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ABSTRACT 
Subspace learning approaches have attracted much attention in 
academia recently. However, the classical batch algorithms no 
longer satisfy the applications on streaming data or large-scale 
data. To meet this desirability, Incremental Principal Component 
Analysis (IPCA) algorithm has been well established, but it is an 
unsupervised subspace learning approach and is not optimal for 
general classification tasks, such as face recognition and Web 
document categorization. In this paper, we propose an incremental 
supervised subspace learning algorithm, called Incremental 
Maximum Margin Criterion (IMMC), to infer an adaptive 
subspace by optimizing the Maximum Margin Criterion. We also 
present the proof for convergence of the proposed algorithm. 
Experimental results on both synthetic dataset and real world 
datasets show that IMMC converges to the similar subspace as 
that of batch approach. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning 
G.1.6   [Numerical Analysis]: Constrained Optimization 

Keywords 
Maximum Margin Criterion (MMC), Principal Component 
Analysis (PCA), Linear Discriminant Analysis (LDA). 

1. INTRODUCTION 
In the past decades, machine learning and data mining research 
has witnessed a growing interest in subspace learning [7] and its 
applications, such as web document classification and face 
recognition. Among various subspace learning approaches, linear 
algorithms are of great interesting due to their efficiency and 
effectiveness. Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA) are two of the most widely used 
linear subspace learning algorithms. Furthermore, a novel efficient 
and robust subspace learning approach namely Maximum Margin 
Criterion (MMC) [4] was proposed recently. It can outperform 
PCA and LDA on many classification tasks.  

PCA is an unsupervised subspace learning algorithm. It aims at 
finding the geometrical structure of data set and projecting the 
data along the directions with maximal variances. However, it 
discards the class information, which is significant for 
classification tasks. On the other hand, LDA is a supervised 
subspace learning algorithm. It searches for the projection axes on 
which the data points of different classes are far from each other 
meanwhile where the data points of the same class are close to 
each other. Nevertheless, the number of classes limits the available 
subspace dimension in LDA, and the singularity problem limits 
the application of LDA. MMC is also a supervised subspace 
learning algorithm and it has the same goal as LDA. However the 
computational complexity of MMC is much lower than that of 
LDA due to the different form of object function.  

The original PCA, LDA, and MMC are all batch algorithms, 
which require that the data must be available in advance and be 
given once altogether. However, this type of batch algorithms no 
longer satisfies the applications in which the data are 
incrementally received from various data sources. Furthermore, 
when the dimension of the dataset is high, both the computation 
and storage complexity grow dramatically. Thus, an incremental 
method is highly desired to compute the adaptive subspace for the 
data arriving sequentially [5]. Incremental Principal Component 
Analysis (IPCA) [6] algorithms  are designed for such a purpose 
and have been well established. However, IPCA ignores the 
valuable class label information. Accordingly, the most 
representative features derived from IPCA may not be the most 
discriminant ones. On the other hand, incremental supervised 
subspace learning algorithms have not been studied sufficiently.  

In this paper, we propose an incremental supervised subspace 
learning algorithm by incrementally optimizing the Maximum 
Margin Criterion called IMMC. It derives the online adaptive 
supervised subspace from sequential data samples and 
incrementally updates the eigenvectors of the criterion matrix. 
IMMC does not need to reconstruct the criterion matrix when it 
receives a new sample, thus the computation is very fast. We also 
prove the convergence of the algorithm in this paper. 

The rest of the paper is organized as follows. We introduce some 
background work on subspace learning, including PCA, IPCA, 
LDA, and MMC algorithms in Section 2. Then, we present the 
incremental subspace learning algorithm IMMC and the proof of 
its convergence in Section 3. Experimental results on the synthetic 
dataset and the real datasets are shown in Section 4. Finally, we 
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concluded our work in Section 5, as well as some detailed proof in 
the appendix. 

2. BACKGROUND KNOWLEDGE 
Linear subspace learning approaches are widely used in real tasks 
such as web document classification and face recognition 
nowadays. It aims at finding a projection matrix, which could 
efficiently project the data from the original high dimensional 
feature space to a much lower dimensional representation under a 
particular criterion. Different criterion will yield different 
subspace learning algorithm with different properties. Principal 
Component Analysis (PCA) and Linear Discriminant Analysis 
(LDA) are two most widely used linear subspace learning 
approaches. Recently, Maximum Margin Criterion, a novel 
efficient and robust subspace learning approach has also been 
applied to many real tasks.  

