
A Appendix-I: Preliminaries for Gaussian Process
Regression

The Gaussian Process Regressioninvolves two steps.
Firstly, we need to introduce theprior by specifying aprior
mean functionand aprior covariance function. After that,
we can use these functions to calculate aposterior mean
function. The posterior mean function is exactly the esti-
matorη̂(x) that we want. We introduce these two steps one
by one in the following.

Consider the first step. Theprior of the Gaussian
process based onTf is specified by two components. The
first component is the mean function taking the features of
an instance as an input, denoted bym(·), and the second
component is the covariance function taking two features
as an input, denoted byk(·, ·). In the second component,
for any two featuresxi andxj wherei ∈ [1, n] and j ∈
[1, n], k(xi,xj) outputs a real value denoting thecorrelation
betweenxi andxj . Formally, the distribution is represented
in the form ofGP(m(·), k(·, ·)).

Following previous studies [9], we set the mean function
m(·) to 0.5. We adopt theRadial Basis Function (RBF)[9]
as a covariance functionk(·, ·) since it has a nice theoretical
property to be used in our theoretical analysis.

We define ann×n matrix denoted byK where the entry
at thei-th row and at thej-th column inK is k(xi,xj) for
i ∈ [1, n] andj ∈ [1, n]. This matrix will be used in the
second step of the model.

Consider the second step. We define theposterior mean
function of the Gaussian process as follows. According
to [9], since η̂(x) follows GP(m(x), k(·, ·)) and the RBF
function is used ask(·, ·), we can expresŝη(x) as follows.

η̂(x) = k(x)T (K + σ2
I)−1

f .(A.1)

wherek(x) = {k(x,xi)}ni=1, f = {fi}ni=1 andI denotes the
n × n identity matrix. We say thatk(x,xi) is an instance-
based kernel functionwherex ∈ X andi ∈ [1, n] since it
involves an instance with its featurexi.

Note thatη̂(x) can be written as a weighted linear com-
bination of instance-based kernel functions. Specifically, it
can be written ask(x)Ta wherea is ann-dimensional vector
and

a = (K + σ2
I)−1

f(A.2)

We defineF to be thefunction classcontaining all
possible functionŝη(·) in the above form ofk(x)T a such
that thea vector associated with each function has itsL2-
norm value at most a given valueA whereA is a positive
real number given by users.A can be regarded as a parameter
describing the complexity of the function class. IfA is larger,
then the complexity of this class is higher.

B Appendix-II: Proof of Theorem 4.1

Proof. Before we give this proof, we first give the following
lemma which will be used in the proof.

LEMMA B.1. Given a confidence parameterδ ∈ (0, 1),
there exist three constantsC1, C2 and C3 which are in-
dependent ofn such that with probability at least1 − δ,

Ex,f [(η̂(x)− f)2] ≤ ∆ where∆ =
C1+C2 lnn+C3 ln 1

δ

n .

Proof. Givenx ∈ X , the hypothesish(x) used in this paper
is Iη̂(x)≥1/2, whereη̂(·) ∈ F is the regression function for
estimating the conditional probability. We write it ash(·) if
the context is clear. We define the hypothesis spaceH to be
{h(·) : h(·) = Iη̂(·)≥1/2 for eachη̂(·) ∈ F}. Let d be the
VC dimension ofH.

Given a functionη̂ ∈ F , x ∈ X andf ∈ [0, 1], we
define thesquare lossof η̂, denoted bygη̂(x, f), to be

(B.3) gη̂(x, f) = (η̂(x)− f)2

Let G = {gη̂(·, ·) : η̂ ∈ F}. For simplicity, we writegη̂(·, ·)
asg(·, ·) if η̂ is clear in the context.

In order to prove this lemma, we used the following
existing lemma (Lemma 20.8 in [14]).

