
Finding Shortest Paths on Terrains by Killing Two Birds
with One Stone

Manohar Kaul† Raymond Chi-Wing Wong‡ Bin Yang† Christian S. Jensen†
†Aarhus University

†{mkaul,byang,csj}@cs.au.dk
‡The Hong Kong University of Science and Technology

‡{raywong}@cse.ust.hk

ABSTRACT
With the increasing availability of terrain data, e.g., from aerial
laser scans, the management of such data is attracting increasing at-
tention in both industry and academia. In particular, spatial queries,
e.g., k-nearest neighbor and reverse nearest neighbor queries, in
Euclidean and spatial network spaces are being extended to ter-
rains. Such queries all rely on an important operation, that of
finding shortest surface distances. However, shortest surface dis-
tance computation is very time consuming. We propose techniques
that enable efficient computation of lower and upper bounds of
the shortest surface distance, which enable faster query processing
by eliminating expensive distance computations. Empirical studies
show that our bounds are much tighter than the best-known bounds
in many cases and that they enable speedups of up to 43 times for
some well-known spatial queries.

1. INTRODUCTION
We are witnessing an increasing availability of terrain data:

More regions are being covered, and the coverage is becoming in-
creasingly accurate and up-to-date. This acquisition of terrain data
is motivated by a plethora of applications that are not constrained
by road networks.

The defense industry was amongst the earliest to recognize the
importance of terrain models to simulate battlefield landscapes to
allow tactical path planning [4] through valleys (or across ridges)
of the terrain via shortest terrain paths. Other applications include
robot path planning for unmanned vehicles on terrains and geo-
realistic computer games.

In academia, several recent studies [5, 8, 10–12] focus on the
challenges presented by terrain data. For example, they con-
sider “terrain” versions of some well-known spatial queries such
as shortest path queries, k-nearest neighbor queries, and reverse
nearest neighbor queries.

Surface shortest path queries [8] are fundamental in their own
right and occur as an aspect of many other spatial queries (e.g., sur-
face k-nearest neighbor (k-NN) queries [5, 10, 11], surface range

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 40th International Conference on Very Large Data Bases,
September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 1
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

queries, and surface reverse nearest neighbor queries [12]). Given
a source point s and a destination point t on a terrain, a shortest
surface path query returns the shortest surface path from s to t on
the surface. Figure 1 shows a surface path P from s to t, the short-
est surface path ⇧

s

from s to t and the direct Euclidean distance
⇧

E

from s to t. Given a set of objects and a query point q on
the surface, a surface k-NN query returns k objects on the surface
such that no other objects are closer to q, where the “closeness” is
computed by a surface shortest path query.

Computing surface shortest paths is much more challenging and
more expensive than computing network shortest paths on a road
network. Specifically, the best-known algorithm for finding the sur-
face shortest path is the Chen-and-Han algorithm [3] that is recog-
nized as the state-of-the-art algorithm in the literature [5,8,10,11].
Its time complexity is O(N2

), where N is the number of vertices
used to represent the terrain.

In our experiments, when there are 20K vertices, this algorithm
takes 7.2 hours to find a surface shortest path, which is extremely
time-consuming. In contrast, Dijkstra’s algorithm [6] takes only
0.04 seconds to find the corresponding shortest network path when
the dataset used has the same number of vertices.

Motivated by this observation, several existing studies [5, 8, 10–
12] propose efficient methods to find lower and upper bounds of
the shortest surface distance. These can then be used to avoid some
of the expensive surface distance computations inherent in spatial
queries.

To illustrate, consider a surface 1-NN query. Suppose that q is
the query point and there are two objects, o1 and o2. If the lower
bound of the shortest surface distance between o1 and q exceeds
the upper bound of the shortest surface distance between o2 and q
then o1 can be pruned. Thus, we do not consider o1 and need not
calculate the exact shortest surface distance between o1 and q.

A popular method for finding the upper bound of the shortest
surface path distance from a source s to a destination t is to find the
shortest network distance from s to t based on a Delaunay graph
of the terrain [1]. Figure 2 shows the Delaunay graph of the terrain
in Figure 1. In Figure 2, ⇧0

n

is a network path from s to t, and ⇧
n

is the shortest network path from s to t.
We can map each network path in the Delaunay graph to a path

on the surface of the terrain (by mapping the vertices and edges
used in the network path). Intuitively, each mapped path is a sur-
face path on the terrain with the constraint that the path must pass
through only the vertices and the edges of the Delaunay graph. Fig-
ure 3 shows the surface path p that is obtained from the Delaunay
graph network path ⇧0

n

.
The reason why the shortest network distance is commonly used



s

t

∏E

P

∏ s

Figure 1: A Terrain

s

t

� n'

� n

Figure 2: Delaunay Graph

s

t

p

� s

Figure 3: Surface Path From the Delau-
nay Graph

as the upper bound of the shortest surface distance [5, 8, 10, 12] is
that this bound is tight and is computationally cheap compared to
the shortest surface distance computation.

Next, it is popular to lower bound the shortest surface path dis-
tance by the Euclidean distance, which is cheap to compute. How-
ever, this lower bound can be very loose. To illustrate, recall Fig-
ure 1, where ⇧

E

is the Euclidean distance. This distance does not
capture any information about the surface of the terrain, and thus
it is significantly shorter than the shortest surface distance. In our
experiments, the shortest surface distance is up to 9 times the Eu-
clidean distance.

Motivated by the above observations, we propose another
method to find the lower bound of the shortest surface distance
that is tight and computationally-cheap. The major feature of this
method is to “kill two birds with one stone.” Specifically, when-
ever we want to find the lower and the upper bounds of the shortest
surface distance, we only need to find the shortest network distance
in the Delaunay graph. This distance serves as an upper bound,
as discussed previously; and when multiplied by a constant factor
derived from the terrain, it also serves as a lower bound.

In our experiments, this lower bound is generally tighter than the
previous lower bound. For example, our lower bound is upto 2.8
times larger than the previous lower bound for the largest dataset
size. Importantly, this lower bound method does not introduce a
significant overhead of finding both the upper and the lower bounds
of the shortest surface distance. It thus does not adversely affect
the overall performance of the algorithms that use lower and upper
bounds.

Although computing shortest network distances on the Delaunay
graph is fast, it can be attractive to compute lower and upper bounds
even more quickly. This can be achieved by sacrificing the tightness
of the bounds. Thus, we propose an algorithm to generate a smaller
graph G0 from the Delaunay graph G so that the bounds can be
computed faster on G0.

A key challenge is to generate G0 so that the bounds do not be-
come overly loose. With this in mind, we introduce an input param-
eter ! that controls the looseness of the bounds. When ! is set to its
minimum value 1, G0 yields the same bounds as the original graph
G. If ! is set to a larger value, the tightness of the bounds is sacri-
ficed. However, we ensure that lower bound eL calculated on G0 is
not significantly smaller than the lower bound L calculated on G;
and we ensure that the upper bound eU calculated on G0 is not sig-
nificantly larger than the upper bound U calculated on G. Specifi-
cally, we maintain the following two inequalities: 1

!

· L  eL  L

and U  eU  ! ·U . Note that the inequality for eL is different from
the inequality for eU because a looser lower bound corresponds to
a smaller lower bound and a looser upper bound corresponds to a

larger upper bound.
Our contributions can be summarized as follows. First, to the

best of our knowledge, we are the first to extensively study the im-
provement of the lower bound in shortest surface distance com-
putations, an important component in many spatial queries. Sec-
ond, we propose to use the network distance for both upper and
lower bounds, which yields new tighter bounds without introduc-
ing significant computational overhead. Third, we study how the
tightened bounds can be incorporated in standard as well as recent,
complex algorithms in order to speed up spatial queries. Fourth,
we propose an approach to generate smaller graphs that yield faster
lower and upper bound computations while providing guarantees
for the tightness of the bounds. Fifth, we present a comprehensive
empirical study that offers insight into the accuracy, efficiency, and
scalability properties of the framework.

The remainder of the paper is organized as follows. Section 2
formulates the problem. Section 3 discusses the lower and upper
bounds. Section 4 describes related work. Section 5 outlines our
proposed algorithm for generating smaller graphs. Section 6 cov-
ers the empirical study of the proposed algorithms and framework.
Finally, Section 7 concludes the paper.

2. PRELIMINARIES
Consider a three-dimensional space. Each point p is represented

by an x-coordinate, a y-coordinate, and a z-coordinate. Usually, the
z-coordinate of a point is said to be the elevation of this point.

A terrain is the graph of a continuous function that assigns ev-
ery point on a horizontal plane to an elevation. In the literature, a
terrain is typically represented by a triangulated irregular network
(TIN) model that consists of a set T of faces each of which is repre-
sented by a triangle. Each triangle has three corners called vertices
and three edges, each connecting two of its corners. Each vertex is a
point in the three-dimensional space. We assume that each interior
angle of every triangle/face is non-zero. To ensure this, we replace
any triangle violating this assumption by a single edge. Figure 1
shows an example of a terrain. Two distinct triangles are said to be
adjacent if they share an edge e. In this model, there are two types
of triangles in T , namely normal triangles and boundary triangles.
Each normal triangle is adjacent to three other triangles in T , and
each boundary triangle is adjacent to one or two other triangles in
T . A point p is said to be on the terrain if there exists a triangle in
T such that p is on the plane containing this triangle and p is inside
this triangle.

We denote V and E to be the set of all vertices and the set of
all edges in the model. The Delaunay graph G of the terrain is
defined to be a weighted graph where the set of vertices and the set
of edges in this graph are V and E, respectively, and the weight of
each edge is the Euclidean distance between the two end-points of



the edge. In the following, for brevity, we simply write “graph” for
“Delaunay graph.”

We denote the line segment connection between two points p
and p0 to be (p, p0). We define the length of line segment (p, p0),
denoted by |(p, p0)|, to be the Euclidean distance between p and p0.

