
New Lower and Upper Bounds for Shortest Distance
Queries on Terrains

Manohar Kaul †, Raymond Chi-Wing Wong ‡, Christian S. Jensen ∗

† IIT Hyderabad ‡ The Hong Kong University of
Science and Technology

∗ Aalborg University

†mkaul@iith.ac.in ‡ raywong@cse.ust.hk ∗ csj@cs.aau.dk

ABSTRACT
The increasing availability of massive and accurate laser data en-
ables the processing of spatial queries on terrains. As shortest-path
computation, an integral element of query processing, is inherently
expensive on terrains, a key approach to enabling efficient query
processing is to reduce the need for exact shortest-path computa-
tion in query processing. We develop new lower and upper bounds
on terrain shortest distances that are provably tighter than any ex-
isting bounds. Unlike existing bounds, the new bounds do not rely
on the quality of the triangulation. We show how use of the new
bounds speeds up query processing by reducing the need for exact
distance computations. Speedups of of nearly an order of magni-
tude are demonstrated empirically for well-known spatial queries.

1. INTRODUCTION
With the increasing availability of accurate and massive laser

data, 3D mesh representations of terrains are increasingly being
used to simulate and study natural phenomena [1].

Applications Queries on terrains are important in diverse appli-
cations, and the database community has recently studied the effi-
cient support for, e.g., distance, kNN, and range queries on terrains
[4, 6, 12, 19, 24, 29, 30]. We proceed to cover some applications.

In computer graphics and computer vision, the similarity be-
tween 3D shapes is used for object recognition [13] and image
segmentation [26]. A main challenge is the mapping of 3D ob-
jects into compact canonical representations referred to as shape
contexts or feature vectors, which can serve as search keys in im-
age retrieval. A shape context can be defined as the distribution of
selected points from a reference point. In order to compute these
distances, surface paths play a vital role as they are invariant to
transformations such as rotation and translation and are robust to
slight deformations. Similarity is then defined by comparing the
shape contexts of similar points on different 3D shapes. In graph-
ics, the kNN classifier is heavily used to execute kNN queries, so
that the query object’s class label can be set to the majority class
label of its kNNs. In some settings, objects change shape dynam-
ically, calling for frequent similarity re-computation [31]. In these
settings, the performance of surface kNN computation is essential.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 3
Copyright 2015 VLDB Endowment 2150-8097/15/11.

3D models of scientific data are becoming increasingly popular
in areas such as biology, chemistry, anthropology and archeology
to name a few. In neuroimaging, kNN queries are central to tumor
classification using magnetic resonance imaging (MRI) images [2].
Here, getting the exact kNN set is important, and not getting it right
can have serious consequences. In fMRI [8] and diffusion MRIs that
build very high resolution 3D models (many triangles) of organs as
a function of time, it is also important to generate accurate kNN
results as efficiently as possible. The above scenario rules out the
use of approximation algorithms. Surface range queries also play
an important role in neuroscience. For example, neuroscientists
conduct spatial range queries on brain mesh simulations to study
the neuron density and number of branches in an area [27].

In kinodynamics, motion planning problems on 3D surfaces is
important. For example, collision avoidance [22], moving query
objects must constantly keep track of their kNN sets of static or
moving obstacles. Here, accurate kNN sets must be computed ef-
ficiently. Collision problems are also studied in particle physics,
where the underlying terrain can be a 3D energy/force field. In
robotics, robots must navigate 3D terrains with obstacles. Doing
so, they may rely on an existing triangulation of their environment,
or they may generate a triangulation on-the-fly [16, 20].

In military tactical analysis [15], computing shortest paths and
spatial queries on terrains plays an important role. Factors such
as the movement of troops and equipment over rough terrains can
affect a military unit’s success in a battle exercise. Computing exact
results of surface spatial queries is important.

In each of the above applications, surface spatial queries, includ-
ing kNN and range queries, are prevalent [4, 6, 19, 24, 29, 30]. Ev-
ery such spatial query uses as a distance metric the shortest surface
distance to compute the distances between objects on the surface.
Since computing the exact shortest surface distance is computa-
tionally expensive, we must instead find tighter upper and lower
bounds for the shortest surface distance and use them to improve
the efficiency of all surface spatial queries.

State-of-the-art Method Several recent works in academia [6,
19, 24, 29, 30] extend well-known spatial queries from Euclidean
space to terrains. Surface shortest path computation underlies all
the resulting terrain queries and is identified to be extremely expen-
sive and time-consuming. The best existing exact surface shortest
path algorithm is proposed by Chen and Han [4] and has a time
complexity of O(N2), where N is the number of vertices in the
triangulated surface. Spatial queries on terrains employ distance
bounds in order to prune unnecessary objects before refinement,
where expensive shortest path computations are performed.

Let the source and destination points on a terrain be denoted by
s and t, respectively. Let E , Π(s, t), and ΠG(s, t) denote the Eu-
clidean line-segment, shortest surface path, and shortest network

path between s and t on the terrain. Then, the corresponding path
lengths can be denoted as |E|, |Π(s, t)|, and |ΠG(s, t)|. Π(s, t) is
allowed to cut across the faces of the triangulation, while ΠG(s, t)
is restricted to the edges of the faces. The motivation behind using
distance bounds is that they are inexpensive to compute in compar-
ison to the exact surface shortest path Π(s, t). Kaul et al. [12] show
that a surface shortest path computation on a triangulation with 20K
vertices, takes nearly 7.2 hours, while computing the shortest net-
work path on the same triangulation takes only 0.04 seconds in
comparison. However, the lower bound |E| was shown to be nearly
9 times smaller than |Π(s, t)| [12], which was a very loose bound.

Kaul et al. [12] propose a tighter lower bound that captures
the information about the surface of the underlying terrain. Both
lower and upper bounds are derived from the shortest network
distance |ΠG(s, t)|. More specifically, they set the upper bound
to |ΠG(s, t)| and the lower bound to λ · |ΠG(s, t)|, where λ =

min{ sin θmin
2

, sin θmincos θmin} and θmin is the minimum in-
terior angle of all faces in the terrain. The application of these
bounds to kNN, reverse kNN, and range queries on surfaces, yields
substantial improvements in execution times.

The quality of the state-of-the-art bounds proposed in [12] de-
pends on the minimum interior angle θmin of all faces in the ter-
rain. Observe that a larger θmin improves the tightness of the lower
bound, while decreasing θmin results in a looser lower bound.
Thus, for low values of θmin, the lower bound quality deteriorates
to be worse than even the Euclidean distance E . Thus, the authors
use a constrained Delaunay triangulation to ensure that θmin al-
ways exceeds 45°.

To illustrate, Figure 1 shows a triangulation with two degenerate
triangles, ∆AsB and ∆AtB, that share a common base and where
s and t are the source and target vertices, respectively.

s

t
A

B

Figure 1: Terrain with degenerate
faces.

s = p1

 p2 p3

t = p4

 v1

 v2

 v3

!min

Figure 2: Π(s, t) (bold lines)
and ΠG(s, t) along the edges
(dashed line)

This example shows that in the presence of such degenerate tri-
angles, for source vertex s and target vertex t, the shortest surface
distance |Π(s, t)| for path Π(s, t) (i.e., path st shown in dotted line
in Figure 1) that is allowed to cut across a face is much smaller than
the shortest network distance |ΠG(s, t)| (i.e., length of path sBt
shown in bold lines in Figure 1), that is restricted to the edges of
the faces. Thus, |ΠG(s, t)| is not a good approximation of |Π(s, t)|
in this case.

New Tighter Bound Motivated by the above observations, we
propose tighter upper and lower bounds for the surface shortest dis-
tance |Π(s, t)| that are independent of θmin and are thus unaffected
by degenerate skinny triangles (smaller θmin) in a triangulation.

We adopt an approach where an approximation path is allowed
to cut across faces, like Π(s, t) does, and this turns out to yield
tighter approximations to Π(s, t). We term this new approximation
a shortest surface face-crossing path ΠFC(s, t). A path ΠFC(s, t)
cuts across a face, via cut vertices that are placed strategically on
the edges of the face. We only introduce cut vertices on edges of
faces being visited, and no cut vertices are introduced on edges of
unvisited faces. This feature enables efficiency because there is no
need to introduce useless cut vertices for unvisited faces.

Since Π(s, t) is the shortest surface path and the shortest surface
face-crossing path ΠFC(s, t) can never exceed the network path
ΠG(s, t), by definition, we know that |Π(s, t)| ≤ |ΠFC(s, t)| ≤
|ΠG(s, t)|. Thus, |ΠFC(s, t)| forms our tighter upper bound. In
our experiments, for a default setting of θmin, |ΠFC(s, t)| is 0.92
times smaller than |ΠG(s, t)|. Note that |ΠG(s, t)| is the best ex-
isting upper bound.

Our constant-factor lower bound is then computed as λ′ ·
|ΠFC(s, t)|, where λ′ is a constant fraction, whose value is at least
0.9. The significance of a constant-factor bound is that its quality
has no dependence on the shape of a face (e.g., the minimum in-
terior angle of the face). In our experiments, we study the effect
on the tightness of our lower bound by varying the amount of cut-
vertices introduced. This causes the values of λ′ and |ΠFC(s, t)|
to change accordingly. In our experiments, for a default setting of
θmin, λ′ · |ΠFC(s, t)| is 1.86 times longer than λ · |ΠG(s, t)|.

The new bounds are based not only on the vertices in the trian-
gulated surface, but also on the introduced cut vertices. Therefore,
they are more expensive to compute than the existing bounds [12].
However, the new bounds are tighter, and for kNN and range
queries, more objects are pruned, resulting in fewer expensive exact
shortest distance computations.

In our experimental results, compared to the state-of-the-art
bounds, algorithms using our tighter constant-factor bounds can
prune up to 450% objects more, resulting in nearly 82 times faster
execution time, for a surface kNN query.

Contributions and Organization Our contributions can be out-
lined as follows. First, to the best of our knowledge, we are the
first to propose tighter constant-factor lower and upper bounds for
the surface shortest path that are always tighter than the best exist-
ing lower and upper bounds [12]. Second, we prove the tightness
of the new bounds and show how they are always tighter than the
existing bounds [12] for all possible values of θmin. Third, we in-
troduce a user-defined error parameter ε in our experiments to en-
able a trade-off between the bound tightness and computation time.
By studying the effect of the new bounds on existing surface spatial
queries, we provide an understanding of how our new bounds affect
the performance of such queries. Fourth, we present a comprehen-
sive empirical study that offers insight into the accuracy, efficiency,
and scalability properties of the new bounds. The study reveals
speedups of nearly an order of magnitude for well-known terrain
spatial queries.