2.1 Principal Component Analysis 
Suppose that the data sample points (1), (2),..., ( )u u u N  are d-
dimensional vectors, and that U is the sample matrix with ( )u i  as 

its thi column. PCA aims to find a subspace whose basis vectors 
correspond to the directions with maximal variances. It projects 
the original data into a p-dimensional (p << d) subspace. The new 
low-dimensional feature vector can be computed as Ty W u= , 
where W is the projection matrix and its column vectors 
correspond to the p leading eigenvectors of the covariance 
matrix TC UU= . PCA minimizes the reconstruction error in the 
sense of least square error, and finds out the most representative 
features. Moreover, PCA is in fact a scalable algorithm since it has 
effective incremental learning algorithm, which could process 
large scale streaming data. However, it ignores the class label 
information; therefore, it is not optimal for general classification 
tasks.  

The computation cost of PCA, which is 3( )O m , mainly lies in the 
SVD processing, where m is the smaller one of the data dimension 
and the number of samples.  Thus, it is difficult or even impossible 
to conduct PCA on large scale dataset with high dimensional 
representations. 

2.2 Linear Discriminant Analysis 
Linear Discriminant Analysis (LDA), also called Fisher 
Discriminant Analysis (FDA), was proposed to pursue a low 
dimensional subspace that can best discriminate the samples from 
different classes. Suppose d pW R ×∈ is the linear projection matrix; 
LDA aims to maximize the so-called Fisher criterion, 

( ) | | / | |T T
b wJ W W S W W S W= , 

where 
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are called the Inter-class scatter matrix and the Intra-class scatter 
matrix, respectively, where c is the number of classes, m  is the 
mean of all samples, im  is the mean of the samples belonging to 

class i and ip is the prior probability for a sample belonging to 

class i. The projection matrix W can be obtained by solving the 
following generalized eigenvector decomposition problem:  

b wS w S wλ= . 

There are at most c-1 nonzero eigenvalues, so the upper bound of 
p is c-1; and at least d c+  data sample is required to make it 

possible that wS  is not singular. These constrains limit the 
application of LDA. Furthermore, it is difficult for LDA to handle 
large size datasets when the dimension of the feature space is high.  

2.3 Incremental PCA 
PCA is a batch algorithm. It can not meet the requirement of many 
real world problems. Incremental learning algorithms have 
attracted much attention in the past decades. Incremental PCA is a 
well-studied incremental leaning algorithm.  Many types of IPCA 
have been proposed, and the main difference is the incremental 
representation of the covariance matrix. The latest version of 
IPCA [6] with convergence proof is called Candid Covariance-
free Incremental Principal Component Analysis (CCIPCA) which 
does not need to reconstruct the covariance matrix at each 
iteration of the computation. It was designed based on the 
assumption that { ( )}E A n A= , where d dA R ×∈  is of full rank 
and positive determined.  

2.4 Maximum Margin Criterion 
Maximum Margin Criterion (MMC) is a recently proposed feature 
extraction criterion. This new criterion is general in the sense that 
combined with a suitable constraint it can actually give rise to the 
most popular feature extractor in the literature, i.e. Linear 
Discriminant Analysis. Using the same representation as LDA, the 
goal of MMC is to maximize the criterion ( ) ( )T

b wJ W W S S W= − .  

Although both MMC and LDA are supervised subspace learning 
approaches, the computation of MMC is easier than that of LDA 
since MMC does not have inverse operation. The projection 
matrix W can be obtained by solving the following eigenvector 
decomposition problem:  

( )b wS S w wλ− = . 

When computing, we can notice that the criterion matrix b wS S−  
may even be negative determined. 

3. INCREMENTAL MMC 
As discussed above, IPCA ignores the class label information. 
Thus the most representative features found by IPCA may not be 
the most discriminating ones which make IPCA not being optimal 
for general classification tasks. It motivates us to design an 
incremental supervised subspace learning algorithm that can 
efficiently utilize the label information. In this work, we consider 
the scenario that maximizes the Maximum Margin Criterion 
proposed by Li [4] to make the different class centers as far as 
possible, at the same time make the data points in the same class 
as close as possible.  