Given two vertices s and t in V , a surface path from s to t,
denoted by ⇧(s, t), is a sequence hp1, p2, ..., pni where (1) p1 = s,
(2) p

n

= t, and (3) each p
i

is a point along an edge in E. The
surface path is thus composed of n � 1 line segments, (p1, p2),
(p2, p3), ..., (p

n�1, pn). Figure 1 shows an example of a surface
path P from s to t. The length of a surface path ⇧(s, t), denoted by
|⇧(s, t)|, is defined to be

P
n�1
i=1 |(p

i

, p
i+1)|. The shortest surface

path from s to t is the surface path from s to t with the smallest
length.

Further, a network path from s to t, denoted by ⇧
G

(s, t), is
represented by a sequence hv1, v2, ..., vni where (1) v1 = s, (2)
v
n

= t, (3) each v
i

is a vertex in V , and (4) each (v
i

, v
i+1) is an

edge in E. Figure 2 shows an example of a network path from s to
t. The length of a network path ⇧

G

(s, t), denoted by |⇧
G

(s, t)|, is
defined to be

P
n�1
i=1 |(v

i

, v
i+1)|. Finally, the shortest network path

from s to t is defined to be the network path from s to t with the
smallest length.

From the literature, we have the following lemma.

LEMMA 1 ( [5, 10, 12]). For any two vertices v and v0 in V ,
|⇧(v, v0)|  |⇧

G

(v, v0)|.

3. UPPER AND LOWER BOUNDS
In this section, we give the theoretical property that the shortest

network distance can be used as the lower bound and the upper
bound of the shortest surface distance.

LEMMA 2 (DISTANCE BOUND). Let ⇧(s, t) and ⇧
G

(s, t) be
the shortest surface path and the shortest network path between
source s and destination t on terrain P , respectively. Then,

� · |⇧
G

(s, t)|  |⇧(s, t)|  |⇧
G

(s, t)|,
where � = min{ sin ✓m

2 , sin ✓
m

cos ✓
m

} and ✓
m

is the minimum
interior angle of a triangle in the terrain.

Proof: We need to show two inequalities: �·|⇧
G

(s, t)|  |⇧(s, t)|
and |⇧(s, t)|  |⇧

G

(s, t)|. The second inequality is derived from
Lemma 1. In the following, we focus on showing the correctness
of the first inequality.

Suppose that ⇧(s, t) is a sequence < p1, p2, ..., pn >, where p
i

is a point along an edge. Note that p1 = s and p
n

= t. Each line
connecting p

i

and p
i+1 is on face f

i

.
In the following, we define that each point p

i

has its owner, de-
noted by o

i

, which is one of the corners of the face containing p
i

.
Specifically, we set o1 = s and o

n

= t. Consider a point p
i

along
an edge e of a face f where i 2 [2, n� 1]. (If p

i

is a vertex so that
multiple edges contain p

i

, then we arbitrarily pick one of the edges
as e.) Let A and B be the two end-points of the edge e. Note that A
and B are the two vertices on the terrain. If |(A, p

i

)| 6= |(B, p
i

)|,
we set o

i

to be the end-point with the smaller Euclidean distance to
p
i

. Otherwise, we set o
i

to the end-point of e shared with the edge
that p

i�1 is along.
Consider a sequence O : ho1, o2, ..., oni. Each o

i

is a vertex on
the terrain. In addition, for each i 2 [2, n], we know that either
(i) o

i

is equal to o
i�1 or (ii) (o

i

, o
i�1) is an edge of a face on the

terrain. We deduce that sequence O forms a network path from
s to t since o1 = s and o

n

= t. Let |O| be the distance of O.
Since ⇧

G

(s, t) is the shortest network path from s to t, we have

that |⇧
G

(s, t)|  |O|. In the remaining part of the proof, we show
that � · |O|  |⇧(s, t)|. With these two inequalities, we derive that
� · |⇧

G

(s, t)|  |⇧(s, t)|, which completes the proof.
To show that � · |O|  |⇧(s, t)|, consider a pair (o

i

, o
i+1) on a

single face f
i

. We want to show that � · |(o
i

, o
i+1)|  |(p

i

, p
i+1)|

for each i 2 [1, n� 1].
Consider two cases. Case 1: o

i

= o
i+1. In this case, illustrated

in Figure 4, we know that |(o
i

, o
i+1)| = 0. Thus, the inequality

holds.
Case 2: o

i

6= o
i+1. Face f

i

has two corners/vertices, o
i

and
o
i+1. Let F be the remaining corner of f

i

. Let C be the mid-point
of edge (o

i

, F ), let D be the mid-point of edge (o
i+1, F ), and let E

be the mid-point of edge (o
i

, o
i+1). We denote the interior angles

of f
i

at vertices o
i

, o
i+1, and F by ↵,�, and �, respectively.

We further consider four sub-cases. Case 2(a): Both p
i

and p
i+1

are not along edge (o
i

, o
i+1). This case is illustrated in Figure 5(a).

First, by the mid-point theorem, we have

|(C,D)| = 1
2 · |(o

i

, o
i+1)|. (1)

Consider four sub-cases. Case (i): ↵ < ⇡

2 and � < ⇡

2 . In
addition, p

i

is on (o
i

, C) only, and p
i+1 is on (o

i+1, D) only be-
cause o

i

is the owner of p
i

and o
i+1 is the owner of p

i+1. Thus,
we know that |(p

i

, p
i+1)| � |(C,D)|. From Equation 1, we ob-

tain 1
2 · |(o

i

, o
i+1)|  |(p

i

, p
i+1)|. Also, since sin ✓

m

cos ✓
m

=

sin 2✓m
2 and sin 2✓

m

 1, we have sin ✓
m

cos ✓
m

 1
2 . Since

sin ✓
m

cos ✓
m

 1
2 and sin ✓m

2  1
2 , we have �  1

2 . Thus, the
inequality holds.

Case (ii): ↵ � ⇡

2 and � < ⇡

2 (illustrated in Figure 5(b)).
Since ↵ � ⇡

2 and ↵ + � + � = ⇡, we have � + � < ⇡

2 . Since
� � ✓

m

and � � ✓
m

, we have � + � � 2✓
m

. We derive that

2✓
m

 � + � < ⇡

2 . (2)

We draw a perpendicular line from D to edge (o
i

, F ). Let G be
the end-point of this line which is along edge (o

i

, F ). Similarly, p
i

is on (o
i

, C) only and p
i+1 is on (o

i+1, D) only. Thus, we have

|(p
i

, p
i+1)| � |(D,G)|. (3)

Consider the triangle with corners C, D, and G. By the mid-point
theorem, we know that the line connecting C and D is parallel to
edge (o

i

, o
i+1). We deduce that the interior angle of this triangle at

corner C is equal to ⇡�↵. Note that |(D,G)| = |(C,D)| ·sin(⇡�
↵). Since ↵+�+� = ⇡, we have |(D,G)| = |(C,D)|·sin(�+�).
From Inequality 2, we have |(D,G)| � |(C,D)| ·sin(✓

m

+✓
m

) =

|(C,D)| · sin 2✓
m

. Since sin 2✓
m

= 2 sin ✓
m

cos ✓
m

, we have

|(D,G)| � 2 · |(C,D)| · sin ✓
m

· cos ✓
m

(4)

Thus, from Equation 1 and Inequalities 3 and 4, we obtain sin ✓
m

·
cos ✓

m

· |(o
i

, o
i+1)|  |(p

i

, p
i+1)|. Since �  sin ✓

m

· cos ✓
m

, we
have � · |(o

i

, o
i+1)|  |(p

i

, p
i+1)|..

Case (iii): ↵ < ⇡

2 and � � ⇡

2 . This case is illustrated in Fig-
ure 5(c) and is similar to Case (ii).

Case (iv): ↵ � ⇡

2 and � � ⇡

2 . This case is impossible because
the third angle must be greater than 0 and the sum must be equal to
⇡. We conclude that the inequality holds for Case 2(a).

Case 2(b): p
i

is along edge (o
i

, o
i+1) but p

i+1 is not.
We consider four sub-cases. Case (i): � < ⇡

2 and � < ⇡

2 . This
case is illustrated in Figure 6(a).

We draw a line from E to edge (F, o
i+1) such that this line is

perpendicular to edge (F, o
i+1). Let G be the end-point of this

line which is along edge (F, o
i+1). Since p

i

is on (o
i

, E) only
and p

i+1 is on (o
i+1, D) only, we have |(p

i

, p
i+1)| � |(E,G)|.

Consider the triangle with corners E,G, and o
i+1. We have



C
D

E

oi (= )oi+1

pi

pi+1

g

F

G
Figure 4: Case 1 in the Proof
of Lemma 2

F

C
D

E

oi

oi+1

pi

pi+1

a

b

g
F

C
D

E

oi

oi+1

pi pi+1a

b

g

G

F

C

D

E

oi

oi+1

pi

pi+1

a

b

g

G

(a) Case 2(a)(i) (b) Case 2(a)(ii) (c) Case 2(a)(iii)
Figure 5: Case 2(a) in the Proof of Lemma 2

F

C
D

E

oi

oi+1

pi

pi+1

a
b

g

G

F

C
D

E
oi

oi+1

pi

pi+1a

b

g

F

C

D

E

oi

oi+1

pi

pi+1a

b

g

(a) Case 2(b)(i) (b) Case 2(b)(ii) (c) Case 2(b)(iii)
Figure 6: Case 2(b) in the Proof of Lemma 2

|(E, o
i+1)| sin� = |(E,G)|. Since 1

2 · |(o
i

, o
i+1)| = |(E, o

i+1)|,
we have 1

2 · |(o
i

, o
i+1)| sin� = |(E,G)|. We deduce that

sin �

2 · |(o
i

, o
i+1)|  |(p

i

, p
i+1)|. Since ✓

m

 � < ⇡

2 , we have
sin ✓m

2 · |(o
i

, o
i+1)|  |(p

i

, p
i+1)|. Since �  sin ✓m

2 , the inequal-
ity holds.

