A Appendix-I: Preliminaries for Gaussian Process Regression

The Gaussian Process Regression involves two steps. Firstly, we need to introduce the prior by specifying a prior mean function and a prior covariance function. After that, we can use these functions to calculate a posterior mean function. The posterior mean function is exactly the estimator $\hat{\eta}(\mathbf{x})$ that we want. We introduce these two steps one by one in the following.

Consider the first step. The *prior* of the Gaussian process based on T_f is specified by two components. The first component is the mean function taking the features of an instance as an input, denoted by $m(\cdot)$, and the second component is the covariance function taking two features as an input, denoted by $k(\cdot, \cdot)$. In the second component, for any two features \mathbf{x}_i and \mathbf{x}_j where $i \in [1, n]$ and $j \in$ $[1, n], k(\mathbf{x}_i, \mathbf{x}_j)$ outputs a real value denoting the *correlation* between \mathbf{x}_i and \mathbf{x}_j . Formally, the distribution is represented in the form of $\mathcal{GP}(m(\cdot), k(\cdot, \cdot))$.

Following previous studies [9], we set the mean function $m(\cdot)$ to 0.5. We adopt the *Radial Basis Function (RBF)* [9] as a covariance function $k(\cdot, \cdot)$ since it has a nice theoretical property to be used in our theoretical analysis.

We define an $n \times n$ matrix denoted by K where the entry at the *i*-th row and at the *j*-th column in K is $k(\mathbf{x}_i, \mathbf{x}_j)$ for $i \in [1, n]$ and $j \in [1, n]$. This matrix will be used in the second step of the model.

Consider the second step. We define the *posterior mean* function of the Gaussian process as follows. According to [9], since $\hat{\eta}(\mathbf{x})$ follows $\mathcal{GP}(m(\mathbf{x}), k(\cdot, \cdot))$ and the RBF function is used as $k(\cdot, \cdot)$, we can express $\hat{\eta}(\mathbf{x})$ as follows.

(A.1)
$$\hat{\eta}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (K + \sigma^2 \mathbf{I})^{-1} \mathbf{f}.$$

where $\mathbf{k}(\mathbf{x}) = \{k(\mathbf{x}, \mathbf{x}_i)\}_{i=1}^n$, $\mathbf{f} = \{f_i\}_{i=1}^n$ and \mathbf{I} denotes the $n \times n$ identity matrix. We say that $k(\mathbf{x}, \mathbf{x}_i)$ is an instancebased kernel function where $\mathbf{x} \in \mathcal{X}$ and $i \in [1, n]$ since it involves an instance with its feature \mathbf{x}_i .

Note that $\hat{\eta}(\mathbf{x})$ can be written as a weighted linear combination of instance-based kernel functions. Specifically, it can be written as $k(\mathbf{x})^T \mathbf{a}$ where \mathbf{a} is an *n*-dimensional vector and

(A.2)
$$\mathbf{a} = (K + \sigma^2 \mathbf{I})^{-1} \mathbf{f}$$

We define \mathcal{F} to be the *function class* containing all possible functions $\hat{\eta}(\cdot)$ in the above form of $k(\mathbf{x})^T \mathbf{a}$ such that the **a** vector associated with each function has its L_2 -norm value at most a given value A where A is a positive real number given by users. A can be regarded as a parameter describing the complexity of the function class. If A is larger, then the complexity of this class is higher.

B Appendix-II: Proof of Theorem 4.1

Proof. Before we give this proof, we first give the following lemma which will be used in the proof.

LEMMA B.1. Given a confidence parameter $\delta \in (0, 1)$, there exist three constants C_1 , C_2 and C_3 which are independent of n such that with probability at least $1 - \delta$, $\mathbb{E}_{\mathbf{x},f}[(\hat{\eta}(\mathbf{x}) - f)^2] \leq \Delta$ where $\Delta = \frac{C_1 + C_2 \ln n + C_3 \ln \frac{1}{\delta}}{n}$.

Proof. Given $\mathbf{x} \in \mathcal{X}$, the hypothesis $h(\mathbf{x})$ used in this paper is $\mathbb{I}_{\hat{\eta}(\mathbf{x}) \geq 1/2}$, where $\hat{\eta}(\cdot) \in \mathcal{F}$ is the regression function for estimating the conditional probability. We write it as $h(\cdot)$ if the context is clear. We define the hypothesis space \mathcal{H} to be $\{h(\cdot) : h(\cdot) = \mathbb{I}_{\hat{\eta}(\cdot) \geq 1/2} \text{ for each } \hat{\eta}(\cdot) \in \mathcal{F}\}$. Let d be the VC dimension of \mathcal{H} .