The remainder of the paper is organized as follows. Section 2
formulates the problem. Section 3 describes our lower and upper
bounds. Section 4 presents our algorithm. Section 5 covers the
empirical study of the bounds and proposed algorithms. Section 6
describes related work. Finally, Section 7 concludes the paper.

2. PRELIMINARIES
The surface of a natural terrain is too irregular and is hence ap-

proximated by digital 3D models, which are based on a set of el-
evation values measured on the physical terrain. The most com-
mon such digital model used is the Triangulated Irregular Net-
work (TIN) [7, 14, 23] which is displayed as a network of non-
overlapping triangular faces. A TIN can therefore also be defined
as a Delaunay graph G = (V,E) where V and E denote the set
of vertices and edges, respectively, and the weight of each edge is
the Euclidean distance between the two end-points of the edge. In
the following, for brevity, we simply write “graph” for “Delaunay
graph.” We also use the terms “surface”, “terrain” and “triangula-
tion” interchangeably.

A TIN is typically represented as a triangulation T . T must
satisfy the following conditions. 1) Two triangles in T cannot in-

tersect, except at a vertex or a common edge shared by the two tri-
angles, 2) A triangle in T cannot share an edge with more than one
other triangle, and 3) a vertex on the boundary must be connected
(via an edge) to exactly two other boundary vertices.

The direct line segment connecting any two points x and y on T
is denoted by (x, y) and its length, i.e., the Euclidean distance, is
denoted by |(x, y)|. We define the shortest network path ΠG(s, t)
from vertex s to t as the path consisting of only vertices and
edges belonging in V and E, respectively, and whose total length
|ΠG(s, t)| is the shortest. Note that ΠG(s, t) cannot cut across the
face of any triangle and is always restricted to the edges of the tri-
angles.

Consider a sequence of points PS = 〈s = p1, p2, ..., pn = t〉
on the triangulation T , such that every point pi ∈ PS is located on
an edge in E. We can thus define a surface path between s and t
to be composed of line segments (p1, p2), (p2, p3), ..., (pn−1, pn).
The total length of this surface path is then calculated by summing
up the length of each individual line segment that composes the
surface path. Then, the shortest surface path Π(s, t) from s to t
is the surface path from s to t with the smallest length and the
length of this path is denoted by |Π(s, t)|. Figure 2 shows three
triangles composing the terrain T , namely ∆v1p1v2, ∆v1v2v3 and
∆v3p2p4. In this figure, the shortest surface path Π(s, t) from s to
t is path 〈s = p1, p2, p3, p4 = t〉. This path cuts across the faces
of the triangles. The corresponding shortest network path ΠG(s, t)
is path 〈s = p1, v1, v3, p4 = t〉.

A

B

C

C2 B2

C1

A2
A1

B1

Figure 3: Additional possi-
ble paths for ΠFC(s, t).

m✓

min(Oi,Oi+1)

A (= Oi= Oi+1)

X Y

pi

pi+1

�I

lmin/2

Figure 4: |(oi, oi+1)|min
near corner vertex A.

From the literature, we have the following lemma.

LEMMA 1 ([6, 24, 30]). For any two vertices v and v′ in V ,
|Π(v, v′)| ≤ |ΠG(v, v′)|.

Further, we define V ′ to be the set of newly introduced ver-
tices located between the end-points of each edge in E. We re-
fer to these new vertices as cut-vertices. We introduce an edge
(va, vb) between cut-vertices va and vb if they are located on ad-
jacent edges of a face. This new set of edges is denoted as E′.
Given the definitions of V, V ′, E and E′, we proceed to define
a surface face-crossing path, which is represented by a sequence
〈s = v1, v2, ..., vn = t〉 where each vi is a vertex in V ∪ V ′,
and each (vi, vi+1), except when vi and vi+1 are located on the
same edge, is a newly introduced edge in E ∪E′. Then, the short-
est surface face-crossing path ΠFC(s, t) from s to t is the surface
face-crossing path with the smallest length and the length of this
path is denoted by |ΠFC(s, t)|. The path ΠFC(s, t), unlike the
network path ΠG(s, t), is not restricted to the edges of the face, but
can also cut across the face of a triangle.

For better illustration, Figure 3 shows ∆ABC with corner ver-
ticesA,B,C ∈ V and cut vertices {A1, A2, B1, B2, C1, C2} ∈ V ′.
The dotted lines in ∆ABC denote the newly introduced edges in
E′ (e.g, (C1, B1)). A complete graph is a simple, undirected graph
in which every pair of distinct vertices is connected by an edge.
∆ABC can be viewed as a complete graph with the exception no
new edges are introduced between any pair of vertices placed on
the same edge, except the original edge between the corner vertices

of that edge. For example, edges (C1, C2) or (B1, C) are non-
existent. Thus, we can say that the additional edges in E′ form a
nearly-complete graph and allow additional possibilities for path
ΠFC(s, t) to cut across the face of ∆ABC via the cut-vertices in-
troduced on the edges.

3. UPPER AND LOWER BOUNDS
In this section, we propose an upper and lower bound for the

shortest surface distance |Π(s, t)| between a start vertex s and des-
tination vertex t on a triangulation T .

Suppose that Π(s, t) is a sequence < p1, p2, ..., pn >, where pi
is a point along an edge in E. Note that p1 = s and pn = t. Each
line connecting pi and pi+1 is on face fi. Additionally, we define
that each point pi has its owner, denoted by oi, which is one of the
closest corners in V or cut-vertices in V ′, on the face containing pi.
Thus, line segment (oi, oi+1) can be viewed as the closest approx-
imation to line segment (pi, pi+1) and (oi, oi+1) is termed as the
owner segment of line segment (pi, pi+1). Figure 5(c) shows the
closest vertices to pi and pi+1 chosen as their owners, oi and oi+1,
respectively. Additionally, Figure 5(c) also illustrates how segment
(pi, pi+1) is approximated by segment (oi, oi+1). Furthermore, we
set o1 = s and on = t.

In the close vicinity of corner vertices, line segment (pi, pi+1)
can have an infinitesimal length and hence cannot be approxi-
mated by a corresponding (oi, oi+1) line segment. Thus, we in-
troduce a minimum length threshold |(oi, oi+1)|min, below which
any (pi, pi+1) has its corresponding oi = oi+1, i.e., they are ap-
proximated by the corner vertex itself and |(oi, oi+1)| = 0.

For illustration, in Figure 4, the corner vertex is A and the
length of line segment (X,Y) denotes our |(oi, oi+1)|min. Since
|(pi, pi+1)| ≤ |(oi, oi+1)|min, both pi and pi+1 have the same
owner, i.e., corner vertex A and |(oi, oi+1)| = 0.

Furthermore, our cut-vertex placement strategy must ensure that
every possible owner segment (oi, oi+1) satisfies our constant
bound property. In order to do this, we must first ascertain the
minimum possible length |(oi, oi+1)|min of any owner segment
(oi, oi+1) in face fi.

Let θm denote the minimum interior angle of a single face, not
to be confused with the earlier θmin, which is the minimum inte-
rior angle amongst all the faces belonging to a triangulation T .
Depending on the shape of the face, |(oi, oi+1)|min varies ac-
cordingly. For example, |(oi, oi+1)|min is shorter for faces with
a smaller θm, than faces with larger θm.

In order to compute |(oi, oi+1)|min for a face fi, we focus on
the corner vertex vcor to which θm belongs. Let lmin denote the
length of the shortest edge in all the faces of T . Then, an initial
distance of lmin/2 from corner vertex vcor is chosen on both the
edges that are adjacent to vcor . Figure 4 shows an example where
vcor = A and |AX|=|AY | =lmin/2, forming an isosceles trian-
gle ∆AXY , where line segments AX and AY subtend the angle
θm of the triangle.

Applying the law of cosines, we have |(oi, oi+1)|min = lmin/2 ·√
2(1− cos θm). We chose lmin/2 ·

√
2(1− cos θm) as an initial

start value of |(oi, oi+1)|min, to improve the time complexity of
our algorithm.

After having computed the |(oi, oi+1)|min for a face, cut-
vertices are placed on the edge with a gap ∆I that is at most
|(oi,oi+1)|min

K
, where K is a constant subjected to the constraint

K ≥ 10. Setting K ≥ 10, we have ∆I ≤ |(oi,oi+1)|min

K
, which

also ensures that our lower bound is always tighter than the bound
proposed in [12] for all possible values of θmin. Note that K can
be replaced by a user defined variable, but this results in added

pi+1

oi+1

C

pi (= oi)

I

pi+1

oi+1

C

pi (= oi)

I

pi+1
oi+1

C

pi

oi
I

pi+1oi+1

C

pi
oi I

(a) (b) (c) (d)
Figure 5: Claim 1 in the Proof of Lemma 2

time-complexity, since many more cut-vertices get introduced on
the edges.

More intuitively, for lower values of θm (skinny faces),
|(oi, oi+1)|min is automatically lowered and so is ∆I , thus many
more cut-vertices and new edges connecting these cut-vertices are
introduced on this face, improving how closely segment (oi, oi+1)
approximates segment (pi, pi+1). This property allows our lower
bound to achieve a constant-factor bound even for degenerate
skinny faces.

Recall the definition of our shortest surface face-crossing path
ΠFC(s, t) : 〈o1, o2, ..., on〉. Each oi is a vertex in V ∪ V ′, on
the terrain. Each line segment connecting oi and oi+1 is on face
fi. Additionally, for each (oi, oi+1) segment, we have a minimum
length |(oi, oi+1)|min, as shown in Figure 4. Thus, ΠFC(s, t) is
made up of line segments that either have (i) oi = oi+1 and zero-
length or (ii) (oi, oi+1) is an edge with non-zero length in E ∪E′.

With these definitions, we derive the lower and upper distance
bounds of the shortest surface distance. We begin by breaking
down the (s, t)-paths into line segments that must traverse over
faces and provide distance bounds over these individual line seg-
ments. Later, we accumulate the results to provide the final bounds
for the entire shortest surface distance |Π(s, t)|.

