Towards A Compact Speech Recognizer:

Subspace Distribution Clustering
Hidden Markov Model

Brian Kan-Wing Mak
B.Sc. (Eng.)., Electrical Engineering, University of Hong Kong, Hong Kong, 1983
M.S., Computer Science, University of California, Santa Barbara, USA, 1989

A dissertation submitted to the faculty of the
Oregon Graduate Institute of Science and Technology
in partial fulfillment of the
requirements for the degree
Doctor of Philosophy
in

Computer Science and Engineering

April 1998

© Copyright 1998 by Brian Kan-Wing Mak
All Rights Reserved

ii

The dissertation “Towards A Compact Speech Recognizer: Subspace Distribution
Clustering Hidden Markov Model” by Brian Kan-Wing Mak has been examined and ap-

proved by the following Examination Committee:

Etienne Barnard

Associate Professor, CSE Department
Oregon Graduate Institute

Thesis Research Adviser

Enrico Bocchieri

Principal Member of Technical Staff
AT&T Labs — Research

Thesis Research Adviser

Ronald Cole
Professor, CSE Department
Oregon Graduate Institute

Hynek Hermansky
Associate Professor, EE Department
Oregon Graduate Institute

iii

Dedication

To
my fiancée Man-Yin Tsang,
my family,

and those with a curious mind.

iv

Acknowledgements

Anyone who has obtained a Ph.D. degree will probably agree that while the degree is
rewarding, the life of Ph.D. study is hell — whoever wants a second Ph.D. degree must be
either a lunatic or a moron! I even coin the term TIPS (Thesis In Preparation Syndrome)
to describe the cycles of ups and downs, frustrations and eureka-type of joys during the
life of Ph.D. study. To thrive in the study, if not to strive for the degree, great mentors
are a great blessing. Borrowing the remark from Isaac Newton, “If I have seen further
than you, it is by standing upon the shoulders of giants,” I am fortunate to have the
shoulders of two great advisors to stand upon: Etienne Barnard, Associate Professor of
the Department of Computer Science and Engineering of Oregon Graduate Institute of
Science and Technology (OGI); and Enrico Bocchieri, Principal Member of Technical Staff
of AT&T Labs.

I still remember my first meeting with Etienne and Enrico. In the spring of 1994, I
started looking for a thesis advisor. In my first “formal” meeting with Etienne, he said
(paraphrased), “I think we have some interests in common, and we should make a good
team.” It was a very encouraging remark for a first-year Ph.D. student. By the summer
of 1996, I went to AT&T Labs on an internship. When I first met Enrico in his office, he
mentioned that before hiring me, he read my personal webpage and found that my work
on phone clustering could be of use in his new project. Only then I was convinced that
some people really read my personal webpage! Many thanks to both of them, for their
invaluable advice, wise guidance, and insightful questions. I am also impressed with their
depth of knowledge and their humility in treating students.

This thesis grew out of a project Enrico suggested during my summer internship at
AT&T Labs, and is finished during my research at the Labs while pursuing my Ph.D.
degree. This work would not have happened if not for the efforts of several people: Eti-
enne who recommended me to the internship program; Roberto Pieraccini who forwarded
my internship application to his colleague, Enrico; Enrico who recruited me; Ron Cole,
director of CSLU (Center for Spoken Language Understanding) of OGI, Larry Rabiner,
director of SIPS (Speech and Image Processing Services) Labs of AT&T Labs, David Roe
and Candy Kamm, the previous and current head of Department HA6154000 of SIPS
Labs, who smoothed out all administrative red tape to make this collaboration between

OGI and the Labs possible. T also would like to express my gratitude to all the people in
the speech groups of CSLU and SIPS Labs. I learned a great deal from their thoughtful
questions and comments. Special thanks to Hynek Hermansky, Mark Fanty, Yonghong
Yan, and Todd Leen of OGI; Bishnu Atal, Olivier Siohan, Andrej Ljolje, Mazin Rahim,
Richard Rose, and S. Parthasarathy of SIPS Labs, with whom I have held many construc-
tive discussions.

I am very grateful to an old friend, Tao Ye, whom I knew during my Master study at
UCSB. He helped clarify some mathematics in this thesis. When the first draft of the thesis
was ready, I gave it to Wieland Eckert, Olivier Siohan, Pau Paches, and Ivan Magrin-
Chagnolleau for remarks. Their remarks improve the exposition. I also have to thank
the secretaries of both organizations, Terri Durham of CSLU and Mary Aimette of the
Department HA6154000 of SIPS Labs, who shielded me from all the tedious administrative
chores.

Finally, T cannot overstate the debt I owe to my fiancée, Man-Yin Tsang and my
family. They have been very supportive and have borne with my absence from home.
Without their love and understanding, it would have been very difficult to get over the
hell of TIPS.

vi

Contents

Abstract xiii
1 Introduction 1
1.1 The Problem: Too Many Parameters 3
1.2 Proposed Solution: It Is Time to Share More! 4
1.3 Thesis Summary and Outline 6
Review of Acoustic Modeling Using Hidden Markov Model 9
2.1 Speech Characteristics 9
2.2 Selection of Input Speech Space and Speech Model 10
2.2.1 Cepstral Input 10
2.2.2 Hidden Markov Model L. 11
2.2.3 Our Choice of HMM for Acoustic Modeling 14

2.3 Speech Unit to Model, 15
2.4 Parameter Tying L e 16
AT&T’s Baseline ATIS Recognizer 19
3.1 The ATIStask 19
3.1.1 ATIS Corpora o v ittt e e 20
3.1.2 ATIS Evaluation Tests 20

3.2 The Baseline Recognizer oL, 21
3.2.1 Signal Processing o 21
3.2.2 Lexicon Lo 22
3.2.3 Acoustic Modeling 23
3.2.4 Ensemble Merging Algorithm for State Tying 24
3.2.,5 Language Modeling 26
326 Decoding 28

3.3 Baseline Performance L L o oo 28

vii

4 Subspace Distribution Clustering Hidden Markov Model (SDCHMM) 32

4.1 Theory of SDCHMM e e e e e 32
4.1.1 Generalization 34
4.2 Distribution Clustering L o o 36
4.3 Why Are SDCHMMs Good? 37
4.3.1 Savings in Model Parameters and Memory 38
4.3.2 Savings in Computation L L. 39
4.4 Comparison with Semi-Continuous HMM 40
4.5 Comparison with Feature-Parameter-Tying HMM 42

5 Implementation of SDCHMDMs (I): Model Conversion from Continuous

Density HMMs (CDHMMSs) 43
5.1 Issue I: Stream Definition L. 44
5.1.1 Common Streamsot e e 45
5.1.2 Correlated-Feature Streams 46
5.2 Issue II: Subspace Gaussian Clustering 51
5.2.1 Agglomerative Gaussian Clustering Algorithm 51
5.2.2 Modified k-means Gaussian Clustering Algorithm 52
5.3 ATIS Recognition Evaluation 53
5.3.1 Evaluation of Stream Definitions and Clustering Algorithms 53
5.3.2 Evaluation of SDCHMMs 54
5.3.3 Summary of Best Results 61
5.4 Summary and Discussion oL oL oo 63
6 Analysis of the Subspace Distribution Tying Structure 67
6.1 SDCHMMs to Analyze i 68
6.2 Methodology e 68
6.3 Results. e 70
6.4 Discussion e e 72
7 Implementation of SDCHMDMs (II): Direct SDCHMM Training 77
7.1 A Review of Maximum Likelihood Estimation of CDHMM Parameters Us-
ing the EM Algorithm (with Single Observation Sequence) 79
711 E-step 79
712 M-step o o 80
7.1.3 Viterbi Training oL 82
7.2 Extension to Maximum Likelihood Estimation of SDCHMM Parameters . . 82
7.2.1 Reestimation of # and @ in SDCHMM 83

viii

7.2.2 Reestimation of bin SDCHMM 83

723 Remarks. 86
7.3 Evaluation of Direct SDCHMM Training 87
7.3.1 Methodology 88
7.3.2 Preparation of Training Datasets 88
7.3.3 Hybrid Viterbi/Baum-Welch Training Procedure 90
7.3.4 Experiment [: Effectiveness of Direct SDCHMM Training 92
7.3.5 Experiment II: Data Requirement for Training Context-Independent
SDCHMM o e 96

7.3.6 Experiment III: Performance Variability with Little Training Data . 101
7.3.7 Experiment IV: Data Requirement for Training Context-Dependent

SDCHMM e e e e 101

7.4 Summary and Discussion L0 Lo oo 105

8 Conclusions and Future Work 107
8.1 Contributions 108
82 Future Work 110
83 Final Remarkso 112
Bibliography 114
A Smaller Quantization Error in Lower Dimensions 123
B Count of Common Subspace Gaussians between Phones 126
C Statistical Significance Tests, 130
Biographical Note 134

ix

3.1
3.2

3.3

4.1

5.1
5.2
5.3

7.1

7.2

7.3

74

B.1

B.1

B.1

C.1
C.2

List of Tables

ATIS Phones (Phone-like Units) 22
ATIS: Count of common prefixes of different lengths among the words in

thelexicon. e 23
ATIS: Testing conditions and performance of the baseline CI/CD systems . 29
Number of model parameters in various typesof HMM 38
ATIS: Definitions of correlated-feature streams 51
ATIS: Summary of the best results 61
ATIS: Number of distinct full-space Gaussians after subspace Gaussian ty-

ing in context-dependent SDCHMMs 65
ATIS: Training datasets 89
ATIS: Comparison of recognition accuracies among CI CDHMMs, CI SD-

CHMMs converted from the CDHMMs, and CI SDCHMMs estimated by

direct SDCHMM training using the SGTS of the converted SDCHMMs . . 95
ATIS: Number of Gaussians in CDHMMs trained with different datasets
and various numbers of mixtures per state L. 97

Comparing data requirements for SDCHMM training and CDHMM training 105

ATIS: Number of common subspace Gaussians between any two phones (a)

Iststate e 127
ATIS: Number of common subspace Gaussians between any two phones (b)

2nd state L e 128
ATIS: Number of common subspace Gaussians between any two phones (c)

drdstate 129
ATIS: Statistical significance tests on the best CI SDCHMM systems 132
ATIS: Statistical significance tests on the best CD SDCHMM systems . . . 133

1.1

2.1
2.2
2.3

3.1

3.2

4.1

5.1
5.2
5.3

5.4

5.5

5.6
5.7

6.1

6.2
6.2
6.2

7.1
7.2
7.3

List of Figures

Capability of state-of-the-art automatic speech recognizers 2
A first-order 3-state left-to-right hidden Markov model 11
Basic configuration of acoustic models using hidden Markov modeling . . . 12
Various tying schemes of acoustic models using hidden Markov modeling . . 18
An example of a (second-order) VNSA implementation of a simple bigram
language model L 27
ATIS: Operating curves of the baseline CI/CD systems. 30
Subspace distribution clustering hidden Markov models with 4 streams . . . 35
Conversion of CDHMMs to SDCHMMs 44
Effect of correlated and uncorrelated features on clustering 47
ATIS: Recognition accuracy of 13-stream SDCHMMs with various stream
definitions and clustering schemes o000 55
ATIS: Effect of number of streams and subspace Gaussian prototypes on
SDCHMM recognition accuracy« o o v v v v v v v v 56
ATIS: Effect of number of streams and subspace Gaussian prototypes on
SDCHMM recognition speed o 59
ATIS: Number of active states during decoding 60
ATIS: Operating curves of SDCHMMs 64
ATIS: Counts of the number of common subspace Gaussians between phones

of different broad categories L. 71
Subspace Gaussian tying structure (a) between “ae” and “eh” 74
Subspace Gaussian tying structure (b) between “s” and “z” 75
Subspace Gaussian tying structure (c) between “t” and “iy” 76
SDCHMM training schemes 78
Hybrid Viterbi/Baum-Welch training procedure 91
ATIS: Comparison between the amount of training data required for COHMM
training and direct SDCHMM training 97

xi

74
7.5
7.6
7.7

8.1

Al

Frame distribution of training dataset D 99

ATIS: Over-training with small amount of training data 100
ATIS: Variability with few training data 102
ATIS: Data requirement for CD SDCHMM training 104
Two methods of training SDCHMMs 109
Smaller quantization error in lower dimensions 124

xii

Abstract

Towards A Compact Speech Recognizer:
Subspace Distribution Clustering
Hidden Markov Model

Brian Kan-Wing Mak

Supervisors: Etienne Barnard and Enrico Bocchieri

After decades of research in speech recognition, the technology is finally entering into the
commercial market. A significant challenge is to downsize research laboratory recognizers
so that they can be used on platforms with less computational power: Most contemporary
laboratory recognizers require too much memory to run, and are too slow for mass applica-
tions. This thesis addresses the problem by greatly reducing the number of parameters in
the acoustic models. We focus on more compact acoustic models because they constitute
a major component of any speech recognizers, and the computation of their likelihoods
consumes 50-70% of total recognition time for many typical tasks.

The main contribution of this thesis is the formulation of a new acoustic modeling
method which we call subspace distribution clustering hidden Markov modeling (SDCHMM).
The theory of SDCHMM is based on tying continuous density hidden Markov mod-
els (CDHMMs) at a new finer sub-phonetic unit, namely the subspace distribution. Two
methods are presented to implement the SDCHMMs. The first implementation requires
training a set of intermediate CDHMMs followed by model conversion in which the distri-
butions from the CDHMMs are projected onto orthogonal subspaces, and similar subspace

distributions are then tied over all states and all acoustic models in each subspace. By

xiil

exploiting the combinatorial effect of subspace distribution encoding, all original full-
space distributions can be represented by combinations of a small number of subspace
distribution prototypes. Consequently, there is a great reduction in the number of model
parameters, and thus substantial savings in memory and computation. Furthermore, we
demonstrate in the second implementation method that, given prior knowledge of the
tying structure of the subspace distributions, SDCHMMs can be trained directly from
much less data. This renders SDCHMM very attractive in the practical implementation
of acoustic models, speaker-specific training, and speaker/environment adaptation.
Evaluation on the ATIS (Airline Travel Information System) task shows that in com-
parison to a CDHMM system, a SDCHMM system achieves 7- to 18-fold reduction in
memory required for acoustic models, runs 30-60% faster, and can be trained with 10-20

times less data, without any loss of recognition accuracy.

xiv

Chapter 1

Introduction

Five decades of interdisciplinary research in widely different areas such as linguistics,
psychoacoustics, signal processing, computer science, pattern recognition, and information
theory, has greatly advanced the state of the art in automatic speech recognition (ASR).
The ASR technology has evolved progressively from recognizing a few hundred isolated
words with speaker dependency in the 70s, tens to hundreds of connected words without
speaker dependency in the 80s, to speaker-independent large-vocabulary continuous speech
at present. The capabilities of some state-of-the-art recognizers over a wide range of tasks
are summarized in Figure 1.1 [12, 28, 34, 54, 87]. In the figure, the difficulty of a recognition
task (from the perspective of a recognizer) is measured by the perplexity of its language
model, whereas the performance of a recognizer is gauged by its word error rate (WER).
The perplexity of a language model is the average number of words that may follow another
word [69]; and WER is the percentage of words which are wrongly recognized'. Although
these recognizers are task-specific, and they usually only operate well in the domains and
under the conditions (channel, signal-to-noise ratio, accent, etc.) they are trained for, they
already represent a mature technology ready for large-scale deployment.

The advancement of ASR technology can be attributed to the following factors:
e the success of modeling acoustics using the stochastic hidden Markov models (HMMs)

e the success of statistical language modeling which produces simple but powerful

language models

1See Section 3.1.2 for more details.

: : : : :
| | | | !
| | | | |
| | | | |
| | | . i
| | | telephone i
! ! ! conversation I

40 - oo T " (Switchboard) Tt
| | | |

- | | |

= | | | |
|
| | | !
8 1 A | !
N T T T T T T I T‘
| | | |
| | | |

= | | | i

IS | | | |

o | | | !