Case (ii): � < ⇡

2 and � � ⇡

2 . This case is illustrated in Fig-
ure 6(b).

By the mid-point theorem, we have |(D,E)| =

1
2 · |(o

i

, F )|.
By the sine rule, we have sin �

|(oi,F )| =

sin �

|(oi,oi+1)| . Thus, we de-
rive |(o

i

, o
i+1)| =

sin �

sin �

· |(o
i

, F )|. Since sin �  1, we have
|(o

i

, o
i+1)|  1

sin �

· |(o
i

, F )|. We deduce that sin �

2 · |(o
i

, o
i+1)| 

|(D,E)|. Since ✓
m

 � < ⇡

2 , we have sin ✓m
2 · |(o

i

, o
i+1)| 

|(D,E)|. In this case, since p
i

is on (o
i

, E) only and p
i+1 is on

(o
i+1, D) only, we know that |(p

i

, p
i+1)| � |(D,E)|. We derive

that sin ✓m
2 · |(o

i

, o
i+1)|  |(v

i

, p
i+1)|. Since �  sin ✓m

2 , we have
� · |(o

i

, o
i+1)|  |(p

i

, p
i+1)|.

Case (iii): � � ⇡

2 and � < ⇡

2 . This case is illustrated in Fig-
ure 6(c). Since p

i

is on (o
i

, E) only and p
i+1 is on (o

i+1, D)

only, we have |(p
i

, p
i+1)| � |(E, o

i+1)|. Since |(E, o
i+1)| =

1
2 · |(o

i

, o
i+1)|, we have 1

2 · |(o
i

, o
i+1)|  |(p

i

, p
i+1)|. Be-

sides, since sin ✓
m

cos ✓
m

=

sin 2✓m
2 and sin 2✓

m

 1, we have
sin ✓

m

cos ✓
m

 1
2 . Since sin ✓

m

cos ✓
m

 1
2 and sin ✓m

2  1
2 , we

have �  1
2 . We derive that � · |(o

i

, o
i+1)|  |(p

i

, p
i+1)|.

Case (iv): � � ⇡

2 and � � ⇡

2 . As Case (iv) of Case 2(a), this
case is impossible.

Case 2(c): p
i+1 is along edge (o

i

, o
i+1) but p

i

is not. This case
is similar to Case 2(b).

Case 2(d): Both p
i

and p
i+1 are along edge (o

i

, o
i+1). In this

case, we know that o
i

= p
i

and o
i+1 = p

i+1. This can be
explained by the observation that the shortest surface path on a
three-dimensional terrain corresponds to the straight line from s
to t on the two-dimensional plane on which all faces involved in
the shortest surface path are unfolded [3]. We show this statement
by contradiction. Suppose that both p

i

and p
i+1 are not the end-

points of edge (o
i

, o
i+1). Then, two points p

a

and p
b

exist where
1  a < i and i + 1 < b  n such that p

a

and p
b

are o
i

and
o
i+1, respectively. For each j 2 [a, b], p

j

is along a line seg-
ment from p

a

to p
b

(or edge (o
i

, o
i+1)). This means that the path

< p
a

, p
a+1, ..., pb > corresponds to edge (o

i

, o
i+1). This leads

to a contradiction of the observation in [3], this path can simply be
represented as < p

a

, p
b

>, where b is equal to a + 1. The above
proof by contradiction also applies when only one of p

i

and p
i+1 is

not the end-point of edge (o
i

, o
i+1).)

Thus, |(o
i

, o
i+1)| = |(p

i

, p
i+1)|.

Since � · |(o
i

, o
i+1)|  |(p

i

, p
i+1)| for each i 2 [1, n � 1], we

deduce that � · Pn�1
i=1 |(oi, oi+1)|  P

n�1
i=1 |(pi, pi+1)|. Thus, we

conclude that � · |O|  |⇧(s, t)|.
According to the above lemma, � · |⇧

G

(s, t)| is a lower
bound and |⇧

G

(s, t)| is an upper bound, where � =

min{ sin ✓m
2 , sin ✓

m

cos ✓
m

}. Here, � depends on ✓
m

that can be
obtained from the terrain. According to our experimental results,
the minimum interior angle of a triangle on the surface of the whole
terrain is at least 45o in all terrain datasets we used. Thus, � is at
least 0.35. In particular, in some cases, the lower bound computed
above is 2.8 times larger than the existing lower bound, which is
the Euclidean distance between two points. This suggests that this
lower bound is better than the existing lower bound in these cases.

In practice, the interior angle of a triangle cannot be too small
based on the concept of a realistic terrain studied extensively in
the computational geometry community [2]. A realistic terrain is
represented by a TIN model, which considers important parameters
like the slope of each face and the minimum interior angle of a
triangle in the TIN. Thus, we can find a TIN model such that the
interior angle of a triangle can be maximized [2].

In some cases, the existing lower bound exceeds the above lower
bound. In one scenario, the shortest surface path is exactly the same
as the shortest network path. Thus, we use the maximum of the
existing lower bound and the above lower bound as the final lower
bound. Note that there is no significant additional overhead in com-
puting the above lower bound since the shortest network distance
is already available from the upper bound computation.

4. RELATED WORK
We review existing approaches using lower and upper bounds.

4.1 Multi-Resolution Range Ranking Method
Deng et al. [5] propose a multi-resolution range ranking (MR3)

method for a surface k-NN query. This method uses lower and



o1

o2

TC(o2)

LC(o2)

LC(o1)

TC(o1)

q dE(q,o2)

dN(o1,q)

Figure 7: Tight Cells and Loose Cells of Objects o1 and o2

upper bounds for pruning some objects that are far away from the
query point q.

Specifically, it involves the following four steps. Let H be the
(conceptual) horizontal plane at the sea level of the terrain. Let O
be a set of objects in the dataset for the surface k-NN query.

Step 1 (2D k-NN Query): Let q0 be the query point projected on
H . Let O0 be the set of objects in O projected on H . The MR3
method finds a set S0 of k objects in O0 nearest to q0 on H . Let S
be the set of all objects whose projections are in S0.

Step 2 (Surface Distance Computation): It finds the k-th nearest
object o in S from q according to their surface distances.

Step 3 (2D Range Query): It computes the upper bound U of
the shortest surface distance between q and o. It performs a range
query from q0 with its radius equal to U and obtain a set T 0 of
objects from the range query. Let T be the set of all objects whose
projections are in T 0.

Step 4 (Surface Distance Ranking): It finds the k objects in T
whose surface distances are at most the surface distance between q
and the k-th nearest object in T .

Since Step 4 finds surface distances, the MR3 method makes
use of the upper and lower bounds for pruning. Even though it is
equipped with the lower and upper bound computations for prun-
ing, it is found in [10, 12] that the MR3 method does not return
accurate k-NN results, especially as k gets larger.

4.2 Voronoi Diagram Based Method
Shahabi et al. [10] propose a Voronoi diagram-based approach

for computing a surface k-NN query, which is the state-of-the-art
method for this query. Unlike the MR3 method, it returns accurate
results. This approach exploits so-called tight cells and loose cells.
Let O be a set of objects on a surface.

Given an object o 2 O, the tight cell of o, TC(o), is the region
on the surface such that each point p in this region has a network
distance to o that is at most the Euclidean distance between p and
each other object in O. In Figure 7 showing two objects o1 and
o2, the region enclosed by the solid line containing o1 corresponds
to TC(o1) and the region enclosed by the solid line containing
o2 corresponds to TC(o2). Consider a point q along the bound-
ary of TC(o1). Note that the network distance between q and o1
(d

N

(o1, q)) is equal to the Euclidean distance between q and o2
(d

E

(q, o2)). Given an object o 2 O, the loose cell of o, LC(o),
is the region on the surface such that each point p in this region
has a Euclidean distance to o that is at most the network distance
between p and each other object in O. In Figure 7, the region en-
closed by the dashed line containing o1 corresponds to LC(o1) and
the region enclosed by the dashed line containing o2 corresponds
to LC(o2).

[10] found the following three properties related to tight cells
and loose cells. (1) It is possible that the loose cell of an object can
overlap with the loose cell of another object. (2) The loose cell of

an object does not overlap with the tight cell of another object. (3)
The tight cell of an object is completely inside its loose cell.

If a query point q is inside the tight cell of an object o, we know
that there is only one such tight cell containing q. Thus, o is the
nearest neighbor of q according to the surface distance. Otherwise,
q is inside a number of loose cells of objects, but is outside the
tight cells of these objects. Let O0 be these objects. We are not
sure which object in O0 is nearest to q, and we need to run the
algorithm for finding the shortest surface distance |O0| times to find
the answer. According to the above observation, if the area of the
tight cell is larger, then it will be more likely that q is in a tight
cell and we do not need to issue the time-consuming algorithm for
finding the shortest surface distance. Besides, if the area of the
loose cell is smaller then it will be more likely that the size of O0 is
smaller, and thus we will run the algorithm for finding the shortest
surface distance fewer times.

Shahabi et al. [10] propose an algorithm that first finds the tight
cells of all objects and the loose cells of all objects. Then it finds the
k nearest neighbors on the surface from a query point q according
to these cells. Specifically, the algorithm first finds all tight and
loose cells covering q in order to determine the 1-NN o. Then, it
expands all the neighbors of the loose cell of o to incrementally find
the next nearest neighbor from q. During the expansion, it finds the
shortest surface distance between q and each object accessed.

