is in the coconeCp with apertureϕ and at distance
R from p, andDq from γ, then it is inside the wedgeω
of angleα, if sin α ≤ (R/Dq) sin ϕ (see figure). Since
R = ‖p − q‖ ≤ c2εf(p), Dq ≥ djεf(p), andϕ ≤ 2kj−1ε,
then forsin α ≤ (c2/dj) sin(2kj−1ε), q is in the wedgeω
aroundγ. This means that∠~nτ~nτq

≤ (c′/dj)kj−1ε, for
some constantc′, as we had claimed.
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Figure 4: q is exactly on the boundary of a cocone ofp

around~nτq
(the vertical) with apertureϕ and a wedge around

γ of apertureα.

Using this lemma, we chooseε sufficiently small so that
each simplex in DelMŜ has a normal within sayπ/32 of a
normal of either of its vertices. We call thisgood normal
approximationfor the simplices.

Remark. Removing slivers is an essential part of our recon-

struction algorithm and its proof of correctness. In a way, this is

actually needed if we want to guarantee good normal approximation

for the simplices. The normal of a sliver can be arbitrarily wrong

even if its circumradius isO(εf(p)) and the circumradius-edge ra-

tio is bounded. Consider a cube inR
4 with side lengthd and smooth

out its ridges and corners, to get a smooth 3-manifoldM. Close to

the center of the facets, the manifold is flat and the local feature size

is Θ(d). Consider the Delaunay triangulation of a dense sampling

onM such that the circumradius-edge radius for every tetrahedron

is larger than a constant. In the central portion of a facet, locally,

this is a 3-d triangulation (since the manifold is flat there), and the

normal of all simplices are correct (point to the 4th dimension).

Suppose there is a sliver there, made up of a triangleqrs and an

extra vertexp, so thatp is at a distance∆ from aff(qrs) with ∆ ar-

bitrarily small (this is possible under the condition of a dense sam-

pling and a triangulation with bounded circumradius-edge ratio).

To be precise, letp = (0, 0, ∆, 0), q = (1, 0, 0, 0), r = (1, 1, 0, 0)

ands = (0, 1, 0, 0). Then the normal is in the direction(0, 0, 0, 1).

Now, we deform very slightlyM near((0, 0, 0, 0) into the 4th di-

mension –creating a very smallbump– (recallM was flat there)

to obtain a manifoldM′, and movep into the 4th dimension into

the bump, also a distance∆ away fromaff(qrs). More precisely

p′ = (0, 0, 0, ∆). Since∆ is very small, this can be done without

changing significantly the local feature size ofM and, in particu-

lar, even nearp′, the local feature size remains essentially the same

(say the bump has curvature radiusΘ(d)). However, the normal is

in the direction(0, 0, 1, 0). Thus, after movingp, we still have an

ε-sampling for the new manifoldM′, and also the restricted Delau-

nay triangualtion remains the same except for the slightly changed

bump

∆
E

bump detail

Figure 5: A small bump is introduced in the cube manifold,
detailed on the right. The effect of the bump on the local
feature size at any point is negligible (even at points on the
bump). For anyε > 0, E can be chosen sufficiently small
and∆ even smaller, so that for the corresponding manifold
with bump, there is anε-sampling in whichp is the only
sample point in a large neighborhood of the bump.

sliver pqrs and its neighbors. We actually want the newpqrs to

be in the restricted Delaunay triangulation; to achieve this, we ac-

tually need to be more careful in movingp: movep so that there

is still a restricted Voronoi vertex corresponding to the sliver on the

manifold; this can be achieved by movingp on the circumsphere of

q, r, s.

12 Ball Property for Cells in VorM Ŝ

To verify that DelM(Ŝ) is homeomorphic toM, it suffices to
show that each of the cells in VorM(Ŝ) is homeomorphic to a
ball [12] (the result there is proved for unweighted points but
carries over to the weighted case given the weight property).
We assume in this section thatε is sufficiently small and

that no simplex dual to a restricted Voronoi cell is a sliver,
so that good normal approximation for these simplices hold,
say with angleπ/32.
We need the following lemma, which is a minor modifica-

tion of lemma 3.

LEMMA 17. If x, y ∈ M belong to a common cell ofVor Ŝ,
then‖x − y‖ ≤ c5εf(x).

LEMMA 18. For (ε, δ)-sampling withε sufficiently small,
and assuming that no restricted Voronoi cell is dual to a
sliver, then eachj-cell ofVorM Ŝ is a topological ball.



13 Improvements
Improved Running Time. As described in Section 3,

our algorithm requires the computation of the complete
(weigthed) Delaunay/Voronoi complex. Though the com-
plete complex is important for the determination of the poles
and the cocone, in the end, for the output complex only the
simplices that connect each sample point with other sample
points in a small neighborhood are needed, and they do not
depend on other distant samples.
Giesen and Wagner [15] have shown that, under(ε, δ)-

sampling, the manifold dimension can be estimated from an
appropriate neighborhood of each point. For a samplep ∈ S,
its α-neighborhoodis

Nα(p) = {q ∈ S − {p} : ‖p − q‖ ≤ α min
q′∈S−{p}

‖p− q′‖}.

For α ≈ 2ε/(1 − ε)δ, Nα(p) has sizeO(1) and captures
the shape locally: they fit anl-dimensional flat to the set
Nα(p) with l = 1, . . . , d; the fitting error is larger than a
threshold ifl < k, and smaller ifl ≥ k, and sok can be
determined. The fittingk-flat is then a good approximation
for Tp. These neighborhoods can also be used as the basis for
steps 3 and 4 of the algorithm in Section 3: the (weighted)
Delaunay simplices incident to a samplep that are relevant
for our reconstruction algorithm can be determined from
Nα(p) (for α slightly larger). Using approximate nearest
neighbor reporting [4],Nα(p) can be computed for allp ∈ S

in timeO(n log n). Then dimension detection [15] and sliver
exudation take timeO(n). We are hiding large constants
depending on the dimension in all cases. The overall running
time isO(n log n).

Weaker Sampling. (ε, δ)-sampling is somewhat restric-
tive. Our approach applies to a more relaxed variant: The pa-
rameterε does not need to be the same throughout the mani-
fold; it suffices that there is anε locally that changes slowly
over the manifold –this is calledlocally uniformsampling in
[13]–, while the ratioε/δ remains constant. This includes,
for example, a globally uniform sample, case not included in
(ε, δ)-sampling. The algorithm remains the same; the proof
of correctness extends without problem.
The result can potentially be extended to(ε, `)-sampling, at

the cost of even denser sampling. In this case, we would
need a preprocessing step that enforces locally uniform
sampling, similar to that in [13]. Briefly, it consists in
decimatingthe sample set to enforce the local uniformity.
For this a local decimation radius need to be estimated.
Using approximation techniques, all this can be done in time
O(n log n). If the manifold dimensionk is known, then the
extension could be even toε-sampling (no lower bound on

distances between samples). Details for these last extensions
still need to be worked out.
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