= I I I |

£ o6 s R RS G | :

s I I I I

= | | | |
| | |

S | | | :

= ! ! ! |

— | | | |
S | | | |

B 4 e e - - - == ! T
I I
! isolated |
. English letters !
! I
|

(spontaneous) |
2 Lo ___ airline reservation) _____ .
‘ (ATIS) !
I
| | !
I
digit strings ! |
|
| | |
(0] I | I

11 25 50

Perplexity

Figure 1.1: Capability of state-of-the-art automatic speech recognizers

e the use of dynamic programming algorithms together with pruning techniques in

efficiently searching the vast solution space;

e the availability of large domain-specific speech and text corpora which allow training

of more complex and accurate acoustic models as well as language models

e the blessing of Moore’s law? for progress in semiconductor technology — laboratory
workstations today are as powerful as a supercomputer less than two decades ago.
Without fast processors and large on-board memory, large-vocabulary continuous

speech recognition is simply impossible.

2In 1965, Gordon Moore identified that the logic density of silicon integrated circuits has been doubling
every eighteen months with proportional decreases in cost. The statement has held true since then.

1.1 The Problem: Too Many Parameters

Despite the long desire to use speech — often the most natural and efficient modality
humans use to communicate — for human-machine interaction, the ASR technology has
not prevailed, and the promise of a ubiquitous speech user interface has yet to be ful-
filled. What is hidden behind the impressive ASR results in Figure 1.1 is the tremendous
computational cost of many state-of-the-art recognizers: To arrive at the low WERs, rec-
ognizers are running at one to two orders of magnitude slower than real time, requiring
high-end research workstations equipped with hundreds of megabytes (MB) of memory.
A significant challenge is to adjust laboratory recognizers so that they may be deployed
on more affordable machines of lower processing power and smaller memory size without
losing accuracy. Techniques exist to reduce memory requirement alone, for example, by
using simpler but less accurate models, or through data compression [73]. There are also
techniques to speed up computation alone: for example, by simply exercising more vig-
orous pruning schemes, by computing state likelihoods only from a small subset of the
most relevant state probability density distributions [6, 8, 41, 63, 79], or by fast-match
techniques [21]. However, these techniques are usually done at the expense of recognition
accuracy; in the case of computation speedup, more memory is usually required. In order
to achieve faster computation speed and smaller memory footprint without sacrificing ac-
curacy — three seemingly conflicting goals — each system component (acoustic models,
language model, search engine, knowledge database, etc.) should be subject to careful

scrutiny.

Analysis of the execution profiles of speech recognizers of various vocabulary sizes
(except the very large vocabulary®) reveals that roughly 50-70% of the overall recognition
time is spent in computing state likelihoods of the acoustic models. The result is not
surprising; in their craving for cranking out every bit of recognition accuracy, laboratory

speech recognizers are building highly complex acoustic models with a huge number of

3For vocabulary size of more than tens of thousands of words, computation of state likelihoods amounts
to about 25-30% of total runtime. Nonetheless, most ASR applications that are conceivably ready for
deployment in the near future will have smaller vocabularies and will be the main focus in this thesis.

parameters to capture the fine phonetic details. For example, let us look at two state-
of-the-art recognizers which were among the top three systems in the ARPA evaluation
of ATIS (Airline Travel Information System) [25] in 1994. AT&T’s general-purpose ATIS
recognizer [9] contains more than 6 million parameters in its acoustic models requiring
more than 24MB of memory space and consequently runs at 7 times real time to obtain
a WER of 5.2% on the ATIS task on an SGI Oy machine (MIPS R10000 CPU, 195 MHZ,
2GB shared memory). Similarly CMU’s Sphinx II large-vocabulary recognizer [28] requires
more than 40MB of memory to represent its acoustic models which have over 10 million
parameters, and obtains a WER of 5.1% on the same task using an 175MHz Alphastation
at the speed of 9 times real time?. In general, a large model parameter space leads to the

following problems:
e larger memory requirement
e slower recognition
e requiring more training data
e requiring more data for speaker/environment adaptation.

Thus, if we can reduce the number of free parameters in acoustic models — the basic
component of any speech recognizer — both the memory and the speed problem will be
addressed at the same time. In addition, if the goal of less training data can be achieved,
productivity can be improved as well since recognition systems can then be trained in
a shorter time using less memory. In this thesis, we propose a more efficient acoustic

modeling methodology to arrive at a more compact recognizer.

1.2 Proposed Solution: It Is Time to Share More!

The most common approach to reducing the number of parameters in acoustic mod-

els is parameter tying: Similar structures are discovered among the acoustic models,

*This is the recognition speed before the recent implementation of efficient search algorithms as de-
scribed in [73]. The efficient search later increases the speed to 1.6 times real time.

and they are then tied together to share the same value. With the (limited) amount
of training data on hand, parameter tying allows more complex acoustic models to be
estimated reliably while the number of model parameters will not grow unchecked. In
the past, the technique of parameter tying has been applied successfully at various gran-
ularities: Phones (generalized biphones/triphones [48], context-independent phones [49]),
states (tied-state HMM [32, 88]), observation distributions (tied-mixture/semi-continuous
HMM [4, 29, 80]), and feature parameters [85] have all been tied. For example, of the
two aforementioned systems, AT&T’s ATIS recognizer is a tied-state system, whereas
CMU’s Sphinx II employs semi-continuous HMMs. The technology trend is to tie acous-
tic models at finer and finer details so as to maintain good resolution among models as
much as possible. In this thesis, we propose to push the technique to an even finer sub-
phonetic unit — subspace distributions — in the context of hidden Markov modeling®.
Subspace distributions are the projections of the full-space distributions of an HMM in
lower dimensional spaces. The hypothesis is that speech sounds are more alike in some
acoustic subspaces than in the full acoustic full space. We call our novel HMM formulation
“subspace distribution clustering hidden Markov modeling” (SDCHMM).

Subspace distribution clustering hidden Markov models (SDCHMMs) are derived from
already existing continuous density hidden Markov models (CDHMMs) without requiring
any extra training data nor re-training. The distributions of CDHMMs are projected onto
orthogonal subspaces (or streams®), and similar subspace distributions are then tied into
a small number of distribution prototypes (or codewords) over all states and all acoustic
models in each subspace. By exploiting the combinatorial effect of subspace distribution
encoding, all original full-space distributions can be closely approximated by some com-
binations of a small number of subspace distribution prototypes. Consequently, there is a
great reduction in the number of model parameters, and thus substantial savings in mem-

ory and computation. This renders SDCHMM very attractive in practical implementation

5Since most state-of-the-art speech recognition systems are HMM-based, we thus only consider our
thesis in such context. Recently artificial neural networks (ANN) have been applied to ASR with some
success [2, 11, 76], but HMMs remain the dominant technology.

Tn this thesis, the two terms, “subspace” and “stream” are used interchangeably to mean a feature
space of dimension smaller than that of the full feature space. “Subspace” is clearer mathematically, but
“stream” 1s more common in the speech recognition community.

of acoustic models. Furthermore, we demonstrate that given a priori knowledge of the
tying structure of the subspace distributions in SDCHMMs, SDCHMMs can be trained
directly from speech data without going through intermediate CDHMMs. Because of the
great reduction of parameters in SDCHMMs, such SDCHMM training requires much less
training data. It will therefore be of great importance to speaker-specific training and
speaker /environment adaptation.

From the perspective of quantization, one may consider SDCHMM as an approximation
to the highly accurate CDHMM, achieving great data compression by subspace distribu-
tion quantization. From the perspective of hidden Markov modeling, SDCHMM unifies
the theory of CDHMM which employs full-space state probability density distributions
and the feature-parameter-tying HMM [84, 85] which is generated by scalar quantization
of the distributions. SDCHMM combines the accuracy of CDHMM with the compactness
of feature-parameter-tying HMM. In this aspect, it is interesting to compare this work
with a similar approach called “split vector quantization” [44, 65] that has been success-
fully applied to high-quality, low-bit rate speech coding for years. In speech coding, it is
known that (full) vector quantization (VQ) results in smaller quantization distortion than
scalar quantization at any given bit rate [35]. However, to attain the required high quality
in practical telecommunication, full VQ suffers from training, memory, and computation
problems much like those of our current complex ASR systems. Split VQ overcomes the
complexity problem of full VQ by splitting the speech vectors into sub-vectors of lower

dimensions and quantizing the sub-vectors in their subspaces.

1.3 Thesis Summary and Outline

In this thesis, we present the theory of subspace distribution clustering hidden Markov
modeling. The development of the theory and its implementation is done using Gaussian
distributions with diagonal covariances, though it can be applied more generally. Before

the implementation of the new models, the following two basic issues are answered:
e how to define the subspaces?

e how to tie the subspace distributions?

We suggest a simple but coherent definition for streams of any dimension: The streams
comprise the most correlated features. We devise a modified k-means Gaussian cluster-
ing scheme using the Bhattacharyya distance as the distance measure between Gaussian
distributions [17]. Finally, two implementation methods for the SDCHMM are studied in
detail: model conversion from CDHMMs and direct SDCHMM training.

Throughout the thesis, the ATIS recognition task is used as the test-bed for evaluating
the SDCHMMSs. In summary, the performance of a set of 20-stream SDCHMMs converted
from the context-dependent CDHMMs of the baseline AT&T’s ATIS system with only 64

subspace Gaussian prototypes per stream epitomizes the power of SDCHMM:

It is slightly more accurate than the baseline CDHMM system (WER of 5.0% versus
5.2%).

It runs at twice the speed of the original system (3.5 versus 7.0 times real time).

The acoustic models take up 1.8MB of memory compared with the original 24MB

— a 13-fold reduction.

If we have a priori knowledge of the tying structure of its subspace Gaussians and the
mixture weights (borrowed from the original CDHMMs), it can be trained directly
from scratch with as little as 8.3 minutes of speech with no loss of accuracy. (For

comparison, the original CDHMM system is trained with 36 hours of speech.)

The organization of this dissertation is as follows.

In Chapter 2, the current technology of acoustic modeling is reviewed. After an in-
troduction to hidden Markov modeling, choices of speech modeling units are discussed,
leading to the necessity of the technique of parameter tying. Since many variations are
used, we will discuss the most typical acoustic modeling techniques rather than specific
implementations.

In Chapter 3, we describe the baseline AT&T ATIS recognition system, the perfor-
mance of which is used as a benchmark throughout this thesis. All aspects of the system

such as signal processing, training procedure, language modeling, and search algorithm

will be discussed. In addition, its accuracy, computation time, and memory requirement
will be given.

Chapter 4 is the main part of the thesis as it will present the theory of SDCHMM in
detail, and explain why it is preferred by comparing with other modeling methodologies
that are described in Chapter 2.

Chapter 5 presents the first implementation method of SDCHMMSs: model conversion
from CDHMMs. Here, we propose a coherent definition for the streams and a Gaussian
clustering algorithm to convert CDHMMs to SDCHMMSs, which are then evaluated on
the ATIS task. The effect of different numbers of streams and different amounts of tying
will be studied and evaluated on three metrics: accuracy, computation time, and memory
requirement.

In Chapter 6, we present a brief analysis on the phonetic-acoustic nature of the tying
structure of SDCHMMs. That is, we examine whether the tying structure among different
phonemes agrees with what we know from phonetics.

Chapter 7 describes the second implementation method of SDCHMMs — direct SD-
CHMM training. First, we expand the theory of SDCHMM by presenting the reestimation
formulas of its various quantities. Then the SDCHMM training scheme is developed. Fi-
nally, by progressively reducing the amount of ATIS training data by half each time,
we study the training data requirement for SDCHMMs (which have many fewer model
parameters than the original CDHMMs).

Finally, in Chapter 8, we summarize our findings of using SDCHMM for automatic
speech recognition, and our contributions in this thesis. We also suggest some directions
for future development of SDCHMM, especially in the area of speaker or environment

adaptation.

Chapter 2

Review of Acoustic Modeling Using
Hidden Markov Model

Before we may call upon the large inventory of classification methods to recognize speech,
we first have to build a mathematical model for each speech sound from its acoustic signal
so that the acoustic models describe the sounds as “closely” as possible (according to some
cost function, such as likelihood). A mathematical model requires a definition of the input
observation space, and a model form. In this chapter, we first look at some characteristics
of speech which will help guide our choice of a mathematical model for speech. Then we
will discuss some choices of speech units commonly used for acoustic modeling, leading to

the need of parameter tying.

2.1 Speech Characteristics

Speech is produced through complex coordination among articulators in our vocal tract
such as vocal cords, jaw bones, tongue, lips, etc. Although the dimensions, shapes and
dynamic behaviors of the articulators vary from one person to another, they move in
well coordinated ways, governed by the laws of physics. As a result, speech exhibits the

following characteristics:

SC-I: Speech is a time-varying signal. A speech model must describe the temporal be-

havior of the acoustics.

SC-II: Speech is not memoryless. Each speech sound is produced by a sequence of well-

known movements of articulators. A speech model thus has to capture the sequential

10

nature of speech.

SC-III: As a mechanical system, our speech production system cannot change abruptly
from one configuration to another, resulting in a “quasi-stationary” speech signal at
intervals when its articulators stay at relatively stable positions during the course of

the speech.

SC-IV: Since the articulators move smoothly during the production of speech, successive
acoustic samples are highly correlated, and there is much redundancy overall. This

suggests that a more succinct representation of the raw speech signal is possible.

SC-V: The realization of the same speech sound varies from person to person, and from
time to time even with the same person. Thus a speech model must allow for such

variabilities.

2.2 Selection of Input Speech Space and Speech Model

Besides accounting for the forgoing speech characteristics, the choice of acoustic repre-
sentation and modeling methodology depends largely on the recognition paradigm. As
of date, automatic speech recognition (ASR) has been best tackled in the framework pro-
vided by statistical pattern recognition (SC-V). In the following, we will describe only the

most common acoustic representation and modeling technique used in this paradigm.

2.2.1 Cepstral Input

Spectral representations have been found to be adequate for speech. In practice, short-
term spectral analysis is usually applied over a window of 20-30ms of speech (SC-IIT) at
about every 10ms (SC-I). The spectrum (envelope) is then encoded succinctly by a vector
of, say, 12 cepstral coefficients [72] (SC-IV). Due to the findings from psychoacoustical
studies which show that humans do not perceive frequencies greater than 1kHz in a lin-
ear scale but instead in a logarithmic scale, the cepstral coefficients are more commonly
expressed as mel-frequency [82] cepstral coefficients (MFCC) or perceptual linear predic-

tive (PLP) coefficients [24] in the Bark scale [90].

11

00 1" 22

Figure 2.1: A first-order 3-state left-to-right hidden Markov model (where a;;
denotes the transition probability from state ¢ to state j)

2.2.2 Hidden Markov Model

Most of the aforementioned speech characteristics can be captured by a probabilistic finite-
state machine called the hidden Markov model (HMM). Figure 2.1 shows a first-order
3-state left-to-right HMM, most commonly used in ASR. The left-to-right HMM has a
set of states with one designated as the (leftmost) starting state and one the (rightmost)
ending state, representing the beginning and the ending of a speech sound. A state
roughly corresponds to a quasi-stationary region in the speech sound (SC-III) while state
transitions correspond to temporal movement of the speech signal (SC-I). In a left-to-right
HMM, only left-to-right state transitions are allowed so as to capture the sequential nature
of speech (SC-IT). When a state transition occurs, an acoustic observation is emitted. In
various formulations, an emitted observation has been associated with the transition arc,
the source state or the destination state. Here we associate an observation with the
destination state. Both transitions and observation emissions are probabilistic and they
model the temporal variability and acoustic variability of speech respectively (SC-V). The
hidden nature of the model is due to a doubly embedded stochastic process: Only the
stochastic process which emits acoustic events at the states is directly observable and the

other stochastic process (state transition) which controls state occupancy is hidden.

Figure 2.2 depicts a basic configuration of continuous density HMM-based acoustic

models. In the figure, each phonetic unit is modeled separately by one left-to-right HMM

12

which consists of three states, and the state observation probability distribution is esti-

mated as a mixture density with two Gaussian components.