LEMMA B.2. ([14]) Suppose that we are given a setZ
of elements and we observedn elements inZ, namely
z1, z2, ..., zn. Consider a classL of real-valued functions
defined on setZ, and suppose that for eachl ∈ L and each
z ∈ Z, |l(z) ≤ K1| whereK1 is a real number greater
than 0. Givenǫ ∈ (0, 1), we denoteM(L, ǫ) to be the
covering number of theǫ-cover of classL [14]. Let P (Z)
be a probability distribution onZ for whichE[l(z)] ≥ 0 and
E[l(z)2] ≤ K2 · E[l(z)] for eachl ∈ L whereK2 is another
real number at least 1. Then, forǫ > 0, 0 < α ≤ 1

2 and
n ≥ max{4(K1 +K2)/(α

2ǫ),K2
1/(α

2ǫ)},

Pr(∃l ∈ L, E[l(z)]− 1
n

∑n
i=1

l(zi)

E[l(z)]+ǫ ≥ α)

≤ 2M(L, αǫ
8 ) exp (− 3α2ǫn

8K1+324K2
)+

4M(L, αǫ
8K1

) exp (−α2ǫn
4K2

1

)

Consider a functiong ∈ G. Note that for anyx ∈ X and
f ∈ [0, 1], |g(x, f)| ≤ 1 andE[g(x, f)2] ≤ E[g(x, f)]. Let
XF = {(x, f) : x ∈ X , f ∈ [0, 1]}.

We use Lemma B.2 by setting the parameters in this
lemma as follows. We setZ to XF . Each observationzi
is set to(xi, fi) wherei ∈ [1, n]. Besides, we setL = G,
l = g, α = 1

2 , K1 = 1 andK2 = 1. By Lemma B.2, we
have

Pr(∃g ∈ G,E[g(x, f)]− 2
n

∑n
i=1 g(xi, fi) ≥ ǫ)

≤ 6M(G, ǫ
16 ) exp (− 3ǫn

1328 )(B.4)



We set δ = 6M(G, ǫ
16 ) exp (− 3ǫn

1328 ). Note that
M(G, ǫ

16 ) ≤ ( end )d wheree is the natural logarithmic base
[14]. Thus, we derive that

ǫ ≤ 1328

3n
(d · ln en

d
+ ln

6

δ
)(B.5)

From (B.4) and (B.5), we derive that with probability at least
1− δ, there exists a functiong ∈ G such that

E[g(x, f)] ≤ C1+C2·lnn+C3·ln 1
δ

n

whereC1 = 1328
3 (d ln e

d+ln 6),C2 = 1328d
3 andC3 = 1328

3 .
Next, we want to find the upper bound of

∑n
i=1 g(xi, fi).

From (B.3), we know that
∑n

i=1 g(xi, fi) =
∑n

i=1(η̂(xi)− fi)
2(B.6)

Note that η̂(xi) = k(xi)
T
a for i ∈ [1, n]. Be-

sides, it is easy to verify thatK can be expressed as
(k(x1), ...,k(xi), ...,k(xn))

T . Let −→η = {η̂(xi)}ni=1. We
can deduce that−→η = Ka. Thus, it is easy to show that

∑n
i=1(η̂(xi)− fi)

2 = (Ka− f) · (Ka− f)(B.7)

From (B.6) and (B.7), we have
∑n

i=1 g(xi, fi) = (Ka− f) · (Ka− f)(B.8)

From Equation (A.2), we have

a = (K + σ2
I)−1

f

(K + σ2
I)a = f

Ka− f = −σ2
a

(Ka− f) · (Ka− f) = σ4
a · a(B.9)

From (B.8) and (B.9), we derive that
∑n

i=1 g(xi, fi) = σ4
a · a

Since‖ a ‖= √
a · a and‖ a ‖≤ A, we have

∑n
i=1 g(xi, fi) ≤ σ4A2(B.10)

Therefore, by combining (B.10) and (B.6), we have

E[g(x, f)] ≤ C1+C2·lnn+C3·ln 1
δ

n

whereC1 = 1328d
3 ln e

d + 2σ4A2, C2 = 1328d
3 andC3 =

1328
3 .

Since g(x, f) = (η̂(x) − f)2, we have

E[(η̂(x)− f)2]≤ C1+C2·lnn+C3·ln 1
δ

n . Let

∆ =
C1 + C2 · lnn+ C3 · ln 1

δ

n
.(B.11)

We haveE[(η̂(x)− f)2] ≤ ∆.

We have just given Lemma B.1. We are ready to give
the proof of Theorem 4.1.

