k-Regret Minimizing Set

Efficient Algorithms and Hardness

Wei Cao ${ }^{1}$ Jian Li ${ }^{1}$ Haitao Wang ${ }^{2}$ Kangning Wang ${ }^{1}$ Ruosong Wang ${ }^{1}$ Raymond Chi-Wing Wong Wei Zhan ${ }^{1}$

${ }^{1}$ Tsinghua University
${ }^{2}$ Utah State University
${ }^{3}$ The Hong Kong University of Science and Technology

ICDT, 2017

Regret Minimizing Set (RMS)

Regret Minimizing Set (RMS)

Regret Minimizing Set (RMS)

Regret Minimizing Set (RMS)

[NSL $\left.{ }^{+} 10\right]:$
$\theta=\max _{|R|=r} \inf _{\omega \in \mathbb{R}_{+}^{d}} \frac{\max _{p \in R}\langle p, \omega\rangle}{\max _{p \in D}\langle p, \omega\rangle}$

Regret Minimizing Set (RMS)

[NSL $\left.{ }^{+} 10\right]:$
$\theta=\max _{|R|=r} \inf _{\omega \in \mathbb{R}_{+}^{d}} \frac{\max _{p \in R}\langle p, \omega\rangle}{\max _{p \in D}\langle p, \omega\rangle}$

k-Regret Minimizing Set (k-RMS)

[CTVW14](%5B):

$\theta=\max _{|R|=r} \inf _{\omega \in \mathbb{R}_{+}^{d}} \frac{\max _{p \in R}\langle p, \omega\rangle}{\max _{p \in D}^{k}\langle p, \omega\rangle}$.

k-Regret Minimizing Set (k-RMS)

[CTVW14](%5B):

$\theta=\max _{|R|=r} \inf _{\omega \in \mathbb{R}_{+}^{d}} \frac{\max _{p \in R}\langle p, \omega\rangle}{\max _{p \in D}(k)\langle p, \omega\rangle} . \quad(\theta \leq 1)$

k-Regret Minimizing Set (k-RMS)

\theta=\max _{|R|=r} \inf _{\omega \in \mathbb{R}_{+}^{d}} \frac{\max _{p \in R}\langle p, \omega\rangle}{\max _{p \in D}^{(k)}\langle p, \omega\rangle} \cdot \quad(\theta \leq 1)
\]

- Optimization:

Given D, r, k, find out the optimal R.

k-Regret Minimizing Set (k-RMS)

\theta=\max _{|R|=r} \inf _{\omega \in \mathbb{R}_{+}^{d}} \frac{\max _{p \in R}\langle p, \omega\rangle}{\max _{p \in D}^{(k)}\langle p, \omega\rangle} \cdot(\theta \leq 1)
\]

- Optimization: Given D, r, k, find out the optimal R.
- Decision:

Given D, r, k, decide availability of θ.

Main Results

- When $d=2$:

Main Results

- When $d=2$:
- Dec-k-RMS in $O(n+m)$ with preprocessing. ($n=|D|$ and m is the size of k-level set)

Main Results

- When $d=2$:
- Dec- k-RMS in $O(n+m)$ with preprocessing.
($n=|D|$ and m is the size of k-level set)
- k-RMS in $O\left(n^{2} \log n\right)$.
- Previous result [CTVW14](%5B): $O\left(r n^{2} k^{1 / 3}+n^{2} \log n\right)$.

Main Results

- When $d=2$:
- Dec- k-RMS in $O(n+m)$ with preprocessing.
($n=|D|$ and m is the size of k-level set)
- k-RMS in $O\left(n^{2} \log n\right)$.
- Previous result [CTVW14](%5B): $O\left(r n^{2} k^{1 / 3}+n^{2} \log n\right)$.

Main Results

- When $d=2$:
- Dec- k-RMS in $O(n+m)$ with preprocessing.
($n=|D|$ and m is the size of k-level set)
- k-RMS in $O\left(n^{2} \log n\right)$.
- Previous result [CTVW14](%5B): $O\left(r n^{2} k^{1 / 3}+n^{2} \log n\right)$.
- RMS in expected $O(n \log n)$.

Main Results

- When $d=2$:
- Dec- k-RMS in $O(n+m)$ with preprocessing.
($n=|D|$ and m is the size of k-level set)
- k-RMS in $O\left(n^{2} \log n\right)$.
- Previous result [CTVW14](%5B): $O\left(r n^{2} k^{1 / 3}+n^{2} \log n\right)$.
- RMS in expected $O(n \log n)$.