LEMMA 2. Let (pi, pi+1) denote the segment portion of the
shortest surface path Π(s, t) on face fi and (oi, oi+1) denote
the segment portion of the shortest surface face-crossing path
ΠFC(s, t) on face fi. Then,

λ · |(oi, oi+1)| ≤ |(pi, pi+1)|

where λ · |(oi, oi+1)| is our lower bound of |(pi, pi+1)|, λ =(
1− 1

K

)
and ∆I ≤ |(oi,oi+1)|min

K
.

Proof: This proof can be broken down into several cases.

pi+1
oi (=oi+1)

C

pi

A

(Oi,Oi+1)min pi+1

B

C
pi

A

pi+2

pi-1

D

(a) Case 1 (b) Case 2
Figure 6: Cases 1 and 2 in the Proof of Lemma 2

Case 1: oi = oi+1 This case is illustrated in Figure 6(a). Here,
|(oi, oi+1) = 0. The inequality holds.

Case 2: Both pi and pi+1 lie along the same edge (va, vb)
and oi 6= oi+1. This case is illustrated in Figure 6(b), where bold
lines indicate the scenario depicted in this case, and the dotted lines
indicate the actual path that should have been followed. This case
never arises because it violates a fundamental observation in [25]
which states that a surface shortest path must become a straight
line segment when the faces crossed by the path are unfolded onto

pi+1

oi oi+1

C

pi

A

X

B

pi+1oi oi+1

C

pi

A

B

(a) (b)
Figure 7: Subcases B(i) and B(ii) in Claim 1.

a plane. It is easy to note that when unfolding the faces over which
P crosses, path 〈pi−1, pi, pi+2〉 unfolds into a straight line, which
is a shorter path than path 〈pi−1, pi, pi+1, pi+2〉.

Case 3: pi and pi+1 do not lie on the same edge and oi 6=
oi+1. We begin proving this sub-case by making a claim as follows.

CLAIM 1. Let (oi, oi+1) denote the segment of path ΠFC(s, t)
that crosses face fi and (pi, pi+1) denote the segment of path
Π(s, t) that crosses face fi. Then,

||(oi, oi+1)| −∆I| ≤ |(pi, pi+1)|

Proof: Each edge of the face fi, having edge length l, has k =⌊
l

∆I

⌋
cut-vertices the edge, dividing the edge into intervals of size

≤ ∆I . Recall that the gap between a pair of vertices is denoted by
the range of interval ∆I . We provide two figures for each sub-case,
to illustrate how faces with smaller θm have more finer intervals,
i.e. lower ∆I , and hence result in more cut-vertices being placed
on each edge. Also note that there are edges joining every pair of
vertices placed on different edges of the face, thus forming a nearly
complete graph (corner vertices placed on the same edge, do not
have an edge between them). These new edges have been omitted
from Figure 5 for clarity of images. Two sub-cases arise.

Case A: pi is located on a corner vertex and pi+1 is lo-
cated on a cut-vertex of the opposite edge This case is il-
lustrated in Figures 5(a) and (b). In this case, since pi is
on a corner-vertex, we choose the closest vertex oi to be the
same as pi. pi+1 is closest to oi+1 and the length of segment
(oi+1, pi+1), is at most 1

2
∆I . By the triangle inequality, we have

that |(oi, oi+1)| ≤ |(pi, pi+1)| + 1
2
∆I . Re-arranging this we get,∣∣(oi, oi+1)− 1

2
∆I
∣∣ ≤ |(pi, pi+1)|.

Case B: pi and pi+1 are located on cut-vertices of adjacent
edges. This case is illustrated in Figures 5(c) and (d).

When pi and pi+1 are located on cut-vertices of adjacent edges,
then their corresponding owners, i.e., oi and oi+1, are cut-vertices
that are closest to pi and pi+1, respectively. In order to prove the
inequality, we study the relation between edge (pi, pi+1) and edge
(oi, oi+1). In Case B, we notice 3 more subcases as follows.

Case (i) Edges (pi, pi+1) and (oi, oi+1) cut across each other
This case is illustrated in Figure 7(a). (pi, pi+1) is indicated with
a solid line, while (oi, oi+1) is shown with a dashed line. Let X
denote the point at which both edges cross each other.

In ∆pioiX , using the triangle-inequality we have |(oi, X)| ≤
|(pi, X)| + |(pi, oi)|. Applying the same in ∆Xpi+1oi+1, we ar-
rive at the inequality : |(X, oi+1)| ≤ |(X, pi+1)|+ |(pi+1, oi+1)|.
Adding, both inequalities, we have |(oi, X)| + |(X, oi+1)| ≤
|(pi, X)| + |(X, pi+1)| + |(pi, oi)| + |(pi+1, oi+1)|. We ob-
serve that |(pi, X)| + |(X, pi+1)| = |(pi, pi+1)| and |(oi, X)| +
|(X, oi+1)| = |(oi, oi+1)|. Also, we observe that |(pi, oi)| ≤
∆I/2 and |(pi+1, oi+1)| ≤ ∆I/2. Introducing these two ob-
servations into the previous inequality, we have |(oi, oi+1)| ≤
|(pi, pi+1)| + ∆I , which then re-arranges to |(oi, oi+1)| −∆I ≤
|(pi, pi+1)|.

Case (ii) Edges (oi, oi+1) and (pi, pi+1) do not cross over.
This case is illustrated in Figure 7(b). (pi, pi+1) is indicated with
a solid line, while (oi, oi+1) is shown with a dashed line. We also
have a dotted line joining oi and pi+1.

Consider ∆pipi+1oi. Applying the triangle inequality, we get
our first inequality: |(oi, pi+1)| ≤ |(pi, pi+1)| + |(oi, pi)|. In
∆oipi+1oi+1, we get the second inequality as |(oi, oi+1)| ≤
|(oi, pi+1)| + |(pi+1, oi+1)|. Using the RHS of our first inequal-
ity, we substitute |(oi, pi+1)| in the second inequality. We get,
|(oi, oi+1)| ≤ |(pi, pi+1)|+ |(pi, oi)|+ |(pi+1, oi+1)|. The same
reduction steps as in Case (i) can be applied here to finally reduce
to |(oi, oi+1)| −∆I ≤ |(pi, pi+1)|.

Finally, combining the results from Cases A and B, we get
||(oi, oi+1)| −∆I| ≤ |(pi, pi+1)|. This completes the proof for
our claim.

Following our proven Claim 1, we know that the inequality
|(pi, pi+1)| ≥ |(oi, oi+1)−∆I| holds. Thus, substituting our
chosen value of ∆I =

|(oi,oi+1)|min

K
, we have |(pi, pi+1)| ≥

(oi, oi+1)− |(oi,oi+1)|min

K
.

We also know that |(oi,oi+1)|
K

≥ |(oi,oi+1)|min

K
. Thus, the in-

equality |(pi, pi+1)| ≥
∣∣∣(oi, oi+1)− |(oi,oi+1)|

K

∣∣∣ also holds be-

cause |(oi,oi+1)|
K

is a larger value reduced from |(oi, oi+1)|.
Finally, we get λ |(oi, oi+1)| ≤ |(pi, pi+1)|. This completes our

proof for the lower bound where λ =
(
1− 1

K

)
, which is a constant

bound.

THEOREM 1 (DISTANCE BOUND). Let ΠFC(s, t), Π(s, t)
and ΠG(s, t) be a shortest surface face-crossing path, the short-
est surface path and the shortest network path between source s
and destination t on terrain P , respectively. Then,

λ · |ΠFC(s, t)| ≤ |Π(s, t)| ≤ |ΠFC(s, t)|

where λ =
(
1− 1

K

)
.

Proof: There are two inequalities: λ·|ΠFC(s, t)|≤|Π(s, t)| and
|Π(s, t)|≤|ΠFC(s, t)|.

From the definition of ΠFC(s, t) it follows trivially that
|ΠFC(s, t)| ≤ |ΠG(s, t)|, since ΠFC(s, t) can cut across a face
and has many more shorter path options available to it. Combin-
ing this with the result of Lemma 1, we arrive at our tighter upper
bound |ΠFC(s, t)| that satisfies the second inequality.

In the following, we focus on the first inequality. Recall that
ΠFC(s, t) = 〈o1, o2, ..., ok+1〉, with k segments. Also, observe
that consecutive edges (oi, oi+1) and (oi+1, oi+2) always share a
common vertex oi+1, thus making sure that ΠFC(s, t) will always
be a connected path. This holds even when some edges are approx-
imated as a single vertex, e.g., Case 1 in Lemma 2 (Figure 6(a)).

Applying Lemma 2, we know that λ·|(oi, oi+1)|≤|(pi, pi+1)|,
for each i ∈ [1, k + 1]. Combining the inequalities for each
segment constituting paths ΠFC(s, t) and Π(s, t) we get, λ ·

∑k
i=1 |(oi, oi+1)| ≤

∑k
i=1 |(pi, pi+1)| This further simplified

gives, λ · |ΠFC(s, t)| ≤ |Π(s, t)| , which proves the first inequality
and completes our proof.

λ · |ΠFC(s, t)| corresponds to our new tighter constant-factor
lower bound and |ΠFC(s, t)| corresponds to our new tighter upper
bound.

Algorithm 1 Compute Distance Bound
get bounds(G, s, t)
1: for each v ∈ G do
2: D(v)←∞
3: D(s)← 0
4: Initialize event priority queueQ with 〈s,D(s)〉
5: while Q is not empty do
6: 〈u,D(u)〉 ← Extract vertex of event with least D(u)
7: if u == t then
8: Compute (lb, ub) = (λ×D(u),D(u))
9: output (lb, ub)

10: S ← S ∪ {u}
11: d(u, t)← Compute vertex u’s Euclidean distance to t
12: for each adjacent face f of vertex u do
13: Compute for face f : θm, |(oi, oi+1)|min and interval ∆I
14: if u is a corner-vertex then
15: e′ ← get the edge opposite u in face f
16: L ← L ∪ {e′}
17: else if u is a cut-vertex then
18: e← get the edge on which u is located
19: {e′, e′′} ← get both adjacent edges to e on face f
20: L ← L ∪ {e′, e′′}
21: for each edge (va, vb) in list L do
22: d((va, vb), t)← Get (va, vb)’s Eucildean distance to t 1

23: if d(u, t) ≥ d((va, vb), t) then
24: j ← 1

25: while j ≤
⌊
|(va,vb)|

∆I

⌋
do

26: Place cut-vertex vc at ∆I · j from va on (va, vb)
27: if |(u, vc)| ≥ ∆I then
28: Add edge (u, vc)

29: D(vc)← D(u) + |(u, vc)|
30: Insert 〈vc,D(vc)〉 intoQ.
31: j ← j + 1.
32: for each adjacent vertex v of vertex u do
33: D(v)← min {D(v),D(u) + |(u, v)|}
34: Update 〈v,D(v)〉 inQ

4. BOUND COMPUTATION
Our bound computation algorithm computes the lower and up-

per bound distances for the shortest surface distance |Π(s, t)| be-
tween a source vertex s and target vertex t on the graph G. While
Lemma 2 assumed knowledge of path Π(s, t), our algorithm to
compute the bounds cannot make such an assumption.

