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ABSTRACT
Top-k nearest keyword search has been of interest because of ap-
plications ranging from road network location search by keyword
to search of information on an RDF repository. We consider the
evaluation of a query with a given vertex and a keyword, and the
problem is to find a set of k nearest vertices that contain the key-
word. The known algorithms for handling this problem only give
approximate answers. In this paper, we propose algorithms for top-
k nearest keyword search that provide exact solutions and which
handle networks of very large sizes. We have also verified the per-
formance of our solutions compared with the best-known approxi-
mation algorithms with experiments on real datasets.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
2-hop Labeling, Nearest Keyword Search, Keyword-lookup Tree

1. INTRODUCTION
Massive networks are emerging as a rich source of useful in-

formation. In addition to the structural characteristics of the net-
work, users may aim to search for keyword-related data, similar
to the popularity of keyword search on the internet repositories.
Many real networks, especially the social networks, contain key-
words in the vertices. For example, in a road network, a vertex may
be labeled with a keyword of “hospital”, “highschool”, or “seven-
eleven”, etc. As pointed out in [4] and [26], some keyword queries
in a network are generated from a vertex inside the network with
an interest of looking for vertices in a near-vicinity of the network.
An example would be the search for “kindergarten” from a home
location in a road network, and the interest may be in the nearest 10
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results. Another example is the search in a social network where
the query source is from an individual in the network, and the query
is looking for some closely related others with a certain interest or
a certain skill.

We study the problem of top-k nearest keyword search in a net-
work, where the query consists of a vertex in the network, a key-
word, and an integer k for the desired number of top answers. As
in [26], we refer to this problem as k-NK. Given such a query and a
data network, an obvious solution is to apply Dijkstra’s search from
the query vertex to find the nearest vertices that contain the key-
word. However, this will not be efficient for massive graphs.Recently,
efficient query evaluation methods were proposed in [4, 26]. How-
ever, there are two issues with the existing algorithms in [4] and
[26]: (1) The algorithms do not return exact answers to the queries.
Given a graph G = (V,E) with vertex set V , and edge set E,
the algorithm in [4] incurs a (2 log2 |V | − 1) approximation factor,
which can be quite large given large values of |V |, and as shown in
[26], the resulting error is significant in their empirical study in real
graphs and good solutions can be missed. (2) Both methods [4, 26]
assume that the index can reside in main memory. This may not
be true for massive graphs and when the index size is many times
bigger than the given graph. Therefore, it remains an open problem
of handling graphs and indices resided on disk.

We take a very different approach to the problem. Instead of
constructing oracles that return approximate answers, we use an
indexing method that can return exact distance answers with fast
response time. 2-hop labeling techniques, introduce in [12], can be
found in the literature for distance querying and reachability query-
ing in a given graph. Recent works in [14, 2, 19] have shown that
a small index size is achievable for many real massive graphs. In
particular, [19] proposed an I/O efficient algorithm with scalable
complexity bounds for scale-free graphs. Hence, 2-hop labeling
technique can serve as a tool for handling the distance requirement
of the k-NK problem. We devise top-k keyword search algorithms
with the concepts behind the labeling technique. We introduce a
novel data structure called the KT index which facilitates efficient
keyword search to handle the performance issue of frequent key-
words. We propose efficient in-memory and disk-based algorithms
for k-NK when the index resides on disk.

The contributions of this paper are the following. We propose al-
gorithms for the top-k nearest keyword search problem in a massive
graph. Our algorithms return the exact answers for such queries.
For graphs that are very big so that the indices do not fit in the main
memory, we propose algorithms for efficient disk-based query pro-
cessing. We illustrate the efficiency of our proposed method by an
empirical study on real and synthetic datasets. We show that both
index construction and query evaluation for k-NK in large networks
can be handled by a commodity machine.
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Figure 1: Example Graph G1

This paper is organized as follows. We introduce the problem
definition in Section 2, and describe the existing solutions in Sec-
tion 3. In Section 4, the framework of our solution is introduced
along with the concepts of label indexing. In Section 5, we in-
troduce our memory-based solutions for k-NK. Section 6 contains
extensions for disk residence indexing for k-NK, multiple keyword
querying, and dynamic updates. An empirical study on our solu-
tions is given in Section 7. Section 8 is about related works. Section
9 concludes the paper.

2. PROBLEM DEFINITION
In this section, we introduce more formally the problem of top-k

nearest keyword search in a given network.
We are given a weighted undirected graph (network)1 G(V,E)

where V is the set of vertices in G and E is the set of edges in
G. We also use n = |V | and m = |E| to denote the number of
vertices and edges in G. Each edge (u, v) in G is given a positive
length, dG(u, v). A path p = (v1, ..., vl) is a sequence of l vertices
in V such that for each vi (1 ≤ i < l), (vi, vi+1) ∈ E. We also
denote a path (x, ..., y) by x → y. The length of a path is the
sum of the lengths of the edges along the path. Given 2 vertices
u, v in V , the distance between u and v, denoted by dist(u, v),
is the minimum length among all paths from u to v in G. Each
vertex v ∈ V contains a set of zero or more keywords which is
denoted by doc(v). The set of all keyword occurrences that appear
in the vertices in G is denoted by doc(V ) (the same keyword at
two vertices are considered two different occurrences). |doc(V )| =∑
v∈V |doc(v)|. We denote the set of vertices containing keyword

w by Vw. If vertex v contains keyword w, we say that w ∈ v.
Some of our notations are listed in Table 1.

DEFINITION 1 (k-NK querying). : Given a weighted undi-
rected simple graph (network) G(V,E), a top-k nearest keyword
(k-NK) query is a triple (q, w, k), where q ∈ V is a query vertex in
G, w is a keyword, and k is a positive integer. Given a query Q =
(q, w, k), the result is a set of k vertices in Vw, R = {v1, ..., vk}
such that there does not exist any vertex u 6∈ R, u ∈ Vw such that
dist(q, u) < maxv∈R dist(q, v).

EXAMPLE 1. Consider the unweighted graph G1 in Figure 1,
where each vertex vi is attached with a list of keywords that it con-
tains. For example, v0 contains keyword w0, v1 contains keywords
w0 andw1, etc. If the query is (v2, w0, 2) then {v2, v0} or {v2, v6}
will be returned as the answer.

3. EXISTING SOLUTIONS
Given the k-NK problem, with a query of (q, w, k), we can apply

Dijkstra’s search to compute the shortest paths from the query ver-
tex to find the nearest vertices with keyword w. However, when the
given graph is massive, Dijkstra’s search will become too costly,
and the problem becomes challenging. In this section, we summa-
rize the current state-of-the-art solutions for this problem in [4] and
[26], respectively. Both solutions are approximate.
1We shall use the terms graph and network interchangeably.

Notation Meaning
G(V,E) given graph with vertex set V and edge set E
dist(u, v) distance between u and v in G
v1 → v2 path (v1, ..., v2)
q given query vertex point
w given query keyword
k top k results are needed
Vw set of vertices in G containing keyword w
W set of all keywords in V
doc(V ) the set of all keyword occurrences in V
L 2-hop label, L = {(u, d) ∈ L(v) : v ∈ V }
L(v) set of label entries for vertex v in L
(u, d) a label entry in L(v)
Lw set of label entries in L with an end point in Vw
LB(v) ((u0, d0), (u1, d1), (u2, d2), ...) where (v, di) ∈ L(ui)

and d0 ≥ d1 ≥ ...
[x..y] a fragment (ux, ux+1, ...uy), where

((ux, dx), ..., (uy , dy)), x ≤ y, is a subsequence of LB(v)

Table 1: Some Notations Used
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Figure 2: Two Distance Oracles Oa and Ob for G1

3.1 Approximate k-NK in a graph by PMI
In the PMI (Partitioned Multi-Indexing) scheme [4], given an

undirected graph G = (V,E), a set of r distance oracles is used,
where r = p log |V |. Let the oracles be O1,O2, ...,Or . Ora-
cle Oi is built from a partitioning of V formed by 2di/pe−1 ran-
domly selected seed vertices, each of which collects vertices closer
to it than to other seeds. Each partition is transformed into a star
where the seed c is in the center and each other vertex is linked
to the seed with a distance that preserves its original distance in
the graph from the seed c. A set of p log |V | distance oracles
are constructed. With each oracle Oi, we can estimate the dis-
tance dist(u, v) for any two given vertices u and v as follows: if
u and v are in the same star with a center seed c, then the esti-
mated distance distOi(u, v) = dist(u, c) + dist(v, c); if u and
v are not in the same star, in Oi, then distOi(u, v) = ∞. The
overall estimated distance after consulting all the oracles is given
by dist(u, v) = mini distOi(u, v). The query time is given by
O(k · log |V |). It is shown in [30] that when p = θ(|V |1/ log |V |),
the estimated distance has an approximation factor of 2 log2 |V |−1
with a high probability.