. . Gaussian
phonetic acoustic e .
units HMMs states mixture
densities

|

— 33d =
384 —
— 334 —

|

DFD
OQO

o — 33—

Figure 2.2: Basic configuration of acoustic models using hidden Markov modeling

First-order HMM Assumptions

There are two major assumptions in the foregoing discussion:

1. State-dependency of transition. For simplicity and computational tractability, a
first-order HMM is used, so that state transitions only depend on the current state
and not on the past state history nor the future states. Further, as a side effect, the

assumption also leads to an unrealistic exponential state duration distribution.

2. State-dependency of observation. An acoustic observation depends only on its emit-
ting state, and not on neighboring states nor previous frames of observation. Con-
sequently, states actually become stationary (not just quasi-stationary) and the ob-

servations in a given state can thus be assumed to be independently and identically

13

distributed.

HMM Variants

Obviously the two assumptions violate the fact that neighboring acoustic events are highly
correlated. To alleviate the shortcomings, many modifications have been proposed recently

which mainly differ in the extent to which they relax the assumptions:

e The simplest way to incorporate temporal or contextual information without modi-
fying the HMM formulation is to add dynamic features onto the input feature vec-

tor [18].

e Higher-order HMMs have been used to include more of the past state history. Be-
cause of the big increase in computational complexity, only second-order HMMs have

been tried, but with limited success [58].

e State-dependent correlations between successive frames are explicitly modeled by
conditioning the observation probability jointly on both the current state and the
preceding observation [64]. Because of the huge increase in the number of estimation
parameters, approximation is used to express the joint conditional probabilities in
terms of individual conditional probabilities in bigram-constrained HMMs [83] (using

observation bigrams), or using an extended logarithmic pool [40] .

e Hybrid models of Artificial Neural Networks and HMMs incorporate contextual in-
formation simply by using the current feature frame together with neighboring fea-

ture frames [11].

e Hybrid models of Recurrent Neural Networks and HMMs explicitly estimate the
posterior phone probability of the current frame conditional on both the state and

all its previous frames more effectively [76].

o The state-dependent acoustic trajectory is modeled by an autoregressive process
in autoregressive HMMs [37, 68], and in trended HMMs with a linear polynomial

regression function of time [14].

14

e Segmental HMMs such as the stochastic trajectory model [20] and stochastic seg-
ment model [62] relax both assumptions and explicitly model acoustic trajectories

of variable durations as well as the duration.

A detailed description of HMMs is outside the scope of this thesis and interested

readers are referred to [70].

2.2.3 Owur Choice of HMM for Acoustic Modeling

For simplicity and computational tractability, we employ the first-order HMMs with cep-
stral coefficients augmented by their first- and second-order time derivatives as the speech
features. They are most commonly used and are found to be about as accurate as the the-
oretically more sound variants. Their simplicity and explicit parameterization also make
them amenable to a wide range of techniques that perform fast state-likelihood computa-
tion [6, 8, 41, 63, 79] and reduce parameters through parameter tying (see Section 2.4).

In particular, the continuous density HMM (CDHMM) is used as generally it is found to
be highly accurate. For fast computation and trainability, the continuous state observation
probability density distributions are estimated as mixture Gaussian densities with diagonal
covariances. In theory, the mixture Gaussian density function can approximate, arbitrarily
closely, any finite continuous density function.

Finally, we would also like to point out some minor issues in our implementations of

HMDMs:

e Precise estimation of the transition probabilities is found unnecessary, and each
transition arc is simply assigned an equal probability of 1/fan-out, where fan-out is

the number of arcs coming out of the source state [10, 89].
e No explicit duration modeling is performed as it is not found necessary.

e Our HMMs are trained using the simpler segmental k-means algorithm [38] which
has been found to work as well as the conventional Baum-Welch algorithm [3] ([45,

71, 89]).

15

2.3 Speech Unit to Model

Although it may be most natural to model each word individually, the approach is im-
practical in most recognition tasks, except those of small vocabularies and isolated words.
In most cases, there are not sufficient training data for each word. One separate model for
each word also requires large storage space and long decoding time. Thus, it is generally
necessary to model sub-word units so that training, storage, and computational resources
can be shared. The sub-word speech units are shared among the pronunciations of a lex-
icon, and can avoid repetitions of likelihood computation of the models in, for example,
fast lexical tree search. Chronologically, ASR has progressed with smaller and smaller

units of speech exhibiting finer and finer acoustic details:

e Multi-phone units: syllables, demisyllables, and diphones. They encapsulate co-
articulatory effects between phones. The major problem in the past was the large
number (over 1000 demisyllables, 2500 diphones, and 20,000 syllables) of these units.

With larger speech corpora nowadays, they are worth reconsidering?.

e Context-independent (CI) phones are monophones. Each phone is modeled by the

same statistics, irrespective of its surrounding acoustic contexts.

e Context-dependent (CD) phones are phones uttered in a specific context. For in-
stance, left /right biphones are phones on the right/left of another phone; triphones
assume that acoustic realization depends only on the immediately preceding and

following phones.

e Sub-phonetic units are components of a phonetic HMM such as states or distribu-
tions. They are motivated mainly for efficient acoustic modeling and may not be

associated with a phonetic meaning.

! As a matter of fact, there is already renewed interest in using syllables as the modeling units [22, 27, 33].

16

2.4 Parameter Tying

The history of acoustic modeling is guided by the need to strike a balance between two
conflicting goals for acoustic models: trainability and resolution. That is, the acoustic
models should contain enough fine acoustic details so that different models can be resolved
during decoding; but too many details generally result in too many model parameters,
and reduce the robustness of model parameters when estimated from limited amounts
of training data (and the amount of training data is always limited as the complexity of
acoustic models grows). Moreover, a large number of model parameters leads to larger
memory size, slower recognition, and more difficult speaker/environment adaptation. In
the past, the technique of parameter tying has been applied successfully to obtain such a
balance by reducing the number of parameters in acoustic models at various granularities.

Let us look at some of the most typical HMM tying schemes.

Monophone HMM: A monophone ties all allophones of a base phone. The small num-
ber (less than 100) of monophones results in CI systems that are simple to implement

and fast to run. However, the accuracy of CI systems is usually modest.

Generalized context-dependent phone HMM: Generalized triphone HMMs [47] are
most commonly used. The large number of triphones (about 125,000 in English,
assuming all possible combinations of three phones) makes it almost impossible
to model each of them equally reliably. Fortunately many contexts of the same
base phone are similarly realized and may be clustered to much fewer generalized
triphones. Generalized triphones derived using a phonetic decision tree have the

additional benefit of capturing “unseen” triphones [48].

Tied-state HMM (TSHMM): Since co-articulatory effects are more prominent at the
onset and ending of a phone than at its center, they are better categorized at local
HMM states than over the whole HMM phone as in generalized triphones. Therefore
TSHMM clusters the corresponding HMM states of the same base phone [32, 88].
Young and Woodland reported a 5-fold reduction in the number of states in their

TSHMM systems [88].

17

Tied-mixture HMM /semi-continuous HMM (SCHMM): SCHMM is a generaliza-
tion of the discrete HMM in which prototypes are continuous Gaussian distributions
with diagonal covariances instead of just mean vectors [4, 29, 80]. Consequently, an
SCHMM enjoys fast computation of state likelihoods but reduces the quantization
errors of discrete HMMs, with a negligible increase in model parameters. Moreover,
the SCHMM is a special case of distribution tying in which all Gaussian components

of all HMMs are clustered to a common set of Gaussian prototypes.

Feature-parameter-tying HMM (FPTHMM): In speech coding, it is found that for
the same bit rate, full-space vector quantization (VQ) is always more efficient than
scalar quantization (SQ); nonetheless, SQ can represent each 1-dimensional feature in
very few scalar codewords and thus requires much smaller storage for its codebooks.
In the same spirit, FPTHMM [84, 85] clusters Gaussian components of a continuous
density HMM (CDHMM) with diagonal covariances in each dimension into very few
1-dimensional Gaussian prototypes?. When combined with SQ of input features,
likelihoods due to all shared scalar Gaussian prototypes can be pre-computed and
stored in a look-up table. Subsequent (full-space) state observation likelihoods can

then be computed more efficiently without any divisions or multiplications [78].

Several tying schemes may be cascaded together in a HMM system at the same time
to achieve the best balance between model complexity and model-estimation robustness
as exemplified in Figure 2.3. In the figure, the objects in each tying level, namely HMMs,
states, and Gaussian distributions, are organized as a pool of shared objects. An object
in a tying level may be shared by several objects in the previous level (to its left). Not
only are the tying structures more compact to store, they also avoid evaluating the same
object twice during recognition. Perhaps the best example is the hidden Markov network
of [77] which ties allophones, states, distributions and feature parameters. Alternatively,
several tying schemes may also be combined or merged. For example, genones [15] or state-

clustered tied-mixture HMMs [61] divide all states into classes and only tie the mixtures

2Speech recognition systems are only concerned with the storage space for the distributions. As an
analogy, transmission bit rate in speech coding is equivalent to the memory requirements in ASR for
encoding the full-space distributions by the scalar distribution prototypes of each dimension.

18

acoustic . .
phonetic HMM state Gaussian

units pool pool pool

Figure 2.3: Various tying schemes of acoustic models using hidden Markov modeling

within each class with the aim to enhance model resolution.

In this thesis, we try to push the technology of parameter tying to a finer sub-phonetic
level, namely that of subspace distributions. We call our new HMM derivative, the sub-
space distribution clustering hidden Markov model(SDCHMM). It may be considered a
generalization of distribution tying and feature-parameter tying techniques. Before we
introduce our SDCHMM in Chapter 4, we first present in the next chapter the baseline
ASR system and the benchmark test we will use throughout this thesis to demonstrate

the efficacy of SDCHMMs.

Chapter 3

AT&T’s Baseline ATIS Recognizer

Throughout this dissertation, our novel subspace distribution clustering hidden Markov
model (SDCHMM) is evaluated on the ARPA-ATIS task. The task is chosen for two
reasons: Firstly, it represents a commercially viable application for automatic speech
recognition technology in the near future; secondly, and most importantly, we were able
to employ AT&T Labs’ state-of-the-art ATIS recognizer. Clearly, it can be trivial to
introduce improvements on a mediocre recognizer. On the other hand, if we can show sig-
nificant enhancements to a highly fine-tuned and accurate recognizer, there is good reason

to see SDCHMM as a promising alternative to the current acoustic modeling techniques.

In this chapter, we describe in details the ATIS task, various components of AT&T’s
baseline ATIS recognizer with emphasis on its acoustic models, as well as its benchmark
performance against which our SDCHMM performance will be gauged in the later chap-

ters.

3.1 The ATIS task

The Air Travel Information System (ATIS) task was initiated in 1989 in response to the call
from the ARPA Spoken Language Systems Program for development of speech recognition
and natural language research, using spontaneous and goal-directed speech rather than
read speech. An ATIS system allows users to speak naturally to inquire about air travel

information stored as a relational database which is derived from the Official Airline Guide.

19

20

3.1.1 ATIS Corpora

Several ATIS corpora! known as ATISO [23], ATIS1?, ATIS2 [25], and ATIS3 [13] were
collected over the years by several institutions: AT&T, BBN, CMU, MIT, NIST, SRI, and
TI. To date, the corpora contain nearly 25,000 utterances with a vocabulary size of 1,536
words. The query database includes information on 23,457 air flights for 46 cities and 52
airports in the United States and Canada. A set of 981 utterances were set aside for the
1994 ARPA ATIS evaluation. This official test set consists of 131 different subject-scenario
combinations spoken by 24 different subjects. Below are some example utterances from

the test set:

‘‘I would like to find a flight from Charlotte to Las Vegas that
makes a stop in Saint Louis.’’

‘‘I would like to return from Chicago around seven p m to Kansas
City.”’

‘‘What are the prices for the flights on Wednesday evening.’’

‘‘Please show which flight serves dinner.’’

‘‘Show me all the morning flights from Philadelphia to Fort Worth.’

‘‘What does fare code M mean?’’

3.1.2 ATIS Evaluation Tests
There are three types of official evaluations [66]:

SPREC: SPontaneous speech RECognition evaluation tests only the capability of the
speech recognizer component in terms of word error rate (WER). That is, for each
test utterance, the decoded string from a recognizer is compared (by a string align-
ment software using dynamic programming algorithm [26]) with the known ortho-
graphic transcription of the utterance, and the number of substituted words, deleted

words, as well as inserted words are counted. The WER is computed as,

'"The ATIS corpora are now maintained and distributed by the Linguistic Data Consortium. Consult its
website at http: //www.ldc.upenn.edu/ldc/catalog/html/speech html/atis.html for more information
about the corpora and how to obtain them.

2ATIS1 is, however, never published.

21

WER = %substitutions + %deletions + %insertions.

NL: Natural Language understanding evaluation tests only the understanding compo-
nent of a recognition system given the textual transcription of an utterance, and is

measured by the correctly answered queries.

SLS: Spoken Language underStanding evaluation tests the performance of the whole

system (both the speech recognizer and the natural language understanding modules).

3.2 The Baseline Recognizer

In the 1994 ARPA-ATIS evaluation [66], AT&T’s ATIS System had the best NL perfor-
mance, answering 94.1% of the queries correctly, and was among the three second best
systems in the SPREC test with a WER of 3.5%. Since this thesis deals only with acoustic
modeling, efficacy of which is best measured by speech recognition alone (i.e. the SPREC
test), we restrict ourselves here to describe only its speech-recognition component [10].
Refer [52] for its NL understanding component. In addition, to allow faster research
turnaround time, we adopt in this thesis a baseline system configuration which, in terms
of computation time and memory requirement, is less costly but more realistic than the

1994 evaluation system’s.

3.2.1 Signal Processing

The recognizer frontend is based on mel-frequency cepstral analysis of input speech sam-
pled at 16kHz. The DC bias is removed and the speech is pre-emphasized. At a frame
rate of 100Hz, 31 mel-frequency energy components are computed from a filter bank by
performing an FFT on a frame of 20ms of speech. The energies are converted to 12 mel-
frequency cepstral coefficients (MFCCs) by cosine transform. Cepstral mean subtraction is
then performed using the average MFCCs per utterance. Finally a speech feature vector
for one frame is composed from 39 components: 12 MFCCs and normalized power, and

their first- and second-order time derivatives computed as follows:

z[t] = normalized MFCC or power

22

Azft] = 2aft+ 2]+ a[t +1] — zft — 1] — 2a[t — 2]

AAz[t] = Ax[t+1]— Azt —1].

3.2.2 Lexicon

ATIS is a medium-vocabulary speech recognition task. There are 1,536 words in the
lexicon with one pronunciation for each word. A set of 45 phones as shown in Table 3.1

is used in the lexicon.

Table 3.1: ATIS Phones (Phone-like Units)

‘ PHONE ‘ EXAMPLE H PHONE ‘ EXAMPLE H PHONE ‘ EXAMPLE ‘
aa father ae bat ah above
ao bought aw now ax the
axr diner ay bye b ban
ch church d dad dh they
dx rider eh bet el bottle
en button er bird ey fake
f four g gag hh hay
ih bit ix roses iy beat
jh Jjudge k kick 1 lot
m man n not ng ping
nx any ow boat oy boy
p pan red S sad
sh* she tell th thief
uh book uw boot v very
w wet y yet Z Z0O

(* The phone “zh” as in “measure” is folded into the phone “sh”.)

Lexical Structure

An important factor in decoding efficiency is the organization of lexicon, or the lexical
structure. When all the words (or phrases) are independently represented by a sequence
of phonemes, the lexical structure is said to be linear. Recently, a more compact structure,
the lexical (phonetic) tree [1, 59, 73] has been found to greatly improve search speed in

large vocabulary speech recognition. In the lexical tree, words in the lexicon are arranged

23

in a tree structure so that those with the same prefix (in their phonetic pronunciations)
share the same part of the tree. Not only does the lexical tree greatly compress the lexicon,
but it also avoids evaluating the same phonetic models twice.

With the 1,536 words in our lexicon, there are only 1,502 distinct pronunciations.
Counts of common prefixes of different lengths are shown in Table 3.2. From the table,
the ratio of the number of root HMMs to the total number of words is 2.9% for a CI tree
and 25.6% for a CD tree. Thus, the use of lexical tree will be more effective in a CI system
than a CD system. As a result, the baseline CI recognizer employs a lexical tree and the

baseline CD recognizer uses a linear lexicon (see also Section 3.2.6).