Given a function $\hat{\eta} \in \mathcal{F}$, $\mathbf{x} \in \mathcal{X}$ and $f \in [0,1]$, we define the square loss of $\hat{\eta}$, denoted by $g_{\hat{\eta}}(\mathbf{x}, f)$, to be

(B.3)
$$g_{\hat{\eta}}(\mathbf{x}, f) = (\hat{\eta}(\mathbf{x}) - f)^2$$

Let $\mathcal{G} = \{g_{\hat{\eta}}(\cdot, \cdot) : \hat{\eta} \in \mathcal{F}\}$. For simplicity, we write $g_{\hat{\eta}}(\cdot, \cdot)$ as $g(\cdot, \cdot)$ if $\hat{\eta}$ is clear in the context.

In order to prove this lemma, we used the following existing lemma (Lemma 20.8 in [14]).

LEMMA B.2. ([14]) Suppose that we are given a set Z of elements and we observed n elements in Z, namely $z_1, z_2, ..., z_n$. Consider a class \mathcal{L} of real-valued functions defined on set Z, and suppose that for each $l \in \mathcal{L}$ and each $z \in Z$, $|l(z) \leq K_1|$ where K_1 is a real number greater than 0. Given $\epsilon \in (0, 1)$, we denote $\mathcal{M}(\mathcal{L}, \epsilon)$ to be the covering number of the ϵ -cover of class \mathcal{L} [14]. Let P(Z)be a probability distribution on Z for which $\mathbb{E}[l(z)] \geq 0$ and $\mathbb{E}[l(z)^2] \leq K_2 \cdot \mathbb{E}[l(z)]$ for each $l \in \mathcal{L}$ where K_2 is another real number at least 1. Then, for $\epsilon > 0$, $0 < \alpha \leq \frac{1}{2}$ and $n \geq \max\{4(K_1 + K_2)/(\alpha^2 \epsilon), K_1^2/(\alpha^2 \epsilon)\}$,

$$Pr(\exists l \in \mathcal{L}, \frac{\mathbb{E}[l(z)] - \frac{1}{n} \sum_{i=1}^{n} l(z_i)}{\mathbb{E}[l(z)] + \epsilon} \ge \alpha)$$

$$\leq 2\mathcal{M}(\mathcal{L}, \frac{\alpha\epsilon}{8}) \exp\left(-\frac{3\alpha^2 \epsilon n}{8K_1 + 324K_2}\right) + 4\mathcal{M}(\mathcal{L}, \frac{\alpha\epsilon}{8K_1}) \exp\left(-\frac{\alpha^2 \epsilon n}{4K_1^2}\right)$$

Consider a function $g \in \mathcal{G}$. Note that for any $\mathbf{x} \in \mathcal{X}$ and $f \in [0,1], |g(\mathbf{x},f)| \leq 1$ and $\mathbb{E}[g(\mathbf{x},f)^2] \leq \mathbb{E}[g(\mathbf{x},f)]$. Let $XF = \{(\mathbf{x},f) : \mathbf{x} \in \mathcal{X}, f \in [0,1]\}.$

We use Lemma B.2 by setting the parameters in this lemma as follows. We set Z to XF. Each observation z_i is set to (\mathbf{x}_i, f_i) where $i \in [1, n]$. Besides, we set $\mathcal{L} = \mathcal{G}$, l = g, $\alpha = \frac{1}{2}$, $K_1 = 1$ and $K_2 = 1$. By Lemma B.2, we have

$$Pr(\exists g \in \mathcal{G}, \mathbb{E}[g(\mathbf{x}, f)] - \frac{2}{n} \sum_{i=1}^{n} g(\mathbf{x}_i, f_i) \ge \epsilon)$$

(B.4) $\leq 6\mathcal{M}(\mathcal{G}, \frac{\epsilon}{16}) \exp\left(-\frac{3\epsilon n}{1328}\right)$

We set $\delta = 6\mathcal{M}(\mathcal{G}, \frac{\epsilon}{16}) \exp\left(-\frac{3\epsilon n}{1328}\right)$. Note that $\mathcal{M}(\mathcal{G}, \frac{\epsilon}{16}) \leq \left(\frac{en}{d}\right)^d$ where *e* is the natural logarithmic base [14]. Thus, we derive that