EXAMPLE 2. For the graph G1 in Figure 1, two distance ora-
cles Oa and Ob are shown in Figure 2. The shaded vertices are
the chosen seeds. The estimated value for dist(v0, v2) is 4 from
Oa and ∞ from Ob, so the overall estimation is 4, which is four
times the true distance of 1 in graph G1. Given a k-NK query of
(v2, w0, 2), {v2, v1} will be returned as an answer while the true
answer should be {v2, v0} or {v2, v6}.

3.2 Approximate k-NK by shortest path trees
The authors of [26] point out that the error introduced by the

star summary in [4] can be large. In their method, multiple or-
acles are built as in [4], but in each oracle, shortest path trees
replace the star trees. They have devised some interesting tech-
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Figure 3: Shortest Path Forests Ta and Tb for G1

niques for handling k-NK on a tree T = (V,E) based on the con-
cepts of entry node and entry edge on the compact tree designed
for 1-NK in a tree [32]. Two solutions are provided for k-NK
for a graph: one is graph-boundk, assuming a bound on k, and
another solution is graph-pivot. The query time complexities are
O((log |Vw| + k) log |V |) and O(k log2 |V |), respectively, where
k is the upper bound on k. The index size without the k bound
is given by O(|doc(V )| · log2 |V |). From their empirical studies,
there is less error compared with PMI [4]. However, their solutions
still miss 10% to 20% of the true answers.

EXAMPLE 3. In Figure 3, we show the shortest path forests
Ta and Tb for the graph G1 in Figure 1, which are constructed
based on Oa and Ob. From these forests, the distance estimated
for dist(v0, v2) is 4, which is much greater than the true distance
of 1 in G1. Given a k-NK query of (v2, w0, 3), {v2, v6, v1} will be
returned as an answer while the true answer is {v2, v6, v0}.

4. PROPOSED SOLUTION FOR K-NK
We first give an outline of our main solution. We take a very

different approach compared to previous studies. We make use of
recent research results on shortest path querying for massive graphs
where it is shown that indexing based on vertex labels can be very
effective [12, 20, 14, 2, 19]. Our method makes use of the 2-hop
labeling technique, which constructs a label for each vertex. With
such labeling for all vertices, a distance query for s, t can be an-
swered by looking up the labels of s and t only.

4.1 Components of the Proposed Solutions
In this subsection, we introduce the main components of our so-

lution. The components handles keywords of different frequencies.

• Forward search (FS) component. The basic idea is to com-
pute all possible shortest paths between the query vertex q
and all vertices in Vw that contain the keyword w. This is
highly effective if the keyword is not frequent and there are
not many vertices in Vw. This is introduced in Section 5.1.

• Forward backward search (FBS) for frequent keywords. To
deal with frequent keywords, a forward backward search is
proposed. We describe this component in Section 5.2. In
Section 5.3 we describe a hybrid approach that combines the
strengths of FS and FBS.

In the next subsection, we introduce the basic ideas of label in-
dexing for the querying of shortest paths, which are important for
the components in our solution.

4.2 2-hop Labeling
Consider an undirected weighted graphG = (V,E), where each

edge (u, v) in E has a length of dG(u, v), which is a positive real
number. 2-hop labeling supports distance queries between any two
vertices s and t. A label L(v) is created for each vertex v ∈ V .
L(v) is a set of label entries (ui, di) where ui ∈ V , and di is a
positive real number serving as a distance value of a path between

L(v0) {(v0, 0)}
L(v1) {(v1, 0), (v0, 1)}
L(v2) {(v2, 0), (v0, 1)}
L(v3) {(v3, 0), (v0, 2), (v1, 1), (v2, 2)}
L(v4) {(v4, 0), (v0, 2), (v2, 1), (v3, 1), (v1, 2)}
L(v5) {(v5, 0), (v0, 2), (v1, 1)}
L(v6) {(v6, 0), (v0, 2), (v2, 1)}

Figure 4: A 2-hop Label Index for G1

ui and v. We say that u is a pivot in label entry (u, d). The set of
L(v) for all v ∈ V forms the 2-hop label index, L. L is created in
such a way that there exists a shortest path s ; t in G of length `
if and only if we can find a pivot vertex u such that (u, d1) ∈ L(s)
and (u, d2) ∈ L(t) such that d1 + d2 = `, and there does not exist
any other vertex u′ such that (u′, d′1) ∈ L(s) and (u′, d′2) ∈ L(t)
with d′1 + d′2 < `. We say that the pair (s, t) is covered by u.
We refer to (s → u → t, d1 + d2) as a path for an answer to the
distance query for s, t. Hence, the distance query can be answered
by looking up L(s) and L(t). Given a graph, we first construct a 2-
hop label index by a state-of-the-art 2-hop construction algorithm
[12, 20, 14, 2, 19], then we build our proposed indices on the 2-hop
index.

EXAMPLE 4. For the undirected graph G1 in Figure 1, a cor-
responding 2-hop label index L is shown in Figure 4. Suppose we
have a distance query asking for dist(v1, v3), we look up L(v1)
and L(v3), and find the entries (v0, 1) and (v1, 0) in L(v1), and
(v0, 2) and (v1, 1) inL(v3), respectively. Thus, we return the value
of 0 + 1 = 1 as dist(v1, v3) = (v1 → v1 → v3), since it is the
smallest distance sum for the matching pairs.

5. EXACT K-NK QUERY EVALUATION
In this section, we propose our in-memory solutions for answer-

ing k-NK queries. When the problem size is within the capacity of
the main memory, we can use the index methods described as fol-
lows for query evaluation. In Section 5.1, we introduce a method
called FS to be used when the query keyword is not frequent in
the graph. In Section 5.2, we propose another method called FBS
to be used when the query keyword is frequent. Then, we study a
hybrid method combining the strengths of the 2 methods proposed
(Section 5.3).

5.1 Forward Search (FS)
Given a query (q, w, k), forward search (FS) is to find the an-

swers by forward search from L(q) and L(y) where y ∈ Vw. For
each v, the label entries (u, d) in L(v) are sorted by u. We can ex-
amine the shortest distance between each vertex y ∈ Vw and q by
searching L(y) and L(q). The top-k nearest vertices are extracted
among all vertices in Vw by a max heap of size k.

EXAMPLE 5. For the undirected graph G1 in Figure 1 and its
2-hop label index L in Figure 4, there are 7 vertices in the graph,
most of which contain one keyword, w0 or w1, but v1 contains two
keywords w0 and w1. For graph G1, and the index L, Vw1 =
{v1, v3, v4}. Lw1 = L(v1) ∪ L(v3) ∪ L(v4).

Given query (v5, w1, 2), since Vw1 = {v1, v3, v4}, we check the
label entries in L(v1), L(v3) and L(v4) with 3 linear scans and
match with the label entries in L(v5). The result is {v1, v3}, which
is the exact solution.

The scanning of the label entries for a vertex y takesO(|L(y)|+
|L(q)|) = O( |L||V | ) expected time. When processing the labels for
each vertex in Vw, we maintain the nearest k vertices by a max
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Figure 5: Forward Backward Search on L and LB

heap of size k in O(|Vw| log k) time. On average, we have |Vw| =
O( |doc(V )|

|W | ), so totally it takes O(|Vw| |L||V | ) + O(|Vw| log k) =

O( |doc(V )|L||
|W ||V | ) time. In addition, we needO(|L|)+O(|doc(V )|) =

O(|L|) space in memory where O(|L|) space is for 2-hop index L
and O(|doc(V )|) is for an inverted list to find Vw. We call this
method forward search or FS. FS can be very effective for key-
words with low frequencies.

5.2 Forward Backward Search (FBS)
The forward search algorithm becomes inefficient when the key-

word w has high frequencies resulting in many candidates in Vw
to be checked. Here, we propose an efficient mechanism to handle
such cases by incorporating forward search and backward search
on the label index. We call this method forward backward search
or FBS algorithm. For FBS, in addition to the 2-hop index L, we
also build the following two indices.

1. 2-hop Label Backward Index, LB.

2. Keyword-lookup Tree Index, KT .

5.2.1 LB index
We first describe the 2-hop label backward index, i.e., LB index,

which consists of an index element LB(v) for each vertex v ∈ V .
Similar to L, for each vertex v, LB(v) consists of a list of label
entries (u, d). It is constructed in such a way that (u, d) ∈ LB(v)
if and only if (v, d) ∈ L(u). For each LB(v), we assume that all
the entries of the form (u, d) are sorted by non-increasing order of
the distance value, d. For example, with the label index in Figure
4, LB(v1) = 〈(v4, 2), (v5, 1), (v3, 1), (v1, 0)〉.