In the following subsections, we will introduce the details on how 
to incrementally maximize the Maximum Margin Criterion. The 
convergence proof and algorithm summary are also presented. 



3.1 Problem Formulation 
Denote the projection matrix from original space to the low 
dimensional space as d pW R ×∈ . In this work, we propose to 

incrementally maximize the MMC criterion ( ) ( )T
b wJ W W S S W= − , 

where bS and wS are the inter-class scatter matrix and intra-class 
scatter matrix respectively. Let C be the covariance matrix. In the 
above formulation, we exercised freedom to multiply W with some 
nonzero constant. Thus, we additionally require that W consists of 
unit vectors, i.e. 1 2[ , , ]pW w w w= � and 1T

k kw w = . Then the 

optimization problem of the proposed object function ( )J W  is 
transformed to the following constrained optimization problem: 

1 ( )p T
k b w kkmax w S S w= −� , subject to 1T

k kw w = , k=1,2,…,p . 

Through Lagrangian, it is easy to prove that W is the first k leading 
eigenvectors of the matrix b wS S−  and the column vectors of W 
are orthogonal to each other. It shows that our problem is learning 
the p leading eigenvector of b wS S− incrementally. 

3.2 The Leading Eigenvector 
Before giving the incremental formulation of MMC, we analyze 
the criterion matrix b wS S− and transform it into a convenient form. 
Firstly, two lemmas are listed as: 

Lemma-1: b wS S C+ = . 

Lemma-2: if lim n
n

a a
→∞

=  then
1

1
lim

n

i
n i

a a
n→∞ =

=� . 

Assume that a data sample sequence is presented as { ( )}
nl

u n , 

where n=1, 2…. The goal of MMC is to maximize the Maximum 
Margin criterion ( ) ( )T

b wJ W W S S W= − , d pW R ×∈ . Here p is the 
dimension of the transformed subspace. The Maximum Margin 
criterion can be transformed as ( ) (2 )T

bJ W W S C W= −  from 

Lemma-1. Then maximizing ( )J W means to find the p leading 
eigenvectors of 2 bS C− . 

The Inter-class scatter matrix of step n after learning from the first 
n samples can be written as below, 

1
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On the other hand,  
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Assume that θ is a positive real number and d dI R ×∈ is an identity 
matrix, if λ is an eigenvalue of matrix A  and x is the 
corresponding eigenvector, then ( ) ( )A I x Ax Ix xθ θ λ θ+ = + = + , 
i.e. A  should have the same eigenvectors with matrix A Iθ+ . 

Further more, the order from the largest to the smallest of their 
corresponding eigenvalues are the same. Therefore, 
2 bS C− should have the same eigenvectors as 2 bS C Iθ− + . 
From (2) and (3) we have the following conclusion:  

1
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where ( ) 2 ( ) ( ( ) ( ))( ( ) ( ))T
bA i S i u i m i u i m i Iθ= − − − + , 

2 bA S C Iθ= − + . 

Notice that we can consider matrix ( )A i as a random matrix, in 

other words we have
1

1
{ ( )} lim ( )

n

n i
E A n A i

n→∞ =
= � . 

The general eigenvector form is Ax xλ= , where x  is the 
eigenvector of matrix A corresponding to the eigenvalue λ . By 
replacing matrix A with the Maximum Margin criterion matrix at 
step n, we obtain an approximate iterative eigenvector 
computation formulation with v xλ= : 

1

1 1
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where ( ) ( ) ( )j ji m i m iΦ = − , ( )v n is the thn step estimation of v and 

( )x n is the thn step estimation of x . Once we obtain the 
estimation of v , eigenvector x  can be directly computed 
as /x v v= . Let ( )x i = ( 1) / ( 1)v i v i− − , we have the following 

incremental formulation:  

1

1

1 1
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  (5) 

 
where ( ) ( ) ( 1)T

j jn n v nα = Φ − and ( ) ( ( ) ( )) ( 1)Tn u n m n v nβ = − − ,

1,2,...,j c= . For initialization, we set (0)v be the first data sample. 

