A Appendix-I: Preliminaries for Gaussian Process Regression

The Gaussian Process Regression involves two steps. Firstly, we need to introduce the prior by specifying a prior mean function and a prior covariance function. After that, we can use these functions to calculate a posterior mean function. The posterior mean function is exactly the estimator $\hat{\eta}(\mathbf{x})$ that we want. We introduce these two steps one by one in the following.

Consider the first step. The prior of the Gaussian process based on T_{f} is specified by two components. The first component is the mean function taking the features of an instance as an input, denoted by $m(\cdot)$, and the second component is the covariance function taking two features as an input, denoted by $k(\cdot, \cdot)$. In the second component, for any two features \mathbf{x}_{i} and \mathbf{x}_{j} where $i \in[1, n]$ and $j \in$ $[1, n], k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ outputs a real value denoting the correlation between \mathbf{x}_{i} and \mathbf{x}_{j}. Formally, the distribution is represented in the form of $\mathcal{G} \mathcal{P}(m(\cdot), k(\cdot, \cdot))$.

Following previous studies [9], we set the mean function $m(\cdot)$ to 0.5. We adopt the Radial Basis Function (RBF) [9] as a covariance function $k(\cdot, \cdot)$ since it has a nice theoretical property to be used in our theoretical analysis.

We define an $n \times n$ matrix denoted by K where the entry at the i-th row and at the j-th column in K is $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ for $i \in[1, n]$ and $j \in[1, n]$. This matrix will be used in the second step of the model.

Consider the second step. We define the posterior mean function of the Gaussian process as follows. According to [9], since $\hat{\eta}(\mathbf{x})$ follows $\mathcal{G} \mathcal{P}(m(\mathbf{x}), k(\cdot, \cdot))$ and the RBF function is used as $k(\cdot, \cdot)$, we can express $\hat{\eta}(\mathbf{x})$ as follows.

$$
\begin{equation*}
\hat{\eta}(\mathbf{x})=\mathbf{k}(\mathbf{x})^{T}\left(K+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{f} \tag{A.1}
\end{equation*}
$$

where $\mathbf{k}(\mathbf{x})=\left\{k\left(\mathbf{x}, \mathbf{x}_{i}\right)\right\}_{i=1}^{n}, \mathbf{f}=\left\{f_{i}\right\}_{i=1}^{n}$ and \mathbf{I} denotes the $n \times n$ identity matrix. We say that $k\left(\mathbf{x}, \mathbf{x}_{i}\right)$ is an instancebased kernel function where $\mathbf{x} \in \mathcal{X}$ and $i \in[1, n]$ since it involves an instance with its feature \mathbf{x}_{i}.

Note that $\hat{\eta}(\mathbf{x})$ can be written as a weighted linear combination of instance-based kernel functions. Specifically, it can be written as $k(\mathbf{x})^{T}$ a where \mathbf{a} is an n-dimensional vector and

$$
\begin{equation*}
\mathbf{a}=\left(K+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{f} \tag{A.2}
\end{equation*}
$$

We define \mathcal{F} to be the function class containing all possible functions $\hat{\eta}(\cdot)$ in the above form of $k(\mathbf{x})^{T}$ a such that the a vector associated with each function has its L_{2} norm value at most a given value A where A is a positive real number given by users. A can be regarded as a parameter describing the complexity of the function class. If A is larger, then the complexity of this class is higher.

B Appendix-II: Proof of Theorem 4.1

Proof. Before we give this proof, we first give the following lemma which will be used in the proof.

Lemma B.1. Given a confidence parameter $\delta \in(0,1)$, there exist three constants C_{1}, C_{2} and C_{3} which are independent of n such that with probability at least $1-\delta$, $\mathbb{E}_{\mathbf{x}, f}\left[(\hat{\eta}(\mathbf{x})-f)^{2}\right] \leq \Delta$ where $\Delta=\frac{C_{1}+C_{2} \ln n+C_{3} \ln \frac{1}{\delta}}{n}$.