We denote the set of 2-hop label entries containing a vertex in
Vw as an end point by Lw. That is, Lw =

⋃
v∈Vw L(v). The

objective of FBS is to avoid scanning the wholeLw. To this end, we
search from the query vertex q and from the vertex x in each label
entry (x, d) ∈ L(q). We search for label entries in the backward
index LB(x) with vertices that contain keyword w, i.e. (y, d′) ∈
LB(x) where y contains w. A simple illustration of FBS is shown
in Figure 5. The solid lines correspond to label entries (x, d) ∈
L(q), while the dotted lines correspond to label entries (y, d′) ∈
LB(x) with (x, d) ∈ L(q). We can obtain one possible answer y
from the path (q → x→ y, d+d′). For example, given q = v5 and
w = w1, from Figure 4, (v1, 1) ∈ L(v5), since (v3, 1) ∈ LB(v1)
and v3 ∈ Vw1 , one possible answer is (v5 → v1 → v3, 2).

5.2.2 KT Index
Since LB(x) may contain vertices which do not contain key-

wordw, we need a mechanism to look up the entries of vertices that
do contain w efficiently. Moreover, if we do this lookup according
to an ordering of the distances in the entries, we can retrieve results
in a distance order so that we can stop when k results are obtained.
We introduce such a mechanism based on the tree index KT .

The keyword-lookup tree index KT is made up of an index el-
ement KT (v) for each vertex v ∈ V . KT (v) is a forest built by

breaking the set of label entries of LB(v) into fragments. Each tree
node in KT (v) contains some keyword information of a fragment,
so that the entries containing the query keyword in a fragment can
be retrieved efficiently. KT utilizes a hash function H .

DEFINITION 2. The hash function H maps vertices and key-
words to a binary number with h bits as follows. For each keyword
w, the hash function H(w) sets exactly one of the h bits to 1. For
a vertex v, H(v) is the superimposition (bitwise OR) of H(w) for
each keyword w in v. Similarly, for a vertex set X , H(X) is the
superimposition of H(v) for each vertex v in X .

In the remaining discussions we use ∧ (∨) to stand for bitwise
AND (OR). Given a set X of vertices and a keyword w, we can
determine that no vertex in X contains w if H(X) ∧ H(w) = 0.
A non-zero result indicates that w may be contained in some vertex
in X .

For each vertex v, the keyword-lookup tree index KT (v) is a
forest in which each tree node contains the compressed hash value
for a certain subset of the keywords in uwith (u, d) ∈ LB(v), such
that the tree nodes in the forest together cover all such keywords.
KT (v) enables efficient lookup of nodes containing a given key-
word with non-decreasing distances d. Before we introduce the
index, we first state some relevant notations and definitions.

We denote the label entries in LB(v) in a way that is consistent
with a sorted non-ascending order of the distances d as LB(v) =
[(u0, d0), (u1, d1), ..., (u|LB(v)|−1, d|LB(v)|−1)], so that d0 ≥
d1 ≥ d2 ≥ ... ≥ d|LB(v)|−1.

DEFINITION 3 (bit(x) AND biti(x)). The value of bit(x) is
the number of 1’s in the binary representation of x. biti(x) is the
value of the i-th significant 1-bit in the binary representation of x.

For example, 13 = (1101)2, then bit(13) = 3. bit1(13) =
(1000)2 = 8, bit2(13) = (0100)2 = 4, bit3(13) = (0001)2 = 1.

We partition the |LB(v)| label entries in the sorted LB(v) into
bit(|LB(v)|) groups according to the biti(x) values. For exam-
ples, if |LB(v)| = 13, we form bit(13) = bit((1101)2) = 3
groups. The first group consists of the first bit1(|LB(v)|) label
entries in the sorted LB(v), the second group consists of the next
bit2(|LB(v)|) label entries, etc. Likewise, we can extract the ver-
tices in the label entries and form an ordered vertex set of the form
(u0, u1, ..., u|LB(v)|−1). Sub-sequences in this ordered vertex set
are called fragments.

Hence, each group in LB(v) corresponds to a fragment S of 2i

vertices for some i, and forms a tree in the KT (v) forest. Each
node t in the tree for S corresponds to a subfragment, say, F (t) =
(ux, ux+1, ...uy) in S, and the node contains the hash value of
H({ux, ux+1, ..., uy}). We also denote this fragment by [x..y].
We say that t covers [x..y]. The root of this tree covers S. The
length of [x..y] is given by y − x + 1. For convenience, we may
refer to a node t by its fragment F (t).

In general, we partition a fragment S of size 2i, for some i > 0,
into 2 fragments of length 2i−1, and set the node of fragment S2i

as the parent of two nodes covering the 2 shorter fragments. The
partitioning is continued recursively until a fragment covers only
one vertex, forming a full binary tree with 2i+1 − 1 nodes.

In Figure 6, we consider LB(v) with |LB(v)| = 13, LB(v) is
partitioned into 3 groups forming 3 trees, T1, T2, and T3, which
are for fragments [0..7], [8..11], [12..12], respectively. The range
"[x..y]" in a node indicates that the node contains the hash value
H({ux, ux+1, ..., uy}) and covers the fragment [x..y]. For sim-
plicity, we may also refer to a node by its fragment. Hence, the
root of T1 is node [0..7] and its children are [0..3] and [4..7]. The
numbers in round brackets will be explained shortly.
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Figure 6: An example of KT (v) for |LB(v)|=13

5.2.3 Storing KT (v) in an array
Due to the structure of KT , it is possible to encode the trees as

an array of hash values without the need of storing pointers between
tree nodes. Here we propose a scheme to store KT (v) for LB(v)
in an array of length 2|LB(v)| − 1. Let KT (v, i) be the i-th ele-
ment in the array for 0 ≤ i ≤ 2|LB(v)|−2. We assign the node in
KT (v) with hash value H({ux, ux+1, ..., uy}) to KT (v, x + y),
i.e. KT (v, x+ y) = H({ux, ux+1, ..., uy}). One example of en-
coding a KT (v) for |LB(v)| = 13 in an array is shown in Figure
7. In the tree view of the index in Figure 6, the number i in a round
bracket means thatKT (v, i) stores the hash value of the node. The
KT structure allows efficient bitwise operations. A crucial property
of this array encoding scheme is given in Lemma 1. For a tree or
subtree T in KT (v), let us call the leftmost (rightmost) leaf node
the left (right) end of T .

LEMMA 1. In a forest built for LB(v) = {(ui, di)|0 ≤ i ≤
|LB(v)| − 1}, the highest tree node z in a subtree having (ux)
at the right end must have a left end covering (u(x+1) ∧ x), i.e., z
covers fragment [((x+ 1) ∧ x).. x].

PROOF. We prove by induction. When |LB(v)| = 2i for some
i ≥ 0, the lemma trivially holds sinceKT (v) is a single full binary
tree. Assume the lemma holds for 1 ≤ |LB(v)| ≤ k − 1. We next
prove that the lemma is true when |LB(v)| = k 6= 2i for any
i. Let low(k) be the value of the least significant 1 bit of k. For
example, low(12) = low((1100)2) = (100)2 = 4. A forest F for
a length k fragment consists of a forest F ′ for a length k− low(k)
fragment, built by the first k − low(k) label entries, and a tree T ′

for the fragment of low(k), built by the last low(k) label entries. If
0 ≤ x ≤ k− low(k)−1, ux is in F ′. By the induction hypothesis,
the lemma holds.

If k − low(k) ≤ x ≤ k − 1, ux is in T ′. Consider another tree
T ′′ built for some fragment [s..t] where s = 0 and t = low(k)−1.
Obviously the structure of T ′′ is exactly the same as T ′ since their
lengths are the same and an one-to-one matching exists between
the node for [s..t] in T ′′ and the node for [(s+ k − low(k))..(t+
k − low(k))] in T ′. Let the highest node in T ′ with ux at the
right end be z = [x′..x], The node in T ′′ matching z is given by
[x′ − k + low(k)..x− k + low(k)]. By the induction hypothesis,
the lemma holds for T ′′, thus,

x′ − k + low(k) = (x− k + low(k) + 1) ∧ (x− k + low(k)) (1)

Consider the binary representation of x′ − k + low(k) and k −
low(k). Since low(k) is the value of the least significant 1 bit of
k and x′ − k + low(k) < low(k), adding k − low(k) to each
term in Equation (1) only creates some new more significant 1-bits,
and does not change the original one bits of the term. Therefore,
x′ = ((x + 1) ∧ x), and the highest tree node of a subtree with
ux at the right end is [x′..x] = [((x + 1) ∧ x).. x]. Therefore, the
lemma holds when |LB(v)| = k.

For example, let x = 11, the highest tree node containing u11 at
the right end is the node for fragment [8..11], since 11 = (1011)2.

0 1 2 3 4 5 6 7 8
0..0 0..1 1..1 0..3 2..2 2..3 3..3 0..7 4..4

9 10 11 12 13 14 15 16 17
4..5 5..5 4..7 6..6 6..7 7..7 – 8..8 8..9

18 19 20 21 22 23 24
9..9 8..11 10..10 10..11 11..11 – 12..12

Figure 7: The array for keeping the forest of KT (v) for
|LB(v)|=13. KT (v, 0) = H({u0}), KT (v, 1) = H({u0, u1})...

x+ 1 = (1100)2, x ∧ (x+ 1) = (1000)2. Note that x ∧ (x+ 1)
basically removes the least significant bit one from x+ 1.