Some noteworthy properties of the shortest surface path Π(s, t)
[25] are as follows: 1) Π(s, t) is composed of a series of straight
line segments, where each line segment,
touching the face, connects the points on adjacent edges of sin-
gle face. 2) Π(s, t) traverses any given face at most once and
does not bend on the interior of a face. 3) Two shortest surface
paths Π(1)(s, t) and Π(2)(s, t), originating from a common source
s, never cross each other.

Based on these aforementioned properties, we observe that sur-
face paths originating from the source vertex s, start by cutting
across faces adjacent to vertex s and propagate outwards like a
wavefront from the edges of the adjacent faces that are opposite
to vertex s. Further, when a surface path emanates from an edge, it
1d((va, vb), t) is calculated as the Euclidean distance between ver-
tex t and the closest end-point on edge (va, vb).

f1
f2

1.5

1.5

1.51

1.25

1

2

4

3

5
0.85

0.8
6

7
0.875

2.125
1.3

u = 1 d[1] = 0 Q =< 1(0), …>F ={ f1 }
Face f1: 1: CORNER, L = {(2,3)}
Edge (2,3) : New cut-vertex = 5, w(1,5) = 0.85
u = 5 d[5] = 0.85 Q =< 5(0.85), …>F ={ f1,f2 }

Face f1: No Action (both edges not closer to target)
Face f2: 5: CUT, L = {(2,4), (3,4) }, e = (2,3)
Edge (2,4) : New cut-vertex = 6, w(5,6) = 0.8
Edge (3,4) : New cut-vertex = 7, w(5,7) = 0.875
Add Edge (5,4) : w(5,4) = 1.3
Adjacent(5) = {4,6,7}, d[4] = 2.15, d[6] = 1.65, d[7] = 1.725
u = 6 d[6] = 1.65 Q =< 6(1.65), 7(1.725), 4(2.15) …>F ={ f2 }
Face f2: No Action (both edges not closer to target)

u = 7 d[7] = 1.725 Q =< 7(1.725), 4(2.15) …>F ={ f2 }
Face f2: No Action (both edges not closer to target)

u = 4 d[4] = 2.15 Q =< 4(2.15) …>F ={ f2 }

(lb, ub) = (0.9 * 2.15, 2.15) = (1.935, 2.15)

(a) (b)
Figure 8: Running Example for Algorithm 1

A’

pi pi+1

B

C

oi (=oi+1)

C’
B’

A’

pi pi+1

oi

oi+1

C’
B’

oi’

oi+1’

A

(a) (b)
Figure 9: Subcases 1 and 2.

exits the face attached to the edge, from either of the adjacent edges
to the entry edge.

Similar to the shortest surface path Π(s, t), we follow the short-
est surface face-crossing path ΠFC(s, t) to compute our bounds,
by taking into account the faces that might be traversed by all pos-
sible surface paths Π(1)(s, t), Π(2)(s, t),...,Π(n)(s, t) that originate
from source s.

We consider the surface paths crossing from one face to another,
via an edge, as an extension, and we represent this with two pairs
called events. An event is a pair 〈u,D(u)〉, where u is the closest
vertex from which the extension occurs and D(u) is our calculated
shortest network distance of u from source vertex s.

Algorithm 1 stores events in a priority queue Q. The main loop
(lines 5-34) picks one vertex u at a time in terms of least distance
from source. Then, for u, it computes its list of adjacent faces
and its Euclidean distance (i.e., d(u, t)) to the target vertex t. It
then loops through each adjacent face f (lines 12-31) to decide the
edges on which new cut-vertices should be introduced ”on-the-fly”
as we expand the search frontier. Two cases arise, namely, (a) u is
a corner vertex of face f : place cut-vertices on the edge opposite u
in face f , and (b) u is a cut-vertex on an edge e of face f : place cut-
vertices on both edges that are incident to edge e in face f . Similar
to the A∗ algorithm, we only place cut-vertices on edges whose
Euclidean distance to the target vertex are smaller than d(u, t). The
distances to each cut-vertex are updated and inserted into Q. This
process repeats till we dequeue the target vertex t fromQ.

We add another speedup optimization that checks whether an
edge has already had cut-vertices placed on them from previous
rounds, in which case no new cut-vertices are introduced to this
edge.

EXAMPLE 1. Consider the example terrain with two adjacent
faces f1 and f2 illustrated in Figure 8. In this example, we set
λ = 0.9, the source s = 1, and the target vertex as t = 4. Here,
face f1 has θm = 45° and |(oi, oi+1)|min = 0.8, while face f2

has θm = 60° and |(oi, oi+1)|min = 1. For the purposes of
this example only, we chose higher interval ∆I values, in order
to reduce the number of intermediate cut-vertices that our algo-
rithm must place and consider when constructing the shortest path
in this toy example. {1, 2, 3, 4} is the set of corner vertices and
{5, 6, 7} are cut-vertices introduced by the algorithm. Also, note
that there are no edges connecting cut-vertices that lie on the same
edge or between cut-vertices and corner vertices of the same edge,
e.g., no edge connects vertices 2 and 5, or vertices 3 and 5. Thus,
the length of edges (2, 3) = (2, 4) = (3, 4) = 1.5. The grayed
dashed line joining source and target vertices 1 and 4, is the short-
est surface path Π(s, t) and in our example, |Π(s, t)| = 2.125.
The algorithm starts with the source vertex, i.e., u = 1. Since it is
a corner vertex, it places a new cut-vertex 5 on edge (2, 3). Next,
cut-vertex 5 is picked from Q, which in turn places vertices 6 and

7 along with new edges (5, 6), (5, 4), and (5, 7). The vertices are
then picked from Q in terms of their distances till we finally con-
verge to the target vertex 4. We illustrate the step-by-step working
of the bound computation algorithm outlined in Algorithm 1 in the
table shown in Figure 8(b). The columns in gray show: 1) The ver-
tex u extracted for processing by the algorithm, 2) the distance of
the vertex from source vertex s, 3) the faces adjacent to u, and 4)
the elements in Q prior to extraction of u. The boxes in white fol-
lowing the gray boxes, indicate the actions taken by the algorithm
to add new cut-vertices and edges.

In our example, ΠFC(1, 4) = 〈1, 5, 4〉 and |ΠFC(1, 4)| =
0.85 + 1.3 = 2.15. Thus, giving a lower bound of 0.9 × 2.15 =
1.935 and an upper bound of 2.15.

4.1 Correctness Proof

THEOREM 2. The bound computation algorithm 1 takes as in-
put the Delaunay GraphG = (V,E), the source vertex s and target
vertex t. Computing the shortest ΠFC(s, t) after placement of cut-
vertices and new edges, produces the lower and upper bounds of
the shortest surface distance |Π(s, t)| between s and t.

Proof: Detailed proof in technical report [11].

LEMMA 3. Given G = (V,E), the source vertex s and
target vertex t, the lower bound proposed Lo in the state-of-
the-art [12] is λ′ · |ΠG(s, t)|, where |ΠG(s, t)| is the short-
est network distance between s and t on G and λ′ =

min
{

sin θmin
2

, sin θmin · cos θmin
}

, where θmin is the minimum
interior angle of any face/triangle inG. We define our tighter lower
bound Ln as λ · |ΠFC(s, t)|, where λ ∈ [0.9, 1] (constant ratio)
and |ΠFC(s, t)| is the shortest surface face-crossing path’s length
as defined previously. We then have Ln ≥ Lo.

Proof: Detailed proof in technical report [11].
From the definition of our upper bound |ΠFC(s, t)|, it can be

trivially shown that the inequality |ΠFC(s, t)| ≤ |ΠG(s, t)| always
holds and this shows that our new upper bound is always tighter
than the previous upper bound of |ΠG(s, t)| used in [12]. It is also
important to note that our new bound Ln has no dependence on the
interior angle of the triangles in G and hence is a constant bound
ratio. For θm ≤ 45° it is easy to note that Lo can deteriorate
quickly. E.g., for θm = 20°, λ′ = 0.17 and for θm = 10°, λ′ =
0.085.

4.2 Complexity Analysis
Before analyzing the complexity of the algorithm we first ana-

lyze the upper bound on the number of cut-vertices introduced per
edge, the new edges connecting them and then the total number of
cut-vertices added to the triangulation T .

Let V ′ denote the cut-vertices introduced on the edges by Algo-
rithm 1 and thus |V ′| is the total number of cut-vertices. The total
number of vertices in the graph is thus |V + V ′|.

Analysis of cut-vertices: Let lmin denote the length of the
shortest edge in all of T . Then θmin is the minimum interior angle
of T , opposite the edge of length lmin.

Recall the formula for ∆I . We know that ∆I ≥ 1
K
|(oi, oi+1)|

for a any given face f . Therefore, the lowest possible ∆I for any
face f ∈ T is ∆Imin = lmin

K

√
2(1− cos θmin). Note the use of

lmin and θmin in the previous formula which are the global mini-
mums in the triangulation T .

For a single face f . Let l(f)
max denote the length of the longest

edge in face f . Then vec(f) represents the set of cut-vertices placed
on edge e of face f and |vec(f)| is the total number of cut-vertices
on edge e. The inequality below gives an upper bound on the num-

ber of cut-vertices on a single edge e. as |vec(f)| ≤
⌊
l
(f)
max

∆Imin

⌋
.

Then for a face f , we can say that the total cut-vertices are at most
3|vec(f)|.

According to Euler’s formula [3] on a Delaunay triangulation T ,
which contains a set of vertices V and has k points in CH(V) (CH
is the convex hull of the vertices in T). Then, the number of faces
|F | in T is given by the equation: |F | = 2|V | − 2 −K. Now, if
we assume that our path will cover all faces in T , we get the upper
bound: |V ′| ≤ 3|F | · |vec(f)|.