Proof. Given $\mathrm{x} \in \mathcal{X}$, the hypothesis $h(\mathbf{x})$ used in this paper is $\mathbb{I}_{\hat{\eta}(\mathbf{x}) \geq 1 / 2}$, where $\hat{\eta}(\cdot) \in \mathcal{F}$ is the regression function for estimating the conditional probability. We write it as $h(\cdot)$ if the context is clear. We define the hypothesis space \mathcal{H} to be $\left\{h(\cdot): h(\cdot)=\mathbb{I}_{\hat{\eta}(\cdot) \geq 1 / 2}\right.$ for each $\left.\hat{\eta}(\cdot) \in \mathcal{F}\right\}$. Let d be the VC dimension of \mathcal{H}.

Given a function $\hat{\eta} \in \mathcal{F}, \mathbf{x} \in \mathcal{X}$ and $f \in[0,1]$, we define the square loss of $\hat{\eta}$, denoted by $g_{\hat{\eta}}(\mathbf{x}, f)$, to be

$$
\begin{equation*}
g_{\hat{\eta}}(\mathbf{x}, f)=(\hat{\eta}(\mathbf{x})-f)^{2} \tag{B.3}
\end{equation*}
$$

Let $\mathcal{G}=\left\{g_{\hat{\eta}}(\cdot, \cdot): \hat{\eta} \in \mathcal{F}\right\}$. For simplicity, we write $g_{\hat{\eta}}(\cdot, \cdot)$ as $g(\cdot, \cdot)$ if $\hat{\eta}$ is clear in the context.

In order to prove this lemma, we used the following existing lemma (Lemma 20.8 in [14]).

Lemma B.2. ([14]) Suppose that we are given a set Z of elements and we observed n elements in Z, namely $z_{1}, z_{2}, \ldots, z_{n}$. Consider a class \mathcal{L} of real-valued functions defined on set Z, and suppose that for each $l \in \mathcal{L}$ and each $z \in Z,\left|l(z) \leq K_{1}\right|$ where K_{1} is a real number greater than 0 . Given $\epsilon \in(0,1)$, we denote $\mathcal{M}(\mathcal{L}, \epsilon)$ to be the covering number of the ϵ-cover of class \mathcal{L} [14]. Let $P(Z)$ be a probability distribution on Z for which $\mathbb{E}[l(z)] \geq 0$ and $\mathbb{E}\left[l(z)^{2}\right] \leq K_{2} \cdot \mathbb{E}[l(z)]$ for each $l \in \mathcal{L}$ where K_{2} is another real number at least 1 . Then, for $\epsilon>0,0<\alpha \leq \frac{1}{2}$ and $n \geq \max \left\{4\left(K_{1}+K_{2}\right) /\left(\alpha^{2} \epsilon\right), K_{1}^{2} /\left(\alpha^{2} \epsilon\right)\right\}$,

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists l \in \mathcal{L}, \frac{\mathbb{E}[l(z)]-\frac{1}{n} \sum_{i=1}^{n} l\left(z_{i}\right)}{\mathbb{E}[l(z)]+\epsilon} \geq \alpha\right) \\
\leq & 2 \mathcal{M}\left(\mathcal{L}, \frac{\alpha \epsilon}{8}\right) \exp \left(-\frac{3 \alpha^{2} \epsilon n}{8 K_{1}+324 K_{2}}\right)+ \\
& 4 \mathcal{M}\left(\mathcal{L}, \frac{\alpha \epsilon}{8 K_{1}}\right) \exp \left(-\frac{\alpha^{2} \epsilon n}{4 K_{1}^{2}}\right)
\end{aligned}
$$

Consider a function $g \in \mathcal{G}$. Note that for any $\mathbf{x} \in \mathcal{X}$ and $f \in[0,1],|g(\mathbf{x}, f)| \leq 1$ and $\mathbb{E}\left[g(\mathbf{x}, f)^{2}\right] \leq \mathbb{E}[g(\mathbf{x}, f)]$. Let $X F=\{(\mathbf{x}, f): \mathbf{x} \in \mathcal{X}, f \in[0,1]\}$.