Table 3.2: ATIS: Count of common prefixes of different lengths among the
words in the lexicon

‘ PREFIX LENGTH ‘ COUNT

1 43
2 385
3 900
4 1185
5 1330
6 1403
7 1453
8 1482
9 1490
10 1495
11 1500
12 1501
13 1502
14 1502

3.2.3 Acoustic Modeling

Both context-independent (CI) and context-dependent (CD) phone modeling are explored.
The base phones include the 45 phones in Table 3.1 and three noise models. The CI
system models each base phone, while the CD system models intra-word triphones, word-

beginning right-context biphones, word-ending left-context biphones, and backs off to

24

Algorithm 1: Baseline CDHMM training via segmental k-means algorithm

Goal: To train CDHMM acoustic models using mixture Gaussian densities; each density
has a maximum of M components with diagonal covariances.

Step 1. Segment all training data into HMM states by supervised Viterbi algorithm.

Step 2. For triphone modeling only, tie the corresponding states of triphones of the same
base phone using the ensemble merging algorithm (as described in Algorithm 2).

Step 3. Estimate the mixture Gaussian density of each state by k-means clustering using
all the training data alloted to the (possibly tied) state. The maximum number of
mixture components is fixed to M, and the mixture weights are set to the proportion
of data frames assigned to a component.

Step 4. Repeat Step 1 — 3 until the models converge.

the appropriate biphones or monophones when there is not enough training data for the
context (fewer than 1,000 speech frames in this implementation). Each phone model is
a 3-state left-to-right continuous-density hidden Markov model (CDHMM), as shown in
Figure 2.1, with the exception of one noise model which has only one state®. State obser-
vation distributions are estimated as continuous mixture Gaussian densities with diagonal
covariances.

The CDHMM acoustic models are trained via the segmental k-means training algo-
rithm [38] as described in Algorithm 1. The average frame likelihood of the training
utterances is computed to test for model convergence. All acoustic models are speaker-

independent and gender-independent?.

3.2.4 Ensemble Merging Algorithm for State Tying

Triphone states are tied by the ensemble merging algorithm [9] shown in Algorithm 2.
It is a bottom-up agglomerative clustering algorithm in which two states are tied if the

tying results in minimum increase in total ensemble distortion. The distortion D; of a

®In an attempt to model noises of different characteristics, three noise models of different complexities
are used. The 1-state noise model is meant to model short noises, while the other two 3-state noise models
are to capture longer noises.

*In ARPA’s 1994 ATIS evaluation, AT&T’s system interpolated gender-dependent acoustic models with
gender-independent acoustic models.

25

Algorithm 2: Ensemble merging algorithm for state tying

Goal: To tie a set of HMM states using an Euclidean distortion measure until each tied
state has at least IV feature vectors.

Distortion Measure: The distortion of an ensemble of vectors is defined as the sum
of Euclidean distances between each vector and the ensemble mean vector. Each
component of a vector is normalized to unit variance before distortion computation.

Step 1. Select the HMM state .S;, the ensemble containing the fewest feature vectors. If
the ensemble has more than N feature vectors, stop.

Step 2. Find another state S;, which when merged with the state S;, will give the smallest
increase in total distortion.

Step 3. Merge the two states, S; and S;.

Step 4. Repeat Step 1 — 3.

Gaussian ensemble G; with n; D-dimensional feature vectors @ of mean p,; and variance

o? is defined as

def
D, Y e -l (3.1)
red;
D
= n; » ol (3.2)
f=1

When two ensembles G; and G; are merged, the combined variance 0'}2 of each dimension

f becomes
o nioly +udy) (ol) <774',Ui,f + njuj,f>2 , (3.3)
n; +n; n; +n;
and the distortion increase is given by
nin; > 2
AD = e > (kiy = mjp)* (3-4)

f=1
Equation (3.4) provides a more efficient implementation of the algorithm than a direct

distortion computation using Equation (3.3). It also shows that the Euclidean distortion

measure depends only on the first-order statistics of the ensemble distributions.

26

In addition, to avoid an otherwise O(n?®) complexity — O(n?) to compute the distortion
increase between any two Gaussians in each iteration and O(n) iterations when a small
number of prototypes are required — Algorithm 2 introduces the heuristic Step—1: At each
iteration, the Gaussian corresponding to the smallest training ensemble must be merged.

As a result, the complexity is reduced to O(n?).

3.2.5 Language Modeling

In the domain-specific ATIS corpus, sequences of coherent words which are similar in
semantics or syntax occur frequently. Two sorts of such word sequences are identified:
word classes, and compound words or verbal forms. For example, a word class can be
the set of flight numbers, the set of airport names, the set of arrival times, etc.; whereas
phrases like “thank you”, “I'd like to”, or “how much” are three different compound words
or verbal forms. The AT&T ATIS recognition system manually defines 13 word classes and
about 100 compound words or verbal forms. Bigrams of these word sequences are modeled®
using a second-order Variable N-gram Stochastic Automaton (VNSA) [75]. Modeling word
classes instead of their individual words has an additional benefit of enhanced robustness
due to more training examples.

An example of a simple bigram language model of three tokens “a”, “b”, and “c¢”, and
its VNSA implementation are shown in Figure 3.1. An e-transition in a VNSA serves two

purposes:

e It reduces the word history during a traversal of the network and backs off to a
language model of lower complexity. For instance, in Figure 3.1(a), the bigram
P(bla) does not exist. The VNSA in Figure 3.1(b) approximates P(b|a) with the
unigram P(b) weighted by 7, via the path a — € — b. i.e. P(bla) =n, - P(b).

o It introduces non-determinism to the decoding procedure. For instance, the string
“cba” can be decoded as “cba”, “ceba”, “cbea”, or “ecebea”, etc. The string with

the highest probability is chosen.

5In ARPA’s 1994 ATIS evaluation, AT&T’s system employed trigrams of word sequences realized by a
third-order VNSA [74].

(a) Bigram language model

(b) VNSA implementation

Figure 3.1: An example of a (second-order) VNSA implementation of a simple
bigram language model

27

28

The values of the n’s are estimated by minimizing the perplexity of the language model

using a separate held-out dataset [75].

3.2.6 Decoding

Viterbi beam search [55, 56, 60] is used. Viterbi search is a dynamic programming algo-
rithm [26] which finds the most likely sequence of states of HMMs for a given sequence of
observations. To reduce the otherwise immense search space, Viterbi beam search prunes
those states with log likelihoods less than that of the best path (at that moment) by a
preset threshold called beam-width. It has been found that the beam-width can greatly be
reduced with no loss in recognition accuracy [7]; further decrease in the beam-width will
trade off accuracy for speed and memory.

Further computation efficiency is obtained by evaluating the state likelihood due only
to the most likely mixture component of the state (see also Section 4.3.2). It has been
verified empirically that the technique does not result in any loss of recognition accuracy [5,
16, 59, 79].

As in common practice, our decoder also ensures no Gaussian, state, or model like-
lihoods are evaluated twice for a given frame of speech. (This factor, together with the
high ratio of number of root HMMs to number of words in the lexicon (25.6%) for the CD

lexical tree, render the use of lexical tree for the CD system unnecessary.)

3.3 Baseline Performance

All benchmark tests are run on ARPA’s official 1994 ATIS evaluation test set. The baseline
testing conditions and performance for both the CI and the CD systems are summarized
in Table 3.3. Notice that all the triphones appearing in the ATIS corpora are modeled in
the CD system. Due to the scarcity of training data for some triphones, the CD models
are trained with an addition of 8,000 WSJ utterances®.

The CI system is run on a low-end SGI machine comparable to a 166MHz Pentium

6The WSJ corpus consists primarily of read speech with texts drawn from a machine-readable corpus
of Wall Street Journal news text [67].

29

PC. The CD system is run on a high-end SGI machine which is about three times the
speed of the low-end machine and is comparable to a 200MHz Pentium Pro PC. The
machines are chosen to reflect a realistic performance on currently available desktop PCs.
Clearly the performance due to one specific choice of beam-width in Table 3.3 can be
misleading. Figure 3.2 shows a more complete picture of the performance when the beam-
width varies from 70-170 in the CI system and 110-190 in the CD system. The baseline
operating points are chosen to be close to the asymptotic accuracies attained at reasonable

recognition time.

Table 3.3: ATIS: Testing conditions and performance of the baseline ClI/CD systems

CONDITION/PERFORMANCE | Cl SYSTEM CD SYSTEM

#Test Sentences 981 (1994 ARPA-ATIS evaluation set)
Vocabulary 1,536 words

Language Model word-sequence bigram (perplexity = 20)
#Training Utterances ~12,000 ATIS ~20,000 ATIS + ~8,000 WSJ
#HMMs 48 9,769

#States 142 3,916 (tied)

Max. #Mixtures per State 16 20

#Gaussians (39-dimensional) | 2,254 76,154

Acoustic Parameters 178,066 6,016,166

Search one-pass Viterbi beam search
Lexical Structure lexical tree linear lexicon
Beam-Width 100 170

CPU 150MHz MIPS R4400 | 195MHZ MIPS R10000
Word Error Rate 9.4% 5.2%

Time (x real-time) 1.93 7.06

HMM Memory Usage 0.71MB 24MB

% Word Error

30

X
o |
A
0 |
X
= \k
X— context-independent
- X «
context-dependent
0 (]

2 4 6 8
Recognition Time (x real-time)

Figure 3.2: (the baseline performance of Table 3.3 are marked with squares)

It can be seen that even with this medium-vocabulary domain-specific task, the more
accurate CD system is still about an order of magnitude away from real-time performance
on a high-end PC. Execution profiles of the systems show that 50-70% of the total run-
time is spent on computing state likelihoods of the acoustic models. The acoustic models
alone consume more than 24MB of memory; and when combined with the language models
and the software code, the whole recognition system can easily exceed 40MB of memory.
Tasks with larger vocabularies will require more complex acoustic and language models
and thus even more memory. Therefore, a large reduction in the memory size of the
acoustic models is desirable. Furthermore, the baseline systems require a large amount of

training data: The CI and the CD systems are trained with 18 and 36 hours of speech

31

respectively. One major cause for all these (computation, memory, and training) costs is

the large set of model parameters, the reduction of which is the main theme of this thesis.

Chapter 4

Subspace Distribution Clustering Hidden
Markov Model (SDCHMM)

We pointed out in Chapter 1 that many of the state-of-the-art speech recognizers are
too big (consuming a lot of memory) and too slow to run in desktop personal computers
that most people can afford. We attribute part of the problem to their complex acous-
tic models, encompassing millions of model parameters. To reduce the large number of
model parameters without compromising recognition performance, we apply the proven

technology of parameter tying.

4.1 Theory of SDCHMM

The theory of SDCHMM is derived from that of the continuous density hidden Markov
model (CDHMM). Let us first consider a set of CDHMMs (possibly with tied states) in
which state-observation distributions are estimated as mixture Gaussian densities with
M components and diagonal covariances. Later we will extend the theory by considering
CDHMNMSs with other types of mixture densities.

Using the following notations (where, as usual, bold-faced quantities represent vectors):

O : an observation vector of dimension D
P(O) : state output probability given observation O

(with subscripts of CDHMM or SDCHMM when the context requires clarity)
¢ @ weight of the m-th mixture component

i, : mean vector of the m-th mixture component

32

33

o’ : variance vector of the m-th mixture component

N(+) : Gaussian probability density function (pdf)

the state observation probability is given by

M M
Peprum(O) = Z em N(O; o, 07,), Z cm = 1. (4.1)
m=1 m=1

The key observation is that a Gaussian with diagonal covariance can be expressed
as a product of subspace Gaussians where the subspaces (or streams) are orthogonal and
together span the original full feature vector space. Formally, let us denote the full vector
space of dimension D by R” with an orthonormal basis, which are composed of the column
vectors of the D x D identity matrix. R” is decomposed into K orthogonal subspaces
R of dimension di, 1 < k < K, with the following conditions:

Condition 1:

> di=D (4.2)

k=1
Condition 2:
RENRL =0, 1<i#j<K. (4.3)
Condition 3: The basis of each subspace is composed of a subset of the basis

vectors of the full vector space.

Each of the original full-space Gaussians is projected onto each of the K subspaces
to obtain K subspace Gaussians of dimension di, 1 < k < K, with diagonal covariances.

That is, Equation (4.1) can be rewritten as

M K
Peprum(0O) = Z_ Cm <H N(Ok§ﬂmk70’$nk)> (4.4)

k=1

O; : projection of observation O onto the k-th subspace
... projection of mean vector of the m-th component onto the k-th subspace

: projection of variance vector of the m-th component onto the k-th subspace

34

For each stream, we treat the subspace Gaussians as the basic modeling unit, and
tie them across all states of all CDHMM acoustic models. Hence, the state observation

probability in Equation (4.4) is modified as

M K
Popenmm(0) = Z Cm (H N“Ed(Ok;umk7crik)) . (4.5)

m=1 k=1
The ensuing HMM will be called the subspace distribution clustering hidden Markov

model (SDCHMM). Figure 4.1 shows an extension of the various HMM tying schemes of
Figure 2.3 to include SDCHMMs. There are 4 streams in the example.

4.1.1 Generalization

The foregoing SDCHMM formulation can be generalized to any mixture density insofar
as the component pdf F(O) can be expressed as a product of subspace pdf’s of the same

functional form. That is,
K
F(o)= [7(0w) (4.6)
k=1

provided that the three conditions on the subspaces mentioned above are satisfied.

An obvious candidate for this functional is a Gaussian pdf with block-diagonal covari-
ance. A matrix, A, is said to be in block-diagonal form if A can be partitioned into square
submatrices such that all non-diagonal square submatrices are null (or zero). That is, a

block-diagonal matrix A has the form of

A (0) - - (0)
©) Asyy -+ - (0)
A= | (@.7)
(0) (0) A (0)
0) (0) Agx

where Ar, 1 <k < K, are square matrices.

A block-diagonal matrix has the following two useful properties in our context:

. acoustic .
phonetic state Gaussian

units Hl\él(l)\l/l pool pool
P stream #1: subspace Gaussian pool

)

N
4

tream #3: subspace Gaussian pool

W

N

I Q0L

-
-
>V |00
-

stream #4: subspace Gaussian pool

Figure 4.1: Subspace distribution clustering hidden Markov models with 4 streams

8

36

Property 1: The determinant of a block-diagonal matrix is equal to the product of the

determinants of its diagonal submatrices. That is,

K
Al = T 14sxl. (4.8)
k=1

Property 2: The inverse of a block-diagonal matrix is another block-diagonal matrix
where the constituent diagonal submatrices are the inverses of the original diagonal sub-

matrices. That is,

A1_11 0) - - (0)
(0) A2—21 (0)
A7l = | (4.9)
© (0 - Ay (0)
0 (0 - - Az

Thus a Gaussian with block-diagonal covariance can also be expressed as a product of
subspace Gaussians with full covariance as

K

N(O; 1,) = T N(Ok; i Zni), (4.10)
k=1

where X, is the block-diagonal covariance matrix of the full-space Gaussian, and X, is
the full covariance matrix of the k-th stream subspace Gaussian. The rest of SDCHMM
theory then applies as before.

While other pdf functionals or Gaussians with block-diagonal covariances appear in-
triguing, they have not been widely studied (except, e.g., [89]) in automatic speech recog-
nition. To keep our focus on the main issue of SDCHMM in this thesis, we investigate only

SDCHMDMs based on CDHMMs with mixture Gaussian densities and diagonal covariances.

4.2 Distribution Clustering

In practice, the proposed SDCHMM as in Equation (4.5) can be obtained by clustering

or quantizing the subspace Gaussians of CDHMMSs in each stream. That is, to derive

37

K-stream SDCHMMs from a set of CDHMMSs in which there are originally a total of N
full-space Gaussian distributions, the subspace Gaussians in each stream are clustered into

a small set of L subspace Gaussian prototypes (or codewords)
./\/’qua’n,h,'zed(()k;IJ,/'!INO_'!QIC)7 1 < l < L, 1 < k < K

where L < N. Each original subspace Gaussian is then “approximated” by its nearest

subspace Gaussian prototype
N(Ok; ppy 02,1) = N2 O gy o)

with [being given by

[= argmin dist (N(Ok; W, 02,), Nawartized(Q . [T agk))
1<q<L
where dist(-) measures the distance between two Gaussian distributions.