3.3 Other Eigenvectors 
Notice that different eigenvectors are orthogonal to each other. 
Thus it helps to generate “observations” only in a complementary 
space for the computation of the higher order eigenvectors. To 
compute the ( 1)thj + eigenvector, we first subtract its projection 

on the estimated thj eigenvector from the data, 
1( ) ( ) ( ( ) ( )) ( )

n n n

j j j T j j
l l lu n u n u n v n v n+ = −                     (6) 

where 1 ( ) ( )
n nl lu n u n= . The same method is used to update 

( )j
im n and ( )jm n 1,2,...,i c= . Since ( )j

im n and ( )jm n are linear 



combinations of ( )
i

j
lx i , where 1,2,...,i n= , 1,2,...,j k= , and 

{1,2,..., }il C∈ , iΦ are linear combination of im and m , for 
convenience, we can only update Φ at each iteration step by: 

1( ) ( ) ( ( ) ( )) ( )
n n n

j j j T j j
l l ln n n v n v n+Φ = Φ − Φ                   (7) 

In this way, the time-consuming orthonormalization is avoided 
and the orthogonal is always enforced when the convergence is 
reached, although not exactly so at early stages.  

Through the projection procedure using (6) (7) at each step, we 
can get the eigenvectors of Maximum Margin criterion matrix one 
by one. It is much more efficient in comparison to the time-
consuming orthonormalization process. 

3.4 Convergence Proof Summary 
The full algorithm consists of updating (5), (6) and (7) at each 
iteration. Theorem-1 shown as below guarantees the convergence 
of the proposed Incremental Maximum Margin Criterion 
algorithm when the selected positive real number θ  makes the 
matrix 2 bS C Iθ− + is non-negative determined. 

A similar theorem with proof can be found in [8]. Our 
convergence proof for eigenvectors except the largest one is the 
same as it. We just give out the proof summary and ignore the 
parts which are the same as in [8]. 

Theorem-1: If matrices sequence { ( )}A n , ( )A n < ∞ converge to 

a matrix d dA R ×∈ , i.e.
1

1
lim ( )

n

n i
A i A

n→∞ =
=� , where A is nonnegative 

determined matrix and A < ∞ , the eigenvalues of A 

satisfy 1 2 0dλ λ λ> ≥ ≥ ≥� , then the iterative process converges 
to the maximum eigenvalue of matrix A multiplied by the 
corresponding eigenvector. 

1 1 ( 1)
( ) ( 1) ( )

( 1)
n v n

v n v n A n
n n v n
− −= − +

−
                   (8) 

Theorem-2: Suppose ( ) ( 1) ( ( 1))n n n n nv n v n a h v n a b a ξ= − + − + + . 
If A1 to A4 are all satisfied, let {v(n)} be bounded w.p.1. 

A 1 ( )h ⋅ is a continuous dR valued function on dR . 

A 2 { }nb is a bounded sequence of dR valued random variables 

such that 0nb →  when n → ∞ . 

A 3 { }na is a sequence of positive real numbers such that 0nb → , 

nn a = ∞� . 

A 4 { }nξ is a sequence of dR valued random variables and such 

that for some 0T > and each 0ε >  
( 1)

( )lim {sup max } 0m jT t
j n t T i ii m jTn

p a ξ ε+ −
≥ ≤ =→∞

≥ =� . 

Let *v  be a locally asymptotically stable (in the sense of Liapunov) 

solution to equation ( )dX h Xdt = with the domain of attraction 

*( )DA v and there is a compact set *( )DA vΗ ∈ such that 

( )v n ∈ Η infinitely often, we have *( )v n v→  as n → ∞ . (The 
origin form of this theorem and its proof can be found in [2].) 

Theorem-3: Let *( )v t v→ be a locally asymptotically stable (in 
the sense of Liapunov) solution to the Ordinary Differential 
Equation as bellow:  

                                    ( )
dv A

I v
dt v

= −                                         (9) 

where d dA R ×∈  is a nonnegative determined matrix, dv R∈ and the 
eigenvectors of A satisfies 1 2 0dλ λ λ> ≥ ≥ ≥� . Then 

( )v t converges to 1 1eλ , 1e is the eigenvector corresponding to 1λ . 