We use Lemma B. 2 by setting the parameters in this lemma as follows. We set Z to $X F$. Each observation z_{i} is set to $\left(\mathbf{x}_{i}, f_{i}\right)$ where $i \in[1, n]$. Besides, we set $\mathcal{L}=\mathcal{G}$, $l=g, \alpha=\frac{1}{2}, K_{1}=1$ and $K_{2}=1$. By Lemma B.2, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists g \in \mathcal{G}, \mathbb{E}[g(\mathbf{x}, f)]-\frac{2}{n} \sum_{i=1}^{n} g\left(\mathbf{x}_{i}, f_{i}\right) \geq \epsilon\right) \\
(\mathrm{B} .4) \leq & 6 \mathcal{M}\left(\mathcal{G}, \frac{\epsilon}{16}\right) \exp \left(-\frac{3 \epsilon n}{1328}\right)
\end{aligned}
$$

We set $\delta=6 \mathcal{M}\left(\mathcal{G}, \frac{\epsilon}{16}\right) \exp \left(-\frac{3 \epsilon n}{1328}\right)$. Note that $\mathcal{M}\left(\mathcal{G}, \frac{\epsilon}{16}\right) \leq\left(\frac{e n}{d}\right)^{d}$ where e is the natural logarithmic base [14]. Thus, we derive that

$$
\begin{equation*}
\epsilon \leq \frac{1328}{3 n}\left(d \cdot \ln \frac{e n}{d}+\ln \frac{6}{\delta}\right) \tag{B.5}
\end{equation*}
$$

From (B.4) and (B.5), we derive that with probability at least $1-\delta$, there exists a function $g \in \mathcal{G}$ such that

$$
\mathbb{E}[g(\mathbf{x}, f)] \leq \frac{C_{1}+C_{2} \cdot \ln n+C_{3} \cdot \ln \frac{1}{\delta}}{n}
$$

where $C_{1}=\frac{1328}{3}\left(d \ln \frac{e}{d}+\ln 6\right), C_{2}=\frac{1328 d}{3}$ and $C_{3}=\frac{1328}{3}$.
Next, we want to find the upper bound of $\sum_{i=1}^{n} g\left(\mathbf{x}_{i}, f_{i}\right)$.

From (B.3), we know that

$$
\begin{equation*}
\sum_{i=1}^{n} g\left(\mathbf{x}_{i}, f_{i}\right)=\sum_{i=1}^{n}\left(\hat{\eta}\left(\mathbf{x}_{i}\right)-f_{i}\right)^{2} \tag{B.6}
\end{equation*}
$$

Note that $\hat{\eta}\left(\mathbf{x}_{i}\right)=\mathbf{k}\left(\mathbf{x}_{i}\right)^{T} \mathbf{a}$ for $i \in[1, n]$. Besides, it is easy to verify that K can be expressed as $\left(\mathbf{k}\left(\mathbf{x}_{1}\right), \ldots, \mathbf{k}\left(\mathbf{x}_{i}\right), \ldots, \mathbf{k}\left(\mathbf{x}_{n}\right)\right)^{T}$. Let $\vec{\eta}=\left\{\hat{\eta}\left(\mathbf{x}_{i}\right)\right\}_{i=1}^{n}$. We can deduce that $\vec{\eta}=K \mathbf{a}$. Thus, it is easy to show that
(B.7) $\sum_{i=1}^{n}\left(\hat{\eta}\left(\mathbf{x}_{i}\right)-f_{i}\right)^{2}=(K \mathbf{a}-\mathbf{f}) \cdot(K \mathbf{a}-\mathbf{f})$

From (B.6) and (B.7), we have

$$
\begin{equation*}
\sum_{i=1}^{n} g\left(\mathbf{x}_{i}, f_{i}\right)=(K \mathbf{a}-\mathbf{f}) \cdot(K \mathbf{a}-\mathbf{f}) \tag{B.8}
\end{equation*}
$$

From Equation (A.2), we have

$$
\begin{align*}
\mathbf{a} & =\left(K+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{f} \\
\left(K+\sigma^{2} \mathbf{I}\right) \mathbf{a} & =\mathbf{f} \\
K \mathbf{a}-\mathbf{f} & =-\sigma^{2} \mathbf{a} \\
(K \mathbf{a}-\mathbf{f}) \cdot(K \mathbf{a}-\mathbf{f}) & =\sigma^{4} \mathbf{a} \cdot \mathbf{a} \tag{B.9}
\end{align*}
$$