(B.5)
$$\epsilon \le \frac{1328}{3n} \left(d \cdot \ln \frac{en}{d} + \ln \frac{6}{\delta} \right)$$

From (B.4) and (B.5), we derive that with probability at least $1 - \delta$, there exists a function $g \in \mathcal{G}$ such that

$$\mathbb{E}[g(\mathbf{x}, f)] \le \frac{C_1 + C_2 \cdot \ln n + C_3 \cdot \ln \frac{1}{\delta}}{n}$$

where $C_1 = \frac{1328}{3}(d \ln \frac{e}{d} + \ln 6), C_2 = \frac{1328d}{3}$ and $C_3 = \frac{1328}{3}$. Next, we want to find the upper bound of $\sum_{i=1}^{n} g(\mathbf{x}_i, f_i)$.

From (B.3), we know that

(B.6)
$$\sum_{i=1}^{n} g(\mathbf{x}_i, f_i) = \sum_{i=1}^{n} (\hat{\eta}(\mathbf{x}_i) - f_i)^2$$

Note that $\hat{\eta}(\mathbf{x}_i) = \mathbf{k}(\mathbf{x}_i)^T \mathbf{a}$ for $i \in [1, n]$. Besides, it is easy to verify that K can be expressed as $(\mathbf{k}(\mathbf{x}_1), ..., \mathbf{k}(\mathbf{x}_i), ..., \mathbf{k}(\mathbf{x}_n))^T$. Let $\vec{\eta} = {\hat{\eta}(\mathbf{x}_i)}_{i=1}^n$. We can deduce that $\vec{\eta} = K\mathbf{a}$. Thus, it is easy to show that

$$(\mathbf{B}.7)\sum_{i=1}^{n} (\hat{\eta}(\mathbf{x}_i) - f_i)^2 = (K\mathbf{a} - \mathbf{f}) \cdot (K\mathbf{a} - \mathbf{f})$$

From (B.6) and (B.7), we have

(B.8)
$$\sum_{i=1}^{n} g(\mathbf{x}_i, f_i) = (K\mathbf{a} - \mathbf{f}) \cdot (K\mathbf{a} - \mathbf{f})$$

From Equation (A.2), we have

$$\mathbf{a} = (K + \sigma^2 \mathbf{I})^{-1} \mathbf{f}$$
$$(K + \sigma^2 \mathbf{I}) \mathbf{a} = \mathbf{f}$$
$$K \mathbf{a} - \mathbf{f} = -\sigma^2 \mathbf{a}$$
$$(B.9) \quad (K \mathbf{a} - \mathbf{f}) \cdot (K \mathbf{a} - \mathbf{f}) = \sigma^4 \mathbf{a} \cdot \mathbf{a}$$

From (B.8) and (B.9), we derive that

$$\sum_{i=1}^{n} g(\mathbf{x}_i, f_i) = \sigma^4 \mathbf{a} \cdot \mathbf{a}$$

Since $\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$ and $\|\mathbf{a}\| \le A$, we have 0) $\sum_{i=1}^{n} g(\mathbf{x}_i, f_i) \le \sigma^4 A^2$

(B.10)

Therefore, by combining (B.10) and (B.6), we have

$$\mathbb{E}[g(\mathbf{x}, f)] \le \frac{C_1 + C_2 \cdot \ln n + C_3 \cdot \ln \frac{1}{\delta}}{n}$$

where $C_1 = \frac{1328d}{3} \ln \frac{e}{d} + 2\sigma^4 A^2$, $C_2 = \frac{1328d}{3}$ and $C_3 = \frac{1328}{2}$.

Since $g(\mathbf{x}, f) = (\hat{\eta}(\mathbf{x}) - f)^2$, we have $\mathbb{E}[(\hat{\eta}(\mathbf{x}) - f)^2] \leq \frac{C_1 + C_2 \cdot \ln n + C_3 \cdot \ln \frac{1}{\delta}}{n}$. Let

(B.11)
$$\Delta = \frac{C_1 + C_2 \cdot \ln n + C_3 \cdot \ln \frac{1}{\delta}}{n}.$$

We have $\mathbb{E}[(\hat{\eta}(\mathbf{x}) - f)^2] \leq \Delta$.

We have just given Lemma B.1. We are ready to give the proof of Theorem 4.1.