Lemma 1 gives rise to an efficient tree traversal order that will
be introduced next. The following lemmas show that the encoding
scheme is correct and space-efficient.

LEMMA 2. Each KT array entry stores at most one tree node.

PROOF. We assign the tree node for fragment [x.. y] to the (x+
y)-th element KT (v, x+ y) in the array. Firstly, nodes in different
trees cannot be assigned to the same array element because each
tree Ti corresponds to [xi.. yi] with yi < xi+1, and the array ele-
ments assigned to tree Ti have indices in [2xi, 2yi]. This implies
that they do not overlap. Secondly, when Ti contains more than
one node, the root covers fragment [x.. y] with x 6= y and has two
children, for fragments [x.. d(x+y)/2e−1] and [d(x+y)/2e.. y],
respectively. Each node in the left subtree is assigned to KT (v, i)
for some i ≤ d(x + y)/2e − 1 + d(x + y)/2e − 1 ≤ x + y − 1.
Similarly, each node in the right subtree is assigned to KT (v, j)
for some j ≥ d(x + y)/2e + d(x + y)/2e ≥ x + y + 1. Thus,
only the root node is assigned to KT (v, x + y). This argument
holds recursively for the subtrees rooted at all descendants, which
completes the proof.

LEMMA 3. The number of unused elements in the array for
KT (v) is given by bit(|LB(v)|)− 1 = O(log|LB(v)|).

PROOF. Given two trees for two successive fragments [x..y] and
[y + 1..z], the only unused element KT (v, i) for 2x ≤ i ≤ 2z
is KT (v, 2y + 1) since the maximum used element in [x.. y] is
y + y = 2y and the minimum used element in [y + 1.. z] is y +
1+ y + 1 = 2y + 2. Totally we have bit(|LB(v)|) trees, thus, the
number of unused element is bit(|LB(v)|)− 1.

From Lemmas 2 and 3, we use an array of size 2n − 1 to store
2n− bit(n) used elements, n of which correspond to the entries in
LB(v). Hence, the array size is 2|LB(v)| − 1. The next lemma is
important for the search process of KT (v).

LEMMA 4. If a tree node t onKT (v) covers fragment [x.. x+
` − 1] of length ` with x ≥ `, then KT (v) must contain another
tree node t′ covering fragment [x− `.. x− 1].

PROOF. We prove by induction. The lemma trivially holds when
|LB(v)| = 1. Assume it holds for 1 ≤ |LB(v)| ≤ k−1. Consider
|LB| = k. If k = 2i for some i, then KT (v) is a full binary tree,
the lemma clearly holds. Otherwise, KT (v) consists of a list of
full binary trees {T1, T2, ..., Ts}. Denote the number of leaf nodes
in Ti by |Ti|. The first s− 1 tree {T1, T2, ..., Ts−1} is the KT (v)
when |LB(v)| = k − |Ts|, so if t is in {T1, T2, ..., Ts−1}, the
lemma holds. If t is in Ts1 , since the last s−1 trees {T2, T3, ..., Ts}
formKT (v) when |LB(v)| = k−|T1|, the lemma also holds.
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Algorithm 1 KTsearchNext:Search Next Shortest in LB(v)

Input: keyword w, KT (v) index, the previous shortest entry
(uwi−1 , dwi−1 ) containing w

Output: the next shortest (uwi , dwi ) containing w
1: x← wi−1 − 1; `← 1; x′ ←∞; `′ ←∞
2: while true do
3: // check the fragment F = [x− `+ 1.. x] of length `
4: if KT (v, 2x− `+ 1) ∧ H(w) = 0 or ` = 1 then
5: if ` = 1 and KT (v, 2x− `+ 1) ∧ H(w) 6= 0 and ux contains

keyword w then
6: return (ux, dx) ∈ LB(v)
7: if x− `+ 1 = 0 then
8: return NULL
9: x← x− `

10: if x > x′ then
11: // still in subtree search mode
12: `← x− (x ∧ (x+ 1)) + 1
13: else
14: if x = x′ then
15: // ux precedes F , go back to length-doubling search mode
16: `← `′

17: if (x ∧ (x+ 1)) ≤ x− 2`+ 1 then
18: // Cases 1 and 2 in length-doubling search mode
19: `← 2`
20: else
21: // begin subtree search mode in the next iteration, and mark that

we enter subtree search mode in x′
22: if x′ > x− ` then
23: x′ ← x− ` // ux′ precedes F
24: `′ ← `
25: `← `/2

5.2.4 Searching the next node in KT (v) containing w
The label entries (u, d) inLB(v) are sorted in non-ascending or-

der of d. In Algorithm FBS, we want to retrieve entries of the form
(u, d) from LB(v) where u contains the query keyword w in non-
decreasing distance values of d. With KT (v), we can efficiently
extract the required entries without scanning the whole LB(v).

Denote the i-th shortest label entry in LB(v) that contains w
by (uwi , dwi). Given (uwi−1 , dwi−1), the next label entry we are
interested in is (uwi , dwi). In the following, assume that the trees
T1, T2, ... in KT (v) are listed from left to right as shown in Figure
6. The vertices with smallest distance values are on the right. We
try to find the leaf node of uwi in [0.. wi−1 − 1] from right to left
in the two following search modes: length-doubling search mode
and subtree search mode.

The general idea is to locate an ancestor of the uwi leaf node by
trying lengths 1, 2, 4, 8, etc. fragments in length-doubling search
mode. When we find such a possible ancestor, we search its sub-
trees to find uwi in the subtree search mode. If the subtrees do
not contain uwi , we resume the length-doubling search mode and
continue with the search. The pseudocode is given in Algorithm 1.

Length-Doubling Search Mode. More specifically, given query
for keyword w, each search in LB(v) begins from the length 1
fragment containing uwi−1−1, i.e., the uwi−1−1 leaf node. In gen-
eral, when we search from a node r covering fragment F = [a.. b]
of length `, if H(w) ∧H(F ) is zero, no vertex in fragment F con-
tains keyword w, then we turn to the next candidate r1 covering a
length ` or 2` fragment on the left. We repeat this process until uwi
is found or we reach [0..0]. There are several cases when doubling
the length from ` to 2`.

Case 1 : r is a tree root in KT (v). A node r1 covering fragment
[a − 2`.. a − 1] must exist in KT (v), since the tree on the left
of r must cover a fragment of length at least 2`. In Figure 6, if r

covers [8..11], then r1 is [0..7]. If r=[12..12], then r1 = [10..11].
Therefore, r1 is the next candidate to be visited.

Case 2 : r is a left child of its parent. From Lemma 4, the node r1
covering fragment [a−2`.. a−1] also exists inKT (v). Therefore,
the next step is to search r1. In Figure 6, if r covers [8..9] of length
2, r1 will be [4..7].

Case 3 : r is a right child of its parent. From Lemma 4, the
nodes for fragments f1 = [a − `.. a − 1] and f2 = [a − 3`.. a −
` − 1] exist in KT (v). In this case, we do not double the length `
immediately. Instead, we visit the length ` fragment, f1, first, and
if the bitwise AND value is zero, we then continue to check the
length 2` fragment, f2. In Figure 6, if r = [6..7], we would visit
[4..5] first and then [0..3].

The if condition at Line 17 distinguishes between Cases 1,2 and
Case 3. From Lemma 1, [x ∧ (x+ 1).. x] is the highest node with
ux at the right end, if (x∧(x+1)) > x−2l+1, then [x−2l+1.. x]
cannot exist in the tree, which means that the current node is under
Case 3, so we do not double the length.

From the 3 cases above, we can double the length of the fragment
in 1 or 2 steps.We will show that in this way an ancestor of uwi can
be located after checking O(log(wi−1 − wi)) fragments.

Subtree Search Mode. Next we consider the subtree search mode.
When the bitwise AND value in a node r covering [y.. x] of length
` (Line 4 in Algorithm 1) is non-zero, we switch to the subtree
search mode. The first step is to mark the entry into the subtree
search mode at node r by assignments x′ ← x − ` and `′ ← `
(Lines 23-24). We mark that we begin subtree search mode in node
r′ = r = [(x′ + 1).. (x′ + `′)]. The second step is to search the
right subtree under r, and if we fail to find uwi in the right subtree,
we turn to the left subtree under r. By the recursive search, we may
reach a length 1 fragment (ux) with non-zero bitwise AND value,
in which case we can determine whether ux contains w by a binary
search of the keywords contained in ux (Line 5).

If the bitwise AND returns zero at some node, so that a fragment
[a.. b] cannot contain w, we next try to search the highest tree node
containing ua−1 at the leaf at the right end. We reset x = a − 1,
and search the fragment [(x + 1) ∧ x.. x], based on Lemma 1.
Line 12 of Algorithm 1 ensures that the next iteration will check
KT (v, ((x+ 1) ∧ x) + x), for fragment [((x+ 1) ∧ x).. x].