From (B.8) and (B.9), we derive that

$$
\sum_{i=1}^{n} g\left(\mathbf{x}_{i}, f_{i}\right)=\sigma^{4} \mathbf{a} \cdot \mathbf{a}
$$

Since $\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$ and $\|\mathbf{a}\| \leq A$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} g\left(\mathbf{x}_{i}, f_{i}\right) \leq \sigma^{4} A^{2} \tag{B.10}
\end{equation*}
$$

Therefore, by combining (B.10) and (B.6), we have

$$
\mathbb{E}[g(\mathbf{x}, f)] \leq \frac{C_{1}+C_{2} \cdot \ln n+C_{3} \cdot \ln \frac{1}{\delta}}{n}
$$

where $C_{1}=\frac{1328 d}{3} \ln \frac{e}{d}+2 \sigma^{4} A^{2}, C_{2}=\frac{1328 d}{3}$ and $C_{3}=$ $\frac{1328}{3}$.

Since $g(\mathbf{x}, f)=(\hat{\eta}(\mathbf{x})-f)^{2}$, we have $\mathbb{E}\left[(\hat{\eta}(\mathbf{x})-f)^{2}\right] \leq \frac{C_{1}+C_{2} \cdot \ln n+C_{3} \cdot \ln \frac{1}{\delta}}{n}$. Let
(B.11)

$$
\Delta=\frac{C_{1}+C_{2} \cdot \ln n+C_{3} \cdot \ln \frac{1}{\delta}}{n}
$$

We have $\mathbb{E}\left[(\hat{\eta}(\mathbf{x})-f)^{2}\right] \leq \Delta$.

We have just given Lemma B.1. We are ready to give the proof of Theorem 4.1.

In this proof, for convenience, $\mathbb{E}_{\mathbf{x} \sim P(X)}[\cdot]$ is represented by $\mathbb{E}[\cdot]$, and $\operatorname{Pr}_{\mathbf{x} \sim P(X)}(\cdot)$ is represented by $\operatorname{Pr}(\cdot)$. We know that

$$
\begin{aligned}
E(h) & =\operatorname{Pr}_{\mathbf{x}, y}(y \neq h(\mathbf{x}))-\operatorname{Pr}_{\mathbf{x}, y}\left(y \neq h^{*}(\mathbf{x})\right) \\
& =\mathbb{E}_{\mathbf{x}}\left[\operatorname{Pr}_{y \mid \mathbf{x}}(y \neq h(\mathbf{x}))\right]-\mathbb{E}_{\mathbf{x}}\left[\operatorname{Pr}_{y \mid \mathbf{x}}\left(y \neq h^{*}(\mathbf{x})\right)\right] \\
(\text { B.12 }) & =\mathbb{E}_{\mathbf{x}}\left[\operatorname{Pr}_{y \mid \mathbf{x}}(y \neq h(\mathbf{x}))-\operatorname{Pr}_{y \mid \mathbf{x}}\left(y \neq h^{*}(\mathbf{x})\right)\right]
\end{aligned}
$$