Main Results

- When $d=2$:
- Dec-k-RMS in $O(n+m)$ with preprocessing. ($n=|D|$ and m is the size of k-level set)
- k-RMS in $O\left(n^{2} \log n\right)$.
- Previous result [CTVW14](%5B): $O\left(r n^{2} k^{1 / 3}+n^{2} \log n\right)$.
- RMS in expected $O(n \log n)$.
- When $d \geq 3$, Dec-RMS is NP-hard.

Geometric View

$$
\begin{gathered}
p=(x, y) \\
\Downarrow \\
f_{p}(\lambda)=\langle p, \omega\rangle \\
=(1-\lambda) x+\lambda y .
\end{gathered}
$$

Geometric View

$$
\begin{gathered}
p=(x, y) \\
\Downarrow \\
f_{p}(\lambda)=\langle p, \omega\rangle \\
= \\
=(1-\lambda) x+\lambda y .
\end{gathered}
$$

Geometric View

$$
\begin{gathered}
p=(x, y) \\
\Downarrow
\end{gathered}
$$

$f_{p}(\lambda)=\langle p, \omega\rangle$

$$
=(1-\lambda) x+\lambda y .
$$

- k-level set $\left(L S_{k}\right)$

Geometric View

$$
\begin{gathered}
p=(x, y) \\
\Downarrow \\
f_{p}(\lambda)=\langle p, \omega\rangle \\
=(1-\lambda) x+\lambda y .
\end{gathered}
$$

- k-level set $\left(L S_{k}\right)$
- Scaled k-level set $\left(\theta-L S_{k}\right)$

Geometric View

$$
\begin{gathered}
p=(x, y) \\
\Downarrow \\
f_{p}(\lambda)=\langle p, \omega\rangle \\
=(1-\lambda) x+\lambda y .
\end{gathered}
$$

- k-level set $\left(L S_{k}\right)$
- Scaled k-level set $\left(\theta-L S_{k}\right)$

$$
\max _{p \in R} f_{p}(\lambda) \geq \theta-L S_{k}(\lambda)
$$

Warm-Up: Dec-RMS

- When $k=1, L S_{1}$ (and thus $\left.\theta-L S_{1}\right)$ is convex.

Warm-Up: Dec-RMS

- When $k=1, L S_{1}$ (and thus $\left.\theta-L S_{1}\right)$ is convex.
- Reduced to interval cover.

Dec- $k-\mathrm{RMS}$

- Goal: Cover polygonal $C(\lambda)$ with a bunch of lines $f_{p}(\lambda)$.

Dec-k-RMS

- Goal: Cover polygonal $C(\lambda)$ with a bunch of lines $f_{p}(\lambda)$.
- Problem:

The intervals that f_{p} covers C may be disconnected.

Dec-k-RMS

- Goal: Cover polygonal $C(\lambda)$ with a bunch of lines $f_{p}(\lambda)$.
- Problem:

The intervals that f_{p} covers C may be disconnected.

- Solution:

Greedily increment the initial covered interval $[0, b]$.

Dec- $k-\mathrm{RMS}$

- Suppose records are sorted:

$$
x_{1} \geq \ldots \geq x_{n} \geq 0,0 \leq y_{1} \leq \ldots \leq y_{n} .
$$

Dec-k-RMS

- Suppose records are sorted:

$$
x_{1} \geq \ldots \geq x_{n} \geq 0,0 \leq y_{1} \leq \ldots \leq y_{n} .
$$

- Then the rest covered intervals disconnected from the initial one are useless:

Dec-k-RMS

- Suppose records are sorted:

$$
x_{1} \geq \ldots \geq x_{n} \geq 0,0 \leq y_{1} \leq \ldots \leq y_{n} .
$$

- Then the rest covered intervals disconnected from the initial one are useless:

Dec- $k-\mathrm{RMS}$

We apply the following greedy algorithm:

- Keep selected lines R as a stack;
- Once the new line increments the initial covered interval, push it into R;
- While pushing, pop out the redundant lines from R.

Dec- k-RMS (Example)

R :

Dec- k-RMS (Example)

$$
R: \quad f_{1}
$$

Dec- k-RMS (Example)

$$
R: \begin{array}{cc}
& \uparrow \\
f_{1} & f_{2}
\end{array}
$$

Dec-k-RMS (Example)

$$
R: \quad f_{2} \quad f_{3}
$$

Dec- k-RMS (Example)

$$
R: \begin{array}{llll}
& f_{2} & f_{3} & f_{4}
\end{array}
$$

Dec-k-RMS (Example)

$$
R: \begin{array}{lll}
f_{2} & f_{3} & f_{5}
\end{array}
$$

Dec-k-RMS (Example)

$$
R: \quad f_{2} \begin{array}{cccc}
& f_{3} & f_{5} & f_{6}
\end{array}
$$

Dec- k-RMS (Data Structure)

- $b_{i}=$ the value of b when f_{i} is pushed in.