In this proof, for convenience, $\mathbb{E}_{\mathbf{x}\sim P(X)}[\cdot]$ is represented by $\mathbb{E}[\cdot]$, and $Pr_{\mathbf{x}\sim P(X)}(\cdot)$ is represented by $Pr(\cdot)$. We know that

$$E(h) = Pr_{\mathbf{x},y}(y \neq h(\mathbf{x})) - Pr_{\mathbf{x},y}(y \neq h^{*}(\mathbf{x}))$$

$$= \mathbb{E}_{\mathbf{x}}[Pr_{y|\mathbf{x}}(y \neq h(\mathbf{x}))] - \mathbb{E}_{\mathbf{x}}[Pr_{y|\mathbf{x}}(y \neq h^{*}(\mathbf{x}))].$$

$$(B.12) = \mathbb{E}_{\mathbf{x}}[Pr_{y|\mathbf{x}}(y \neq h(\mathbf{x})) - Pr_{y|\mathbf{x}}(y \neq h^{*}(\mathbf{x}))].$$

Consider a certain feature x. We want to show that $Pr_{y|\mathbf{x}}(y \neq h(\mathbf{x})) - Pr_{y|\mathbf{x}}(y \neq h^*(\mathbf{x}))$ can be expressed as $|2\eta(\mathbf{x}) - 1| \cdot |h(\mathbf{x}) - h^*(\mathbf{x})|$. Note that $Pr_{y|\mathbf{x}}(y \neq h(\mathbf{x}))$ is equal to either $\eta(\mathbf{x})$ or $1 - \eta(\mathbf{x})$. Similarly, $Pr_{y|\mathbf{x}}(y \neq z)$ $h^*(\mathbf{x})$ is equal to either $\eta(\mathbf{x})$ or $1 - \eta(\mathbf{x})$. Consider two cases. Case 1: $h(\mathbf{x}) = h^*(\mathbf{x})$. In this case, $|h(\mathbf{x}) - h^*(\mathbf{x})| =$ 0. Since there is no error of hypothesis h (compared with h^*), we derive that $Pr_{y|\mathbf{x}}(y \neq h(\mathbf{x})) - Pr_{y|\mathbf{x}}(y \neq h^*(\mathbf{x})) =$ 0. It is easy to see that $Pr_{y|\mathbf{x}}(y \neq h(\mathbf{x})) - Pr_{y|\mathbf{x}}(y \neq h^*(\mathbf{x}))$ can be expressed as $|2\eta(\mathbf{x}) - 1| \cdot |h(\mathbf{x}) - h^*(\mathbf{x})|$. Case 2: $h(\mathbf{x}) \neq h^*(\mathbf{x})$. In this case, since $h^*(\cdot)$ is optimal, we know that $Pr_{y|\mathbf{x}}(y \neq h^*(\mathbf{x})) = \min\{\eta(\mathbf{x}), 1 - \eta(\mathbf{x})\}$ (because $h^*(\cdot)$ introduces the smallest error). Since $h(\mathbf{x}) \neq h^*(\mathbf{x})$, we derive that $Pr_{y|\mathbf{x}}(y \neq h(\mathbf{x})) = \max\{\eta(\mathbf{x}), 1 - \eta(\mathbf{x})\}.$ Thus, we have $Pr_{y|\mathbf{x}}(y \neq h(\mathbf{x})) - Pr_{y|\mathbf{x}}(y \neq h^*(\mathbf{x})) =$ $|2\eta(\mathbf{x}) - 1|$. Note that $|h(\mathbf{x}) - h^*(\mathbf{x})| = 1$. Thus, $Pr_{y|\mathbf{x}}(y \neq h(\mathbf{x})) - Pr_{y|\mathbf{x}}(y \neq h^*(\mathbf{x}))$ can be expressed as $|2\eta(\mathbf{x}) - 1| \cdot |h(\mathbf{x}) - h^*(\mathbf{x})|$. Therefore, from (B.12), we conclude that

(B.13)
$$E(h) = \mathbb{E}[|2\eta(\mathbf{x}) - 1| \cdot |h(\mathbf{x}) - h^*(\mathbf{x})|]$$

We know that when $h(\mathbf{x}) \neq h^*(\mathbf{x})$, we have $|\eta(\mathbf{x}) - \frac{1}{2}| \leq |\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})|$. This is because if $\eta(\mathbf{x}) \leq \frac{1}{2}$, then we know that $\hat{\eta}(\mathbf{x}) > \frac{1}{2}$ and thus we derive that $|\eta(\mathbf{x}) - \frac{1}{2}| \leq |\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})|$. Besides, if $\eta(\mathbf{x}) > \frac{1}{2}$, then we have a similar conclusion.