Consider a certain feature \mathbf{x}. We want to show that $\operatorname{Pr}_{y \mid \mathbf{x}}(y \neq h(\mathbf{x}))-\operatorname{Pr}_{y \mid \mathbf{x}}\left(y \neq h^{*}(\mathbf{x})\right)$ can be expressed as $|2 \eta(\mathbf{x})-1| \cdot\left|h(\mathbf{x})-h^{*}(\mathbf{x})\right|$. Note that $\operatorname{Pr}_{y \mid \mathbf{x}}(y \neq h(\mathbf{x}))$ is equal to either $\eta(\mathbf{x})$ or $1-\eta(\mathbf{x})$. Similarly, $\operatorname{Pr}_{y \mid \mathbf{x}}(y \neq$ $\left.h^{*}(\mathbf{x})\right)$ is equal to either $\eta(\mathbf{x})$ or $1-\eta(\mathbf{x})$. Consider two cases. Case 1: $h(\mathbf{x})=h^{*}(\mathbf{x})$. In this case, $\left|h(\mathbf{x})-h^{*}(\mathbf{x})\right|=$ 0 . Since there is no error of hypothesis h (compared with h^{*}), we derive that $\operatorname{Pr}_{y \mid \mathbf{x}}(y \neq h(\mathbf{x}))-\operatorname{Pr}_{y \mid \mathbf{x}}\left(y \neq h^{*}(\mathbf{x})\right)=$ 0 . It is easy to see that $P r_{y \mid \mathbf{x}}(y \neq h(\mathbf{x}))-P r_{y \mid \mathbf{x}}\left(y \neq h^{*}(\mathbf{x})\right)$ can be expressed as $|2 \eta(\mathbf{x})-1| \cdot\left|h(\mathbf{x})-h^{*}(\mathbf{x})\right|$. Case 2: $h(\mathbf{x}) \neq h^{*}(\mathbf{x})$. In this case, since $h^{*}(\cdot)$ is optimal, we know that $\operatorname{Pr}_{y \mid \mathbf{x}}\left(y \neq h^{*}(\mathbf{x})\right)=\min \{\eta(\mathbf{x}), 1-\eta(\mathbf{x})\}$ (because $h^{*}(\cdot)$ introduces the smallest error). Since $h(\mathbf{x}) \neq h^{*}(\mathbf{x})$, we derive that $\operatorname{Pr}_{y \mid \mathbf{x}}(y \neq h(\mathbf{x}))=\max \{\eta(\mathbf{x}), 1-\eta(\mathbf{x})\}$. Thus, we have $\operatorname{Pr}_{y \mid \mathbf{x}}(y \neq h(\mathbf{x}))-\operatorname{Pr}_{y \mid \mathbf{x}}\left(y \neq h^{*}(\mathbf{x})\right)=$ $|2 \eta(\mathbf{x})-1|$. Note that $\left|h(\mathbf{x})-h^{*}(\mathbf{x})\right|=1$. Thus, $\operatorname{Pr}_{y \mid \mathbf{x}}(y \neq h(\mathbf{x}))-\operatorname{Pr}_{y \mid \mathbf{x}}\left(y \neq h^{*}(\mathbf{x})\right)$ can be expressed as $|2 \eta(\mathbf{x})-1| \cdot\left|h(\mathbf{x})-h^{*}(\mathbf{x})\right|$. Therefore, from (B.12), we conclude that
(B.13) $E(h)=\mathbb{E}\left[|2 \eta(\mathbf{x})-1| \cdot\left|h(\mathbf{x})-h^{*}(\mathbf{x})\right|\right]$.

We know that when $h(\mathbf{x}) \neq h^{*}(\mathbf{x})$, we have $\left|\eta(\mathbf{x})-\frac{1}{2}\right| \leq$ $|\eta(\mathbf{x})-\hat{\eta}(\mathbf{x})|$. This is because if $\eta(\mathbf{x}) \leq \frac{1}{2}$, then we know that $\hat{\eta}(\mathbf{x})>\frac{1}{2}$ and thus we derive that $\left|\eta(\mathbf{x})-\frac{1}{2}\right| \leq$ $|\eta(\mathbf{x})-\hat{\eta}(\mathbf{x})|$. Besides, if $\eta(\mathbf{x})>\frac{1}{2}$, then we have a similar conclusion.

Since $\left|\eta(\mathbf{x})-\frac{1}{2}\right| \leq|\eta(\mathbf{x})-\hat{\eta}(\mathbf{x})|$, we derive that $|2 \eta(\mathbf{x})-1| \leq 2|\eta(\mathbf{x})-\hat{\eta}(\mathbf{x})|$. Besides, from (B.13), we have

$$
\begin{aligned}
E(h) & \leq \mathbb{E}\left[2|\eta(\mathbf{x})-\hat{\eta}(\mathbf{x})| \cdot\left|h(\mathbf{x})-h^{*}(\mathbf{x})\right|\right] \\
& =2 \cdot \mathbb{E}\left[|\eta(\mathbf{x})-\hat{\eta}(\mathbf{x})| \cdot \mathbb{I}_{h(\mathbf{x}) \neq h^{*}(\mathbf{x})}\right]
\end{aligned}
$$