In this respect, SDCHMDMs can be considered as an approximation to the conventional
CDHMMs. Since it has been proved by years of research that CDHMM is a good model
for speech recognition, a carefully-designed approximation to the CDHMM formulation
— SDCHMM — should, in principle, also deliver high performance.

In general, since quantization in lower dimensions results in smaller quantization er-
ror (see Appendix A for a formal proof), more streams should be adopted in SDCHMMs
in order to maintain the performance of their parent CDHMMs.

Two distribution clustering algorithms are discussed in length and evaluated in Chap-

ter 5.

4.3 Why Are SDCHMMs Good?

If the subspace distributions are properly clustered, all original full-space distributions
can be represented by some combinations of a small number of subspace distribution pro-
totypes with small quantization errors. The combinatorial effect of subspace distribution

encoding can be very powerful: For instance, a 20-stream SDCHMM system with as few

38

as 2 subspace distribution prototypes per stream can represent 220 = 1,048,576 differ-
ent full-space distributions. Of course, in reality, more prototypes are required to ensure
small quantization errors. This can be achieved with more streams or more prototypes

per stream.

4.3.1 Savings in Model Parameters and Memory

Table 4.1 computes the number of model parameters in discrete HMMs (DHMMs), semi-
continuous HMMs (SCHMMs), CDHMMs and SDCHMMs. Each stream of DHMMs is
described by discrete VQ prototypes and state observation histograms. SCHMMs are
similar to DHMMSs except that the prototypes are now continuous Gaussians. CDHMMs
parameters comprise the mixture weights and the means and variances of the mixture
Gaussian densities. SDCHMMs parameters consist of mixture weights, continuous sub-
space Gaussian prototypes for each stream, and the encoding indices (or pointers) between
the original full-space Gaussians and the subspace Gaussian prototypes. For large sys-
tems, the number of HMM states S is relatively large (typically several thousands), and
any terms involving S dominate the sums in the first row of Table 4.1. The second row
of the table gives the approximated number of model parameters in such large systems.
Hence, in terms of the number of model parameters, DHMMs are dominated by their state
observation histograms, SCHMMSs by their mixture weights, CDHMMs by their Gaussians
and SDCHMMs by their subspace Gaussian encoding indices.

Table 4.1: Number of model parameters in various types of HMM
(S = ##states, M = #mixtures per state, L = #codewords per
stream, K = #streams and D = feature dimension)

DISCRETE | SEMI-CONTINUOUS | CONTINUOUS | SUBSPACE DISTRIBUTION
HMM HMM DENSITY HMM CLUSTERING HMM

SLK+LD SLK+L(2D) SM-+SM(2D) SM+L(2D)+SMK
~SLK ~SLK ~SM(2D) ~SMK

For DHMMs and SCHMMs, the number of streams is usually 3 or 4 [28, 50], and the
number of prototypes is about 256-1024; while CDHMMs typically have 20-30 mixture

39

components per state density. For example, in large system (with large value of S), if M =
20, L = 256, K = 4, and D = 39, the number of model parameters in DHMMs, SCHMMs,
and CDHMMs will be 10245,10245, and 15605 respectively. Thus CDHMMs generally
require more memory than DHMMs and SCHMMs. Since most of the memory consumed
by CDHMDMSs is used to store the Gaussian parameters, if SDCHMMSs can approximate
CDHMMs with few subspace Gaussian prototypes, substantial memory savings can be
achieved. For example, using the same figures for M and K, the number of parameters
in SDCHMMs will be 80S. However, as will be seen in the next chapter, more streams
are required in SDCHMMSs to obtain similar performance to CDHMMSs, with a typical
value of 20 streams. Even with 20 streams, the SDCHMMs will have only 400S model
parameters — less than half of those of DHMMs and SCHM Ms.

Notice that there is a trade-off between memory savings and performance of SDCH-
MMs. To reduce memory requirement (which is mostly used to store the subspace Gaus-
sian encoding indices), fewer streams are desirable. However, fewer streams mean higher
stream dimensionality which means greater quantization errors and poorer performance

for a given number of prototypes (see Appendix A).

4.3.2 Savings in Computation

As mentioned in Section 3.2.6, the state likelihood can be approximated by the likelihood
of the most likely mixture component of the state with no loss of overall recognition
accuracy. That is, the summation operator of Equation (4.5) is replaced by the max

operator as

K
_ tied . 2
P(O) = max, (m 1Iv <ok,umk,amk>) , (@.11)
which becomes
K _
log(P(0)) = max (log(cm) + " log (A1 (0y; umk,aik))> : (4.12)
- - k=1

in the logarithmic domain.
The computational efficiency of SDCHMMSs comes from the fact that, since a small

number of the subspace Gaussians are shared by a large number of full-space Gaussian

40

components, all these subspace Gaussian log likelihoods can be pre-computed once and
only once at the beginning of every frame, and their values are stored in lookup tables.
During Viterbi decoding [86], the state log likelihood computation of Equation (4.12) is
reduced to a summation of K pre-computed subspace Gaussian log likelihoods and the
mixture weight for each component of the state. Obviously, the wider the beam-width, the
greater the savings in state likelihood computation (as there will be more active states).
Again, there is a trade-off between computational savings and the performance of
SDCHMMs. To increase the likelihood computation efficiency, fewer streams are desirable
as fewer additions are then needed to compute the full-space state likelihoods. However,

fewer streams will lead to poorer performance unless more prototypes are used.

4.4 Comparison with Semi-Continuous HMM

At first glance, SDCHMMs may appear similar to SCHMMs [4, 29, 80]: Both methods
divide the feature space into streams, and tie subspace distributions across all states of
all HMMs. However, close scrutiny shows that K-stream SCHMMs compute the state

likelihood differently as

K / M M
k=1 \m=1 m=1
where ¢, is the weight of the m-th mixture component in the k-th stream.

Comparing Equation (4.13) with Equation (4.5), one finds two differences:

e There is a switch between the product operator (I]) and summation operator (}°) in

the two equations.

e In an SCHMM state, each of the K subspace Gaussians is associated with its own
mixture weight ¢,,;, whereas one mixture weight ¢, is shared among all the K

subspace Gaussians of a SDCHMM state.

Both differences arise from the fact that SCHMMs assume stream independence in the
global feature space, whereas SDCHMMs assume stream independence in the [ocal feature

space — an assumption inherited from CDHMMSs with mixture Gaussian densities and

41

diagonal covariances. That is, for each state, SCHMMs estimate one mixture Gaussian
density from each of the streams independently, and then combine the subspace Gaussian
likelihoods by assuming again independent streams. However, the assumption of feature
independence between the streams commonly used in speech recognition is hardly justified.
SDCHMMs therefore start with CDHMMSs using the full feature speech vectors without
assuming any feature independence. The correlation between features at each state is well
modeled by a mixture Gaussian density. The implicit assumption of stream independence
in the local feature space results directly from using Gaussians with diagonal covariances
in the pdf estimation process. Theoretically, a mixture Gaussian density with diagonal
covariances may model any distribution, should there be sufficient Gaussians and ample
training data. An implication of the difference in the scope of the assumptions is the
number of streams required: The SCHMM favors fewer streams of higher dimensions, so
that correlation among more features can be modeled and there will be fewer mixture
weights; on the contrary, SDCHMM favors more streams of lower dimensions so that
quantization of the subspace Gaussians of CDHMMs will give smaller quantization errors

and more accurate models (Table 4.1).

We will consequently test the following hypothesis in Chapter 5: By deriving our
SDCHMMs from the more accurate CDHMMSs with the less stringent assumption of stream
independence in the local feature space, the SDCHMMs may be equally accurate even with
fewer model parameters.

Another difference between SDCHMM and SCHMM not readily observed from Equa-
tions (4.5) and (4.13) is that SCHMM requires each state to have the same number of
mixture components equal to the number of distribution prototypes while SDCHMM does
not. As a result, SDCHMM usually has many fewer mixture components per state, and

thus has the following advantages over SCHMM:

e Fewer components mean fewer mixture weights which then take less memory space.

e Fewer components are involved in state likelihood computation which then takes less

CPU time.

42

4.5 Comparison with Feature-Parameter-Tying HMM

The feature-parameter-tying HMM (FPTHMM) [84, 85] turns out to be a special case
of our SDCHMM when the number of streams is set to the size of the feature vector;
ie. K = D. In a sense, the FPTHMM is the scalar quantization (SQ) version of our
SDCHMM. In Section 4.3.1, it is shown that the main storage cost of SDCHMMs is
incurred by the subspace Gaussian encoding indices which grow in proportion with the
number of streams. Similarly Equation (4.12) indicates that the computation cost of
the state likelihood is directly proportional to the number of streams once all subspace
Gaussian likelihoods are pre-computed. Thus, although SQ of the subspace Gaussians in
FPTHMMs has the advantage of simplicity and generally requiring fewer prototypes, it
will need more storage space and more computation time than SDCHMMSs with K < D.
The difference will be more conspicuous for large systems.

The definition of streams, the number of streams, and the number of prototypes, all
affect the system performance of automatic speech recognition as measured in terms of
memory size, computation time, and recognition accuracy. Their interactions will be
investigated in the next chapter where a practical implementation of SDCHMMs from

CDHMMs is proposed and evaluated on the ATIS recognition task.

Chapter 5

Implementation of SDCHMMs (I):
Model Conversion from Continuous
Density HMMs (CDHMMs)

The formulation of the subspace distribution clustering hidden Markov model (SDCHMM)
as of Equation (4.5) of Chapter 4 suggests that SDCHMMs may be implemented in the

following two steps:

1. Train continuous density hidden Markov models (CDHMMs) for all the phonetic
units (possibly with tied states), wherein state observation distributions are esti-

mated as mixture Gaussian densities with diagonal covariances.

2. Convert the CDHMMs to SDCHMMs by tying the subspace Gaussians in each

stream as shown in Figure 5.1.

Since the training of CDHMMs is well covered in the literature [31, 69], we will not repeat
it here. Instead, when we discuss the reestimation of SDCHMM parameters in Chapter 7,
we will review the reestimation of CDHMM parameters as well. In this chapter, we assume
that a set of (well-trained) CDHMMs is given, and we focus only on the conversion of the
CDHMMs to SDCHMMs.

Tying of subspace Gaussians consists of splitting the full speech feature vector space
into disjoint subspaces, projecting mixture Gaussians of CDHMMs onto these subspaces,
and then clustering the subspace Gaussians into a small number of Gaussian prototypes in

each subspace. In the following, we investigate various streams definitions and distribution

43

44

Subspace
RIS Com Distribution subspace distribution
HMMs Clustering clustering HMMs
stream
definition

Figure 5.1: Conversion of CDHMMs to SDCHMMs

clustering algorithms to tie subspace Gaussians. The subsequent model conversion schemes
are simple and fast. Yet the converted SDCHMMs are as accurate as the original CDHMMs
but run faster and consume less memory. In addition, no re-training of the converted

SDCHMMs is found necessary.

5.1 Issue I: Stream Definition

To derive K-stream SDCHMMs, we first have to partition the feature set Q° with D
features into K disjoint feature subsets Q% with dj, features, 1 < k < K. Formally, let
P%gbe such a partition, then

K
P = {Qdk S de=D and Q%N QH =0 for 1 <k #j gK} . (5.1)
k=1

The number of all possible partitions Np can be found as follows. If the dimensions

of all partitions, di, 1 < k < K, are distinct, then Np is given by

D!
Np=—"—""-—"- 5.2
Py dy! (5:2)
On the other hand, if all partitions are of the same dimension, i.e. dy =dy =--- =dg =d
then
D!
Np = ——F— . (5.3)

(d)E K]

45

In general, let there be K partitions with different dimensions, and K, partitions with
the same dimension such that K; + Ky = K. That is, di, 1 < k < K;, are distinct, but
d[{l_|_1 = d]{l_}_g == d]{ = d Then

D!
- dl'dg' s d]{l!(d!)l{2K2!

Np (5.4)

The partition 77}3 is optimal if subsequent tying of subspace Gaussians in the feature
subspaces of the partition results in minimal total quantization error for a pre-determined
number of prototypes and clustering algorithm. In general, the clustering problem cannot
be solved analytically, and is tackled numerically using iterative procedures. Since the
total number of possible partitions is usually very large, it is not feasible to determine
the optimal partition by numerically computing the quantization errors due to all possible

candidates. Thus some heuristic approach has to be used to obtain a reasonable partition.

5.1.1 Common Streams

Our speech input comprises 39 features: 12 MFCCs, normalized power, and their first-
and second-order time derivatives. Based on commonly-used streams in discrete HMM

and semi-continuous HMM, the following “common” definitions of streams are explored:

1-stream definition: all features in one stream.

12MFCC 4+ 12AMFCC 4 12A’MFCC + e + Ae + Ae

4—stream definition: cepstra, their first derivatives, their second derivatives, and power

terms in four separate streams.

12MFCC
12AMFCC
12A’MFCC

e+ Ae+ A%e

13—stream definition: twelve streams of each cepstral coefficient together with its

derivatives, and one stream of the power terms.

46

12 *| MFCC + AMFCC + A’MFCC

e+ Ae+ A?e

39—stream definition: each 1-dimensional feature is put into one stream.

The main heuristic here is to put conceptually similar features together in one stream.
The 1-stream and 39-stream definitions are included for reference. Note that 1-stream
SDCHMMs are identical with the original CDHMMs, and 39-stream SDCHMMSs are the
same as feature-parameter-tying HMMs (FPTHMMs).

5.1.2 Correlated-Feature Streams

We adopt the heuristic that correlated features, by definition, should tend to cluster in a
similar manner, and require each stream to have the most correlated features. Intuitively
this criterion should result in smaller distortions for the clustered subspace Gaussians. For
example, let us consider two features F; and F3, having (scalar) data clustered around
a,b,c,d and p, q,r, s with the same covariance respectively. If their means are fully corre-
lated, they will give rise to four 2-dimensional Gaussians: G1(a,p), G2(b,q), Gs(c,r), and
G4(d, s), and their means lie on a straight line as shown in Figure 5.2(a). A clustering
algorithm using an Euclidean distortion measure will produce two clusters, {G1, G2} and
{G5,G4}. Now let us assume that the Fy and F, data are fixed but that their means
are not correlated as described in Figure 5.2(b), forming the Gaussians G4 (a,p), G2(b,r),
Gs(c,q) and G4(d, s). Although subsequent clustering produces the same two clusters,
{G1,G3} and {G3,G4} as before, the distortion of the resulting clusters in this case is
much larger. The reason is that according to Equation (3.4), the increase in the Euclidean
distortion on clustering two Gaussians is proportional to the Euclidean distance between
their means; it is clear that the distance between the means of G; and G5, or G3 and G4
are larger in Figure 5.2(b) than that in Figure 5.2(a).

Strictly speaking, the correlation should be computed from Gaussian mean vectors of
the given CDHMMs to deduce the stream definitions. In this work, however, in order to

obtain one single stream definition for all ATIS experiments, we compute the correlations

47

(a) Correlated features

(b) Uncorrelated features

Figure 5.2: Effect of correlated and uncorrelated features on clustering

48

from feature frames of 1,000 ATIS training utterances instead. In preliminary experiments,
we found little difference between stream definitions derived by these two methods. Note
also that, although the features are assumed uncorrelated locally within each Gaussian
distribution, during clustering of the subspace Gaussians, it is the global feature correlation

that matters.

This definition has the additional benefit of providing a single coherent definition for

any arbitrary number of streams of any dimension.

Multiple Correlation Measure

The correlation p;; between two variables is commonly measured by Pearson’s moment

product correlation coefficient

Pii = o (5.5)
where o; and o; are the standard deviations of the i-th and j-th variables respectively,
and o;; is the square root of their covariance. Nevertheless, multiple correlation measures
among three or more variables are less studied. In the statistics literature, multiple cor-
relation is usually reduced to a binary correlation as follows: One variable is identified as
the criterion variable and the rest as the predictor variables. A single derived variable is
computed from a linear combination of the predictor variables and the binary correlation
between the derived variable and the criterion variable is taken as the multiple correlation
among the variables. One way to determine the combination weights of the derived vari-

able is to compute what are called the beta weights so as to maximize the resulting binary

correlation [39).