One special case is when ux falls outside the fragment of r′,
[x′ + 1.. x′ + `′], recorded at the entry of the subtree search mode,
i.e. when x = x′ (at Line 14). It means that this fragment does
not contain w after all. In this case, we go back to length-doubling
mode and search a length 2`′ or `′ fragment on the left of r′ (the
length is set via Lines 16 and 19).

Analysis of Algorithm 1 Algorithm 1 is a key function in FBS. It
traverses the KT tree and checks if the given keyword may exist
in the subtree under the current node by means of the hash function
H . A false positive alarm occurs if the bitwise AND operation at
Line 4 of Algorithm 1 returns a non-zero value when keyword w is
not contained in any vertex in [x − ` + 1.. x]. Such an alarm will
affect the runtime. Let p be the probability that a correct result is
returned by the bitwise AND operation.

THEOREM 1. Assume in each node of KT (v), the false posi-
tive rate is at most 1 − p, and p > 1

2
. Given uwi−1 and KT (v),

assuming equal probability for uj = uwi for all 0 ≤ j < wi−1, the
expected time for searching the next (uwi , dwi) is O(log(wi−1 −
wi) + log |doc(V )|

|V | ).

PROOF. Let the distance between wi−1 and wi be l = wi−1 −
wi. We define two functions f(h) and g(h). f(h) is the expected
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cost of searching a tree T in KT index with height h when T ac-
tually contains the query keyword w. g(h) is the expected cost of
searching a tree T in KT index with height h where T does not
contain w. In a KT (v), the l label entries between {uwi , dwi} and
{uwi−1 , dwi−1} are partitioned into h1 = O(log l) trees, so in Al-
gorithm 1, we search the O(log l) trees to find the wi. The cost of
Algorithm 1 is bounded by cost1 =

∑h1
i=0 g(i) + f(h1). We anal-

yse f(h) and g(h) next to show that cost1 isO(h1+log |doc(V )|
|V | ).

When searching a tree node containing w of height h, it is pos-
sible that w is in its left subtree or in its right subtree with 0.5
probability each. When h = 0, it corresponds to a single vertex
ux, so we can check whether ux contains w by a binary search. In
brief, the cost f(h) is as follows.

f(h) =

{
1 + f(h−1)

2
+ g(h−1)+f(h−1)

2
for h > 0

O
(
log |doc(V )|

|V |

)
for h = 0

The analysis of g(h) is similar to f(h). On a tree node of height
h that does not contain w, the probability that we further check its
children is 1− p. When h = 0, a binary search in O(log |doc(V )|

|V | )

time can ensure that w is not in the tree. Thus, g(h) is given by

g(h) =

{
1 + (1− p)× 2× g(h− 1) for h > 0

O
(
log |doc(V )|

|V |

)
for h = 0

Suppose p > 1
2

. Let a constant c = 2(1− p).
For h ≥ 0, g(h) = O

(
ch log |doc(V )|

|V | + 1−ch
1−c

)
, and f(h) =

O
(
h+ log |doc(V )|

|V | + h
1−c +

1−ch
1−c

(
1
2
log |doc(V )|

|V | − 1
1−c

))
That is, g(h) = O(ch log |doc(V )|

|V | ), f(h) = O(h+log |doc(V )|
|V | ).

Consider the upper bound cost1 of Algorithm 1, cost1 = O(h1 +

log |doc(V )|
|V | ). Therefore, the time complexity of Algorithm 1 is

O(log(wi−1 − wi) + log |doc(V )|
|V | ).

The probability p can be made large by limiting the number of
frequent keywords and using a universal hash function [10]. A false
positive affects efficiency when searching uwi given uwi−1 , but
such a tree node must correspond to a fragment [x..y] with wi−1 <
x ≤ y < wi. In real datasets, wi − wi−1 is usually small and
the fragment [x..y] typically contains a very small set of keywords.
We will introduce an enhanced KT construction to further reduce
this keyword set. Therefore, probability p is high in practice and
Algorithm 1 performs well in our experiments.

5.2.5 KT construction
The KT construction has not been introduced yet. Inspired by

the tree traversal order in KTsearchNext, we can build the tree in
a similar way. The generation of the nodes in KT (v) follows a
right-to-left preorder traversal of the trees in KT (v). Suppose we
have trees T1, ..., Tk in KT (v), we visit the trees in reverse order
from Tk to T1, in each tree, we visit the root first, then recursively
visit the right subtree, followed by the left subtree. E.g., the nodes
in Figure 6 are constructed in the following order: 24, 19, 21, 22,
20, 17, 18, 16, 7, 11, 13, 14, 12, 9, 10, 8, 3, 5, 6, 4, 1, 2, 0.

Enhanced KT Construction. The KT Construction algorithm de-
scribed in the above can be further improved by some careful ob-
servations. In Algorithm 1, two cases lead to visiting a node r of
fragment [x− `+ 1..x].

Case 1 : we visit [x− `+1..x] in length-doubling search mode.
Hence, before visiting r, we must have visited either [x+1..x+ `]

Algorithm 2 KT Construction
Input: 2-hop backward index LB(v)
Output: keyword-lookup tree index KT (v)
1: sort all (u, d) ∈ LB(v) in non-ascending order of d
2: let the sorted sequence be (ui, di) for 0 ≤ i ≤ |LB(v)| − 1
3: KT (v)← an array from KT (v, 0) to KT (v, 2|LB(V )| − 2)
4: t← |LB(v)| − 1
5: s← t ∧ (t+ 1)
6: while true do
7: KT (v, s+t)← H({w|w ∈ ui for some i, s ≤ i ≤ t, andw /∈ uj

for every j, t + 1 ≤ j ≤ 2t − s}) where {(ui, di), (uj , dj)} ⊆
LB(v)

8: if s = t then
9: if s = 0 then

10: return KT (v)
11: t← s− 1
12: s← t ∧ (t+ 1)
13: else
14: s← d(s+ t)/2e

or [x+1..x+ `/2]. Thus, we can be sure that ui with x+1 ≤ i ≤
x+ `/2 does not contain the query keyword w.

Case 2 : we visit r in subtree search mode. Suppose that r′

of fragment [x′ − `′ + 1..x′] with length `′ is the node where
we begin the subtree search. We must have visited r′ in length-
doubling search mode and according to Case 1, we can be sure that
ui with x′ + 1 ≤ i ≤ x′ + `′/2 does not contain w. Thus, ui with
x+ 1 ≤ i ≤ x+ `/2 cannot contain w since x ≤ x′ and ` ≤ `′.

In either case, when visiting a node r of fragment [x− `+1.. x],
we know that ui with x + 1 ≤ i ≤ x + `/2 cannot contain the
query keywordw. If we have known that fragment [x+1.. x+`/2]
does not contain w, we must have visited the node r1 of fragment
[x + 1.. x + `/2] or some ancestors of r1, which means we can
at least make sure that uj with x + `/2 + 1 ≤ j ≤ x + `/4 also
cannot contain w according to Cases 1 and 2 above. Overall, when
visiting a node r of fragment [x − ` + 1.. x], it always holds that
ui with x + 1 ≤ i ≤ x + `/2 + `/4 + ... + 1 = x + ` − 1 does
not contain the query keyword w.

It is equivalent to say that if we query a keyword w′ which is
contained in fragment [x+1.. x+ `− 1], we cannot visit the node
r of fragment [x − ` + 1.. x] in Algorithm 1. Therefore, we can
improve the hash value of r by excluding a keyword w′ if w′ is
contained in fragment [x+1.. x+`−1], i.e. KT (v, 2x−`+1) =
H({w|w ∈ ui for some i, x−`+1 ≤ i ≤ x, andw /∈ uj for every
j, x+1 ≤ j ≤ x+`−1}) For instance, in Figure 6, the hash value
of node 11 of fragment [4..7] does not consider any keyword that
appears in u8, u9 or u10. From our experiment, the above strategy
typically improves the query time by 10 to 20 %.

5.2.6 Query Evaluation
Next, we consider how to answer a k-NK query givenL, LB and

KT by algorithm FBS. For a query (q, w, k), we denote the i-th la-
bel entry in L(q) by (xi, di). For each xi, we denote the j-th short-
est label entry in LB(xi) containing keyword w by (yiwj , d

i
wj ).

The main idea in the query evaluation process is to maintain a
double-ended priority queue PQ of size k containing some can-
didate answers, i.e. some paths (q → xi → yiwj , di + diwj ). The
key value for the PQ is the value of di + diwj .