According to Hölder Inequality, we have $\mathbb{E}\left[|\eta(\mathbf{x})-\hat{\eta}(\mathbf{x})| \cdot \mathbb{I}_{h(\mathbf{x}) \neq h^{*}(\mathbf{x})}\right] \leq \sqrt{\mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right]}$. $\sqrt{\mathbb{E}\left[\left(\mathbb{I}_{\left.\left.h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right)^{2}\right]} \text {. Since }\left(\mathbb{I}_{h(\mathbf{x}) \neq h^{*}(\mathbf{x})}\right)^{2}=\mathbb{I}_{h(\mathbf{x}) \neq h^{*}(\mathbf{x})} \text {, }, \text {, }{ }^{2}(\mathbf{x})\right.\right.}$ we have $\mathbb{E}\left[|\eta(\mathbf{x})-\hat{\eta}(\mathbf{x})| \cdot \mathbb{I}_{h(\mathbf{x}) \neq h^{*}(\mathbf{x})}\right] \leq$ $\sqrt{\mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right]} \quad \cdot \sqrt{\mathbb{E}\left[\mathbb{I}_{h(\mathbf{x}) \neq h^{*}(\mathbf{x})}\right]} \quad$ Since $\mathbb{E}\left[\mathbb{I}_{h(\mathbf{x}) \neq h^{*}(\mathbf{x})}\right]=\operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right)$, we have $\mathbb{E}\left[|\eta(\mathbf{x})-\hat{\eta}(\mathbf{x})| \cdot \mathbb{I}_{\left.h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right]} \leq \sqrt{\mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right]}\right.$. $\sqrt{\operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right)}$. From (B.14), we derive the following.

$$
\square \quad E(h) \leq 2 \sqrt{\mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right]} \sqrt{\operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right)}
$$

After we find the upper bound of the right-hand side of the above inequality, we can complete the proof. In the following, we will show that with probability at least $1-\delta$, $\mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right] \leq \Delta$ and $\operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right) \leq c \cdot \Delta^{\frac{\gamma}{2}}$. With these results, we derive that with probability at least $1-\delta, E(h) \leq 2 \cdot \sqrt{\Delta} \cdot \sqrt{c \cdot \Delta^{\frac{\gamma}{2}}}=2 \cdot \sqrt{c} \cdot \Delta^{\frac{2+\gamma}{4}}$. Thus, after substituting Equation (B.11) into the above inequality, we have $E(h) \leq 2 \cdot \sqrt{c} \cdot\left(\frac{C_{1}+C_{2} \ln n+C_{3} \ln \frac{1}{\delta}}{n}\right)^{\frac{2+\gamma}{4}}$, where $C_{1}=\frac{1328}{3}\left(d \ln \frac{e}{d}+\ln 6\right), C_{2}=\frac{1328 d}{3}$ and $C_{3}=\frac{1328}{3}$.

The remaining part of this proof is to show the correctness of the upper bound of the right-hand side of the inequality. Firstly, we will show that with probability at least $1-\delta$, $\mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right] \leq \Delta$.

Since

$$
\begin{aligned}
& \mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right]+\sigma^{2} \\
= & \mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}+(\eta(\mathbf{x})-f)^{2}\right] \\
= & \mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}+(\eta(\mathbf{x})-f)^{2}\right. \\
& -2(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))(\eta(\mathbf{x})-\eta(\mathbf{x}))] \\
= & \mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}+(\eta(\mathbf{x})-f)^{2}\right. \\
& -2(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))(\eta(\mathbf{x})-f)] \\
= & \mathbb{E}\left[((\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))-(\eta(\mathbf{x})-f))^{2}\right] \\
= & \mathbb{E}\left[(\hat{\eta}(\mathbf{x})-f)^{2}\right]
\end{aligned}
$$

we know that

$$
\mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right] \leq \mathbb{E}\left[(\hat{\eta}(\mathbf{x})-f)^{2}\right]
$$

as $\sigma^{2} \geq 0$.
From Lemma B.1, we derive that with probability at least $1-\delta$,

$$
\begin{equation*}
\mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right] \leq \Delta \tag{B.15}
\end{equation*}
$$

Next, we will show that with probability at least $1-\delta$, $\operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right) \leq c \triangle^{\frac{\gamma}{2}}$.