In this proof, for convenience,E
x∼P (X)[·] is represented

byE[·], andPr
x∼P (X)(·) is represented byPr(·). We know

that

E(h) = Prx,y(y 6= h(x)) − Prx,y(y 6= h∗(x))

= Ex[Pry|x(y 6= h(x))] − Ex[Pry|x(y 6= h∗(x))].

= Ex[Pry|x(y 6= h(x)) − Pry|x(y 6= h∗(x))](B.12)

Consider a certain featurex. We want to show that
Pry|x(y 6= h(x)) − Pry|x(y 6= h∗(x)) can be expressed
as|2η(x)− 1| · |h(x)− h∗(x)|. Note thatPry|x(y 6= h(x))
is equal to eitherη(x) or 1 − η(x). Similarly, Pry|x(y 6=
h∗(x)) is equal to eitherη(x) or 1 − η(x). Consider two
cases.Case 1:h(x) = h∗(x). In this case,|h(x)−h∗(x)| =
0. Since there is no error of hypothesish (compared with
h∗), we derive thatPry|x(y 6= h(x))−Pry|x(y 6= h∗(x)) =
0. It is easy to see thatPry|x(y 6= h(x))−Pry|x(y 6= h∗(x))
can be expressed as|2η(x) − 1| · |h(x) − h∗(x)|. Case 2:
h(x) 6= h∗(x). In this case, sinceh∗(·) is optimal, we know
thatPry|x(y 6= h∗(x)) = min{η(x), 1 − η(x)} (because
h∗(·) introduces the smallest error). Sinceh(x) 6= h∗(x),
we derive thatPry|x(y 6= h(x)) = max{η(x), 1 − η(x)}.
Thus, we havePry|x(y 6= h(x)) − Pry|x(y 6= h∗(x)) =
|2η(x) − 1|. Note that |h(x) − h∗(x)| = 1. Thus,
Pry|x(y 6= h(x)) − Pry|x(y 6= h∗(x)) can be expressed
as|2η(x)− 1| · |h(x)− h∗(x)|. Therefore, from (B.12), we
conclude that

E(h) = E[|2η(x)− 1| · |h(x)− h∗(x)|].(B.13)

We know that whenh(x) 6= h∗(x), we have|η(x) − 1
2 | ≤

|η(x) − η̂(x)|. This is because ifη(x) ≤ 1
2 , then we

know thatη̂(x) > 1
2 and thus we derive that|η(x) − 1

2 | ≤
|η(x) − η̂(x)|. Besides, ifη(x) > 1

2 , then we have a similar
conclusion.

Since |η(x) − 1
2 | ≤ |η(x) − η̂(x)|, we derive that

|2η(x) − 1| ≤ 2|η(x) − η̂(x)|. Besides, from (B.13), we
have

E(h) ≤ E[2|η(x)− η̂(x)| · |h(x) − h∗(x)|]
= 2 · E[|η(x) − η̂(x)| · Ih(x) 6=h∗(x)](B.14)

According to Hölder Inequality, we have
E[|η(x) − η̂(x)| · Ih(x) 6=h∗(x)] ≤

√

E[(η(x) − η̂(x))2] ·
√

E[(Ih(x) 6=h∗(x))2]. Since(Ih(x) 6=h∗(x))
2 = Ih(x) 6=h∗(x),

we have E[|η(x) − η̂(x)| · Ih(x) 6=h∗(x)] ≤
√

E[(η(x) − η̂(x))2] ·
√

E[Ih(x) 6=h∗(x)] Since
E[Ih(x) 6=h∗(x)] = Pr(h(x) 6= h∗(x)), we have

E[|η(x) − η̂(x)| · Ih(x) 6=h∗(x)] ≤
√

E[(η(x) − η̂(x))2] ·
√

Pr(h(x) 6= h∗(x)). From (B.14), we derive the follow-
ing.