Priority Queue Initialization. In the beginning, we scan the en-
tries in L(q). For each (xi, di) ∈ L(q), we extract the short-
est label entry (yiw1

, diw1
) in LB(xi) containing w by searching

KT (v). Some paths (q → xi → yiw1
, di + diw1

) are gener-
ated as candidates and pushed into the priority queue PQ. The
size of PQ is at most k. When we try to insert a new candidate
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Algorithm 3 FBS Query Evaluation for k-NK
Input: vertex q, keyword w, k, 2-hop index L, 2-hop backward index LB

and keyword-lookup tree KT
Output: the top-k nearest vertices from q with keyword w
1: double-ended priority queue PQ ← ∅ where the shortest distance

(minimum key) is d∗ and the longest distance (maximum key) is d#
2: ans← ∅
3: for each (xi, di) ∈ L(q) do
4: (yiw1

, diw1
)← KTsearchNext(w, KT (xi), (yi|LB(xi)|

,∞))

5: if (yiw1
, diw1

) 6= ∅ then
6: InsertPQ((q → xi → yiw1

, di + diw1
))

7: while |ans| < k and PQ 6= ∅ do
8: pop (q → xi∗ → yi

∗
wj∗

, d∗) from PQ

9: ans = ans ∪ {yi∗wj∗ }
10: for each (q → xi → yiwj , di + diwj ) linked to yiwj = yi

∗
wj∗

do
11: while j < k do
12: j ← j + 1
13: (yiwj , d

i
wj

)←KTsearchNext(w,KT (xi), (yiwj−1
, diwj−1

))
14: if (yiwj , d

i
wj

) 6= ∅ and yiwj /∈ ans then
15: InsertPQ((q → xi → yiw1

, di + diw1
))

16: break
17: return ans

Function InsertPQ(q → x→ y, d)

1: if ∃(q → x′ → y, d′) ∈ PQ then
2: if d′ > d then
3: replace (q → x′ → y, d′) with (q → x→ y, d)
4: link (q → x→ y, d) with y
5: else
6: if |PQ| < k − |ans| then
7: PQ = PQ ∪ (q → x→ y, d)
8: else
9: if d# > d then

10: replace (q → x# → y#, d#) with (q → x→ y, d)

(q → xi → yiw1
, di + diw1

) into PQ, we firstly check whether
another (q → x′ → yiw1

, d′) ∈ PQ exists. If so, we link them
together in a linked list for yiw1

and set the shortest distance in the
linked list as the shortest distance for yiw1

. If such an entry does not
exists and PQ is not full, we insert (q → xi → yiw1

, di+d
i
w1

) into
PQ. If PQ is full, we compare the longest path (with maximum
key) in PQ with the candidate path, if the candidate is shorter, it
replaces the longest path with the maximum key for PQ.

Extracting Minimum Entries from PQ. After initialization, we
pop the path (q → xi∗ → yi

∗
wj∗ , d

∗) ∈ PQ with the minimum dis-
tance d∗ from PQ one by one. Each time such an entry is popped,
we update PQ by an attempt to insert the path p to the next yi

∗
wj∗+1

.

The next yi
∗
wj∗+1

entry is looked up from the index tree ofKT (xi).

Note that since the popped yi
∗
wj∗ may be linked to multiple xi, we

search the next yiwj+1
for all of them. The insertion process is sim-

ilar to the PQ initialization. We stop the above process when k
minimal values (answers) are popped from the priority queue or
the priority queue is empty.

The invariants during the query evaluation process after the ini-
tialization of PQ are that the next best answer is the minimum key
value in the priority queue, and that for each xi in L(q), all the
LB(xi) entries not examined so far have key values greater than
the current entry from LB(xi) that is in PQ or have values greater
than the maximum value in the queue. From these invariant prop-
erties, we can show that the algorithm is correct.

Complexity Analysis. In Algorithm 3, there are O(|L(q)|) label
entries in L(q) and O(k|L(q)|) label entries in LB are inserted

into and removed from PQ. We can implement the double-ended
priority queue PQ by an interval heap [33]. The PQ size is k, so
it takes O(k|L(q)| log k) time to maintain the PQ. Besides, we
need to search KT (x) up to k times to search the next yi

∗
wj∗ for

each x. Denote the distance between wj−1 and wj by lj , l1 = w1,
then

∑k
j=1 lj ≤ |LB(x)|. From Theorem 1, the total expected

time complexity of the k searches of KT (x) is O(
∑k
i=1(log li

+ log |doc(V )|/|V |)).
Note that

∑k
i=1 log li = log

∏k
i=1 li ≤ log(

∑k
j=1 lj/k)

k ≤
k log |LB(x)|

k
, where |LB(x)| is the average size of a backward la-

bel. Overall, a k-NK query can be answered in O(k|L(q)|(log k+
log |LB(x)|

k
+ log |doc(V )|

|V | )) = O
(
k |L||V | log

(
|L|
|V |
|doc(V )|
|V |

))
ex-

pected time. Unlike the case with FS algorithm, the complexity
does not depend on the keyword frequency, |Vw|. From studies in
[19, 2], |L|/|V | is small in many real graphs and the bound will
become O(k log(|doc(V )|/|V |).

5.3 Combining FS and FBS

Since FS and FBS are efficient for keywords with low and high
frequencies, respectively, we adopt a hybrid approach, called FS-
FBS; if keyword frequency is high, use FBS search, otherwise,
use FS search. A simple threshold is a median point so that half
the keyword occurrences are handled by FS and half by FBS.
Let us analyze this threshold assuming a Zipf’s distribution [38,
25]. Consider the frequency freq(w) of word w and its rank r(w)
in a document, which means that w is the r(w)-th most frequent
word. Zipf’s law states that freq(w) ∝ 1

r(w)α
where α ≈ 1, or

freq(w) = cr(w)−α where c is a constant.
For a graph with |W | keywords and |doc(V )| keyword occur-

rences, suppose we set
√
|W | as a threshold. The

√
|W |-most

frequent keywords are handled by FBS algorithm, while the others
are by FS. Assume that α = 1. The sum of frequencies of the top i
highest ranked words is proportional to the i-th Harmonic number,
Hi =

∑i
r=1

1
r
= ln i+γ+εi < ln i+1. The total word frequency

for the top
√
|W | is proportional to

∑|W |1/2
r=1

1
r
≈ ln(|W |1/2).

Therefore, the top
√
|W | keywords are expected to contain about

half of the |doc(V )| keyword occurrences since ln(|W |1/2)
ln(|W |) = 1/2.

Let freqmax be the frequency of the most frequent word. As-
sume that the frequency of the least frequent word is 1, which
is typically true in real datasets, we have freqmax = c × 1−α

and 1 = c × |W |−α. Therefore, the frequency of the
√
|W |-

th most frequent word w′ is freq(w′) =
√
freqmax. For in-

stance, In our experiment, for the DBLP dataset, FS only takes
freq(w′) ≈

√
freqmax = 800 2-hop distance searches in the

worst case. The average frequency of a keyword handled by FS
is given by |doc(V )|

2(|W |−
√
|W |)

, which is typically very small. E.g., for

DBLP, it is given by 12842501
2(331301−576)

≈ 19 . Thus, query processing
is highly efficient.

6. EXTENSIONS
Here, we extend our work in three ways: a disk-based approach

for k-NK, handling of multiple keywords, and index maintenance
for dynamic updates of keywords and the graph.

6.1 Disk-based Query Evaluation
We introduce an IO-efficient algorithm for disk-based querying.

The idea of this method is consistent with Figure 5. We call this
algorithm High-index-Low-index-Querying, or HLQ for short.
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High and Low Indices. Given a 2-hop index L, we generate an
LB index as the FBS algorithm. From LB, we derive index Lw for
each keyword w. For each vertex v, Lw(v) is a list of label entries
(u, d). If (u, d) ∈ LB(v) and u contains keywordw, then (u, d) ∈
Lw(v), and thus, Lw is a w-related backward index. Querying the
k-th nearest vertices containing keyword w from vertex q is based
on a forward search on L(q) and a backward search on Lw. After
Lw for each keyword w is generated, it is partitioned into the w-
related high index and the w-related low index, or HIw and LIw
for short. The partitioning is based on two vertex sets VHI and
VLI , where VHI = {v ∈ V |∀u /∈ VHI , |LB(v)| ≥ |LB(u)|}
and VLI = V − VHI . For each keyword w, Lw(v) ⊆ HIw iff
v ∈ VHI , and we denote each (u, d) ∈ Lw(v) ⊆ HIw as (v →
u, d) ∈ HIw(v) ⊆ HIw. Similarly, Lw(v) ⊆ LIw iff v ∈ VLI ,
and we denote each (u, d) ∈ Lw(v) ⊆ LIw as (u, d) ∈ LIw(v).
We can set different |VHI | to control the size of high index and low
index. In our empirical study, |VHI | = |V | × 1% is a good value
for the index. Thus, we obtain a small vertex set VHI that covers
a large proportion of label entries, while HIw is the keyword w-
related backward index covered by the small vertex set.