Interestingly, the above algorithm can be improved significantly
when our bounds are used. Specifically, as we described before, the
lower bound we proposed is at least the Euclidean distance studied
by [10]. We modify the tight cell definition and the loose cell defi-
nition by replacing the Euclidean distance calculation by our lower
bound. Since our lower bound is at least the Euclidean distance,
it is easy to verify that the area of the tight cell of each object is
larger and the area of the loose cell of each object is smaller. As we
explained, a larger tight cell and a smaller loose cell can avoid a lot
of shortest surface path computation and thus the algorithm can be
speeded up.

4.3 Other Existing Approaches
Other approaches exist that use lower and upper bounds. Ex-

amples include continuous surface k-NN queries [11] and reverse
nearest neighbor queries [12].

Xing et al. [11] propose an algorithm for a continuous surface k-
NN query that relies on the concept of the expansion area of a query
point q. Specifically, given a query point q, the expansion area of
q is a region containing all objects such that the Euclidean distance
between each object in this region and q is at most a threshold be-
ing updated during the execution of the algorithm. The algorithm
considers all objects in the expansion area of q only and calculates
the shortest surface distance between q and each of these objects.
Similarly, when our bounds are used, we can replace the Euclidean
distance by our lower bound. In this case, fewer objects remain in
the expansion area. Thus, the algorithm can be speeded up.

Yan et al. [12] propose algorithms to find bichromatic and
monochromatic reverse nearest neighbors on terrains. The algo-
rithms proposed by [12], the only best-known algorithm for these
queries, rely on the tight and loose cells proposed by [10]. Simi-
larly, with our new bound adoption, it is expected that these algo-
rithms can run more quickly.

5. GENERATING A SMALLER GRAPH
As we described in Section 1, in order to efficiently compute the

network distance (which is used in our upper/lower bound compu-
tation), we propose to generate a smaller graph G0 from G. We
introduce a parameter ! such that the bounds computed from G0



are not quite different from the bounds computed from G. We give
a formal definition for ! as follows. Let L

G

(s, t) and U
G

(s, t) be
the lower and upper bounds of a surface distance from a source s
to a destination t computed based on a graph G, respectively.

PROPERTY 1 (NETWORK DISTANCE PROPERTY). Given an
original graph G = (V,E) and another graph G0

= (V 0, E0
), we

say that G0 satisfies the network distance property if and only if for
any two vertices s and t in V , the following two inequalities are
satisfied.

1
!

· L
G

(s, t)  L
G

0
(s, t)  L

G

(s, t) (5)

U
G

(s, t)  U
G

0
(s, t)  ! · U

G

(s, t) (6)

As described in Section 1, we would like to maintain Property 1.
The major idea behind generating a smaller graph G0 from G is to
remove some vertices from G and re-adjust the edges in G such
that G0 satisfies the network distance property.

5.1 Generating G0

We propose an iterative approach that removes a vertex v iter-
atively from G to generate G0. Consider an iteration of this ap-
proach. Before we execute this iteration, we have a graph G0 where
some vertices have been removed. After the execution, we remove
a vertex v from G0 and form a smaller graph G00. Let V 0 and E0

be the set of vertices and the set of edges in G0, respectively. Let
V 00

= V 0 � {v} and E00 be the vertices and edges in G00, respec-
tively. We denote the operation of removing vertex v from G0 by
o(G0, v); thus G00

= o(G0, v).
Algorithm 1 shows the algorithm for generating G0. In this algo-

rithm, we have to check whether G0 satisfies the network distance
property (Property 1).

Algorithm 1 Algorithm for Generating G0

1: G

0  G

2: while there exists a vertex v in G

0 such that a graph G

00 obtained af-
ter the removal operation of v from G

0 satisfies the network distance
property do

3: G

00  o(G0
, v)

4: G

0  G

00
5: return G

0

In Property 1, we have to maintain Inequalities 5 and 6. Note
that we detailed how to compute L

G

(s, t) and U
G

(s, t) (based on
G) in Section 3. That is,

L
G

(s, t) = � · |⇧
G

(s, t)|
U

G

(s, t) = |⇧
G

(s, t)|.
However, how to compute L

G

0
(s, t) and U

G

0
(s, t) (based on G0)

has not been specified yet. Next, we describe a method to compute
L

G

0
(s, t) and U

G

0
(s, t). Formally, given distinct vertices s and

t in V (from the original graph G), we denote the estimated dis-
tance between s and t on a smaller graph G0 by ed

G

0
(s, t). In Sec-

tion 5.1.1, we describe a method to compute this estimated distance
such that it satisfies the following property.

PROPERTY 2 (ESTIMATED DISTANCE PROPERTY). Given
an original graph G and another graph G0, we say that G0 satisfies
the estimated distance property if and only if for any two vertices s
and t in V ,

|⇧
G

(s, t)|  ed
G

0
(s, t)  ! · |⇧

G

(s, t)|. (7)

After we describe how to compute ed
G

0
(s, t), we will argue in

Section 5.2 that the above property holds.
We define L

G

0
(s, t) and U

G

0
(s, t) as follows.

L
G

0
(s, t) = �

!

· ed
G

0
(s, t)

U
G

0
(s, t) = ed

G

0
(s, t)

Now, given the concept of ed
G

0
(s, t), we know how to compute

L
G

0
(s, t) and U

G

0
(s, t).

LEMMA 3 (PROPERTY RELATIONSHIP). Given a graph G0,
if G0 satisfies the estimated distance property, then G0 satisfies the
network distance property.

Proof: First, we show that Inequality 6 holds. Since G0 satisfies
the estimated distance property, for any two vertices s and t in
V , |⇧

G

(s, t)|  ed
G

0
(s, t)  ! · |⇧

G

(s, t)|. Since U
G

(s, t) =

|⇧
G

(s, t)| and U
G

0
(s, t) =

ed
G

0
(s, t), we derive that U

G

(s, t) 
U

G

0
(s, t)  ! · U

G

(s, t). Thus, Inequality 6 holds.
Next, we show that Inequality 5 also holds. We first show that

L
G

0
(s, t)  L

G

(s, t). Since L
G

0
(s, t) =

�

!

· ed
G

0
(s, t) and

ed
G

0
(s, t)  !·|⇧

G

(s, t)|, we derive that L
G

0
(s, t)  �·|⇧

G

(s, t)|.
Since L

G

(s, t) = � · |⇧
G

(s, t)|, we conclude that L
G

0
(s, t) 

L
G

(s, t).
In the following, we show that 1

!

· L
G

(s, t)  L
G

0
(s, t). Note

that L
G

0
(s, t) = �

!

· ed
G

0
(s, t) � �

!

· |⇧
G

(s, t)|. Since L
G

(s, t) =
� · |⇧

G

(s, t)|, we have L
G

0
(s, t) � 1

!

· L
G

(s, t).
Thus, Inequality 5 also holds. In conclusion, G0 satisfies the

network distance property.

With the above lemma, if G0 satisfies the estimated distance
property (Property 2), then G0 satisfies the network distance prop-
erty (Property 1). In the following, we focus on checking whether
G0 satisfies the estimated distance property.

There are four remaining issues in Algorithm 1 described in Sec-
tions 5.1.1 – 5.1.4.

5.1.1 How to Compute ed
G

0
(s, t)

As the first step in describing how to compute ed
G

0
(s, t), we de-

fine the concept of “guest” and “host” vertices by drawing an anal-
ogy to a familiar occurrence where guests leave, while hosts remain
at a residence.

Consider graph G0. Let V 0
= V � V 0, where V 0 and V 0 denote

the set of removed and remaining vertices, respectively. Each re-
moved vertex v in V 0 is associated with a non-empty set of some
remaining vertices in V 0. Each (remaining) vertex in this set is
called a host of v and the set of hosts is denoted by H(v). If v is a
host of a removed vertex v, then v is said to be a guest of v. Note
that each guest is in the removed vertex set (V 0) and each host is in
the remaining vertex set V 0. Given a remaining vertex v 2 V 0, we
define the guest set of v, denoted by G(v), to be the set of all guests
of v. Note that a vertex v 2 V 0 is associated with at least one host
and can be associated with multiple hosts, and a vertex v 2 V 0 can
be associated with no guest or multiple guests.

Given a vertex v 2 V 0, we maintain not only the guest set
of v, G(v), but also the information about the estimated distance
between v and each v of its guests in G(v) (i.e., ed

G

0
(v, v))).

Specifically, we define the guest information set of v, denoted by
GL(v), to be the set of entries where each entry is in the form
of (v, ed

G

0
(v, v)) for each v 2 G(v). Here, each entry contains the

second component in the form of ed
G

0
(v, v) which can be computed

when we create or update this entry. Details will be described later



v
3v

2

v
10

v
6

v
7 v

8

v
4

v
9

v
5

v
11

v
1

3.5
2.2 3.8

2.4

2.2

2.1

2.0
3.5

2.6

3.5 2.5

4.2

2.2 2.0

2.2
3.0

3.0

1.5

2.7
1.7

3.8

v
3v

2

v
7 v

8

v
4

v
9

v
5

v
11

v
1

v3

v2

v7

v8

v4

v9

v5

v11

v1

v G( )v GL( )v G( )v GL( )v

{ }v6

{ }v6

{ }v6

{ }v10{ }v10

{ }v10

!
!

!
!

!!

{( , 2.2)}v6

{( , 2.4)}v6

{( , 2.6)}v6

{( , 3.5)}v10

{( , 1.7)}v10

{( , 1.5)}v10

v10

v6

v H( )v

{ , , }v v v1 2 7

{ , , }v v v4 5 11

(a) G (b) G0 (c) G(·) and GL(·) (d) H(·)

Figure 8: An Example Illustrating Guests and Hosts

in Section 5.1.2. At this moment, we assume that this component
is given.

EXAMPLE 1 (HOST AND GUEST). Figure 8(a) shows the
original graph G. Suppose that we remove vertex v6 and vertex
v10 from G, and a smaller graph G0 is generated as shown in Fig-
ure 8(b). According to some methods which will be described later,
we generate the guest set and the guest information set of each re-
maining vertex in G0, as shown in Figure 8(c). Similarly, the host
set of each vertex removed can be found in Figure 8(d).