Dec- k-RMS (Data Structure)

- $b_{i}=$ the value of b when f_{i} is pushed in.
- Suppose at a moment $R=\left(f_{i_{1}}, \ldots, f_{i_{r}}\right)$; then we store the convex hull of $C(\lambda)$ for $\lambda \in\left[b_{i_{\ell}}, b_{i_{\ell+1}}\right]$.

Dec- k-RMS (Data Structure)

- $b_{i}=$ the value of b when f_{i} is pushed in.
- Suppose at a moment $R=\left(f_{i_{1}}, \ldots, f_{i_{r}}\right)$; then we store the convex hull of $C(\lambda)$ for $\lambda \in\left[b_{i_{\ell}}, b_{i_{\ell+1}}\right]$.
- The stack of convex hulls need to support the following operations:

Dec- k-RMS (Data Structure)

- $b_{i}=$ the value of b when f_{i} is pushed in.
- Suppose at a moment $R=\left(f_{i_{1}}, \ldots, f_{i_{r}}\right)$; then we store the convex hull of $C(\lambda)$ for $\lambda \in\left[b_{i_{\ell}}, b_{i_{\ell+1}}\right]$.
- The stack of convex hulls need to support the following operations:
Create

Dec- k-RMS (Data Structure)

- $b_{i}=$ the value of b when f_{i} is pushed in.
- Suppose at a moment $R=\left(f_{i_{1}}, \ldots, f_{i_{r}}\right)$; then we store the convex hull of $C(\lambda)$ for $\lambda \in\left[b_{i_{\ell}}, b_{i_{\ell+1}}\right]$.
- The stack of convex hulls need to support the following operations:
Test coverage

Dec- k-RMS (Data Structure)

- $b_{i}=$ the value of b when f_{i} is pushed in.
- Suppose at a moment $R=\left(f_{i_{1}}, \ldots, f_{i_{r}}\right)$; then we store the convex hull of $C(\lambda)$ for $\lambda \in\left[b_{i_{\ell}}, b_{i_{\ell+1}}\right]$.
- The stack of convex hulls need to support the following operations:
Merge

Dec-k-RMS (Time Analysis)

- m : the size of (number of segments in) $L S_{k}$.

Dec-k-RMS (Time Analysis)

- m : the size of (number of segments in) $L S_{k}$.
- Calculate $L S_{k}: O\left(n \log m+m \log ^{1+\delta} k\right)([C h a 99])$;

Dec-k-RMS (Time Analysis)

- m : the size of (number of segments in) $L S_{k}$.
- Calculate $L S_{k}: O\left(n \log m+m \log ^{1+\delta} k\right)([C h a 99])$;
- Sort the lines: $O(n \log n)$;

Dec-k-RMS (Time Analysis)

- m : the size of (number of segments in) $L S_{k}$.
- Calculate $L S_{k}: O\left(n \log m+m \log ^{1+\delta} k\right)([C h a 99])$;
- Sort the lines: $O(n \log n)$;
- Maintain the stack of convex hulls: $O(n+m)$.

$k-R M S$

- Goal: binary search over θ, and call the algorithm of Dec-k-RMS.

$k-R M S$

- Goal: binary search over θ, and call the algorithm of Dec-k-RMS.
- All possible values of θ :

$$
\operatorname{Cand}(D):=\left\{\left.\frac{f_{p}(\lambda)}{L S_{k}(\lambda)} \right\rvert\, p \in D, \lambda \in X(D)\right\}
$$

$k-R M S$

- Goal: binary search over θ, and call the algorithm of Dec-k-RMS.
- All possible values of θ :

$$
\operatorname{Cand}(D):=\left\{\left.\frac{f_{p}(\lambda)}{L S_{k}(\lambda)} \right\rvert\, p \in D, \lambda \in X(D)\right\}
$$

- Problem: $|\operatorname{Cand}(D)|$ can be as large as $\Theta\left(n^{3}\right)$.

$k-R M S$

- Goal: binary search over θ, and call the algorithm of Dec-k-RMS.
- All possible values of θ :

$$
\operatorname{Cand}(D):=\left\{\left.\frac{f_{p}(\lambda)}{L S_{k}(\lambda)} \right\rvert\, p \in D, \lambda \in X(D)\right\}
$$

- Problem: $|\operatorname{Cand}(D)|$ can be as large as $\Theta\left(n^{3}\right)$.
- Solution: Implicitly store $|\operatorname{Cand}(D)|$ using sweep line over $X(D)$.

k-RMS

- We can access j_{λ}-th largest $f_{p}(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)|=O\left(n^{2}\right)$ time.