In practice, since the A∗-like approach is followed, cut-vertices
cannot be introduced on edges that have a Euclidean distance to
the target vertex that is greater than the source vertex. This means
many faces are left untouched and the worse-case upper bound of
|V ′| is never realized in practice. In our experiments, for kNN
queries we have nearly 20 cut-vertices placed per edge with about
200 faces access on average (Refer to Figure 30).

Analysis of algorithm: Therefore, in Algorithm 1, the main
while loop (Lines 5–34) iterates over a priority queue Q, imple-
mented as a Fibonacci Heap with a maximum size of |V + V ′|.
We begin by analyzing a single iteration of the while loop. Inside
the while-loop, on Line 6, a vertex u is extracted fromQ. The time
complexity of this operation isO(log(|V +V ′|)). Within the main
loop, Lines 12–31 (for each face loop), loops and operates on all
the faces that are adjacent to vertex u. Let ∆(G) denote the maxi-
mum degree of a vertex in G, then the number of faces adjacent to
any vertex can be upper bounded by

(
∆(G)

2

)
. In reality, the num-

ber of faces can easily be upper bounded by a constant K, because
there is a finite number of faces that can be adjacent to a vertex
in a triangulation. In our experiments, K is at most 6. Therefore,
this loop is executed

(
∆(G)

2

)
times. Delving deeper into the faces

loop, Lines 12–31, compute the edges of a single face that need
cut-vertices introduced on. This is a maximum of 2 such edges at
any time, per face, and are added to the edge-list L. Lines 21–
31 (for each edge loop) operate on each of the edges in edge-list
L. Here, we add new vertices and edges to the edges of the face.
We require a time complexity of O(|vec(f)|) to add new vertices
and O(|vec(f)|2) to add edges between a pair of new vertices on
face f . Line 3 inserts cut-vertices into Q, each requiring amor-
tized time O(1). Thus, the total time complexity for Lines 21–31
is O(2 · (|vec(f)|+ |vec(f)|2 + |vec(f)| · 1), which further reduces
to O(|vec(f)|2). Calculating the time-complexity for Lines 12–31

for all adjacent faces, becomes O(
(

∆(G)
2

)
· |vec(f)|2). Lines 32–

34 update Q for each adjacent vertex of u. The update operation
for Q has time O(1). The maximum number of vertices to u is
bounded by the maximum degree of u, i.e., ∆(G). Thus, giving
a time complexity of O(∆(G)). Combining the overall time com-
plexity for one iteration of the main while loop (Lines 5–34), we

Datasets EP, BH, BP, CP, KF
Dataset Sizes D (points) 20K, 200K, 400K, 800K, 1000K
User Error Parameter ε 0.1, 0.5, 1, 2, 5, 10

θmin 45 °, 30°
k 2, 5, 10, 15, 20

Table 1: Parameter Settings

have O(log |V + V ′|+
(

∆(G)
2

)
· |vec(f)|2 + ∆(G)). Since, ∆(G)

has a constant upper bound in a triangulation, we can further re-
duce the time complexity to be O(log |V + V ′| + |vec(f)|2). The
worst case complexity is arrived at when the while loop iterates
over all the elements in Q, which gives a final time complexity of
O(|V + V ′| · (log |V + V ′|+ |vec(f)|2)).

In practice, as is evident from our experimental results, our lower
bound computation algorithm performs much faster because it em-
ploys an A∗-like heuristic and also includes other speedup opti-
mizations.

5. EXPERIMENTS
In this section, we empirically study the performance of our pro-

posed bounds, comparing it with the state-of-the-art bounds pro-
posed by Kaul et al. [12].

5.1 Experimental Setup
Experiments were conducted on the Eagle Peak (EP) dataset

(http://data.geocomm.com/). This widely used dataset is from
Wyoming, USA, covers an area of 10.7 x 14 km2, and has 1.3
million data points [6, 19, 24, 29, 30]. We generated sub-regions
of sizes similar to [12] to compare our results. The experiments
were conducted by varying several parameters to study the effect
of the trade-offs among accuracy, efficiency, and memory usage.
Table 1 shows the parameters with their default values shown in
bold. Experiments were conducted with default parameter values
unless explicitly stated.

Additionally, we repeated all the experiments from EP on an-
other popular dataset called Bearhead (BH) in Washington state,
USA, which covers nearly the same region as EP but is more hilly.
Furthermore, we studied the effects of the surface kNN query on
three additional terrain datasets from USA: 1) Blanca Peak (BP),
Colorado, 2) Capitol Peak (CP), Colorado, and 3) Ko’olau Forest
Reserve (KF), Hawaii. These results can be found in our technical
report [11].

In order to better evaluate the tradeoff between the tightness of
our lower bound and the bound computation time, we introduce a
new error parameter (ε). The relation between ε and λ is: λ =(

1− ε
K+c

)
where K ≥ 10 and c ≥ 0. We set K = 10 and

c = 0 to achieve λ = 0.9 at ε = 1. For all the other λ values we
set K = 10 and c = 5 to achieve non-zero values of λ that will
always be better than the previous bounds.

At ε = 1, our bound with constant-factor λ = 0.9 is achieved.
For higher values of ε, a larger |(oi, oi+1)|min is chosen, which in
turn increases the gap between cut-vertices, i.e. ∆I . This increase
results in fewer cut-vertices and edges being introduced on each
face, so that our shortest surface face-crossing path ΠFC(s, t) gets
longer, but the constant-factor λ drops, so that we get an overall
looser lower bound. The opposite effect is achieved for values of
ε < 1.

The core algorithms were implemented in C and C++, and some
auxiliary tasks were implemented in Perl. A terrain tool, devel-
oped by CMU, called Triangle (http:// www.cs.cmu.edu/ ∼quake/
triangle.html), was employed for generating the TIN model with a
minimum interior angle quality. In addition to generating the con-
strained Delaunay triangulation of the terrain with θmin = 45°, to

0.25 0.5 1 2 5 10
0

2,000

4,000

6,000

8,000

10,000

ε

D
ist
an
ce

(m
)

De PrevUB(=Dn)
Ds OurUB

PrevLB OurLB

0.25 0.5 1 2 5 10
10−3

100

103

106

109

ε

B
ou
nd

C
om

pu
ta
tio

n
T
im

e
(m

se
c)

De PrevUB(=Dn)
Ds OurUB

PrevLB OurLB

(a) (b)
Figure 10: Distance Bounds : Effect of ε

0.25 0.5 1 2 5 10

100

101

ε

Q
ue
ry

Ti
m
e
(s
ec
)

VOR-LB(Euc)-UB(Prev)
VOR-LB(Prev)-UB(Prev)
VOR-LB(Prev)-UB(Our)

0.25 0.5 1 2 5 10
0

2

4

6

8

ε

#
of

Ca
nd

id
at
es

VOR-LB(Euc)-UB(Prev)
VOR-LB(Prev)-UB(Prev)
VOR-LB(Prev)-UB(Our)

(a) (b)
Figure 11: Surface kNN (Using Our UB Only): Effect of ε

0.25 0.5 1 2 5 10

10�1

100

101

✏

Q
ue

ry
Ti

m
e

(s
ec

)

VOR-LB(Euc)-UB(Prev)
VOR-LB(Prev)-UB(Prev)
VOR-LB(Our)-UB(Prev)

0.25 0.5 1 2 5 10
0

2

4

6

8

10

12

✏

#
of

Ca
nd

id
at

es

VOR-LB(Euc)-UB(Prev)
VOR-LB(Prev)-UB(Prev)
VOR-LB(Our)-UB(Prev)

(a) (b)
Figure 12: Surface kNN (Using Our LB Only): Effect of ε

0.25 0.5 1 2 5 10
10−2

10−1

100

101

ε

Q
ue
ry

Ti
m
e
(s
ec
)

VOR-LB(Euc)-UB(Prev)
VOR-LB(Prev)-UB(Prev)
VOR-LB(Our)-UB(Our)

0.25 0.5 1 2 5 10
0

2

4

6

8

ε

#
of

Ca
nd

id
at
es

VOR-LB(Euc)-UB(Prev)
VOR-LB(Prev)-UB(Prev)
VOR-LB(Our)-UB(Our)

(a) (b)
Figure 13: Surface kNN (Using Both Our UB and LB): Effect of ε

compare with [12], we also generated a synthetic dataset, with this
tool, setting θmin to at least 30°. The Chen-and-Han implementa-
tion [10] was used to compute shortest surface paths. All experi-
ments were carried out on a Fedora 18 Linux machine with an Intel
Xeon E5 CPU (20MB cache, hyper-threading, 8 cores) and 32 GB
internal memory. All experiments were conducted 100 times. Av-
erage values were reported in our final results. Following [12, 24],
for each spatial query that required an initial query point, we gen-
erate a query location randomly and select 10% of the vertices in
the TIN model randomly as objects.

In each of the experimental sections, we study the effect of intro-
ducing: a) our tighter upper bound only, b) our tighter lower bound
only, and c) both our tighter upper and lower bounds.

In Section 5.2, we study the effect of our tighter bounds for the
shortest surface distance by varying the error, i.e., ε. In Section 5.3,
we study the effect of our new bounds on the state-of-the-art sur-
face kNN query algorithm [24]. In Sections 5.4 and 5.5, we show
how the use of our newly proposed bounds improve the state-of-
the-art algorithms for reverse surface NN query [30] and surface
range query [12], respectively. Section 5.6 depicts the scalability
of our bound computation and algorithms using our bounds. Fi-
nally, Section 5.7 summarizes our experimental findings.

5.2 Effect of our Bounds on Shortest Surface
Path Query

In Figures 10(a) and 10(b), we denote Ds and De to be the sur-
face shortest path distance and Euclidean distance, respectively. We
denote the state-of-the-art upper bound, i.e., the network shortest
path as PrevUB(=Dn). We denote our new tighter upper bound,
i.e. the shortest surface face-crossing path as OurUB. Additionally,
PrevLB and OurLB denote the state-of-the-art and our new tighter
lower bounds, respectively. Furthermore, we define the improve-
ment ratio (which is always > 1) for the lower bound as OurLB

PrevLB

and for the upper bound as PrevUB
OurUB

.
Using Our Tighter Upper Bound Only: In Figure 10(a), we

notice that for the least error setting, i.e., ε = 0.25, our upper
bound OurUB (9, 200 meters) is much closer to the surface short-
est path Ds (9, 075 meters) than the state-of-the-art upper bound
PrevUB(=Dn) (10, 150 meters). At the lowest error, we have the
highest number of cut-vertices and edges introduced on the faces,
so that the network distance gets much shorter than Dn (which is
computed on the original edges of the faces) and is closer to Ds.
As ε → 0, OurUB approaches Ds. When ε is increased, we notice

that OurUB loosens and eventually becomes the same as Dn, due
to fewer and fewer cut-vertices being introduced that finally lead to
no cut-vertices being added to the edges.