With the concepts of “guest” and “host,” we are ready to describe
how we compute ed

G

0
(s, t).

Given any two vertices s and t 2 V , we want to estimate the net-
work distance between s and t on the smaller graph G0

= (V 0, E0
).

Since some vertices are removed from V and cannot be found in
V 0, s may occur in V 0 or not, and t may also occur in V 0 or not.

This yields three cases to be considered when we compute the
shortest network distance between s and t. Case 1: Both s and t
are not found in V 0, Case 2: Only one of s and t is found in V 0,
and Case 3: Both s and t are found in V 0.

Consider Case 1. Note that each vertex not in V 0 is associated
with at least one host that can be found in V 0. The major idea of
estimating the distance between s and t involves three components,
namely the guest-to-host distance, the host-to-host distance, and
the host-to-guest distance.

We first estimate the distance between s which is not in V 0 and
one of its hosts, says u. We call this distance the guest-to-host
distance from s to u. Second, we estimate the distance between
this host and one of the hosts of t, says u0. We call this distance the
host-to-host distance from u to u0. Third, we estimate the distance
between u0 and t. We call this distance the host-to-guest distance
from u0 to t.

Consider the guest-to-host distance. Given a host u 2 H(s),
we have s 2 G(u) and there exists an entry (s, ed) 2 GL(u). We
define the estimated guest-to-host distance from s to u, denoted by
dist1(s, u), to be ed, where ed is the second component of the entry
(s, ed) 2 GL(u).

Consider the host-to-host distance. Given a vertex u and a ver-
tex u0, we define the estimated host-to-host distance from u to u0,
denoted by dist2(u, u

0
), to be |⇧

G

0
(u, u0

)|.
Consider the host-to-guest distance. Given a host u0 2 H(t),

similarly, we define the estimated host-to-guest distance from u0 to
t, denoted by dist3(u

0, t), to be ed where ed is the second component
of the entry (t, ed) 2 GL(u0

).
In the above discussion, we just consider a particular host u

of s and a particular host u0 of t. In general, there are mul-
tiple hosts of s and multiple hosts of t. Thus, the set of all
possible pairs of hosts of s and hosts of t can be denoted by
H(s) ⇥ H(t). Among all possible pairs, we want to find the
best host pair yielding the smallest estimated distance. Formally,
we define the best host pair of (s, t), denoted by h

o

(s, t), to be
argmin(u,u0)2H(s)⇥H(t) dist1(s, u)+dist2(u, u

0
)+dist3(u

0, t).

If (u, u0
) is the best host pair of (s, t), we say that u is the best host

of s and u0 is the best host of t.
We define ed

G

0
(s, t) = dist1(s, u)+dist2(u, u

0
)+dist3(u

0, t),
where (u, u0

) = h
o

(s, t).
Consider Cases 2 and 3, which are simpler than Case 1. If s is a

vertex in V 0, we set the guest-to-host distance to be 0. In this case,
we define the best host of s to be itself. If t is a vertex in V 0, we set
the host-to-guest distance to be 0. Then, we define the best host of
t to be itself.

Now, we know how to compute ed
G

0
(s, t). In Section 5.2, we

will show that Property 2 (based on ed
G

0
(s, t)) holds.

EXAMPLE 2 (ESTIMATED DISTANCE). Consider Example 1
(as shown in Figure 8). Suppose that we want to find the estimated
distance between v6 and v10 (i.e., ed

G

0
(v6, v10)). Note that vertex

v6 has three hosts in H(v6), namely v1, v2, and v7, and vertex v10
has three hosts in H(v10), namely v4, v5, and v11.

Consider the host v2 of v6. There exists an entry (v6, 2.4) in
G(v2). The estimated guest-to-host distance is 2.4. Consider the
host v4 of v10. There exists an entry (v10, 1.5) in G(v4). The
estimated host-to-guest distance is 1.5. In this case, the estimated
host-to-host distance is equal to |⇧

G

0
(v2, v4)| = 2.1 + 2.5 = 4.6.

All pairs of hosts of v6 and hosts of v10 correspond to H(v6)⇥
H(v10). It is easy to verify that (v2, v4) is the best host pair of
(v6, v10). Finally, the estimated distance between v6 and v10 is
equal to 2.4 + 4.6 + 1.5 = 8.5.

5.1.2 How to Perform o(G0, v)
The next issue is the details of the operation o(G0, v). Algo-

rithm 2 shows the algorithm for the operation o(G0, v). In this
algorithm, line 1 corresponds to finding all neighbors of the vertex
v to be removed. Given a vertex v and a vertex v0 in V 0, v is a
neighbor of v0 if and only if (v, v0) 2 E0 (or (v0, v) 2 E0). Given
a vertex v in V 0 (from G0), we denote the set of all neighbors of v
to be N

G

0
(v). In this algorithm, line 7 corresponds to a standard

triangulation method in the TIN model which is a process that par-
titions a given polygon into a number of triangles. We adopted the
Delaunay triangulation method [1].

Moreover, in this algorithm, we introduce a function called
GLInsert which takes the guest information list of a vertex v0,
GL(v0), and an entry in the form of (v, ed) as inputs, and outputs
the updated guest information list of v0. The function returns the
updated guest information list according to the following cases.
Case 1: There does not exist any entry (v, ed0) 2 GL(v0). In
this case, the updated guest information list to be returned is set
to GL(v0) [ {(v, ed)}. Case 2: There exists an entry (v, ed0) 2
GL(v0). In this case, we further consider two sub-cases. Case
2(a): ed0  ed. In this sub-case, the updated guest information
list to be returned is set to GL(v0). Case 2(b): ed0 > ed. In this
sub-case, the updated guest information list to be returned is set to
{GL(v0)� {(v, ed0)}} [ {(v, ed)}.

5.1.3 Checking Whether G0 Satisfies Estimated Dis-
tance Property



Algorithm 2 Algorithm for Removing a Vertex v from G0 (i.e.,
o(G0, v))
1: N  N

G

0 (v)
2: for each v

0 2 N do
3: e

D

v

0  e
d

G

0 (v, v0)
4: remove v from V

0
5: remove all edges containing v from E

0
6: P  a polygon formed from a set of all the remaining edges which are

adjacent to any two vertices in N
7: triangulate P

8: H(v) N
9: for each v

0 2 N do
10: G(v0) G(v0) [ {v} [ G(v)
11: GL(v0) GLInsert(GL(v0), (v, eD

v

0 ))

12: for each (v, ed) 2 GL(v) do
13: GL(v0) GLInsert(GL(v0), (v, ed+ e

D

v

0 ))
14: H(v) H(v)� {v} [ {v0}
15: return G

0

The third issue is how to check whether G0 satisfies the esti-
mated distance property. Specifically, in Algorithm 1, whenever we
remove a vertex v from V 0, we have to check whether the result-
ing graph after the vertex removal operation satisfies the estimated
distance property (Property 2) (and thus the network distance prop-
erty (Property 1)). This property requires that for any two vertices
in V , Inequality 7 is satisfied. Checking this property naively is
time-consuming. Fortunately, we just need to check two properties
which are related to the neighbors of v only, instead of all vertices
in V . In Section 5.2, we will show that if these two properties are
satisfied, then Property 2 holds.

Before we introduce the two properties, let us give an intuition
of these two properties. Consider an iteration of Algorithm 1. Just
before this iteration, suppose that G0 denotes the current graph with
some vertices removed. Let v be the vertex to be removed in this
iteration. It generates G00 which is equal to o(G0, v). Roughly
speaking, we want to maintain two kinds of distance information
stored in the graph after v is removed.

• The first kind of distance information is the intra-distance
information. We want to make sure that the pairwise (es-
timated) distance between any two neighbors of v does not
change too much after v is removed from the graph.

• The second kind of distance information is the inter-distance
information. We want to make sure that the pairwise (esti-
mated) distance between each neighbor of v and each guest
of v does not change too much after v is removed from the
graph.

The two properties are formally given as follows. The first prop-
erty is called the neighborhood error bound property which is used
to maintain the intra-distance information. The second property is
called the host-guest error bound property which is used to main-
tain the inter-distance information.

PROPERTY 3 (NEIGHBORHOOD ERROR BOUND PROPERTY).
Let G0 be a graph. Given a vertex v in V 0, v is said to satisfy the
neighborhood error bound property in G0 if and only if for any two
vertices v

i

and v
j

in N
G

0
(v),

|⇧
G

(v
i

, v
j

)|  ed
G

00
(v

i

, v
j

)  ! · |⇧
G

(v
i

, v
j

)|,
where G00

= o(G0, v).

PROPERTY 4 (HOST-GUEST ERROR BOUND PROPERTY).
Let G0 be a graph. Given a vertex v in V 0, v is said to satisfy the

host-guest error bound property in G0 if and only if for each vertex
v 2 G(v) and each vertex v0 2 N

G

0
(v),

|⇧
G

(v0, v)|  ed
G

00
(v0, v)  ! · |⇧

G

(v0, v)|,
where G00

= o(G0, v).

Given a graph G0 and a vertex v 2 V , v is said to satisfy the
removal property in G0 if and only if v satisfies both the neighbor-
hood error property and the host-guest error property in G0.

With this removal property, in Algorithm 1, we change the
checking condition in line 2 to that “there exists a vertex v in G0

such that v satisfies the removal property in G0.”