For each v ∈ VLI and keyword w, all the (u, d) ∈ LIw(v) are
stored in the non-descending order of dist d as a list of pairs (u, d)
on a disk. We can locate the beginning of the list given v and w
by a disk-based B+ tree. However, the order of label entries in
HI stored on the disk is quite different. Consider the label en-
tries in HIw(v), that is, {(v → u1, d1), (v → u2, d2), ..., (v →
us, ds)} ⊆ HIw. Denote the rank of entry (v → ui, di) by
rv(ui, di), implying that distance di is the rv(ui, di)-th shortest
distance among the s entries of HIw(v). For each HIw, all (v →
u, d) ∈ HIw are stored in the non-descending order of rv(u, d) as
a list of tuple (v, u, d) on the disk.

Query Evaluation. Given a query (q, w, k), we use a forward
search on L(q), and a backward search on HIw and LIw in the
disk-based query evaluation. There are mainly 3 steps as follows.

Step 1: Read all the label entries in L(q) into memory. Initialize
a max-heap of size k for the answer set.

Step 2: Create an empty set H ′ in memory. For each (x, d) ∈
L(q), if x ∈ VHI , put (x, d) into H ′ for Step 3. Otherwise, if x ∈
VLI , read k label entries (y, d′) ∈ LIw(x) from disk. Meanwhile,
try to update the answer set by the path (q → x, d) + (x→ y′, d′)
with distance d+d′. When d+d′ is not shorter than the current k-
th shortest result in the answer set, we stop reading LIw(x). Then,
the next x in (x, d) ∈ L(q) is checked iteratively.

Step 3: Read the high label entries (xh → yh, dh) ∈ HIw from
disk. If there exists an entry (xh, d) ∈ H ′ from Step 2, try to update
the answer set by the path (q → xh, d) + (xh → yh, dh) with
distance d+dh. When an xh is encountered such that the k highest
ranked label entries in HIw(xh), i.e. {(xh → u1, d1), (xh →
u2, d2), ..., (xh → uk, dk)}, have been read, the algorithm stops.

Partitioning the second hop indexLw into theHI andLI indices
is based on the high-coverage property of HI in the 2-hop labeling
[19, 2, 1]. A large proportion of shortest paths (q → x → y) go
through some x ∈ HI . Finding the first hops (q → x) is easy by
reading L(q), and we can discover most answers by getting their
second hops (x→ y) with x ∈ VHI by a partial scan of HIw. The
remaining paths going through x ∈ VLI should be rare, and hence,
their second hops in LIw(x) can be retrieved with a small I/O cost.

Complexity Analysis. If a vertex u contains r different keywords
w1, w2, ..., wr , each label entry (u, d) will appear r times in Lw1 ,
Lw2 , ..., Lwr , and is partitioned into either HI or LI . Thus, on
average, we requireO(|doc(V )|/|W |) times the storage size of the
2-hop label index, totally O( |doc(V )||L|

|W | ) space. Let B be the disk

block size. We can show that the overall expected I/O complexity
is given by O( |L||V |d

k
B
e+ d k|VHI |

B
e).

6.2 Handling Multiple Keywords
For multiple keyword queries, we consider two possibilities in

the query requirement: a conjunction of keywords (w1

∧
w2...

∧
wp)

and a disjunction of keywords (w1

∨
w2 ...

∨
wp).

We discuss the extension for disjunctive multiple keyword query-
ing in the following. Querying (q, w1

∨
w2...

∨
wp, k) returns the

nearest k vertices of q, each of which contains w1, w2, ..., or wp.
The index construction of disjunctive query is exactly the same as
that of the index for single keyword queries. We begin with FBS
to handle the keywords {w′1, ..., w′h} ∈ {w1, ..., wp} with high
frequencies that are indexed in KT and LB index. We initialize
a priority queue as in the single-keyword case introduced in Sec-
tion 3, and update the priority queue by searching the KT index
and the LB index. When searching a node (x, y) on tree KT (v),
we continue the length-doubling mode when H({w′1, ..., w′h}) ∧
KT (v, x + y) is zero; otherwise, we switch to the subtree search
mode. The recursive search ends when a leaf node containing one
of the keywords is reported. Meanwhile, the same operations as in
single keyword case are conducted to maintain the priority queue.
The remaining keywords with low frequencies {w′h+1, ..., w

′
p} ∈

{w1, ..., wp} can be handled by FS. The vertices in the candidate
set
⋃
h<j≤p Vw′j are checked to update the answers from FBS.

For conjunctive querying, we follow a similar approach. We use
FS when keyword with lowest frequencies is infrequent; otherwise,
we run FBS similarly except that the subtree search mode only be-
gins when H({w1, ..., wp})∧KT (v, x+ y) = H({w1, ..., wp}).

6.3 Handling Dynamic Updates
Our solutions support keyword updates naturally. Maintaining

the set Vw is sufficient for updating in algorithm FS. When a key-
word w is inserted into or removed from a vertex v, we simply
update v in the set Vw, so that when running FS, the vertices con-
taining w can be efficiently identified. In algorithm FBS, we main-
tain word updates by updating the KT index. When a keyword w
is added to or deleted from a vertex v, we update KT (u) for each
{u, d} ∈ L(v). The path in KT (u) from the root to the leaf node
containing v should be updated by recomputing the hash values.

When the graph structure is updated, we may adopt existing
methods [37, 3, 6] to update the 2-hop structure. After label entries
are inserted into or removed from the 2-hop index, the correspond-
ing entries in the LB index and affected trees in the KT index are
updated. If a new label entry (u, d) is inserted into L(v), the entry
(v, d) will be included in LB(u). The KT index can adopt lazy
updates by sharing a leaf node by multiple vertices for insertion in
LB(v). For lazy deletions in LB(v), we may have leaf nodes with
no vertex. More studies will be needed on the effect of updates.

7. EXPERIMENTS
We compare the proposed algorithms, i.e. memory-based FS-

FBS and disk-based HLQ, with the baseline algorithm Dijkstra,
and the best-known approximation algorithms, PMI algorithm [4]
and pivot-gs algorithm [26]. Both PMI and pivot-gs were imple-
mented by the authors of [26]. Algorithm Dijkstra runs a Dijkstra
search in memory to find the vertices containing the query key-
word. The experiments are run on a Linux machine with 3.4GHz
CPU, 32GB memory, 1TB 7200 RPM hard-disk, GNU C++.

Datasets. We use three real datasets, DBPEDIA, DBLP, and Florida
road network FLARN, as listed in Table 2. DBPEDIA is a RDF
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1 2 4 8 16 32 64 128
0.47 0.52 0.54 0.56 0.56 0.57 0.61 0.65
0.87 0.89 0.89 0.88 0.85 0.83 0.83 0.84
1.00 0.72 0.49 0.37 0.29 0.32 0.32 0.33
1.00 0.97 0.86 0.75 0.67 0.60 0.55 0.53

1 2 4 8 16 32 64 128
0.30 0.31 0.32 0.33 0.34 0.38 0.41 0.46
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1.00 0.66 0.76 0.78 0.81 0.81 0.82 0.84
1.00 0.92 0.92 0.93 0.93 0.92 0.93 0.93

(a) DBPEDA (b) DBLP (c) FLARN
Figure 8: Comparison of Average Query Time and Accuracy by Hit Rate(HR) and Spearman’s rho(S-ρ) [HR(FS-FBS) = S-ρ(FS-FBS) ≡ 1]

|V | |E| |doc(V )| |W |
DBPEDIA 1,121,413 4,529,420 8,312,816 541,376

DBLP 1,695,469 4,726,801 12,842,501 331,301
FLARN 1,070,376 1,356,399 6,966,665 2,730

Table 2: Real Dataset Statistics

graph crawled from Wikipedia2. If there is a page link between
the Wikipedia pages of two persons, their vertices are connected
by an unweighted edge. The DBLP network3 contains 1,060,763
publications, 631,589 authors, and 3,117 conferences or journals
as vertices. As in [26], we assign the weight of an edge (u, v) by
log2 deg(u) + log2 deg(v) where deg(u) is the degree of vertex
u. In the FLARN network4, the keywords of vertices are obtained
from the OpenStreeMap project5 with a bounding box. From this
source, only 7127 vertices contain keywords. Following [26], we
have assigned a random number (between 0 and 4) of keywords to
the vertices with no keywords and the stop words are removed.

We generated 1000 queries for each dataset. In a query (q, w, k),
the vertex q is randomly picked from the vertex set, and the key-
wordw is selected following the keyword distribution in the dataset.
k is varied from 1 to 128.

Comparison with Approximation Algorithms. We compare FS-
FBS, the approximation algorithms PMI [4] and pivot-gs [26], Di-
jkstra’s algorithm and the disk-based algorithm HLQ in Figure 8
showing their query times and the accuracies of the approxima-
tion algorithms. The query times of the Dijkstra algorithm and the
disk-based HLQ algorithm are also reported. Since the coding of
PMI and pivot-gs provided by the authors of [26] can only run on
Windows platform, and requires 128GB memory, we compare our
exact algorithm FS-FBS with the approximation algorithms in a
Windows workstation with 3GHz CPU and 128GB memory.