Figure 10(b) displays a reductions in bound computation time as
error increases. Increasing the error results in fewer cut-vertices
and new edges being introduced by our algorithm, which in turn,
results in faster network path computation as the graph has signifi-
cantly fewer edges to process.

The objective of introducing tighter bounds is to compute a
query, such as a range or a kNN query, as fast as possible.

In Figure 10(b), we notice that PrevLB beats OurLB in bound
computation time, but results in much looser lower and upper
bounds, which results in a substantial increase in query time (to
be shown in Sections 5.3, 5.4 and 5.5) because the looser bounds
result in too many unecessary candidates being refined for which
expensive shortest surface path computations must be carried out.

Using Our Tighter Lower Bound Only: Figure 10(a) shows
that for the least error setting, i.e. ε = 0.25, our lower bound
(OurLB) is much larger than PrevLB and much closer to Ds (9, 075
meters). Based on this error setting, on average PrevLB for EP
dataset is 5, 075 meters, while OurLB for EP is 8, 862 meters,
which gives an improvement ratio for the lower bound as nearly
1.75. As expected, when error is increased, fewer cut-vertices are
placed on the edges, thus loosening our lower bound distance that
is based on the shortest network path computation after new cut-
vertices and the corresponding edges are added to the graph repre-
sentation of the surface triangulation, i.e., computation of our short-
est surface face-crossing path. The runtime behaviour is exactly the
same as described for the use of our upper bound only because the
lower bound is a factor of the upper bound.

Using Both Our Tighter Upper and Lower Bounds: This case
has already been covered in the previous two cases. We also re-
peated the same experiments for θmin = 30°. In our technical
report [11], i.e., Section 9.3, Figure 31 shows the results. Also
in [11], in Section 9.3, we also show the average number of cut-
vertices, edges introduced per face (Figure 29(a)) and the average
number of faces accessed by the face crossing path (Figure 29(b)).

5.3 Effect of our Bounds on Surface kNN
Query

Here, we study the impact of our new bound on the existing state-
of-the-art surface kNN algorithm (VOR), that provides a Voronoi
Diagram-based approach [24]. We briefly describe their technique

0.25 0.5 1 2 5 10

10−1

100

ε

Q
ue
ry

T
im

e
(s
ec
)

MSRNN-LB(Euc)-UB(Prev)
MSRNN-LB(Prev)-UB(Prev)
MSRNN-LB(Prev)-UB(Our)

0.25 0.5 1 2 5 10
0

10

20

30

ε

#
of

C
an
di
da
te
s

MSRNN-LB(Euc)-UB(Prev)
MSRNN-LB(Prev)-UB(Prev)
MSRNN-LB(Prev)-UB(Our)

(a) (b)
Figure 14: Reverse Surface NN (Using Our UB Only): Effect of ε

0.25 0.5 1 2 5 10

10�2

10�1

100

✏

Q
ue

ry
T

im
e

(s
ec

)

MSRNN-LB(Euc)-UB(Prev)
MSRNN-LB(Prev)-UB(Prev)
MSRNN-LB(Our)-UB(Prev)

0.25 0.5 1 2 5 10
0

10

20

30

✏

#
of

C
an

di
da

te
s

MSRNN-LB(Euc)-UB(Prev)
MSRNN-LB(Prev)-UB(Prev)
MSRNN-LB(Our)-UB(Prev)

(a) (b)
Figure 15: Reverse Surface NN (Using Our LB Only): Effect of ε

0.25 0.5 1 2 5 10
10−3

10−2

10−1

100

ε

Q
ue
ry

T
im

e
(s
ec
)

MSRNN-LB(Euc)-UB(Prev)
MSRNN-LB(Prev)-UB(Prev)
MSRNN-LB(Our)-UB(Our)

0.25 0.5 1 2 5 10
0

10

20

30

ε

#
of

C
an
di
da
te
s

MSRNN-LB(Euc)-UB(Prev)
MSRNN-LB(Prev)-UB(Prev)
MSRNN-LB(Our)-UB(Our)

(a) (b)
Figure 16: Reverse Surface NN (Using Both Our UB and LB):
Effect of ε

0.25 0.5 1 2 5 10

102

103

ε

Q
ue
ry

Ti
m
e
(s
ec
)

SF-LB(Euc)-UB(Prev)
SF-LB(Prev)-UB(Prev)
SF-LB(Prev)-UB(Our)

0.25 0.5 1 2 5 10
0

10

20

30

40

50

ε

#
of

Ca
nd

id
at
es

SF-LB(Euc)-UB(Prev)
SF-LB(Prev)-UB(Prev)
SF-LB(Prev)-UB(Our)

(a) (b)
Figure 17: Surface Range Query (Using Our UB Only):

Effect of ε

and the concept of tight and loose cells as they are also used by the
reverse surface NN state-of-the-art [30].

The VOR algorithm proposes a pre-processing task to generate
tight and loose cells around each object o, based on similar tech-
niques used to generate Voronoi cells. A tight cell (TC) is enclosed
by a loose cell and both these cells are created by using the Eu-
clidean distance as the lower bound and the shortest network dis-
tance as the upper bound. Their motivation being that a query point
q found in a tight cell of an object o can immediately report o as the
1NN of q, thus avoiding an expensive surface shortest path compu-
tation. Additionally, if q is outside the loose cell (LC) of an object
o, then it is clearly not the nearest neighbor of o. Furthermore,
they propose an algorithm, that begins by finding the tight cell and
loose cells (loose cells can overlap each other, but tight cells can-
not), and then they incrementally expand their neighboring loose
cells to search for the other neighbors and report till they exhaust k
neighbors. In this approach, the bound computation time includes
time to make TCs/LCs and insert them into an R-tree like structure.
Query time is the time to search for TCs/LCs in the index.

Kaul et al [12] showed that using their lower and upper bounds,
the VOR algorithm’s tight cell area increased, while their loose cell
area decreased. This resulted in faster computation of the surface
kNN because it avoided many expensive exact surface shortest path
computations.

For the rest of the paper, we denote the combinations of al-
gorithms and bound types as A-LB(X)-UB(Y). A is a place-
holder for the implemented algorithms, with possible values
{VOR,MSRNN,SF}, where MSRNN and SF are the reverse NN
and range query algorithms, respectively, shown later in our ex-
periments. LB (UB) denote the lower (upper) bounds. X is a place-
holder for the various lower bound types, i.e., Euc, Prev, and Ours
which represent the Euclidean lower bound, the state-of-the-art
lower bound and our tighter lower bound, respectively. Similarly,
Y is a placeholder for the various upper bound types, i.e., Prev,
and Ours which represent the state-of-the-art upper bound and
our tighter upper bound, respectively. For example, SF-LB(Our)-
UB(Prev) denotes the SF algorithm using our tighter lower bounds
and the state-of-the-art upper bounds.

Using Our Tighter Upper Bound Only: In Figure 11(b),
the implementation using our tighter upper bounds, i.e., VOR-
LB(Prev)-UB(Our) has fewer candidates to process as compared
to the implementations using the state-of-the-art upper bound (∗-

UB(Prev)). Recall that a tighter upper bound results in the shrink-
ing of a loose cell in VOR. This shrinkage provides efficient prun-
ing which results in fewer candidates for which the expensive exact
surface shortest path must be computed. As ε goes up, the up-
per bound loosens, causing the loose cells to grow to the same
level as when using the state-of-the-art upper bound. Consequently,
processing fewer candidates displays a substantial reduction in
query time, as shown in Figure 11(a). Specifically, for our tight-
est upper bound achieved at ε = 0.25, we note a speedup of
nearly 3 times compared to the state-of-the-art upper bound (VOR-
LB(Prev)-UB(Prev)).

Using Our Tighter Lower Bound Only: Figure 12(b), shows a
marked decrease in the number of candidates to refine in compar-
ison to using our upper bound only (shown in Figure 11(b)). Our
improvement in the tightness of the lower bound is larger than in
the tightness of the upper bound, as shown in Figure 10(a). This re-
sults in the tight cells expanding much more which again results in
more efficient pruning of candidates. Figure 12(a) shows the query
times when ε is varied. For the lowest error setting, ε = 0.25, a
speedup of nearly 23 times is achieved, in comparison to the state-
of-the-art lower bound. Increasing the error results in a reduction in
the number of cut-vertices and edges introduced, which loosens our
lower bound, causing the VOR tight-cells to shrink, which results
in more candidates needing to be refined. For the default setting of
k = 2, Figure 12(b) shows an increase in the number of candidates
that need refinement as error goes up.

Using Both Our Tighter Upper and Lower Bounds: Fig-
ures 13(a) and (b) show the results of using both our tighter upper
and lower bounds. The tighter lower bound results in increasing
the tight cell area and the tighter upper bound reduces the loose
cell area, which results in less overlapping between loose cells and
causes the VOR algorithm to explore fewer candidates. This also
results in much faster query times.