5.1.4 How to Find Vertex to be Removed
The last issue is how to find a vertex to be removed. As we de-

scribed in the previous section, we need to find a vertex v in G0

such that v satisfies the removal property. In our implementation,
we find this vertex v by processing all vertices in a particular or-
der based on the regularity of the polygon P formed from a set of
all the remaining edges which are adjacent to any two vertices in
N

G

0
(v). We define a function f(v) which takes a vertex v as an

input and returns a non-negative real number as an output denoting
how regular the shape of N

G

0
(v) is. Specifically, we define f(v) to

be the average difference between an interior angle and the average
interior angle within the polygon P . If f(v) is smaller, then P is
more regular. Here, we would like to choose a vertex v whose poly-
gon is more regular for processing first. Triangulating the polygon
can result in many triangles with more regular shapes. It is more
likely that more triangles with more regular shapes increases the
opportunity of simplifying the graph in the later process. This is
because an irregular triangle containing one long side and one short
side has two extreme scenarios for simplifying the graph, resulting
in a lesser opportunity to remove vertices in this triangle.

5.2 Analysis
In this section, we show that the smaller graph G0 satisfies the

estimated distance property (Property 2).

LEMMA 4. Let G0 be the graph generated by Algorithm 1.
Then, G0 satisfies the estimated distance property.

Proof Sketch: According to Property 2, we want to show that
for any two vertices s and t in V , |⇧

G

(s, t)|  ed
G

0
(s, t) 

! · |⇧
G

(s, t)|.
In this proof, we focus on Case 1 mentioned in Section 5.1.1.

Cases 2 and 3 can be shown similarly.
Let u be the best host of s and ed1 be the corresponding guest-to-

host distance Let u0 be the best host of t and ed2 be the correspond-
ing host-to-guest distance. We have

ed
G

0
(s, t) = ed1 + |⇧

G

0
(u, u0

)|+ ed2. (8)

By Property 3, we deduce that for any two remaining vertices v and
v0 in V 0, we have

|⇧
G

(v, v0)|  ed
G

0
(v, v0)  ! · |⇧

G

(v, v0)|. (9)

By Property 4, we deduce that for each vertex v 2 V 0 and each
vertex v 2 G(v), we have

|⇧
G

(v, v)|  ed
G

0
(v, v)  ! · |⇧

G

(v, v)|. (10)

First, we show that |⇧
G

(s, t)|  ed
G

0
(s, t). Since u and u0 are in

V 0, ed
G

0
(u, u0

) = |⇧
G

0
(u, u0

)|. From Equation 9, we derive that
ed
G

0
(u, u0

) � |⇧
G

(u, u0
)| and thus |⇧

G

0
(u, u0

)| � |⇧
G

(u, u0
)|.



Dataset Sizes D (points) 20K, 200K, 400K, 800K, 1000K
User Parameter ! 1, 1.2, 1.4, 1.6, 1.8, 2

k 2, 5, 10, 15, 20
Table 1: Parameter Settings

Since s and t are not in V 0, and u and u0 are in V 0, from Equation
10, we derive that ed1 � |⇧

G

(s, u)| and ed2 � |⇧
G

(u0, t)|. From
Equation 8, we derive that ed

G

0
(s, t) � |⇧

G

(s, u)|+ |⇧
G

(u, u0
)|+

|⇧
G

(u0, t)| � |⇧
G

(s, t)|.
Second, we show that ed

G

0
(s, t)  ! · |⇧

G

(s, t)|. Consider path
⇧

G

(s, t). It is easy to verify that there exists a vertex w 2 H(s)
along this path and there exists a vertex w0 2 H(t) along this path.
We know that

|⇧
G

(s, t)| = |⇧
G

(s, w)|+ |⇧
G

(w,w0
)|+ |⇧

G

(w0, t)|. (11)

Consider the distance eD from s to t in G0 which is equal to the sum
of the guest-to-host distance (i.e., ed

G

0
(s, w)), the shortest distance

from w to w0 and the host-to-guest distance (i.e., ed
G

0
(w0, t)). Note

that eD =

ed
G

0
(s, w)+|⇧

G

0
(w,w0

)|+ ed
G

0
(w0, t). By Inequalities 9

and 10, we derive that eD  ! · |⇧
G

(s, w)|+! · |⇧
G

(w,w0
)|+! ·

|⇧
G

(w0, t)|. Thus, from Equation 11, we obtain eD  !·|⇧
G

(s, t)|.
Since eD � ed

G

0
(s, t), we have ed

G

0
(s, t)  ! · |⇧

G

(s, t)|. A de-
tailed proof can be found in [13].

6. EXPERIMENTS

6.1 Experimental Setup
Data Sets and Parameter Settings: Experiments were conducted
on the Eagle Peak (EP) dataset (http://data.geocomm.com/). This
widely used dataset is from Wyoming, USA, covers an area of 10.7
x 14 km2, and has 1.3 million data points [5, 8, 10–12]. We used
sub-regions of varying sizes to obtain robust results.

The experiments were conducted by varying several parameters
to study the effect of the trade-offs among accuracy, efficiency, and
memory usage. Table 1 shows the parameters with their default
values shown in bold. The default value of ! is set to 1.2, which
means that there is a 20% error for generating a smaller graph. Ex-
periments were conducted with default parameter values unless ex-
plicitly stated.
Implementation: The core algorithms were implemented in C and
C++, and some auxiliary tasks were implemented in Perl. A terrain
tool, developed by CMU, called Triangle (http:// www.cs.cmu.edu/
⇠quake/ triangle.html), was employed for generating the TIN
model with a minimum interior angle quality. In all datasets, with
this tool, ✓

m

generated is at least 45o. The Chen-and-Han imple-
mentation [7] was used to compute shortest surface paths. All ex-
periments were carried out on a Fedora 18 Linux machine with an
Intel Xeon E5 CPU (20MB cache, hyper-threading, 8 cores) and
32 GB internal memory.

All experiments were conducted 100 times. Average values were
reported in our final results. For each spatial query with a query lo-
cation, following [10, 12], we generate a query location randomly
and select 10% of the vertices in the TIN model randomly as ob-
jects.

Note that there are two contributions in this paper. The first con-
tribution is the proposed tighter bounds, and the second contribu-
tion is the proposed smaller graph. In order to highlight the sig-
nificance of our contributions, we study them both individually and
combined. In Section 6.2, we study the effect of our tighter bounds
based on the original graph. Section 6.3, shows how a compressed
smaller graph affects existing bounds. In Section 6.4, we show how

our bounds based on our smaller graph improve existing results. Fi-
nally, Section 6.5 depicts the scalability of our bound computation
and algorithms using our bounds.

6.2 Our Bounds and the Original Graph
In Section 6.2.1, we compare our distance bounds with existing

distance bounds based on an original graph. In Section 6.2.2, we
study how the performance of some existing algorithms (described
in Section 4) are improved when our bounds are used.

6.2.1 Distance Bound Comparison
Based on the original graph, on average our lower bound is 5,075

meters, while the existing lower bound is 2,671 meters only. The
improvement ratio for the lower bound on EP is 1.9. Conducting
the same experiment with different source and destination points,
and also over different data set sizes (20K–1M vertices), we get an
overall average improvement ratio of 2.8.

6.2.2 Impact on Existing Methods
We study how our bounds can be used for three popular spa-

tial queries, namely (1) surface k-NN queries, (2) surface range
queries, and (3) reverse surface NN queries.
(1) Surface k-NN Queries: The impact of our bounds for surface
k-NN queries based on the original graph G are studied. We com-
pared three algorithms, namely the straightforward approach (SF ),
the MR3 approach (MR3) [5] and the Voronoi diagram-based ap-
proach (VOR) [10].

SF is an algorithm containing two steps. In the filtering step,
it finds all objects whose lower bounds of their shortest surface
distances to a given query point q are at most the k-th smallest
upper bound of the shortest surface distance from an object to q. In
the refinement step, it then computes the shortest surface distances
of all objects found in the filtering step and returns k objects with
the least shortest surface distances.

For the rest of the paper, we denote the various combinations
of algorithms, bound types, and graph types as A-OBound(G).
A is a placeholder for the implemented algorithms, with possi-
ble values {SF,MR3,VOR,MSRNN} (where MSRNN is an algo-
rithm [12] which will be used later in our experiments). O can
be original/existing (Org) or new (Our) bounds, and G can be
the original graph (G) or the smaller graph (G’). For example,
SF-OrgBound(G) denotes the SF algorithm using existing original
bounds on the original graph G.

In this section, we are studying the performance of A-
OurBound(G) compared with A-OrgBound(G) for each existing
algorithm A.

Figure 9(a) shows that every algorithm A using our bounds (i.e.,
A-OurBound(G)) is faster than its counterpart using the original
existing bounds (i.e., A-OrgBound(G)) on graph G. Since k in-
creases, fewer candidates (Figure 9(b)) need refinement due to our
tighter lower bounds, resulting in an order of magnitude speedup
in VOR/SF. Specifically, when k increases from 2 to 20, there is an
increase from 9 to 25.2 times, respectively. Although VOR has a
larger candidate set, its query time is the lowest. This is because
it has the lowest cost of processing per candidate compared with
other algorithms. Specifically, VOR precomputes the tight/loose
cells and computes shortest surface distances incrementally by ex-
panding cells. Since other algorithms lack such an incremental cell
expansion, they have larger query times.
(2) Surface Range Queries: We conducted experiments for surface
range queries with a fixed range of 500m. Since there are no exist-
ing algorithms for these queries, we conducted experiments with
a straightforward (SF ) algorithm only. Similar to surface kNN



2 5 10 15 20

100

101

102

103

104

105

106

k

Q
ue
ry

T
im

e
(s
ec
)

SF-OrgBound(G) SF-OurBound(G)
MR3-OrgBound(G) MR3-OurBound(G)
VOR-OrgBound(G) VOR-OurBound(G)

2 5 10 15 20
0

50

100

150

k

N
um

be
r
of

C
an

di
da

te
s

SF-OrgBound(G) SF-OurBound(G)
MR3-OrgBound(G) MR3-OurBound(G)
VOR-OrgBound(G) VOR-OurBound(G)

(a) (b)
Figure 9: Impact of Our Bounds on Original Graph G -
Surface k-NN Queries: Effect of k

1 1.2 1.4 1.6 1.8 2

100

101

102

103

104

!