$k-\mathrm{RMS}$

- We can access j_{λ}-th largest $f_{p}(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)|=O\left(n^{2}\right)$ time.
- Maintain a search range for every $\lambda \in X(D)$. Half of them are reduced by half in each round.

$k-R M S$

- We can access j_{λ}-th largest $f_{p}(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)|=O\left(n^{2}\right)$ time.
- Maintain a search range for every $\lambda \in X(D)$. Half of them are reduced by half in each round.

$$
\lambda \in X(D)
$$

$k-R M S$

- We can access j_{λ}-th largest $f_{p}(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)|=O\left(n^{2}\right)$ time.
- Maintain a search range for every $\lambda \in X(D)$. Half of them are reduced by half in each round.

$$
\lambda \in X(D)
$$

$k-R M S$

- We can access j_{λ}-th largest $f_{p}(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)|=O\left(n^{2}\right)$ time.
- Maintain a search range for every $\lambda \in X(D)$. Half of them are reduced by half in each round.

$$
\lambda \in X(D)
$$

$k-\mathrm{RMS}$

- Using weighted median, we can ensure a stable $1 / 4$-reduction of candidate values.

$k-R M S$

- Using weighted median, we can ensure a stable $1 / 4$-reduction of candidate values.
- $O\left(n^{2}\right)$ time each round, $O(\log n)$ rounds.
- $O\left(n \log m+m \log ^{1+\delta} k\right)=o\left(n^{2}\right)$ preprocessing.

RMS

- All possible values of θ :

$$
\operatorname{Cand}(D):=\left\{\left.\frac{f_{p}(\lambda)}{L S_{1}(\lambda)} \right\rvert\, p, q \in D, f_{p}(\lambda)=f_{q}(\lambda)\right\}
$$

correspond to intersection points.

RMS

- All possible values of θ :

$$
\operatorname{Cand}(D):=\left\{\left.\frac{f_{p}(\lambda)}{L S_{1}(\lambda)} \right\rvert\, p, q \in D, f_{p}(\lambda)=f_{q}(\lambda)\right\}
$$

correspond to intersection points.

- For a search range $\left[\theta_{0}, \theta_{1}\right.$], the candidate values could not be listed, but could be random accessed.

RMS

- All possible values of θ :

$$
\operatorname{Cand}(D):=\left\{\left.\frac{f_{p}(\lambda)}{L S_{1}(\lambda)} \right\rvert\, p, q \in D, f_{p}(\lambda)=f_{q}(\lambda)\right\}
$$

correspond to intersection points.

- For a search range $\left[\theta_{0}, \theta_{1}\right.$], the candidate values could not be listed, but could be random accessed.
- $O(n \log n)$ time for n random sampling each round, expected $O(1)$ round.

RMS

Traverse the $O(n)$ endpoints on the boundary in counterclockwise:

RMS

Traverse the $O(n)$ endpoints on the boundary in counterclockwise:

RMS

Traverse the $O(n)$ endpoints on the boundary in counterclockwise:

RMS

Traverse the $O(n)$ endpoints on the boundary in counterclockwise:

RMS

Traverse the $O(n)$ endpoints on the boundary in counterclockwise:

3D Dec-RMS is NP-hard

- Observation: If a spherical triangle $\triangle A B C$ contains the circumcenter P, then $\{A, B, C\}$ has fixed regret ratio in respect to P :

$$
1-\theta=1-\cos \alpha
$$

3D Dec-RMS is NP-hard

- Observation: If a spherical triangle $\triangle A B C$ contains the circumcenter P, then $\{A, B, C\}$ has fixed regret ratio in respect to P :

$$
1-\theta=1-\cos \alpha
$$

- So for $\theta \approx \cos \alpha$, one either choose P or choose $A B C$.

3D Dec-RMS is NP-hard

- Observation: If a spherical triangle $\triangle A B C$ contains the circumcenter P, then $\{A, B, C\}$ has fixed regret ratio in respect to P :

$$
1-\theta=1-\cos \alpha
$$

- So for $\theta \approx \cos \alpha$, one either choose P or choose $A B C$.
- Reduced to Vertex Cover on a highly
 constraint class of planar graphs, which we project to the sphere surface.

Timothy M Chan.
Remarks on k-level algorithms in the plane.
Manuscript, Department of Computer Science, University of Waterloo, Waterloo, Canada, 1999.

Sean Chester, Alex Thomo, S Venkatesh, and Sue Whitesides.
Computing k-regret minimizing sets.
Proceedings of VLDB, 7(5), 2014.
Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J Lipton, and Jun Xu.
Regret-minimizing representative databases.
Proceedings of the VLDB Endowment, 3(1-2):1114-1124, 2010.