The accuracies of the approximation algorithms are evaluated by
hit rate and Spearman’s rho as in [26]. Hit rate gives the percentage
of answers that are among the top-k. Spearman’s rho [31] measures
the correlation coefficient of the ranks of the reported result and the
exact result. Note that the hit rate and Spearman’s rho of our al-
gorithm FS-FBS are always 1, which are ≈ 80% better than those
of PMI and improve over 20% of those of pivot-gs. Meanwhile,
the query time of FS-FBS is always small without any loss of accu-
racy. Furthermore, in DBPEDIA, where the accuracies of the two
approximation algorithms are low, FS-FBS is even faster than the

2http://dbpedia.org
3http://www.informatik.uni-trier.de/∼ley/db
4http://www.dis.uniroma1.it/challenge9/download.shtml
5http://wiki.openstreetmap.org/
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Figure 9: Scalability of FS-FBS in synthetic datasets

state-of-the-art algorithm pivot-gs. FS-FBS not only achieves good
performance in querying, but also has very a competitive indexing
cost, as shown by the indexing times and index sizes in Figure 13.

Figure 8 also shows how the query time varies with k. With the
growth of k, the query time of FS-FBS or HLQ only increases very
slowly. Even when k = 128, FS-FBS can finish in milliseconds.
This shows the efficiency of the FS-FBS algorithm. Although the
disk-based algorithm HLQ is not as fast as the memory-based so-
lutions, it does not require keeping the entire index in memory,
instead, only loading a piece of the index is sufficient for querying.

Results on Scalability of FS-FBS. Two sets of experiments are
conducted to test the scalability of our algorithm. We first ran-
domly sample subgraphs with various sizes from DBPEDIA dataset
to show the differences of querying performances of FS-FBS. The
query time and the sizes of sampled subgraphs can be found in Fig-
ure 10, whose caption shows the average hit rate and Spearman’s
rho. PMI algorithm is inaccurate, while pivot-gs is almost domi-
nated by FS-FBS with exact answers and faster query time.

The second set of experiments is based on large synthetic graphs
generated by Generalized Linear Preference(GLP) model [7] fol-
lowing [14, 19]. We randomly assign keywords into the graphs
following Zipf’s law by setting α = 1.4 according to linguistics
studies on English language [25]. The default setting of the graph
is (|V | = 10M, |E| = 50M, |doc(V )| = 50M, |W | = 1M). The
query times of varying |V | and |E| are reported in Figure 9. Due to
the huge memory consumption, neither PMI nor pivot-gs can build
the index for the large graphs in the 128GB RAM machine.

Effects of Keyword Frequencies. We verify the performance of
our memory-based algorithm when querying keywords with dif-
ferent frequencies in Figure 11 (a). The cases only using FS or
FBS are also compared to show the improvement of adopting the
hybrid approach FS-FBS in Figures 11 (b) and (c). Each figure
shows a trend of 1000 top-32 queries. When querying keywords
with low frequencies on the left side of Figure 11(a), the query
time steadily increases with the frequency, since we use FS to han-
dle them. When the frequency is high on the right side of Figure
11(b), the query is processed by FBS, so the query time is quite sta-
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Figure 11: Query Time varying Keyword Frequencies
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Figure 12: Multi-Keyword Querying in DBPEDIA

ble when the frequency increases. FS or FBS alone fails to perform
as fast as FS-FBS. With FS, querying keywords with high frequen-
cies is slow. The FBS performance can be explained by the time
complexity derived in Section 5.2. When the frequency is high, the
keyword is more likely to be contained in a label entry, so the dis-
tance li between two consecutive label entries with the keyword is
smaller. FBS cannot handle keywords with low frequencies as fast
as FS. Furthermore, when the frequency is high, FBS is slower than
FS-FBS since it maintains a larger keyword set in the index. The
experimental results are consistent with our analysis in Section 5.
We also show that the query time of HLQ is steady in Figure 11(d)
since the query time is dominated by disk I/O for querying.

Results on Multiple Keyword Querying. Results of querying
DBPEDIA with multiple disjunctive keywords are shown in Fig-
ure 12. The index for multiple keyword querying is exactly the
same as the one in a single keyword case. We vary the number
of keywords from 1 to 4. The selection of keywords follows the
keyword distribution as in the single-keyword querying. FS-FBS
dominates pivot-gs in the query time since FS-FBS can combine
the keywords in one single search of the KT-index, while pivot-gs
involves m searches for m keywords. When doubling the number
of keywords, the query time of FS-FBS grows by only 60 % on av-
erage, compared with nearly 90% longer time for PMI and pivot-gs.
The results for DBLP and FLARN are similar in the trends.

Results on Indexing. We adopt the HopDB algorithm [19] and
CH algorithm [15] to construct the 2-hop index. Given a 2-hop
index, we construct the memory-based index for FS-FBS and the
disk-based index for HLQ. The results on the indexing time and
the index size are shown in Figure 13. The 2-hop indexing time is
included in the indexing time of memory-based algorithm FS-FBS
and disk-based algorithm HLQ. The memory-based index size is
small enough to fit in memory for efficiency querying. The disk-
based index is a few times larger, but only loading a few pages
rather than the entire index into memory is sufficient for querying.
In two of the three datasets, the index size of FS-FBS is smaller than
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Figure 13: Indexing Statistics

the best-known approximation algorithm pivot-gs, and only slightly
larger than the approximation algorithm PMI which is not accurate,
as shown in Figure 8. The results show that we can handle graphs
with millions of vertices and edges on a commodity machine with
acceptable indexing time and index size.

In the memory based algorithm FS-FBS, a frequency threshold
is set when the FS algorithm is combined with the FBS algorithm.
Other than the

√
|W | threshold from Section 5.3, we also consider

a few simple choices, including the median, lower quartile and up-
per quartile where FBS will handle half, a quarter, and 3 quarters
of the keyword occurrences, respectively. For each threshold, we
measure the average query time, and select the best threshold. The
selected thresholds for DBPEDIA, DBLP, and FLARN are 618,
2221, and 1556, respectively. The time for threshold selection has
been included in the indexing time in Figure 13. For HLQ, we se-
lect the threshold of |VHI | = |V | × 1% for the boundary between
HI and LI. Varying the threshold by up to a factor of 10 has little
impact on the querying time.

8. RELATED WORK
As discussed in Section 3, existing works that are exactly related

to the k-NK problem are reported in [32, 4, 26]. There are other
keyword search problems that are of some different characteristics.
The general idea of keyword search is to find a subgraph in a given
graph that contains the query keywords. The subgraph can be of the
form of a tree in some cases. BANKS in [5] converts a relational
database into a graph and answers to keyword queries are directed
subtrees in the graph. Given a directed graph, the keyword search
in [16] returns top ranked subtrees in the graph that cover the query
keywords. Blinks [18] also considers directed graph and given a
keyword query, an answer is a subtree in the graph that covers the
keywords and the root of the subtree can reach all the keywords.
Top-k results are top k subtrees with different roots. The graph type
of r-clique is introduced in [21] as the form of expected answers.
An r-clique is a set of vertices in the given graph which covers
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the given query keywords and the distance between any pair of the
vertices in this set is no longer than r. Both exact and approximate
algorithms have been proposed in [21]. Querying the neighbors of
a vertex in a compressed social network is considered in [24].

The methodology of 2-hop labeling is proposed in [12] and this
technique has been found very useful for shortest path problems in
road networks and in other networks. The problem of P2P (Point to
Point) distance querying has been well studied for road networks.
Some previous works include [1, 28, 15, 27, 29]. For other net-
works, P2P distance querying has been considered by numerous
works such as [30, 17, 11, 12, 20, 34, 14, 2, 19]. Some of these
works adopt 2-hop labeling techniques, including [12, 20, 14, 2,
19]. The technique of storing a tree in an array is adopted in other
data structures such as the binary heap [35] and the Fenwick tree
[13]. However, to the best of our knowledge, no existing struc-
ture supports a space-effective scheme with time-efficient retrieval
operations for our application as the proposed KT tree.

Keyword search in spatial databases has been of great interest
and a lot of interesting results have been produced, some recent
works include [9, 36, 23, 8, 22]. However, since spatial data are
based on spatial coordinates, the techniques in these work cannot
be applied to general graphs as in our k-NK problem.

9. CONCLUSION
In this paper, we study the problem of top-k keyword search in

large networks, which is useful for different applications. While
existing solutions provide only approximate answers with large er-
ror bounds, we propose the first exact algorithms for this problem.
We have designed algorithms for in-memory querying if the index
can reside in memory. We also propose a disk-based algorithm for
querying from an index on disk. We have conducted experiments
in three large real networks and demonstrated that our methods are
highly efficient. The in-memory querying can be finished in mil-
liseconds, while the disk-based querying takes no more than a small
fraction of a second.
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