Q
ue
ry

T
im

e
(s
ec
)

SF-OrgBound(G) SF-OrgBound(G’)
MR3-OrgBound(G) MR3-OrgBound(G’)
VOR-OrgBound(G) VOR-OrgBound(G’)

1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

!

N
um

be
r
of

C
an

di
da

te
s

SF-OrgBound(G) SF-OrgBound(G’)
MR3-OrgBound(G) MR3-OrgBound(G’)
VOR-OrgBound(G) VOR-OrgBound(G’)

(a) (b)
Figure 10: Impact of Existing Bounds on Our Smaller
Graph G0 - Surface k-NN Queries: Effect of !

2 5 10 15 20
10�1

101

103

105

107

k

Q
ue
ry

T
im

e
(s
ec
)

SF-OrgBound(G) SF-OrgBound(G’)
MR3-OrgBound(G) MR3-OrgBound(G’)
VOR-OrgBound(G) VOR-OrgBound(G’)

2 5 10 15 20
0

50

100

150

200

k

N
um

be
r
of

C
an

di
da

te
s

SF-OrgBound(G) SF-OrgBound(G’)
MR3-OrgBound(G) MR3-OrgBound(G’)
VOR-OrgBound(G) VOR-OrgBound(G’)

(a) (b)
Figure 11: Impact of Existing Bounds on Our Smaller
Graph G0 - Surface k-NN Queries: Effect of k

1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

!

Q
u
er
y
T
im

e
(s
ec
)

MSRNN-OrgBound(G) MSRNN-OrgBound(G’)

1 1.2 1.4 1.6 1.8 2
0

10

20

30

!

N
u
m
b
er

o
f
C
a
n
d
id
a
te
s

MSRNN-OrgBound(G) MSRNN-OrgBound(G’)

(a) (b)
Figure 12: Impact of Existing Bounds on Our Smaller
Graph G0 - Reverse Surface NN Queries: Effect of !

1 1.2 1.4 1.6 1.8 2
0

2,000

4,000

6,000

8,000

10,000

!

D
is
ta
nc
e
(m

)

OrgLB(G) UB(G) Ds
OurLB(G’) UB(G’)

1 1.2 1.4 1.6 1.8 2
10�3

100

103

106

109

!

R
u
n
ti
m
e
(m

se
c)

OrgLB(G) UB(G) Ds
UB(G’), OurLB(G’)

1.0 1.2 1.4 1.6 1.8 2.0
0

0.5

1

1.5

2

·104

!

N
um

be
r
of

V
er
ti
ce
s

Vertices(G)
Vertices(G’)

1.0 1.2 1.4 1.6 1.8 2.0
0

100

200

300

400

500

!

G
0
g
en
er
a
ti
o
n
ti
m
e
(s
ec
)

(a) (b) (c) (d)
Figure 13: Impact of Our Bounds on Our Smaller Graph - Distance Bounds: Effect of !

1 1.2 1.4 1.6 1.8 2
10�1

100

101

102

103

!

Q
ue
ry

T
im

e
(s
ec
)

SF-OrgBound(G) SF-OurBound(G’)
MR3-OrgBound(G) MR3-OurBound(G’)
VOR-OrgBound(G) VOR-OurBound(G’)

1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

!

N
um

be
r
of

C
an

di
da

te
s

SF-OrgBound(G) SF-OurBound(G’)
MR3-OrgBound(G) MR3-OurBound(G’)
VOR-OrgBound(G) VOR-OurBound(G’)

(a) (b)
Figure 14: Impact of Our Bounds on Our Smaller Graph -
Surface k-NN Queries: Effect of !

2 5 10 15 20
10�1

100

101

102

103

104

105

106

k

Q
ue
ry

T
im

e
(s
ec
)

SF-OrgBound(G) SF-OurBound(G’)
MR3-OrgBound(G) MR3-OurBound(G’)
VOR-OrgBound(G) VOR-OurBound(G’)

2 5 10 15 20
0

50

100

150

k

N
um

be
r
of

C
an

di
da

te
s

SF-OrgBound(G) SF-OurBound(G’)
MR3-OrgBound(G) MR3-OurBound(G’)
VOR-OrgBound(G) VOR-OurBound(G’)

(a) (b)
Figure 15: Impact of Our Bounds on Our Smaller Graph -
Surface k-NN Queries: Effect of k

1.0 1.2 1.4 1.6 1.8 2.0
0

500

1,000

1,500

!

Q
ue
ry

T
im

e
(s
ec
)

SF-OurBound(G’) SF-OrgBound(G)

1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

30

40

50

!

N
um

be
r
of

C
an

di
da

te
s

SF-OurBound(G’) SF-OrgBound(G)

(a) (b)
Figure 16: Impact of Our Bounds on Our Smaller Graph -
Surface Range Queries: Effect of !

1 1.2 1.4 1.6 1.8 2
0

1

2

3

!

Q
u
er
y
T
im

e
(s
ec
)

MSRNN-OrgBound(G) MSRNN-OurBound(G’)

1 1.2 1.4 1.6 1.8 2
0

10

20

30

!

N
u
m
b
er

o
f
C
a
n
d
id
a
te
s

MSRNN-OrgBound(G) MSRNN-OurBound(G’)

(a) (b)
Figure 17: Impact of Our Bounds on Our Smaller Graph -
Reverse Surface NN Queries: Effect of !

200K 400K 800K 1000K

100

101

102

103

104

105

Dataset size

P
re
p
ro
ce
ss
in
g
T
im

e
(s
ec
)

SF-OrgBound(G) SF-OurBound(G’)
MR3-OrgBound(G) MR3-OurBound(G’)
VOR-OrgBound(G) VOR-OurBound(G’)

(a)

200K 400K 800K 1000K

100

101

102

103

104

105

Dataset size

Q
u
er
y
T
im

e
(s
ec
)

SF-OrgBound(G) SF-OurBound(G’)
MR3-OrgBound(G) MR3-OurBound(G’)
VOR-OrgBound(G) VOR-OurBound(G’)

(b)
Figure 18: Scalability: Surface k-NN Queries

200K 400K 800K 1000K

100

101

102

103

Dataset size

P
re
p
ro
ce
ss
in
g
T
im

e
(s
ec
)

SF-OrgBound(G) SF-OurBound(G’)

(a)

200K 400K 800K 1000K

102

103

104

Dataset size

Q
u
er
y
T
im

e
(s
ec
)

SF-OrgBound(G) SF-OurBound(G’)

(b)
Figure 19: Scalability: Surface Range Queries



Query Type Our Bound
Only (Sec-
tion 6.2)

Small Graph
Only (Sec-
tion 6.3)

Our Bound
and Small
Graph (Sec-
tion 6.4)

Surface k-NN (VOR) 9 15 38
Surface Range 10 1 23.4
Surface Reverse k-NN 18.6 10 31.7
Table 2: Speedup Comparison (With Default Parameters)

queries, in the context of surface range queries, SF contains two
steps. In the filtering step, it finds all objects whose lower bounds
of their shortest surface distances to a given query point q are at
most a given range value r. In the refinement step, it computes the
shortest surface distances of all objects found in the filtering step
and finally returns all objects whose shortest surface distances to q
are at most r.

Similar to surface k-NN queries, we implemented it with two
variations, namely SF-OrgBound(G) and SF-OurBound(G). The
query time and the number of candidates of SF-OrgBound(G) are
1, 400 seconds and 52, respectively. But, the query time and the
number of candidates of SF-OurBound(G) are 107 seconds and 7,
respectively, showing a speedup of nearly an order of magnitude.
(3) Reverse Surface NN Queries: We implemented the algorithm
for monochromatic reverse surface NN queries in [12], namely
MSRNN. In the following, we focus on reverse surface 1-NN
queries. Similar to surface k-NN queries, we implemented it
with two variations, namely MSRNN-OrgBound(G) and MSRNN-
OurBound(G). The query time and the number of candidates for
MSRNN-OrgBound(G) is 2.8 second and 28, respectively. How-
ever, the query time and the number of candidates for MSRNN-
OurBound(G) is 0.15 second and 10, respectively, which means
that the algorithm using our bounds is 18.6 times faster and ex-
plores fewer candidates when compared to the one using the exist-
ing bounds.
Conclusion: We find that the algorithms using our bounds on the
original graph perform more efficiently than the algorithms using
existing bounds on the same original graph. Refer to the first con-
tribution in the column with header “Our Bound Only” in Table 2
for speedups.

6.3 Existing Bounds and Our Smaller Graph

6.3.1 Distance Bound Comparison
Existing lower bound computation uses the Euclidean distance

which is independent of the underlying graph and hence is unaf-
fected by our graph compression. On the other hand, the upper
bound which is the network distance on the smaller graph is af-
fected. When ! = 1, the existing upper bound calculated based on
a smaller graph is 10, 150 meters (same as the network distance on
the original graph) and takes 24.4 milliseconds to compute. How-
ever, it takes 2.8 seconds to find the existing upper bound calculated
based on the original graph. Note that when ! = 1, the bounds cal-
culated based on the original graph are exactly the same as those
calculated based on the smaller graph. Besides, there are some ver-
tices which can be removed even when ! = 1, resulting in a faster
time. When ! increases to 2, the reduction in the number of ver-
tices causes the upper bound to reach 10, 290 meters with a smaller
runtime of 8.1 milliseconds. When bounds are computed based on
G0, substantial speedup is achieved.

6.3.2 Impact on Existing Methods
For each algorithm A, we study the effect of A using the origi-

nal bounds on the smaller graph G0 (A-OrgBound(G0)) to A using
original bounds on G (A-OrgBound(G)).

(1) Surface k-NN Queries: We varied ! and k to study the effects.
Figure 10 shows the results when ! is varied. In Figure 10(a), when
! lies between 1 and 1.2, graph compression causes speedier bound
computations. At ! = 1.1, we achieve speedups of nearly 15 and
28 for VOR and SF, respectively.