Since $(\mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|])^{2}<\mathbb{E}\left[(\hat{\eta}(\mathbf{x})-\eta(\mathbf{x}))^{2}\right]$, from (B.15), we derive that with probability at least $1-\delta$,

$$
\begin{equation*}
\mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|] \leq \sqrt{\Delta} \tag{B.16}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right) \\
= & \mathbb{E}\left[\mathbb{I}_{h(\mathbf{x}) \neq h^{*}(\mathbf{x})}\right] \\
= & \mathbb{E}\left[\mathbb{I}_{\left.h(\mathbf{x}) \neq h^{*}(\mathbf{x}), \mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|] \leq \sqrt{\Delta}\right]}\right. \\
& +\mathbb{E}\left[\mathbb{I}_{\left.h(\mathbf{x}) \neq h^{*}(\mathbf{x}), \mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|]>\sqrt{\Delta}\right]}\right.
\end{aligned}
$$

and according to Inequality (B.16), the second term above equals 0 (i.e., $\mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|] \leq \sqrt{\Delta}$) with probability at least $1-\delta$, we claim that with probability at least $1-\delta$,

$$
\begin{aligned}
& \operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right) \\
(\mathrm{B} .17)= & \operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x}), \mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|] \leq \sqrt{\Delta}\right)
\end{aligned}
$$

As we discussed before, $h(\mathbf{x}) \neq h^{*}(\mathbf{x})$ implies that $\left|\eta(\mathbf{x})-\frac{1}{2}\right| \leq|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|$ for any $\mathbf{x} \in \mathcal{X}$. Thus, we have $\mathbb{E}\left[\left|\eta(\mathbf{x})-\frac{1}{2}\right|\right] \leq \mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|]$ when $h(\mathbf{x}) \neq$ $h^{*}(\mathbf{x})$. From (B.17), we derive that $h(\mathbf{x}) \neq h^{*}(\mathbf{x})$ and $\mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|] \leq \sqrt{\Delta}$ implies $\mathbb{E}\left[\left|\eta(\mathbf{x})-\frac{1}{2}\right|\right]<\sqrt{\Delta}$ with probability at least $1-\delta$. Therefore, with probability at least $1-\delta$,

$$
\begin{aligned}
& \operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x}), \mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|] \leq \sqrt{\Delta}\right) \\
\leq & \operatorname{Pr}\left(\mathbb{E}\left[\left|\eta(\mathbf{x})-\frac{1}{2}\right|\right]<\sqrt{\Delta}\right) \\
\leq & c \cdot \Delta^{\frac{\gamma}{2}} \quad \quad \text { By Definition 1) }
\end{aligned}
$$

Thus, with probability at least $1-\delta$,

$$
\begin{equation*}
\operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right) \leq c \cdot \Delta^{\frac{\gamma}{2}} \tag{B.18}
\end{equation*}
$$

Finally, we will show that event $E_{1}: " \mathbb{E}[(\eta(\mathbf{x})-$ $\left.\hat{\eta}(\mathbf{x}))^{2}\right] \leq \Delta "$ occurs if and only if event $E_{2}: " \operatorname{Pr}(h(\mathbf{x}) \neq$ $\left.h^{*}(\mathbf{x})\right) \leq c \cdot \Delta^{\frac{\gamma}{2} "}$ occurs. With this result, we conclude that with probability at least $1-\delta$, these two events occur simultaneously. Thus, we complete the proof. Note that when we show " $\operatorname{Pr}\left(h(\mathbf{x}) \neq h^{*}(\mathbf{x})\right) \leq c \cdot \Delta^{\frac{\gamma}{2}}$ ", we make use of " $\mathbb{E}\left[(\eta(\mathbf{x})-\hat{\eta}(\mathbf{x}))^{2}\right] \leq \Delta$ ". Thus, if E_{1} is true, then E_{2} is true. Otherwise, then E_{2} is not true.

Thus, we complete the proof.