Although there is a relation between the number of candidates
to refine and the query time, the relation is non-linear. The dis-
tribution of objects is uniform, and an increase in the number of
candidates results in an increase in the radius of the circle around
the source vertex, which in turn means more triangles to process
for the Chen and Han (CH) algorithm that has time complexity
O(n2). Also, although we have the same number of candidates to
refine, we find that the “shape” of the loose cells (shrinked) and
tight cells (expanded) causes us to overall process a much smaller

0.25 0.5 1 2 5 10
100

101

102

103

✏

Q
ue

ry
Ti

m
e

(s
ec

)

SF-LB(Euc)-UB(Prev)
SF-LB(Prev)-UB(Prev)
SF-LB(Our)-UB(Prev)

0.25 0.5 1 2 5 10
0

10

20

30

40

50

✏

#
of

Ca
nd

id
at

es

SF-LB(Euc)-UB(Prev)
SF-LB(Prev)-UB(Prev)
SF-LB(Our)-UB(Prev)

(a) (b)
Figure 18: Surface Range Query (Using Our LB Only):

Effect of ε

0.25 0.5 1 2 5 10
100

101

102

103

ε

Q
ue
ry

Ti
m
e
(s
ec
)

SF-LB(Euc)-UB(Prev)
SF-LB(Prev)-UB(Prev)
SF-LB(Our)-UB(Our)

0.25 0.5 1 2 5 10
0

10

20

30

40

50

ε

#
of

Ca
nd

id
at
es

SF-LB(Euc)-UB(Prev)
SF-LB(Prev)-UB(Prev)
SF-LB(Our)-UB(Our)

(a) (b)
Figure 19: Surface Range Query (Using Both Our UB and LB):
Effect of ε

region, i.e., CH has to unfold fewer triangles in this case. VOR
uses an incremental NN strategy, finding the first NN, then finding
the second NN, etc. If our tight cells are larger, we find that these
neighbors are reported quickly, but if they are found in the region
LC - TC (Inside Loose Cell but outside the Tight cell) then we must
unfold the triangles covered by LC, which takes longer. With the
previous bound [12], chances of unfolding are higher since the LCs
are bigger and also overlap considerably and the TCs are smaller
in size, when compared to our bounds. So query time also depends
on the shape of the LCs and the TCs within each LC.

The result shows that the use of both the bounds outperforms
the use of any bound individually, as would be expected. For our
tightest possible lower bound, we note a speedup in query time of
nearly 30 times in comparison to the state-of-the-art.

We also conducted additional experiments by varying the value
of k for θmin = 45° and θmin = 30°. The results can be found in
our technical report [11], i.e., Section 9, in Figures 23– 28.

Cut-vertex Statistics: We compute the following measurements
and report their values for the default settings. Average Num-
ber of Faces Accessed: is computed by counting the faces on
whose edge’s cut-vertices were introduced and averaging over total
queries. In the default setting, nearly 285 faces were accessed (re-
fer to Figure 30(b) in [11]). Average Number of Cut-vertices added
per face: is measured by counting the total number of cut-vertices
placed in each face divided by the number of affected faces. In
the default setting, 6.4 cut-vertices were introduced per face (re-
fer to Figure 30(a) in [11]). Total % of Cut-vertices introduced: is
calculated as ratio of newly introduced vertices versus the original
number of vertices in the terrain. In the default setting, this is nearly
1.2 %. We also show the behavior of this measurement in regards
to changes in ε in our technical report (Figure 31(a) in [11]). To-
tal/Avg./Max./Min. % of “useful” cut-vertices introduced: is com-
puted as the number of cut-vertices that were actually dequeued
from the priority queue Q versus the total number of introduced
cut-vertices. In the default setting, we found the total, average,
maximum and minimum ratio to be 82.4 %, 78.2 %, 88.4 %, and
0 %, respectively. Refer to Figure 31(b–d) in [11] for more details.
The minimum ratio is achieved when there is a direct edge con-
necting s and t. Also, we noticed that there is a high utilization of
cut-vertices from Q as only cut-vertices placed on edges directly
connected to the target t are not needed during the relaxation step
of our Algorithm because the final path cannot bend on the interior
of a face [26] (For instance referring to Example 1, no action is
taken on cut-vertices 6 and 7 since they are connected directly to
target 4).

5.4 Effect of our Bounds on Reverse Surface
NN Query

We implemented the algorithm for monochromatic reverse sur-
face NN queries in [30], namely MSRNN. In the following, we fo-
cus on reverse surface 1NN queries only. This algorithm also uses
the tight/loose cells proposed in VOR and hence is also affected in

a similar fashion. As in VOR, the bound computation time includes
time to make TCs/LCs and insert them into an R-tree like structure.
Query time is the time to search for TCs/LCs in the index.

Using Our Tighter Upper Bound Only: Figures 14(a) and (b)
show a similar trend to what we observed earlier in Section 5.3
(Figures 11(a) and (b)), for the same reasons as explained earlier.

Using Our Tighter Lower Bound Only: Figures 15(a) and (b)
show a similar trend to what we observed earlier in Section 5.3
(Figures 12(a) and (b)), for similar reasons.

Using Both Our Tighter Upper and Lower Bounds: Fig-
ure 16(a) shows that at ε = 0.25, where the tightest lower bound
occurs, the query time for MSRNN-LB(Our)-UB(Our) is 2.2 mil-
liseconds, in comparison to 0.1 seconds for MSRNN-LB(Prev)-
UB(Prev), which results in a overall speedup of nearly 50 times on
average. Additionally, Figure 16(b) shows far fewer candidates ex-
plored by MSRNN-LB(Our)-UB(Our), when compared to MSRNN-
LB(Prev)-UB(Prev).

5.5 Effect of our Bounds on Range Query
The surface range query is a straightforward (SF) algorithm that

was implemented in [12]. This algorithm finds all objects whose
shortest surface distances to a given query point q are at most a
given range value r. SF is an algorithm with two steps. In the fil-
tering step, the algorithm applies both the upper and lower bounds
to prune objects. Let N denote the total number of objects, ex-
cept q. Let U denote the set of objects whose upper bounds are
within the range r. Any object o ∈ U is guaranteed to be in the
final solution and hence needs no surface path computation. Let
L denote the set of objects whose lower bounds are outside the
range r. Any object o ∈ L is guaranteed not to be in the final
solution and hence can be pruned immediately. Therefore, for ev-
ery object o ∈ {L ∪ U} there is no more refinement (i.e., surface
shortest path computation) required. The improvement ratio of our
proposed lower bound to that of the state-of-the-art lower bound
is much higher than the corresponding improvement ratio between
our upper bound and the state-of-the-art upper bound. This results
in skipping expensive shortest surface path computations for more
objects due to pruning by lower bound than objects being included
in the solution set due to the upper bound. Thus, |L| � |U|.

Using Our Tighter Upper Bound Only: Figure 17(b) shows a
slight decrease in the number of candidates to refine because fewer
objects belong in U . As ε increases and exceeds ε = 2, there are no
more cut-vertices added to the edges which means that our upper
bound loosens and deteriorates to the same distance as that of the
state-of -the-art upper bound. When our upper bound and the state-
of-the-art upper bound match, then the same number of candidates
are processed. Figure 17(a) shows the corresponding behavior in
query time, which as expected, gets faster with increasing error
since there are no additional vertices and edges introduced to the
triangulation network.

Using Our Tighter Lower Bound Only: A better improvement
ratio of our proposed lower bound to that of the state-of-the-art

Query Type θmin = 45° θmin = 30°
Surface kNN (VOR) 30 90
Surface Range 42 82.2
Surface Reverse kNN 50 85

Table 2: Speedup Comparison (With Default Parameters)

lower bound results in many more objects getting pruned due to
our tighter lower bound. A tighter lower bound results in many
more objects being pruned, as is evident in Figure 18(b). This also
results in a marked lowering of the query runtime. Specifically,
for our tightest possible lower bound, i.e., at ε = 0.25, we note a
speedup in query time of nearly 30 times in comparison to the state-
of-the-art. Comparing the corresponding sub-figures in Figures 17
and 18, we notice that the difference in the number of candidates
pruned and query times is due to the difference in the improvement
ratio attained by our lower bound as compared to the improvement
ratio attained by our upper bound.

Using Both Our Tighter Upper and Lower Bounds: Fig-
ures 19(a) and (b) show the results of using both our tighter up-
per and lower bounds. The result shows that the use of both the
bounds outperforms the use of any bound individually, as would be
expected. For our tightest possible lower bound, we note a speedup
in query time of 42 times in comparison to the state-of-the-art.

5.6 Scalability
The scalability of the existing algorithms using the state-of-the-

art and our new bounds are studied by varying the dataset size.
The size is varied by changing the total number of vertices in the
discrete graph representation of the triangulation.

For the scalability study, we set k = 5, similar to [12]. Fig-
ure 20(a) shows the preprocessing times involved in generation
of the VOR cells. In the scalability experiments, we employ
both our tighter upper and lower bounds. We notice that VOR-
LB(Our)-UB(Our) is nearly 2 orders of magnitude slower than
VOR-LB(Prev)-UB(Prev), due to its expensive bound computation
that arises due to the introduction of new cut-vertices and edges that
increase the complexity of the network. Figure 20(b) shows that
VOR has a much lower query time when using our new bounds. In
particular, for the largest dataset, for the default settings, a speedup
of nearly 31 times is achieved. Thus, as explained earlier in Sec-
tion 5.3, in spite of a larger bound computation time (BT), our
tighter bounds result in much more pruning of candidates to re-
fine, which results in a substantial reduction in the spatial query
time SQT (i.e., VOR in this case) which in turn results in an overall
reduction in Query time QT. The preprocessing time of the surface
range query, as shown in Figure 21(a), follows a similar trend to
the surface kNN query shown in Figure 20(a) for the same reasons.
Figure 21(b), shows that for the largest dataset, a speedup of nearly
43 times is achieved.

5.7 Experimental Summary
Recall the definition of the improvement ratio. We define the

improvement ratio (which is always > 1) for the lower bound as
OurLB
PrevLB

and for the upper bound as PrevUB
OurUB

. Our experimen-
tal studies show that for θmin = 45° (default) and θmin = 30°,
our lower bound achieves an improvement ratio over the previous
bound of 1.84 and 3.1, respectively. For θmin = 45° (default)
and θmin = 30°, our upper bound achieves an improvement ratio
over the previous bound of 1.1 and 1.13, respectively. In spite of a
slower bound computation when compared to the state-of-the-art,
our bounds are much tighter, which in turn results in far fewer ex-
pensive surface distance computations. More importantly, we ob-
serve a significant speedup in all the surface spatial queries tested.
More specifically, the state-of-the-art surface kNN query, i.e., VOR,

experiences a significant speedup upto 82.2 times on the largest
dataset, which has 1 million vertices, k = 5 and θmin = 30°.
Table 2 outlines the speedups that were experienced for various
surface spatial queries for different settings of θmin.

6. RELATED WORK
In this section, we review some of the existing works that explore

spatial queries on terrains, that make use of distance bounds. These
works propose models to combat the major underlying challenge,
which is the massive computational cost associated with the exact
shortest surface path calculation on a terrain. Further, we discuss
the state-of-the-art lower and upper distance bounds computation
that enables speedups in the spatial queries on terrains by eliminat-
ing expensive surface shortest distance computations, by proposing
much tighter lower bounds.