However, for ! > 1.4, the query times of SF-OrgBound(G0) and
VOR-OrgBound(G0) get larger than SF-OrgBound(G) and VOR-
OrgBound(G) respectively, because the bounds are looser, resulting
in more exact surface distance computations. Figure 10(b) shows
the number of candidates explored in each algorithm.

Figure 11 shows the results when k is varied. We observe a sim-
ilar trend as before.
(2) Surface Range Queries: Improvement in surface range queries
can only be found when the lower bound is improved, which in
turn improves the pruning capacity in the filtering step. Since the
original lower bound is the Euclidean distance, which is inert to
changes in the underlying graph structure, we notice that varying
! does not change the lower bounds and hence does not affect the
query time and the number of candidates to refine. In our experi-
ments, the query time and the number of candidates to be refined
are 1, 400 seconds and 52, respectively.
(3) Reverse Surface NN Queries: Since, in Figure 12, we observe a
similar behavior as the Surface k-NN Queries in Section 6.3.2(1),
the same explanations hold true in this case too. Note that in
Figure 12(a), when ! = 1.4 (i.e., 40% error), the query time
of MSRNN-OrgBound(G0) is slightly larger than that of MSRNN-
OrgBound(G). This is because when ! is a large value (in this case,
! = 1.4), the error is already large (40%). Then, the bounds cal-
culated based on G0 are larger, resulting in more candidates which
need more surface shortest path queries. We argue that 40% is al-
ready a large error and thus it is not recommended to set ! to a
large value (e.g., 1.4).
Conclusion: We find that the algorithms using existing bounds on
the smaller graph perform more efficiently than those using the
same existing bounds on the original graph when ! is set to a value
smaller than 1.4 (40% error). Refer to the second contribution in
column with header “Small Graph Only” in Table 2 for speedups.

6.4 Our Bounds and Our Smaller Graph
6.4.1 Distance Bound Comparison

In Figure 13, we denote OrgLB(G) to be the original lower bound
on G and OurLB(G0) to be our lower bound on G0. We also denote
UB(G) and UB(G0) to be the upper bounds on G and G0, respec-
tively. We denote Ds to be the surface distance.

Figure 13(a) shows that our lower bound OurLB(G0) is larger
than the existing lower bound OrgLB(G). Figure 13(b) shows that
the computation time of Ds is the greatest and it took 504 hours to
compute Ds. Computing the network distance on a smaller graph
G0 (i.e., UB(G0) and OurLB(G0)) is nearly an order of magnitude
faster than computing the network distance on an original graph
(i.e., UB(G)). Even when ! = 1, the computation of the network
distance on a smaller graph G0 is faster. Figure 13(c) shows that the
number of remaining vertices in G0 decreases when ! increases.
Furthermore, Figure 13(d) shows that the time of generating G0

increases when ! increases because more vertices are removed.

6.4.2 Impact on Existing Methods
Similar to previous sections, for each algorithm A, we study

the effect of our bounds on our smaller graph, denoted as A-
OurBound(G0).
(1) Surface k-NN Queries: Figure 14 shows the performance of al-
gorithms when ! changes. Figure 14(a) shows that the query times



of SF-OurBound(G0) and VOR-OurBound(G0) increase with ! be-
cause the upper/lower bounds calculated are looser and thus more
candidates are generated for computing the exact shortest surface
distances (as illustrated in Figure 14(b)). At ! = 1.1, SF and VOR
show speedups of 96 and 38 times, respectively.

Figure 15 shows the results of varying k. Figures 15(a) and (b)
show that the query times and the number of candidates of all algo-
rithms increase with k.
(2) Surface Range Queries: Figure 16(a) shows that the query
time of SF-OurBound(G0) is smaller than that of SF-OrgBound(G)
since the computation time of SF-OurBound(G0) is based on a
smaller graph G0 compared with SF-OrgBound(G) which is based
on G. Specifically, our tightest bound (! = 1) produces a speedup
of 23.4 times. When ! increases, the computation time of SF-
OurBound(G0) increases, since more candidates objects have to be
explored (as shown in Figure 16(b)) due to looser bounds.
(3) Reverse Surface NN Queries: Figure 17(a) shows that the query
time of MSRNN-OurBound(G0) is smaller than that of MSRNN-
Orgbound(G) when ! is smaller than 1.8. At ! = 1, a speedup
of 31.7 times is achieved. Figure 17(b) shows fewer candidates
explored by the algorithm using our new bounds.
Conclusion: We find that the algorithms using our new tighter
bounds on the smaller graph perform more efficiently than those
using existing bounds on the original graph when ! is set to a value
smaller than 1.4 (40% error). Table 2 compares the speedups of
our individual contributions, i.e., “Our Bound Only” and “Small
Graph Only,” to the combined contributions “Our Bound and Small
Graph.”

6.5 Scalability
Here, we study the scalability of the existing algorithms de-

scribed in Section 6.4.2 by varying the dataset size which is defined
to be the total number of vertices used in the model.

Consider the scalability of surface k-NN queries with k set to
5. The SF, MR3 and VOR approaches using our bounds (i.e.,
SF-OurBound(G0), MR3-OurBound(G0) and VOR-OurBound(G0))
have shorter query times compared with these approaches using
the original bounds, as shown in Figure 18(b). In particular, the
speedups of SF, MR3 and VOR using our bounds are up to 68, 6.2
and 43 times, respectively, which is quite significant. Figure 18(a)
shows the corresponding preprocessing times of these algorithms.

Consider the scalability for surface range queries (Figure 19).
Similar results can be found in the figure. In particular, the speedup
of SF using our bounds is at least 32.5 times.

6.6 Summary
In our experimental studies, our lower bound is up to 2.8 times

larger (or better) than the Euclidean distance, the popular lower
bound adopted in the literature. At ! = 1, the computation
of our upper bound computed on G0 is 10 times faster than that
of the original upper bound computed on G (with the same up-
per bound value). Importantly, all existing approaches relying on
lower and upper bounds experience considerable speedups with our
new bounds. In particular, the speedup experienced by VOR, i.e.,
the state-of-the-art algorithm, is up to 43 times for surface k-NN
queries on the largest dataset (1M vertices, k = 5), which is quite
significant.

In general, the best speedups are achieved when using our
bounds on the smaller graph. A smaller graph can give a posi-
tive effect on faster bound computations but it can also introduce a
negative effect on looser bounds (resulting in more candidates ex-
plored in some spatial queries). In our experiments, we find that !
should be set to a value smaller than 1.4 (which means a 40% error,

a large error). When ! is set to a value smaller than 1.4, the posi-
tive effect outweighs the negative effect. When ! is set to a value
larger than 1.4, in some cases, the negative effect may dominate the
positive effect.

7. CONCLUSION
In this paper, we study a fundamental operation, i.e., shortest sur-

face path computation, which is used widely in spatial queries. We
find that we can compute the shortest network distance once and
then use this distance for both the upper bound and lower bound
of the shortest surface distance, which incurs only little overhead.
In addition, when we need to compute the bounds quicker, we pro-
pose a method to generate a smaller graph from the Delaunay graph
of the terrain such that the bound computation can be faster. Our
experiments show that our lower bound is much tighter than the
best-known lower bound. They also show that the existing state-of-
art surface k-NN algorithm, i.e., VOR, can be speeded up nearly 43

times in the best case on the largest dataset.
There are a lot of promising research directions. First, it is of

interest to derive the lower bound and upper bounds of the shortest
surface path when the slope constraint is considered [8]. Second, it
is of interest to study real time spatial queries such as continuous k
nearest neighbors using our bounds.

8. ACKNOWLEDGMENTS
The work conducted by the co-authors from Aarhus University

was supported by the Reduction project, funded by the European
Comission as FP7-ICT-2011-7 STREP project number 288254.
The work done by Raymond Chi-Wing Wong was supported by
grant DAG11EG05G. The authors would also like to thank Do-
minik Scheder and Boris Aronov for valuable discussions and the
reviewers for valuable comments.

9. REFERENCES
[1] M. De Berg. Computational Geometry: Algorithms and Applications.

Springer, 2000.
[2] M. de Berg, M. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input

models for geometric algorithms. In Proc. SCG, pages 294–303, 1997.
[3] J. Chen and Y. Han. Shortest paths on a polyhedron. In Proc. SCG,

pages 360–369, 1990.
[4] D. L. Page, A. F. Koschan, M. A. Abidi and J. .L .Overholt. Ridge-valley Path

Planning for 3D Terrains. ICRA, pages 119–124, 2006.
[5] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A multi-resolution

surface distance model for k-nn query processing. VLDB J., 17(5):1101–1119,
2008.

[6] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Proc. FOCS, pages 338–346, 1984.

[7] B. Kaneva and J. O’Rourke. An implementation of Chen and Han’s shortest
paths algorithm. In Proc. CCCG, 2000.

[8] L. Liu and R. C.-W. Wong. Finding shortest path on land surface. In Proc.
SIGMOD, pages 433–444, 2011.

[9] J. O’Rourke. Computational Geometry in C. Cambridge University Press,
New York, NY, USA, 2nd ed, 1998.

[10] C. Shahabi, L. A. Tang, and S. Xing. Indexing land surface for efficient kNN
query. PVLDB, 1(1):1020–1031, 2008.

[11] S. Xing, C. Shahabi, and B. Pan. Continuous monitoring of nearest neighbors
on land surface. In PVLDB, 2(1):1114–1125, 2009.

[12] D. Yan, Z. Zhao, and W. Ng. Monochromatic and bichromatic reverse nearest
neighbor queries on land surfaces. In Proc. CIKM, pages 942–951, 2012.

[13] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen. Finding Shortest Paths on
Terrains by Killing Two Birds with One Stone (Technical Report).
http://www.cse.ust.hk/˜raywong/paper/terrain-technical.pdf