However, in our context, a multiple correlation measure that emphasizes mutual cor-
relations among all variables at the same time is more desirable. In this thesis, we propose
a new definition of a multiple correlation coefficient R defined as

R % 1 — determinant of correlation matrix of the variables. (5.6)

49

That is, the multiple correlation coefficient R among k variables is,

1 pi2 p13 - pik
pa1 1 paz o+ pog
R=1-1|p31 p32 1 - p3 (5.7)
Pkl Pk2 Pr3 1

In particular, when there are only two variables,

R =1- “ = p,?] .
pii 1
Hence, in the case when there are only two variables, R equals the square of the moment
product correlation coefficient.

Since the correlation matrix is symmetric, its determinant is equal to the product of

its eigenvalues. Therefore,

where J; is the j-th eigenvalue of the correlation matrix. Equation (5.8) gives a geometri-
cal interpretation to the multiple correlation measure. When all the variables are highly
correlated, the correlation matrix corresponds to an elongated ellipsoid with most eigen-
values except one being small, giving a small value for their product and thus a high value
of R. When the variables are less correlated, the matrix is more spherical, giving a higher
value for the eigenvalue product and smaller value of R. It can also easily be shown that

R has the following desirable properties of a correlation measure:
e 0<RKI1
e when all variables are correlated, i.e. Vi,j, p;; =1, R=1

e when all variables are uncorrelated, i.e. V¢, 3, p;; =0, R =0.

50

Algorithm 3: Selection of the most correlated-feature streams (of the same dimension)

Goal: Given D features, define K n-dimensional streams with D = nK.

Step 1. Compute the multiple correlation coefficient among any set of n features accord-
ing to Equation (5.7). (There are totally C(D,n) coefficients.)

Step 2. Sort the multiple correlation coefficients in descending order, each tagged by an
n-feature tuple indicating the features it computes from.

Step 3. Starting from the top, an n-feature tuple is moved from the sorted list to the
“solution list” if none of its features already appear in any feature tuples of the
solution list.

Step 4. Repeat Step 3 until all features appear in the solution list.

Step 5. The feature tuples in the “solution list” are the K-stream definition.

Derivation of Streams

Practically, we apply a greedy algorithm [26] to obtain streams in which the features are
most correlated, as depicted in Algorithm 3. It is simple to modify the algorithm in cases
when the number of features D is not a multiple of the number of streams K. For instance,
one may require (K — 1) streams to have the same dimension, and have this dimension
as large as possible. This is accomplished by setting n to either |D/K | or [D/K| so
that (D —n(K — 1)) is positive and is minimized, and then proceeding with Algorithm 3
to find the first (K — 1) streams. The leftover (D — n(K — 1)) features are then put
together as the last stream. Since the streams are restricted to have the same dimension
except at most one of them, the computation of multiple correlation coefficients involves
only determinants of any n x n matrices obtained by deleting any (D — n) rows and the
corresponding columns from the D x D feature correlation matrix — which needs to be

computed once. As a result, the algorithm is efficient.

Table 5.1 shows the definitions of 13 and 20 correlated-feature streams generated by
Algorithm 3 using 1,000 utterances from the ATIS training corpus. From the 20-stream
definition, M FCC and A?2M FCC are found mostly correlated. Moreover, many streams

of the 13-stream definition are feature supersets of streams from the 20-stream definition.

51

Table 5.1: ATIS: Definitions of correlated-feature streams

(a) 13-stream definition (b) 20-stream definition
‘ STREAM ‘ FEATURES ‘ ‘ STREAM ‘ FEATURES ‘
1 ¢y, ¢7, AAcy 1 c1, AAcy
2 ca, cg, AAcg 2 ca, AAcy
3 c3, cg, AAcg 3 c3, AAcs
4 cq, AAcy, Ae 4 cq, AAcy
5 Cs, AACQ, AAC5 5 Cs, AAC;;
6 ce, AAcg, AAe 6 ce, AAcg
7 C10, C12, AACU 7 Cr, AAC7
8 C11, AACl, AACH 8 Cs, AACg
9 Acy, Acy, Acg 9 cg, AAcy
10 Acy, Acs, Acs 10 c10, AAcqg
11 Acy, Acg, € 11 c11, AAcqq
12 Acg, Acig, Acyg 12 c12, AAcqa
13 ACH, AACg, AAClO 13 ACl, AC7
14 ACQ, ACG
15 AC3, AC5
16 Acy, €
17 ACg, ACQ
18 Acyg, Acqy
19 Ae, AAe
20 Acyg

5.2 Issue II: Subspace Gaussian Clustering

Two very different clustering schemes are investigated: The bottom-up agglomerative
clustering algorithm used previously for tying HMM states in Chapter 3, and a top-down

modified k-means clustering algorithm.

5.2.1 Agglomerative Gaussian Clustering Algorithm

The ensemble merging algorithm for state tying described in Algorithm 2 of Section 3.2.3
can be applied without modification to cluster subspace Gaussians in each stream instead
of HMM states. It is a bottom-up agglomerative clustering scheme in which two subspace

Gaussians are merged if they result in minimum increase in distortion (scatter). The

52

algorithm has a complexity of O(n?).

5.2.2 Modified k-means Gaussian Clustering Algorithm

Algorithm 4 shows a newly devised O(JLn) modified k-means clustering algorithm which
derives L subspace Gaussian prototypes in J iterations without using any heuristics. With
JL < n for large acoustic models, the linearity in n implies improved efficiency (over the

ensemble merging algorithm).

Algorithm 4: Modified k-means Gaussians clustering algorithm

Goal: To derive K-stream SDCHMMs with L subspace Gaussian prototypes per stream.

Step 1. Initialization: First train a 1-stream Gaussian mixture model with L components.
Project each of the I Gaussian components onto the K subspaces according to the
given K-stream specification. The resultant K L subspace Gaussians will be used as
initial subspace Gaussian prototypes.

Step 2. Similarly project each Gaussian pdf in the original CDHMMs onto the K sub-
spaces.

Step 3. For each stream, repeat Step 4 & 5 until some convergence criterion is met.

Step 4. Membership: Associate each subspace Gaussian of CDHMMs with its nearest
prototype as determined by their Bhattacharyya distance.

Step 5. Update: Merge all subspace Gaussians which share the same nearest prototype
to become the new subspace Gaussian prototypes.

To compute the distance between two Gaussians during distribution clustering, we

adopt the classification-based Bhattacharyya distance, which is defined as

1 22

Dypor = g(HQ - H1)T [

i+ 3
2

1
—1n

-1
po—) + T

(5.9)

where, p; and ¥;, i = 1,2, are the means and covariances of the two Gaussians [17]. The
Bhattacharyya distance has been used in several speech-related tasks [42, 54, 57], leading
to good results. The Bhattacharyya distance captures both the first- and the second-order
statistics, and is expected to give better clustering results than the Euclidean distortion

measure of Equation (3.4), which makes use of only the first-order statistics.

53

To initiate the iterative k-means clustering procedure for the conversion of CDHMMs
to K-stream SDCHMMs with L subspace Gaussian prototypes per stream, we first train
a Gaussian mixture model with L components using 1,000 ATIS training utterances. The
L Gaussians are split into L subspace Gaussians for each stream, which are then used as
seeds for clustering. If no training data is available, one may, for example, randomly pick

L subspace Gaussians from the CDHMMSs to start the clustering procedure.

5.3 ATIS Recognition Evaluation

AT&T’s context-independent (CI) and context-dependent (CD) baseline ATIS recognizers
of Section 3.2 are utilized for our SDCHMM evaluation. All components of the base-
line recognizers are kept intact, except that their acoustic models are converted from
CDHMMs to SDCHMDMs. The testing conditions are exactly the same as those described
in Table 3.3. All subspace Gaussian log-likelihoods are pre-computed at the beginning of
each frame, and their values are stored in tables in contiguous memory!. In addition, for
implementation and system simplicity, all streams are tied to the same number of subspace

Gaussian prototypes in all our SDCHMMs.

5.3.1 Evaluation of Stream Definitions and Clustering Algorithms

With the two types of stream definitions of Section 5.1 and the two clustering algorithms
of Section 5.2, four different combinations of stream definitions and clustering algorithms

are tested using 13 streams:
e common stream definition + ensemble merging
e common stream definition + modified k-means Gaussian clustering
e correlated-feature stream definition + ensemble merging

o correlated-feature stream definition + modified k-means Gaussian clustering.

'"We have also tried to compute the subspace Gaussian log-likelihoods on the fly during decoding, but
unless when there are more than 512 prototypes per stream, pre-computation of the log-likelihoods always
entails faster recognition.

54

Thirteen streams are chosen because both the common stream definition and the
correlated-feature stream definition readily apply. Each stream consists of exactly three
features, and is tied to 8-256 subspace Gaussian prototypes. Each of the ensuing 13-stream
SDCHMM systems is then tested on the 1994 ATIS evaluation dataset.

Figure 5.3(a) and (b) show incremental improvements in recognition performance when
correlated-feature streams and/or the modified k-means Gaussian clustering algorithm
are used. The incremental improvement due to either correlated-feature streams or the
modified k-means Gaussian clustering algorithm alone is similar in the case of CI models.
In the case of CD models, most of the gain in accuracy comes from the modified k-
means Gaussian clustering algorithm. Nonetheless, the improvements are observed with
both CI and CD models at almost all levels of quantization — various numbers of subspace
Gaussian prototypes. This shows that by bringing more knowledge into play — correlation
in the correlated-feature stream definition and second-order statistics in the modified k-
means Gaussian clustering algorithm, better subspace Gaussian tying is achieved. In
particular, the improvement is more pronounced with fewer prototypes. For example,
for the CD SDCHMMs, WER with 8 subspace Gaussian prototypes per stream drops
24% compared with 10% drop with the use of 256 prototypes. This is desirable as fewer
prototypes usually translate into faster recognition.

Henceforth, all experiments are run with SDCHMMs derived using the modified k-
means Gaussian clustering algorithm with correlated-feature streams except for the 4-

stream SDCHMDMs which are derived with the common 4-stream definition.

5.3.2 Evaluation of SDCHMMs

I. Recognition Accuracy

For 1, 4, 13, 20, and 39 correlated-feature streams, the modified k-means Gaussian cluster-
ing algorithm is run, in each case, to obtain CI SDCHMMs with 8-256 subspace Gaussian
prototypes per stream, or CD SDCHMMSs with 2-256 subspace Gaussian prototypes per
stream. Figure 5.4 shows their recognition accuracies in terms of word error rate (WER).

In general, WER decreases with more streams and more prototypes as expected, since

more streams of smaller dimensions should result in smaller distortions when the subspace

18

""""" common streams + ensemble mergin? .
common streams + MKM Gaussian clustering
correlated-feature streams + ensemble merng; .
correlated-feature streams + MKM Gaussian clustering

% Word Error

baseline CDHMM error = 9.4%

8 16 32 64 128 256

No. of Subspace Gaussian Prototypes Per Stream

(a) Context-independent models

common streams + ensemble mergmlg .

common streams + MKM Gaussian clustering
correlated-feature streams + ensemble mergm? .
correlated-feature streams + MKM Gaussian clustering

% Word Error
7
/

baseline CDHMM error = 5.2%

8 16 32 64 128 256

No. of Subspace Gaussian Prototypes Per Stream

(b) Context-dependent models

Figure 5.3: ATIS: Recognition accuracy of 13-stream SDCHMMs with various
stream definitions and clustering schemes

55

© | \
~— <
4-stream
2
13-stream o
S
w
°
(e}
= Al
o\o - . °
\o
20-stream
9 1 ' - : \
39-stream
L o w9
baseline CDHMM error = 9.4%
8 16 32 64 128 256
No. of Subspace Gaussian Prototypes Per Stream
(a) Context-independent models
1 20-stream 4-stream
©
0 -
S
I} .
T M
§ 13-stream
® °\
©
©1 . \@
m_7bigaiﬁéérirari=757.2i°/;7k77777777777??8_____«'ﬂ
39-stream
2 4 8 16 32 64 128 256

No. of Subspace Gaussian Prototypes Per Stream

(b) Context-dependent models

Figure 5.4: ATIS: Effect of number of streams and subspace Gaussian pro-
totypes on SDCHMM recognition accuracy (the best systems of
Table 5.2 are marked with squares)

57

Gaussians are quantized, and more prototypes should give smaller quantization errors. In
other words, when the same number of prototypes is used, SDCHMMSs with more streams
are more accurate; or, SDCHMMs with more streams can achieve the same accuracy
with fewer prototypes than SDCHMMs with fewer streams. For example, 39-stream CD
SDCHMMs obtain the best WER of 5.0% with 16 subspace Gaussian prototypes, while
20-stream CD SDCHMMSs require 64 prototypes, and 13-stream CD SDCHMDMs reach
their best WER of 5.2% with at least 128 prototypes.

However, for CD models, the WER actually increases for 20- and 39-stream SDCHMMs
after 128 and 64 prototypes respectively. This suggests that some of the original CD
CDHMMs may not be well trained (even with the addition of some 8,000 WSJ training
utterances. See Section 3.3). Subspace Gaussian tying may help improve these poorly
trained models by interpolating them with better-trained models, or by pooling together

more training data for them.

The best CI SDCHMMs (with 20 streams and 128 prototypes, or 39 streams and 32
prototypes) compare well with the baseline CI CDHMMSs (9.5% vs. 9.4%, a relative 1%
increase in WER), and the best CD SDCHMMSs (with 20 streams and 64 prototypes, or
39 streams and 16 prototypes) actually outperform the baseline CD CDHMMs (5.0% vs.
5.2%, a relative 4% reduction in WER).

Finally, Figure 5.4(b) shows that even with two subspace Gaussian prototypes, or one
bit of information per stream, a 39-stream CD SDCHMM system can still achieve a WER
of only 9.1%. This is not too surprising when one realizes that this SDCHMM system

239 or about half a trillion distinct full-space Gaussians, and

can, in principle, represent
there are only about 76,154 Gaussians in the original CDHMM system — about one-tenth
of one-millionth of the representables. From another perspective, it also suggests high
redundancy in current CDHMMs, and that SDCHMMSs are more efficient in representing

the model parameter space.

58

II. Recognition Speed

The corresponding total recognition times of the SDCHMM systems of Figure 5.4 are pre-
sented in Figure 5.5 relative to real-time performance. The relationships between recog-
nition speed and the number of prototypes are generally parabolas that curve upwards.
The longer recognition time at the two ends of the parabolic curves are due to two very

different effects:

e In general, more prototypes simply require more computation for the subspace Gaus-

sian log-likelihoods.

e Fewer prototypes lead to poorer SDCHMMs (due to larger quantization errors) with
less discriminating power and more active states during a Viterbi search using the
same beam-width, and thus more computation. Figure 5.6 shows the corresponding
number of active states. Notice the high correlation 2 between the number of active

states in Figure 5.6 and WERs of Figure 5.4.

The first effect is weaker in the CD SDCHMM system than in the CI SDCHMM system.
It is because that there are many more active states during decoding in the CD system
than in the CI system — about 10 times more from Figure 5.6. With the large number of
active states in the CD system, the pre-computation of subspace Gaussian log-likelihoods
represents a small proportion of the total computation time. Consequently, the speed of
the CD SDCHMM system is insensitive to the first effect.

The impact of the number of streams on recognition speed is complicated by the above
two effects, but in general, more streams means more additions in the computation of state
log-likelihoods (Equation (4.12)) and hence longer recognition time. In addition, another
complication arises from the software implementation. For the same number of subspace
Gaussian prototypes per stream, the total number of function calls to compute their log
likelihoods increases with the number of streams. Each function call adds overhead due

to invocation of the call, and initialization of various data structures.

2The relationship between the number of active states during decoding and final recognition accu-
racy should not be overstated. At best, the number of active states may be used to explain the poorer
performance of the converted models (compared with their original ones) but not to predict the latter.