Since $|\eta(\mathbf{x}) - \frac{1}{2}| \leq |\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})|$, we derive that $|2\eta(\mathbf{x}) - 1| \leq 2|\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})|$. Besides, from (B.13), we have

$$E(h) \leq \mathbb{E}[2|\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})| \cdot |h(\mathbf{x}) - h^*(\mathbf{x})|]$$

(B.14)
$$= 2 \cdot \mathbb{E}[|\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})| \cdot \mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})}]$$

According to Hölder Inequality, we have $\mathbb{E}[|\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})| \cdot \mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})}] \leq \sqrt{\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2]} \cdot \sqrt{\mathbb{E}[(\mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})})^2]}$. Since $(\mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})})^2 = \mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})}$, we have $\mathbb{E}[|\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})| \cdot \mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})}] \leq \sqrt{\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2]} \cdot \sqrt{\mathbb{E}[\mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})}]}$ Since $\mathbb{E}[\mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})}] = Pr(h(\mathbf{x}) \neq h^*(\mathbf{x}))$, we have $\mathbb{E}[|\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})| \cdot \mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})}]$ Since $\mathbb{E}[\mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})}] = Pr(h(\mathbf{x}) \neq h^*(\mathbf{x}))$, we have $\mathbb{E}[|\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})| \cdot \mathbb{I}_{h(\mathbf{x}) \neq h^*(\mathbf{x})}] \leq \sqrt{\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2]} \cdot \sqrt{Pr(h(\mathbf{x}) \neq h^*(\mathbf{x}))}$. From (B.14), we derive the following.

$$\Box \quad E(h) \le 2\sqrt{\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2]}\sqrt{Pr(h(\mathbf{x}) \neq h^*(\mathbf{x}))}$$

After we find the upper bound of the right-hand side of the above inequality, we can complete the proof. In the following, we will show that with probability at least $1 - \delta$, $\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2] \leq \Delta$ and $Pr(h(\mathbf{x}) \neq h^*(\mathbf{x})) \leq c \cdot \Delta^{\frac{\gamma}{2}}$. With these results, we derive that with probability at least $1 - \delta$, $E(h) \leq 2 \cdot \sqrt{\Delta} \cdot \sqrt{c \cdot \Delta^{\frac{\gamma}{2}}} = 2 \cdot \sqrt{c} \cdot \Delta^{\frac{2+\gamma}{4}}$. Thus, after substituting Equation (B.11) into the above inequality, we have $E(h) \leq 2 \cdot \sqrt{c} \cdot (\frac{C_1 + C_2 \ln n + C_3 \ln \frac{1}{4}}{n})^{\frac{2+\gamma}{4}}$, where $C_1 = \frac{1328}{3}(d \ln \frac{e}{d} + \ln 6), C_2 = \frac{1328d}{3}$ and $C_3 = \frac{1328}{3}$. The remaining part of this proof is to show the correct-

The remaining part of this proof is to show the correctness of the upper bound of the right-hand side of the inequality. Firstly, we will show that with probability at least $1 - \delta$, $\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2] \leq \Delta$.

Since

$$\begin{split} & \mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2] + \sigma^2 \\ &= \mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2 + (\eta(\mathbf{x}) - f)^2] \\ &= \mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2 + (\eta(\mathbf{x}) - f)^2 \\ &- 2(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))(\eta(\mathbf{x}) - \eta(\mathbf{x}))] \\ &= \mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2 + (\eta(\mathbf{x}) - f)^2 \\ &- 2(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))(\eta(\mathbf{x}) - f)] \\ &= \mathbb{E}[((\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x})) - (\eta(\mathbf{x}) - f))^2] \\ &= \mathbb{E}[(\hat{\eta}(\mathbf{x}) - \hat{\eta})^2] \end{split}$$

we know that

$$\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2] \leq \mathbb{E}[(\hat{\eta}(\mathbf{x}) - f)^2]$$

as $\sigma^2 \ge 0$.

From Lemma B.1, we derive that with probability at least $1 - \delta$,

(B.15)
$$\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2] \le \Delta$$

Next, we will show that with probability at least $1 - \delta$, $Pr(h(\mathbf{x}) \neq h^*(\mathbf{x})) \leq c \Delta^{\frac{\gamma}{2}}$.