The combination of theorem-2 and theorem-3 gives out the proof 
of theorem-1 which is in fact the convergence proof of our 
proposed Incremental Maximum Margin Criterion algorithm. It is 
easy to prove that the proposed algorithm satisfies the conditions 
of theorem 2. A 1, A 2 and A 3 are naturally satisfied and A.4 is 
satisfied due to lemma-3. The combination of Lemma-4 and the 
proof of [8] ends the proof of theorem-3, i.e. the convergence 
proof of our proposed algorithm. 

Lemma-3: ( )v n is bounded, if (0)v is bounded. 

The proof of lemma-3 could be found in the appendix. 

Lemma-4: d dA R ×∈ is a nonnegative determined matrix, 
( )rank A m=  and m d≤ , { }ie 1,2,i m= � are eigenvectors 

corresponding to non-zero eigenvalues of A, if we expend { }ie to a 

normalized orthogonal basis of dR , 1 2 1, , , ,m m de e e e e+� � , then 

0jAe = , 1, ,j m d= + � . 

Proof: set 0j jy Ae= ≠ , 1, ,j m d= + � , we have 

{ ; 1,2, , }j iy span e i m∈ = � and it conflicts with the fact that 

{ ; 1,2, , }j ie span e i m⊥ = � , this ends the proof of lemma-4. 

The time complexity of IMMC to train N input samples 
is ( )O Ncdp , where c is the number of classes, d is the dimension 
of the original data space and p is the target dimension, which is 
linear with each factor. Furthermore, when handling each input 
sample, IMMC only need to keep the learned eigen-space and 
several first order statistics of the past samples, such as the mean 
and the counts. Hence, IMMC is able to handle large scale and 
continuous data stream. 

4. EXPERIMENTAL RESULTS 
We performed three sets of experiments. Firstly, we used synthetic 
data to illustrate the subspaces learned by IMMC, LDA, and PCA 
intuitively. Secondly, we applied IMMC on some UCI subsets [1], 
and compared the results with the batch MMC approach that 
conducted by SVD, whose time complexity is 3( )O m  , where m is 
the smaller number of the data dimension and the number of 
samples. Since the classification performance of MMC such as 
LDA has been discussed when it was proposed, we only focus on 
the convergence performance of IMMC to the batch MMC 
algorithm on UCI dataset. In the third dataset, the Reuters Corpus 
Volume 1 (RCV1) [3], a large scale dataset whose dimension is 
about 300,000, was used. We measured the performance of our 
algorithm by F1 value on it because the dataset is too large to 
conduct the batch MMC on it. 



4.1 Synthetic dataset 
We generated a 2-dimension dataset of 2 classes. Each class 
consists of 50 samples from normal distribution with means (0, 1) 
and (0,-2), respectively; and the covariance matrices are diag(1, 25) 
and diag(2, 25). Figure 1 shows a scatter plot of the data set. The 
two straight lines are subspaces found by IMMC and PCA. Since 
the subspace found by MMC is the same as subspace by LDA in 
the case, we did not give out the LDA subspace. 

Since ' 2(1 ')v v v v− = − ⋅ , and 'v v= iff ' 1v v⋅ = , the correlation 

between two unit eigenvectors is represented by their inner 
product, and the larger the inner product is, the more similar the 
two eigenvectors are. Let us analyze this dataset to show the 
convergence ability of IMMC. For this toy data the eigenvalues 
of 2 bA S C Iθ= − + are 0.25 and -84.42 and the corresponding 

eigenvectors are (0,-1) and (-1, 0). We choose 85θ = to make sure 
that the criterion matrix is nonnegative determined. Figure 2 
shows the convergence curve of our algorithm through inner 
product. 

4.2 Real World Data 
UCI machine learning dataset is a repository of databases, domain 
theories and data generators that are used by the machine learning 
community for the empirical analysis of machine learning 
algorithms. Balance Scale Data was generated to model 
psychological experimental results.  

The number of instances is 625 and the number of attributes is 4. 
There are three classes (49 balanced, 288 left, 288 right.). For this 
Balance Scale data set, the eigenvalues of 2 bA S C Iθ= − + are -

2.0, -2.0, -1.9774, and 0.7067. We choose 2.0θ = to make sure the 
criterion matrix is nonnegative determined. Figure 3 shows the 
inner products of directions found by IMMC and CCIPCA [6]. 