Recognition Time (x real-time)

Recognition Time (x real-time)

S |
R R baseline COHMM time =193 |
39-stream
@ |
20-stream
© | .

. D\ =

© °

N R
— . 4-stream
: \ . /
13-stream
ol ____________________reaktime ____________________|
8 16 32 64 128 256
No. of Subspace Gaussian Prototypes Per Stream
(a) Context-independent models
.
& —— A4-stream
A —— 1{3-stream
* —— 20-stream
0O —— 39-stream
o
o |
©

baseline CDHMM time = 7.0

) \\x !
—

2 4 8 16 32 64 128 256

No. of Subspace Gaussian Prototypes Per Stream

(b) Context-dependent models

Figure 5.5: ATIS:

Effect of number of streams and subspace Gaussian pro-

totypes on SDCHMM recognition speed (the best systems of Ta-
ble 5.2 are marked with squares)

59

60

Average No. of Active States per Frame

Average No. of Active States per Frame

130

4-stream

°

120

110

100

13-stream \

(=3

(o)) . \
20% T,

* \ .
- .
39-stream —_
e baseline #active states = 72.5
8 16 32 64 128 256

No. of Subspace Gaussians Per Stream

(a) Context-independent models

2500

20-stream

4-stream

°

2000

1500
<o

13-stream \
©
39-stream \ T

baseline #active states = 575

1000

500

2 4 8 16 32 64 128 256

No. of Subspace Gaussians Per Stream

(b) Context-dependent models

Figure 5.6: ATIS: Number of active states during decoding

61

5.3.3 Summary of Best Results

From the discussion above, there is a trade-off between recognition accuracy and recog-
nition speed by adjusting the number of streams and the number of prototypes. By
overlaying Figure 5.5 onto Figure 5.4, the best SDCHMM recognition performance with
various numbers of streams are determined and summarized in Table 5.2. The table also

lists comparative results for the baseline CDHMMs (or 1-stream SDCHMMs):

TIME : recognition time

PR : reduction in the number of model parameters. The figures in parentheses include
also the encoding indices/pointers when original full-space Gaussians are mapped to

their subspace Gaussians — one index/pointer per subspace Gaussian per stream.

MS : memory savings, assuming 4-byte floats for mixture weights, Gaussian means, and

variances, and 1-byte indices for encoding subspace Gaussians.

Table 5.2: ATIS: Summary of the best results (K = #tstreams, n = #sub-
space Gaussian prototypes per stream, Cl = context independent,
CD = context dependent, WER = word error rate (%), TIME is
relative to that of the baseline system, PR = parameter reduction,
and MS = memory savings. For PR, figures in parentheses take
into account the mappings of subspace Gaussians to the full-space
Gaussians. For MS, 1-byte mappings are assumed.)

[C/CD[K[n |[WER|TIME| PR |MS]

CI | 1] 2254] 94 | 1.00 1 1
CI |13 256 | 9.7 | 0.72 | 8 (3.5) | 6.1
CI |20 128 | 95 | 0.70 |15 (3.1) | 7.6
CI (39| 32 | 95 | 0.70 | 38 (1.9) | 6.7
CD | 1]76154] 52 | 1.00 1 1
CD | 4| 256 | 58 | 042 | 63(15) | 35
CD | 13| 128 | 52 | 0.44 |70 (5.6) | 18
CD [20] 64 | 50 | 0.50 | 74 (3.8) | 13
CD [39] 32 | 50 | 067 | 77(20)]| 7.3

62

The CD SDCHMMs perform better than the CI SDCHMMs when compared with
their respective baseline systems. The CD SDCHMMs require fewer prototypes but give
relatively better accuracies, higher computation efficiency, greater memory savings and
larger reduction in model parameters. The most plausible explanation is that the CI
models are less complex and robustly trained due to the large amount of available training
data. Further tying of CI model parameters renders over-smoothing of the parameters. As
a result, more prototypes are required to maintain acceptable quantization errors. On the
contrary, the CD SDCHMMs are highly complex and model all triphone contexts observed
in the data, but modeling the rare triphones has always been a problem. The baseline
CDHMMs resort to state-tying to alleviate the problem. Obviously, results of Table 5.2
suggest that some triphones are still not well trained, and further tying at the smaller
sub-phonetic unit of subspace Gaussians can effectively reduce the model parameter space
to obtain more robust models. Nevertheless, it is still amazing to see that the 76,154
Gaussians of the baseline CDHMMSs can be represented by 32 — 128 subspace Gaussians

per stream.

Thirteen, 20 or 39 streams all work well in both CD or CI systems, but their impacts
on savings in computation, memory, model parameters and accuracy are quite different.
For the CI systems, 13- to 39-stream SDCHMMs all give similar performance in terms
of accuracy, speed and memory requirement. The only difference lies in their number
of model parameters: 39-stream SDCHMMs (with 1-dimensional scalar streams) have
the fewest model parameters if one does not count the subspace Gaussian encoding pa-
rameters, thanks to the efficiency of scalar quantization which requires fewer prototypes.
However, once we include the encoding parameters, 39-stream SDCHMMSs require more
model parameters than SDCHMMSs with fewer streams because they consume one encod-
ing parameter per stream for each subspace Gaussian. On the other hand, since there are
many more distributions and HMM state evaluations in CD systems than in CI systems,
the greater sharing of Gaussian parameters in CD SDCHMMs entails greater savings in

computation, memory, and model parameters.

Various statistical significance tests from NIST (National Institute of Standards and

Technology) are run on the performance differences among the recognition systems of

63

Table 5.2, and their results are presented in Appendix C. Most of the tests indicate no
significant difference among the various CI (CD) systems. The only test that indicates a

difference actually finds the SDCHMM systems more accurate.

Operating Curves

The foregoing discussion that is based on Viterbi decoding using one particular beam-
width can be biased. Figure 5.7 studies the effect of beam-width on various SDCHMM
systems of Table 5.2 with their operating curves. An operating curve shows the speed and
accuracy of a recognizer at varying beam-width.

The asymptotic performances of CI SDCHMMSs are basically the same as those of their
parent CI CDHMMs, while CD SDCHMMs outperform CD CDHMMs asymptotically. In
addition, the SDCHMM curves always lie to the left of the CDHMM curve on each graph;
thus SDCHMM systems are always faster. Similarly, operating curves of SDCHMMs
with fewer streams also lie to the left of SDCHMMs with more streams though they
may saturate sooner with poorer accuracies (for example, compare the operating curves
of 20-stream and 39-stream CI SDCHMMSs, or those of 13-stream and 20-stream CD
SDCHMMs). The best compromise seems to come from 20-stream SDCHMM systems.

5.4 Summary and Discussion

We show that by properly projecting mixture Gaussians of accurate CDHMMs onto sub-
spaces using the correlated-feature stream definition and carefully tying the ensuing sub-
space Gaussians by the modified k-means Gaussian clustering algorithm, accurate SDCH-
MMs can be converted from CDHMMs. The correlated-feature stream definition, though
not guaranteed optimal, gives reasonably good results. The resulting SDCHMMs fulfill
the promises of faster computation and less memory requirement. For example, compared
with the baseline CDHMM system, the best CI SDCHMM system saves the total compu-
tation time by 30% and obtain an 8-fold reduction in HMM memory with an insignificant
(absolute) 0.1% drop in accuracy. Similarly, the best CD SDCHMM system outperforms
the baseline CDHMM system by 0.2% in absolute accuracy, yet it runs twice as fast with

64

X —— 1 stream (CDHMM)
* —— 20 streams, 128 prototypes
0O --- 39 stream, 32 prototypes
=3
aY)
S
o
°
(e}
= v
e
=g
B A N —— SN
1 2 3 4 5
Recognition Time (x real-time)
(a) Context-independent models
o] \
~ X — 1 stream (CDHMM)
A 13 streams, 128 prototypes
* —— 20 stream, 64 prototypes
o 0O ——- 39 stream, 32 prototypes
21
S 1
o @]
B
(o]
=
® 2
o .
0 \
X
. B \E)ix
2 \B—E]
2

Recognition Time (x real-time)

(b) Context-dependent models

Figure 5.7: ATIS: Operating curves of SDCHMMs (the best systems of Ta-
ble 5.2 are marked with squares)

65

a 13-fold reduction in memory used for acoustic models.

The model conversion is fast, since both the correlated-feature stream definition and
the modified k-means clustering scheme are algorithmically simple. For instance, on an
SGI machine (195MHZ MIPS R10000), conversion of CI CDHMMs to SDCHMMs can
be accomplished in less than a minute, while the conversion of CD models takes a few
minutes to an hour, depending on the extent of quantization?.

As a side effect of subspace Gaussian tying, some full-space Gaussians will become
identical after the tying process. Table 5.3 shows the number of distinct full-space Gaus-
sians after subspace Gaussian tying. Notice that even with 32 prototypes per stream,
there is very little compression (less than 1%) of full-space Gaussians using 13, 20 or 39
streams. This shows the efficacy of SDCHMMSs: The distinctiveness of the Gaussians is

well maintained despite the great compression in the subspaces.

Table 5.3: ATIS: Number of distinct full-space Gaussians after subspace
Gaussian tying in context-dependent SDCHMMs

#PROTOTYPES #STREAMS
4 | 13 | 20 | 39
2 16 | 4658 | 32141 | 72662
4 256 | 47312 | 72834 | 76075
8 1919 | 68606 | 75809 | 76140
16 7505 | 74664 | 76085 | 76149
32 18937 | 75810 | 76132 | 76150
64 34643 | 76057 | 76148 | 76150
128 53530 | 76113 | 76147 | 76150
256 64635 | 76137 | 76150 | 76150

The CD SDCHMMSs show greater relative improvements than the CI SDCHMDMs prob-
ably due to the higher degree of redundancy and decreased robustness of the original CD

CDHMMSs. One may thus postulate that SDCHMMs may be more effective with larger

acoustic models.

#The computation of the modified k-means Gaussian clustering algorithm is proportional to the number
of Gaussians. The ratio of numbers of Gaussians in the CD and CI systems is 76154 : 2254 = 34 : 1.

66

The 39-stream SDCHMMs in our case are equivalent to feature-parameter-tying HMMs
(FPTHMMs). Our results show that, although they give the highest compression of
subspace Gaussians, they do not give the greatest reduction in computation time and
memory size. The major shortcomings of FPTHMMs — SDCHMMs with scalar streams

— are:

e When the original full-space Gaussians are encoded by the subspace Gaussian pro-

totypes, more mapping indices/pointers are required.

e During decoding, the computation of each state log-likelihood involves additions of

more subspace Gaussian log-likelihoods.

The impact of the number of streams on accuracy, computation time, and memory
size is complicated. All things considered, 13 and 20 streams seem to be better choices.

Re-training of the converted CI SDCHMDMs has also been studied, and no significant
improvement is observed. Since the converted CD SDCHMMs already surpass the baseline
performance, based on our experience with re-training the CI SDCHMMs, we are not
surprised that re-training will not improve the CD SDCHMMs. On the other hand,
with the great reduction of Gaussian parameters (mixture weights, Gaussian means, and
variances) by one to two orders of magnitude, one should expect SDCHMMs to be trained
from scratch with much less training data than their parent CDHMMs. Direct training of

SDCHMMs will be pursued in Chapter 7.

Chapter 6

Analysis of the Subspace Distribution
Tying Structure

In the last chapter, continuous density HMMs (CDHMMs) were converted to subspace dis-
tribution clustering HMMs (SDCHMMs) by projecting the Gaussians of CDHMMs onto
subspaces and clustering the subspace Gaussians in each stream into a small set of pro-
totypes. The Gaussian clustering process is fully automatic, utilizing only acoustic infor-
mation from the data. Yet recognition results on the ATIS task (Table 5.2) show that, for
instance, SDCHMDMSs with 20 streams and 64 subspace Gaussians prototypes per stream
are adequate to represent the original context-dependent CDHMMs containing 76,154 full-
space Gaussians — a reduction of Gaussian parameters (means and variances) by a factor
of more than 1,000. Such efficient tying suggests that the original Gaussians were highly
redundant. It is therefore interesting to “see” how acoustics in terms of the subspace
Gaussians are similarly realized by which speech units. We refer to the tying information
among subspace Gaussians of SDCHMMs together with the mappings between them and
the full-space Gaussians of CDHMMs as the subspace Gaussian tying structure (SGTS),
or generally subspace distribution tying structure (SDTS) when the type of distribution is
immaterial for the discussion.

With the huge number of combinations of phonetic units, HMM states, and Gaussian
components in the SDCHMMs, it will be very hard to visualize the whole subspace Gaus-
sian tying structure in a single picture. In the following, we present a simple quantitative
analysis of the number of subspace Gaussians shared by the corresponding HMM states of

any pair of phones. We hope that the analysis will shed some light on the acoustic-phonetic

67

68

nature of speech.

6.1 SDCHMDMs to Analyze

In order to generate some readable visual plots of the subspace Gaussian tying structure
between some pair of phones, we employ a less complex SDCHMM system. To do that,
we first re-train context-independent (CI) CDHMMs with about 4,000 ATIS training ut-
terances using the segmental k-means training algorithm [38]. The CI CDHMMs have the
same HMM configuration as the baseline system except that there are only four Gaus-
sian mixture components per state. Twenty-stream CI SDCHMMSs are then derived from
the CDHMMs by the model conversion scheme as explained in Chapter 5 requiring 64
prototypes per stream. The resulting CDHMMs and SDCHMMSs have recognition WERs
of 12.2% and 12.6% respectively'. The SGTS of the 20-stream CI SDCHMMs is then

analyzed.

6.2 Methodology

For the corresponding states of any two phonetic SDCHMMs with the same number of
HMM states, which are modeled as mixture Gaussian densities, the constituent subspace
Gaussians of their full-space Gaussians are compared. Specifically, for each stream, the
number of common subspace Gaussians at the corresponding states of the two SDCHMMs
are counted irrespective to which mixture components the subspace Gaussians come from.

The procedure may be expressed in pseudo-code as follows:

for each pair of phones (P, Q) with the same number of states
for each state
{
num_common_subgaussian = 0

for each stream

"These results are worse than the baseline CI models of Table 3.3. It is mainly due to their reduced
model complexity: 4 mixtures vs. 16 mixtures per density in the baseline models.

69

{
P.list = subspace Gaussians from all mixture components of
phone P in this state projected onto this stream
Q.list = subspace Gaussians from all mixture components of
phone @ in this state projected onto this stream
num_common_subgaussian += Common_Subgaussian(P.list, Q.list)
}
print(num_common_subgaussian)
}
Common_Subgaussian(list, lists)
{
find the number of common subspace Gaussians between list; and listy
}

Since each subspace Gaussian may be represented by its prototype index, a 20-stream
full-space Gaussian can be represented by a tuple of 20 prototype indices, one for each
stream. For example, the 4-mixture density of the third state of the phones “s” and “z”

are represented as:

{<2 4, 3, 2, 9,46, 2,52, 2, 2, 33,13, 46, 37, 13, 21, 46, 60, 42, 2 >,
< 0, 24, 31, 34, 28, 2, 28, 35, 46, 37, 46, 46, 33, 46, 37, 46, 46, 48, 24, 21 >,
< 2,24,12, 24, 2, 46, 24, 16, 13, 21, 47, 12, 46, 46, 46, 46, 2, 48, 28, 2 >,
< 4, 37, 12, 25, 34, 46, 4, 52, 31, 21, 16, 25, 12, 51, 44, 24, 5, 25, 12, 4 > }
and
{ < 46, 4,47, 2,47, 46, 13, 52, 2, 2, 33, 46, 46, 41, 13, 21, 46, 13, 24, 2 >,
< 0, 24, 31, 34, 28, 12, 28, 35, 27, 37, 46, 12, 33, 46, 37, 21, 46, 48, 13, 21 >,
< 46, 24, 46, 24, 2, 46, 24, 16, 13, 21, 47, 52, 33, 46, 46, 46, 2, 57, 28, 2 >,
< 0, 4,46, 44, 28, 13, 47, 37, 25, 1, 5, 4,25, 51, 35, 21, 5,25, 25,25 > }
respectively. Thus to determine the number of common subspace Gaussians in the twelfth

stream of the third state of “s” and “z”, the two lists {13, 46, 12, 25} and {46, 12, 52,

70

4} are compared and the result is two. Note that the order of the indices is ignored. The

computation is repeated for every stream, and the counts are accumulated for each state.