Since $(\mathbb{E}[|\hat{\eta}(\mathbf{x}) - \eta(\mathbf{x})|])^2 < \mathbb{E}[(\hat{\eta}(\mathbf{x}) - \eta(\mathbf{x}))^2]$, from (B.15), we derive that with probability at least $1 - \delta$,

 $\sqrt{\Delta}$

(B.16)
$$\mathbb{E}[|\hat{\eta}(\mathbf{x}) - \eta(\mathbf{x})|] \le$$

Since

$$Pr(h(\mathbf{x}) \neq h^{*}(\mathbf{x}))$$

$$= \mathbb{E}[\mathbb{I}_{h(\mathbf{x})\neq h^{*}(\mathbf{x})}]$$

$$= \mathbb{E}[\mathbb{I}_{h(\mathbf{x})\neq h^{*}(\mathbf{x}), \mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|] \leq \sqrt{\Delta}}]$$

$$+ \mathbb{E}[\mathbb{I}_{h(\mathbf{x})\neq h^{*}(\mathbf{x}), \mathbb{E}[|\hat{\eta}(\mathbf{x})-\eta(\mathbf{x})|] > \sqrt{\Delta}}]$$

and according to Inequality (B.16), the second term above equals 0 (i.e., $\mathbb{E}[|\hat{\eta}(\mathbf{x}) - \eta(\mathbf{x})|] \leq \sqrt{\Delta}$) with probability at least $1 - \delta$, we claim that with probability at least $1 - \delta$,

$$Pr(h(\mathbf{x}) \neq h^*(\mathbf{x}))$$

(B.17)= $Pr(h(\mathbf{x}) \neq h^*(\mathbf{x}), \mathbb{E}[|\hat{\eta}(\mathbf{x}) - \eta(\mathbf{x})|] \leq \sqrt{\Delta})$

As we discussed before, $h(\mathbf{x}) \neq h^*(\mathbf{x})$ implies that $|\eta(\mathbf{x}) - \frac{1}{2}| \leq |\hat{\eta}(\mathbf{x}) - \eta(\mathbf{x})|$ for any $\mathbf{x} \in \mathcal{X}$. Thus, we have $\mathbb{E}[|\eta(\mathbf{x}) - \frac{1}{2}|] \leq \mathbb{E}[|\hat{\eta}(\mathbf{x}) - \eta(\mathbf{x})|]$ when $h(\mathbf{x}) \neq h^*(\mathbf{x})$. From (B.17), we derive that $h(\mathbf{x}) \neq h^*(\mathbf{x})$ and $\mathbb{E}[|\hat{\eta}(\mathbf{x}) - \eta(\mathbf{x})|] \leq \sqrt{\Delta}$ implies $\mathbb{E}[|\eta(\mathbf{x}) - \frac{1}{2}|] < \sqrt{\Delta}$ with probability at least $1 - \delta$. Therefore, with probability at least $1 - \delta$,

$$\begin{split} ⪻(h(\mathbf{x}) \neq h^*(\mathbf{x}), \mathbb{E}[|\hat{\eta}(\mathbf{x}) - \eta(\mathbf{x})|] \leq \sqrt{\Delta}) \\ \leq ⪻(\mathbb{E}[|\eta(\mathbf{x}) - \frac{1}{2}|] < \sqrt{\Delta}) \\ \leq & c \cdot \Delta^{\frac{\gamma}{2}} \qquad \text{(By Definition 1)} \end{split}$$

Thus, with probability at least $1 - \delta$,

(B.18)
$$Pr(h(\mathbf{x}) \neq h^*(\mathbf{x})) \le c \cdot \Delta^{\frac{\gamma}{2}}$$

Finally, we will show that event $E_1 : "\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2] \leq \Delta$ " occurs if and only if event $E_2 : "Pr(h(\mathbf{x}) \neq h^*(\mathbf{x})) \leq c \cdot \Delta^{\frac{\gamma}{2}}$ " occurs. With this result, we conclude that with probability at least $1 - \delta$, these two events occur simultaneously. Thus, we complete the proof. Note that when we show " $Pr(h(\mathbf{x}) \neq h^*(\mathbf{x})) \leq c \cdot \Delta^{\frac{\gamma}{2}}$ ", we make use of " $\mathbb{E}[(\eta(\mathbf{x}) - \hat{\eta}(\mathbf{x}))^2] \leq \Delta$ ". Thus, if E_1 is true, then E_2 is true. Otherwise, then E_2 is not true.

Thus, we complete the proof.