E(h) ≤ 2
√

E[(η(x) − η̂(x))2]
√

Pr(h(x) 6= h∗(x))



After we find the upper bound of the right-hand side
of the above inequality, we can complete the proof. In the
following, we will show that with probability at least1 − δ,
E[(η(x) − η̂(x))2] ≤ ∆ andPr(h(x) 6= h∗(x)) ≤ c · △ γ

2 .
With these results, we derive that with probability at least
1 − δ, E(h) ≤ 2 ·

√
∆ ·

√
c ·∆ γ

2 = 2 · √c · ∆ 2+γ
4 . Thus,

after substituting Equation (B.11) into the above inequality,

we haveE(h) ≤ 2 · √c · (C1+C2 lnn+C3 ln 1
δ

n )
2+γ
4 , where

C1 = 1328
3 (d ln e

d + ln 6), C2 = 1328d
3 andC3 = 1328

3 .
The remaining part of this proof is to show the correct-

ness of the upper bound of the right-hand side of the inequal-
ity. Firstly, we will show that with probability at least1− δ,
E[(η(x) − η̂(x))2] ≤ ∆.

Since

E[(η(x) − η̂(x))2] + σ2

= E[(η(x) − η̂(x))2 + (η(x) − f)2]

= E[(η(x) − η̂(x))2 + (η(x) − f)2

−2(η(x)− η̂(x))(η(x) − η(x))]

= E[(η(x) − η̂(x))2 + (η(x) − f)2

−2(η(x)− η̂(x))(η(x) − f)]

= E[((η(x) − η̂(x)) − (η(x) − f))2]

= E[(η̂(x) − f)2]

we know that

E[(η(x) − η̂(x))2] ≤ E[(η̂(x) − f)2]

asσ2 ≥ 0.
From Lemma B.1, we derive that with probability at

least1− δ,

E[(η(x) − η̂(x))2] ≤ ∆(B.15)

Next, we will show that with probability at least1 − δ,
Pr(h(x) 6= h∗(x)) ≤ c△ γ

2 .
Since(E[|η̂(x) − η(x)|])2 < E[(η̂(x) − η(x))2], from

(B.15), we derive that with probability at least1− δ,

E[|η̂(x)− η(x)|] ≤
√
∆(B.16)

Since

Pr(h(x) 6= h∗(x))

= E[Ih(x) 6=h∗(x)]

= E[Ih(x) 6=h∗(x),E[|η̂(x)−η(x)|]≤
√
∆]

+E[Ih(x) 6=h∗(x),E[|η̂(x)−η(x)|]>
√
∆]

and according to Inequality (B.16), the second term above
equals 0 (i.e.,E[|η̂(x) − η(x)|] ≤

√
∆) with probability at

least1− δ, we claim that with probability at least1− δ,

Pr(h(x) 6= h∗(x))

= Pr(h(x) 6= h∗(x),E[|η̂(x)− η(x)|] ≤
√
∆)(B.17)

As we discussed before,h(x) 6= h∗(x) implies that
|η(x) − 1

2 | ≤ |η̂(x) − η(x)| for any x ∈ X . Thus, we
haveE[|η(x) − 1

2 |] ≤ E[|η̂(x) − η(x)|] when h(x) 6=
h∗(x). From (B.17), we derive thath(x) 6= h∗(x) and
E[|η̂(x) − η(x)|] ≤

√
∆ impliesE[|η(x) − 1

2 |] <
√
∆ with

probability at least1− δ. Therefore, with probability at least
1− δ,

Pr(h(x) 6= h∗(x),E[|η̂(x)− η(x)|] ≤
√
∆)

≤ Pr(E[|η(x) − 1

2
|] <

√
∆)

≤ c ·∆ γ
2 (By Definition 1)

Thus, with probability at least1− δ,

Pr(h(x) 6= h∗(x)) ≤ c ·∆ γ
2(B.18)

Finally, we will show that eventE1 : “E[(η(x) −
η̂(x))2] ≤ ∆” occurs if and only if eventE2 : “Pr(h(x) 6=
h∗(x)) ≤ c · ∆ γ

2 ” occurs. With this result, we conclude
that with probability at least1 − δ, these two events occur
simultaneously. Thus, we complete the proof. Note that
when we show “Pr(h(x) 6= h∗(x)) ≤ c · ∆ γ

2 ”, we make
use of “E[(η(x) − η̂(x))2] ≤ ∆”. Thus, if E1 is true, then
E2 is true. Otherwise, thenE2 is not true.

Thus, we complete the proof.