In order to demonstrate the performance of IMMC on relative 
large scale data, we choose the Ionosphere database (figure 4). 
This radar data was collected by a system in Goose Bay, Labrador.  
This system consists of a phased array of 16 high-frequency 
antennas with a total transmitted power on the order of 6.4 
kilowatts.  

The number of instances is 351, and the number of attributes is 34 
plus the class attribute. All 34 predictor attributes are continuous 
and the 35th attribute is either “good” or “bad” according to the 
definition. Since the smallest eigenvalue of this data set is very 
close to zero, we try taking the parameter 0θ = in this experiment. 

Unfortunately, some experimental results show that IMMC could 
not be used on some special data set, if the criterion 
matrix 2 bA S C= − is negative determined. This difficulty 
motivates us to propose a weighted Maximum Margin 
Criterion b wA S Sε= − . Some advanced experiments show that the 

classical MMC ( 1ε = ) is not usually optimal for classification 
tasks. In other words, a proper ε could improve the performance 
of MMC and it could make sure that the criterion matrix is 
nonnegative determined. Then we could make the criterion matrix 
nonnegative determined by giving a smaller ε instead of 
parameter θ . To demonstrate the performance of IWMMC on a 
large scale dataset, we tested our algorithm on the Reuters Corpus 
Volume 1 (RCV1).  
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Figure 1 Subspace learned by IMMC and PCA 
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Figure 2 Correlation between eigen-space of IMMC and batch 
MMC on synthetic dataset 
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Figure 3 Inner product of first eigenvector with batch 

approaches by IMMC for BS 
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Figure 4 Inner product of first eigenvector with batch 

approaches by IMMC for Ionosphere 0θ =  
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Figure 5 F1 value of incremental weighted MMC 

The dimension of each data sample is about 300,000. We chose 
the data samples with the highest four topic codes in the “Topic 
Codes” hierarchy, which contains 789,670 documents. Then we 
applied a five-fold cross validation on the data.  We split them into 
five equal-sized subsets and in each experiment four of them are 
used as the training set and the remaining one is left as the test set. 
Figure 5 shows the F1 value of different subspace learning 
approach by SVM classifier, where the number denotes the 
subspace dimension. For example, IG3 represents the 3-
dimensional subspace calculated by Information Gain. It shows 
that IWMMC ( 0ε θ= = ) outperforms Information Gain and 
IPCA which could also be conducted on large scale dataset. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed an incremental supervised subspace 
learning algorithm, called Incremental Maximum Margin Criterion 
(IMMC), which is a challenging issue of computing dominating 
eigenvectors and eigenvalues from incrementally arriving stream 
without storing the knowing data in advance. The proposed 
IMMC algorithm is effective and has fast convergence rate and 
low computational complexity. It can be theoretically proved that 
IMMC can find out the same subspace as batch MMC does. 
Moreover, batch MMC can approach LDA when there is a 
suitable constraint. But it remains unsolved that how to estimate 
and choose the parameter to make sure the criterion matrix is 
nonnegative determined. In the future work, we intend to give a 
rational function of θ  to make IMMC more stable.  
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8. APPENDIX 
Lemma-3: ( )v n is bounded, if (0)v is bounded. 

Proof: 
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From the fact that A < ∞ and
1

1
lim ( )
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n i
A i A

n→∞ =
=� , we know that, 
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when 2n N≥ .  

Let 1 2max{ , }N N N= , then ( ) ( 1)v n v n ε≤ − + when n N≥ . 

Since we can choose ε freely, we can draw the conclusion that 
( ) ( 1)v n v n≤ −  . when n N≥ . 

Since (0)v < ∞ , When n N≤  

1 1
( ) ( 1) ( )

1
(0) ( ( ) ( 1) (1) )

n
v n v n A n

n n

v A n A n A
n
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So ( )v n is bounded when n N≤ and ( ) ( 1)v n v n≤ −  

when n N≥ , i.e. ( )v n is bounded, 1,2,n = � . Notice this 

implies that ( )v n w.p.1. 

End of proof. 