Surface Spatial Queries Deng et al. [6] reduce the cost by sim-
plifying the surface data to various resolutions and storing them in
a hierarchical structure. Based on this multi-resolution model, they
begin by computing kNN results on simpler surfaces, and move
to higher resolutions when the kNN results are ambiguous and re-
quire more refinement. Although, later works [24, 30] find that the
multi-resolution model does not give accurate kNN results, espe-
cially when k gets larger. Additionally, this method incurs a large
storage overhead. Shahabi et al. [24] propose an extension to the
Voronoi-diagram to surfaces to compute the surface kNN query in
an incremental fashion. This method is the state-of-the-art method
for this query. This scheme computes so-called tight and loose cells
and stores them together in an R-tree like structure, they term as the
SIR-tree. They incrementally expand the query search region using
the SIR-tree and report kNN results as they come available. Xing et
al. [29] extend the work by Shahabi et al. [24] by allowing continu-
ous surface kNN queries in in a highly dynamic environment which
allows for arbitrary movements of data objects. Yan et al. [30] pro-
pose an algorithm to find the bichromatic and monochromatic re-
verse nearest neighbors on terrains. Their algorithm makes use of
the tight and loose cells proposed in [24].

State-of-the-art Distance Bounds for Surface Queries All the
aforementioned works used the Euclidean distance between two
points on the surface as the lower bound for the shortest sur-
face path between the two points. Kaul et al. [12] proposed a
tighter lower bound than the Euclidean distance, which when ap-
plied to the existing works on surface spatial queries showed a
marked improvement in query execution times. More specifically,
in [24] when the lower bounds proposed in [12] are used, the tight
cells increase, while their surrounding loose cells shrink, causing a
speedup due to being able to prune candidates more effectively. To
the best of our knowledge, the lower bound proposed by Kaul et
al. [12] is the first study that captures information about the surface
of the terrain by computing both the lower and upper bounds from
the shortest network path computed on the Delaunay Graph repre-
sentation of the surface. They further propose a graph compression
technique to speedup the bound computation. This method pro-
posed a lower bound that depended on θmin, i.e., the minimum inte-
rior angle of any triangle in the triangulation. They proposed their
distance bounds on realistic terrain models [5], because the tight-
ness of their lower bound depends on θmin. The Computational
Geometry community avoids very complicated, hypothetical inputs
(such as degenerate skinny triangles, as shown in Figure 1) to cre-
ate algorithms that are provably efficient in realistic situations and
hence uses constrained Delaunay triangulations, where the mini-
mum interior angle can be forced to exceed a specified minimum
threshold.

200K 400K 800K 1000K

105

106

Dataset sizeP
re

pr
oc

es
si

ng
T

im
e

(s
ec

)

VOR-LB(Euc)-UB(Prev)
VOR-LB(Prev)-UB(Prev)
VOR-LB(Our)-UB(Our)

200K 400K 800K 1000K

10�2

10�1

100

101

Dataset size

Q
ue

ry
T

im
e

(s
ec

)

VOR-LB(Euc)-UB(Prev)
VOR-LB(Prev)-UB(Prev)
VOR-LB(Our)-UB(Our)

(a) (b)
Figure 20: Scalability: Surface kNN Queries

200K 400K 800K 1000K

100

101

102

103

104

Dataset sizeP
re

pr
oc

es
si

ng
T

im
e

(s
ec

)

SF-LB(Euc)-UB(Prev)
SF-LB(Prev)-UB(Prev)
SF-LB(Our)-UB(Our)

200K 400K 800K 1000K

101

102

103

104

Dataset size

Q
ue

ry
T

im
e

(s
ec

)

SF-LB(Euc)-UB(Prev)
SF-LB(Prev)-UB(Prev)
SF-LB(Our)-UB(Our)

(a) (b)
Figure 21: Scalability: Surface Range Queries

Surface Shortest Path Approximation Algorithms In the field
of Computational Geometry the problem of computing an approx-
imate shortest path on a non-convex polyhedral surface is still con-
sidered a challenging open problem. Varadarajan et al. [28], parti-
tion the faces of the polyhedron using the well-known planar seper-
ator theorem [18] and propose an algorithm with quadratic time
complexity which produces an approximate shortest path that is at
most 7 times the optimal shortest surface path. [17, 21] consider
the problem where each face of the given polyhedron has a weight
associated with it and the cost of traversing a face is the distance
traveled on the face times the weight of the face. They employ a
strategy of introducing new points on the edges of the polyhedron
and connecting these points with new edges to be treated as a graph.
This work is closest to our work as we too employ a similar point
placement strategy. The runtime complexity of their approach is
O(n5), where n is the total number of vertices in the graph. While,
the goal of their work is to compute an upper bound on the surface
shortest path length, our work focuses on computing a lower bound,
which presents us with a different set of challenges. [9] propose an-
other method that also places points on edges, but uses a selective-
refinement strategy to iteratively use Dijsktra’s algorithm on the
discrete graph of the polyhedron to reduce the region in which the
shortest path can exist. Unlike our method, their method does not
provide any theoretical bounds on the approximate shortest surface
paths they compute.

7. CONCLUSION
In this paper, we propose tighter upper and lower bounds than the

previous state-of-the-art bounds proposed in [12]. We achieve this
by approximating the shortest surface path with a shortest surface
face-crossing path that closely mimics the shortest surface path,
by also being able to cut across the faces of the surface triangula-
tion, and hence produce a much closer approximation to the short-
est surface path. Additionally, we ensure that the quality of our
bound has no dependence on the minimum interior angle (θmin),
thus our lower bound is unaffected by the introduction of degen-
erate skinny triangles in the triangulation, while the quality of the
state-of-the-art lower bound algorithm deteriorates when θmin is
lowered. Furthermore, we provide theoretical proofs for the tight-
ness of our bounds and why our bounds always outperform the
state-of-the-art bounds. Our experiments provide further insight
into the tightness of our new bounds and also provide evidence of
substantial speedups. Future research directions include studying
the effect of our new bounds on continuous surface spatial queries
and how our bounds can be modified to improve constrained sur-
face shortest path queries, with static and dynamic obstacles in the
path between a source and destination.

8. REFERENCES[1] A. Agrawal, M. Radhakrishna, and R. Joshi. Geometry-based mapping and
rendering of vector data over LOD phototextured 3D terrain models. WSCG,
2006.

[2] A. Al-Badarneh, H. Najadat, and A. Alraziqi. A classifier to detect tumor
disease in MRI brain images. In ASONAM, pages 784–787, 2012.

[3] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, 2008.

[4] J. Chen and Y. Han. Shortest paths on a polyhedron. In SCG, pages 360–369,
1990.

[5] M. de Berg, M. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input
models for geometric algorithms. In SCG, pages 294–303, 1997.

[6] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A multi-resolution
surface distance model for k-nn query processing. VLDB J., 17(5):1101–1119,
2008.

[7] E. Fisher, R. Kothuri, and S. Ravada. Triangulated irregular network, 2010. US
Patent 7,774,381.

[8] S. A. Huettel, A. W. Song, and G. McCarthy. Functional magnetic resonance
imaging, volume 1. 2004.

[9] T. Kanai. Approximate shortest path on a polyhedral surface and its
applications. In Computer-Aided Design, pages 241–250, 2000.

[10] B. Kaneva and J. O’Rourke. An implementation of chen and han’s shortest
paths algorithm. In CCCG, 2000.

[11] M. Kaul, R. C.-W. Wong, and C. S. Jensen. New lower and upper bounds for
shortest distance queries on terrains. Technical report, HKUST, Dept. of
Computer Science and Engineering, 2015. http://goo.gl/wIAzKz.

[12] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen. Finding shortest paths on
terrains by killing two birds with one stone. PVLDB, 7(1):73–84, 2013.

[13] M. Körtgen, G. J. Park, M. Novotni, and R. Klein. 3D shape matching with 3D
shape contexts. In CESCG, 2003.

[14] R. Kothuri, S. Ravada, and E. Fisher. Triangulated irregular network, 2012. US
Patent 8,224,871.

[15] B. Koyuncu and E. Bostancı. 3D battlefield modeling and simulation of war
games. In ICCIT, pages 64–68, 2009.

[16] J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body path
planning. In ICRA, pages 3993–3998, 2004.

[17] M. Lanthier, A. Maheshwari, and J.-R. Sack. Approximating weighted shortest
paths on polyhedral surfaces. In SCG, pages 274–283, 1996.

[18] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs, 1977.
[19] L. Liu and R. C.-W. Wong. Finding shortest path on land surface. In SIGMOD

Conference, pages 433–444, 2011.
[20] R. R. Martin and P. Stephenson. Sweeping of three-dimensional objects.

Computer-Aided Design, 22(4):223–234, 1990.
[21] C. S. Mata and J. Mitchell. A new algorithm for computing shortest paths in

weighted planar subdivisions (extended abstract). In In Proc. 13th Annu. ACM
Sympos. Comput. Geom, pages 264–273. ACM Press, 1997.

[22] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic
constraints along specified paths. IJRR, 24(4):295–310, 2005.

[23] T. K. Peucker, R. J. Fowler, J. J. Little, and D. M. Mark. The triangulated
irregular network. In Amer. Soc. Photogrammetry Proc. Digital Terrain Models
Symposium, volume 516, page 532, 1978.

[24] C. Shahabi, L. A. Tang, and S. Xing. Indexing land surface for efficient knn
query. PVLDB, pages 1020–1031, 2008.

[25] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. In STOC,
pages 144–153, 1984.

[26] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance,
shape and context modeling for multi-class object recognition and
segmentation. In ECCV, pages 1–15. 2006.

[27] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann, H. Markram, and
A. Ailamaki. Accelerating range queries for brain simulations. In ICDE, pages
941–952, 2012.

[28] K. R. Varadarajan and P. K. Agarwal. Approximating shortest paths on a
nonconvex polyhedron. SIAM J. Comput., 30(4):1321–1340, 2000.

[29] S. Xing, C. Shahabi, and B. Pan. Continuous monitoring of nearest neighbors
on land surface. In VLDB, pages 1114–1125, 2009.

[30] D. Yan, Z. Zhao, and W. Ng. Monochromatic and bichromatic reverse nearest
neighbor queries on land surfaces. In CIKM, pages 942–951, 2012.

[31] B. Yang Yu, C. Elbuken, C. L. Ren, and J. P. Huissoon. Image processing and
classification algorithm for yeast cell morphology in a microfluidic chip.
Journal of Biomedical Optics, 16(6):066008–066008–9, 2011.