6.3 Results

Since all the 45 ATIS phones (excluding the three noise models) shown in Table 3.1
have three states, the number of common subspace Gaussians between any pairs of the
45 phones can be computed for each of their three states. The results are tabulated in
Table B.1(a)—(c) in Appendix B as confusion matrices, one for each state.

The phones are further divided into two major categories: 18 vowels and 27 consonants?.
Histograms of counts of the number of common subspace Gaussians between any two
phones within each category and across the two categories are shown in Figure 6.1 to-
gether with some of their statistics.

In addition, Figure 6.2(a)—(c) provides a visualization of the SGT'S between three pairs

of phones belonging to various phonetic categories:

e vowel-vowel pair: “ae” and “eh”

1))
S

e consonant-consonant pair: and “z”

e consonant-vowel pair: “t” and “iy”.

In each of the three figures, the abscissas are stream indices ranging from 1 to 20,
while the ordinates are the subspace Gaussian prototype indices for each stream. For each
stream of the 4-mixture Gaussians of a state, the subspace Gaussian prototype indices
of the first phone in the pair are represented by the four letters “a”, “b”, “c”, and “d”.
Subspace Gaussians symbolized by the same letter belong to the same full-space Gaussian
component. Thus if one connects all the letter “a”’s together across the 20 streams,

J

one obtains the “trajectory” of a full-space Gaussian encoded by its subspace Gaussian
prototypes. On the other hand, the four subspace Gaussian prototype indices of the second

phone in the pair of the same stream are represented indiscriminately by square boxes. A

2 . . .
The vowels are: aa, ae, ah, ao, aw, ax, axr, ay, €h, er, ey, ih, ix, iy, ow, oy, uh, and uw; the consonants
are: b, ch, d, dh, dx, el, en, f, g, hh, jh, k, I, m, n, ng, nx, p, r, s, sh, t, th, v, w, y, and z.

o]
[\
£ m'ﬁé 02;
& | | D60 4 14
Lattii N, .
0 5 10 15 20 25 30
State-1
8
min =
£ max 02
& | | | | | r?ﬁagevg Re7
AR TTIT I
0 5 10 20 25 30
State-2
8 -
- min = 02
£ max
§ |||H ”l "iﬁagevz’sgm
ol==il I “III.llI.
5 10 20 25 30
State-3
(a) Between any two vowels
3
min =0
gto maé 112
& ‘ H T Y
ol I | | I I Ina
5 10 15 20 25 30
State-1
9
£ mg]x 8
‘ ‘ | T
ol I I I I I [| I []
0 5 10 15 20 25 30
State-2
3
£ mg]x %
§£ | ‘Hl "iggev 5994
ol | | 11.
5 10 15 20 25 30
State-3

(c) Between a vowel and a consonant

20

10

20

10

20

10

50

25

50

25

50

25

71

8 8
- min =
£ max = % E o
28 || | e <808 | |4

OII | IIIIIII..II.I -0 -lo

0 5 10 15 20 25 30
State-1

8 8
g m|n QSé
ga ‘ h T | I

O| |III|IIIII-I-- [- o

0 5 10 15 20 25 30
State-?

8 8
. min =0
5 ean=151 | o
2 | ‘ | | I e | 14

OIII | |III|I|II " _ I o

0 5 10 15 20 25 30
State-3
(b) Between any two consonants

B 8
£ mos 2 | |
|HH| Wi | e

RELLL LT

0 5 10 15 20 25 30
State-1

% 03 8
K min = -
c max
éﬁ ‘H“ sgagevﬁggw R

al ||IIII||II||.| _ - o

0 5 10 15 20 25 30
State-?

B 2
£ mg‘x_og)
g’ﬁ ||H“| 065 %06 | fe

ol I [| I I I I lommw. _u._ _ o

0 5 10 20 25 30

15
State-3

(d) Between any two phones

Figure 6.1: ATIS: Counts of the number of common subspace Gaussians be-
tween phones of different broad categories

72

match of subspace Gaussians between the two phones occurs when any of the four letters
is “captured” by a box. (Due to the low resolution on the ordinate, only when a letter
is right in the middle of a square box is there a match.) From Table B.1, the number of

matches in the three figures, from the first state to the third state are:
e between “ae” and “eh”: 21, 26, 27
e between “s” and “z”: 25, 28, 48

e between “t” and “iy”: 0, 0, 5.

6.4 Discussion

The figures in Table B.1 should be compared with the expected number of common sub-
space Gaussians between two SDCHMM states should the match occur by pure chance.

The problem may be re-phrased in the following abstraction:

Given a box of N balls numbered 1 to N, and two bags, each having a
capacity of m balls, a ball is randomly picked from the box and put into a
bag, and a ball of the same number is put back into the box from the stock.
The procedure is repeated 2m times until both bags are full. Now compare
the two sets of m balls in the two bags, and determine the expected number

of matches.

Note that the number of matches does not follow a simple binomial distribution because
the match ignores the position of the m balls in a bag. In our case, N = 64 and m = 4, and
the expected number of matches is found to be 0.24 per stream. Thus the expected number
of common subspace Gaussians between two 20-stream SDCHMM states is 20 x 0.24 = 4.8
should the match occur by chance.

By comparing the expected number of matches of 4.8 and the figures shown in Ta-

ble B.1, Figure 6.1, and Figure 6.2, we have the following observations:

e The extent of sharing of subspace Gaussians splits along broad phonetic categories

(vowels and consonants; and within consonants, along sub-categories of fricatives,

73

plosives, nasals and approximants [43]). That is, there is more sharing of subspace
Gaussians between two vowels or two consonants than between a vowel and a con-
sonant; and, within consonants, there is more sharing between two fricatives, two
plosives, etc. The effect is most obvious from Figure 6.2 in which vowel pair “ae”—
“eh” and consonant pair “s”—%“z” have 25-60% of their subspace Gaussians shared in
all three states; whereas there is basically no sharing between the consonant-vowel

7

pair “t”“iy”.

e In the mid-states, where the coarticulatory effect is weak and the identity of a phone
is better preserved, there is much less sharing of subspace Gaussians between vowel-
consonant pairs, while vowel-vowel pairs exhibit more sharing. In fact, the average
number (3.48) of common subspace Gaussians between vowel-consonant pairs is well
below the expected value of 4.8. The histogram for the case of vowel-vowel pairs is
also more uniform than that of consonant-consonant pairs. This may be attributed
by the more gradual differences in the articulations of the vowels. In contrast, the
articulations of different categories of consonants are very different (c.f. nasals vs.

plosives).

e On average, there is more sharing between two vowels than between two consonants.

This again confirms the greater resemblance between vowels.

All the observations are well in accord with our phonetic knowledge about the phones.
The analysis provides some understanding of the efficiency of subspace distribution clus-

tering hidden Markov modeling in encoding the phonetic information.

74

Subspace Gaussian Index
40 60 0 20 40 60

Subspace Gaussian Index
20

40 60

Subspace Gaussian Index
20

o D c .
O 0 c
¢] a
0 g d O g o O
¢ B O
8 d@f pg ° o _ B g
c B [a -0 0Q g ? A 0
. B % ¢ @ 1 B O
2 4 6 8 10 12 14 16 18 20
Stream Index of State-1 of "ae" and "eh"
B a2 @ 2 ¢ [@ U T, o a
E O c 0 c g
i : 4o)
- E g0 . o o , g o 0
c O g o o 0O0Q@ 00 0
O a [i]
D a D C a
a
2 4 6 8 10 12 14 16 18 20
Stream Index of State-2 of "ae" and "eh"
[E H O
[;] d B a O a : [?j g 2 0
= . \al @ a
. c | o O 0 = H c
C a E D r01 ¢ X
n ¢ @ H 0 0 v
t B c o e Il B ¢ ¢ §
’ c c a O &
2 4 6 8 10 12 14 16 18 20
Stream Index of State-3 of "ae" and "eh"
Figure 6.2: Subspace Gaussian tying structure (a) between “ae” and

“eh” (number of matches from the 1st to the 3rd state are 21,

26, 27)

Subspace Gaussian Index Subspace Gaussian Index

Subspace Gaussian Index

20 40 60

[0}

60

40

20

60

40

20

75

g - ¢ :
S © 9
) = O ¢ O @ .
. a 0 g & O 0
c C c A
O O El
d
@ g O ¢ M O v O o c
6 6 ¢ B a & a s @ & 0 8 0
2 4 6 8 10 12 14 16 18 20
Stream Index of State-1 of "s" and "z"
C 8
O O c S u
El o] O O
c o & ¢ & B ¢ © & ¢ 2 h O 0 c ¢
d
O d -
0 O0foC A 0 i 0 O O @ 0 @ O
C ¢ C
a [0 O
& O .
a a O O
2 4 6 8 10 12 14 16 18 20
Stream Index of State-2 of "s" and "z"
g 0
] O O | I
a o
q)
0 @ 0
.)
i 4 a g a B T ® &
2 4 6 8 10 12 14 16 18 20
Stream Index of State-3 of "s" and "z"
Figure 6.2: Subspace Gaussian tying structure (b) between “s" and

28, 48)

z" (number of matches from the 1st to the 3rd state are 25,

76

Subspace Gaussian Index
40 60 0 20 40 60

Subspace Gaussian Index
20

20 40 60

Subspace Gaussian Index
(0]

0 oo G
B OO O O O O 0 2 O O 0 O
= C C
0O & a @ ; 2,]
& c
O f{ g 00O0OQD A 0 E] 6 ¢
O .
c ¢ B i
a Bl a2 a a a ¢ a ¢ a8 a 2 a
2 6 8 10 12 14 16 18 20
Stream Index of State-1 of "t" and "iy"
_ _ o g 0
u| g 0 u| A g H g B O H
0 U g a 0
C C a ¢ C ¢ g C
o 0 & O N O n
O 0 O E] Il
O a ¢ & c C 3 ¢ c a o b
*p0aQ 0 ° 0@ 2 ? :
2 4 6 8 10 12 14 16 18 20
Stream Index of State-2 of "t" and "iy"
O 0 ¢ ¢
oo o Y5o00 ¢ :
¢ ¢ 0 a C ~ a £
¢ . a o] a = 0]
o B:-88@° 1 0
O Ell
* v 0 0 o 0 c a ¢ B 2 O
g ° s W Boglg
2 4 6 8 10 12 14 16 18 20
Stream Index of State-3 of "t" and "iy"
Figure 6.2: Subspace Gaussian tying structure (c) between “t” and

ly

(number of matches from the 1st to the 3rd state are 0, 0, 5)

Chapter 7

Implementation of SDCHMMs (II):
Direct SDCHMM Training

Using the model conversion technique explained in Chapter 5, subspace distribution clus-
tering hidden Markov models (SDCHMMSs) can be trained from raw speech data in an
indirect training scheme as shown in Figure 7.1(a).

Model conversion is simple and runs quickly, and the ensuing SDCHMMs fulfill three

promises of the technique of parameter tying:
e fewer model parameters
e faster computation of model likelihoods
e 1o loss in recognition accuracy (and possibly some gain).

However, since the scheme requires intermediate CDHMMSs, it requires an amount of train-
ing data as large as CDHMM training does, and does not take advantage of the fewer model
parameters in SDCHMMs. Recognition performance of SDCHMMSs in Table 5.2 indicates
that, if the subspace Gaussian tying structure (SGTS)! is ignored, SDCHMMs have many
fewer model parameters (mixture weights, Gaussian means, and variances) — by one to
two orders of magnitude — than their parent CDHMMs. Thus, if we have a priori knowl-
edge of the SGTS, or in general, the subspace distribution tying structure (SDTS), one
should be able to train SDCHMMSs directly from much less speech data as schematically

'SGTS is defined in Chapter 6 as the tying information among subspace Gaussians of SDCHMMs
together with the mappings between them and the full-space Gaussians of CDHMMs.

7

78

speech
training data

|

CDHMM
Training

Y

continuous density speech
HMM training data
v l

Subspace C Direct
stream PO subspace distribution
L — »| Distribution : — SDCHMM
definition Clustering tying structure Training

l Y
subspace distribution subspace distribution
clustering HMM clustering HMM

(a) indirect method (b) direct method

Figure 7.1: SDCHMM training schemes

shown in Figure 7.1(b). That an SGTS imposes a great constraint on the HMM config-
uration may have one wonder why a presumed SGTS necessarily leads to good acoustic
models. However, the acoustic-phonetic analysis of SGTS in Chapter 6 suggests that the
SGTS is not arbitrary; it efficiently represents the inherent inter-relationship among the
phones. The presumption of an SGTS should therefore be considered as a utilization of
phonetic knowledge in designing our acoustic models, resulting in fewer model parameters

and theoretically requiring less training data.

In this chapter, we first review the reestimation formulas of CDHMM parameters, and
then extend them to the reestimation of SDCHMM parameters. It will be shown that

SDCHMM reestimation is just a special case of CDHMM reestimation where statistics

79

are gathered in a way dictated by the SGTS. Then, in a set of experiments wherein ATIS
training data are progressively halved each time, the data requirement for directly training

SDCHMMs from scratch is investigated, and is compared with that for training CDHMMs.

7.1 A Review of Maximum Likelihood Estimation of CDHMM
Parameters Using the EM Algorithm (with Single Ob-

servation Sequence)

An N-state HMM)\ is defined by three sets of parameters:

e initial-state probabilities = = [my,7q,..., 7]
e state-transition probability matrix @ = {a;;},1 <i,7 <N

e state observation pdf’s b = [by,ba,...,b,].

Given an observation sequence of T' frames of a speech unit, O = 070, ---0, (where
o; is the observation vector at time t), and a pre-defined HMM configuration for the
unit, the estimation problem is to find an HMM \ = (&, a, b) such that a score function
C(0,)) is maximized. Cast as an optimization problem, the estimation is most commonly
solved by the iterative Baum-Welch (BW) algorithm [3], a specific case of the Expectation—
Mazimization (EM) algorithm [30] with the log likelihood as the score function. That is,

C(0,\) ¥ log P(O | \)

In each iteration of the EM algorithm, the current model parameters A = («, a,b) are
reestimated to A\ = (7,a, fo) which maximizes the score function. This is done sequentially

in two steps: an E-step and an M-step.

7.1.1 E-step

An auxiliary function, commonly called the @ function, for the expected cost of the new
model conditional on the observation and the old model is constructed as follows:

QA X gqlog P(0,q |) | O, (7.1)

= > P(q| 0,)) -log P(0,q]| }) . (7.2)
q

80

The expectation £[] is evaluated over all possible state sequences ¢ = ¢,q, - - - ¢,,, which is
the hidden data or the random variable of the stochastic Markov process.

The theory of EM algorithm guarantees a monotonic improvement in the value of the
Q@ function after each iteration of the E-step and M-step. The final result is a locally, if

not globally, optimal model.

7.1.2 M-step

Since
log P(0,q | A) = log (#q, by, (01)aq,q,bg, (02) - - aqT (. bg, (07)) (7.3)
T-1
= log(tq,) + Z log(a aqtqm + Zlog bq (01)) (7.4)
t=1

Equation (7.2) may be split into a sum of three independent @ functions:

QAN = Qr(A +2Qa1)\a7 +ZQb (A, b)) (7.5)
=1
where (AIZ' = [dﬂ,&ig, . ,&z’N], and
N
Qr(\%) = Y P(g, =i 0,\) -log(#;) (7.6)
=1
N T-1
Qaz(/\adi) = Z P(qt = /é’qz«l-l :J | O,)‘) : IOg(dm) (77)
=1 t=1
A]T A
Qp. (A bi) = > Plg, =i 0,X) -log(b;(0r)) - (7.8)

o+
Il
—

Maximization of Q()\,;\) can then be done by maximizing the three independent @)
functions separately, since each involves a different set of optimization variables. By taking
the first derivative of each of the Equations (7.6)-(7.8) and using appropriate Lagrange

multipliers, the maximal value of \ is

i = 71 (0) (7.9)
ai; = Ztl—f(ld) : (7.10)
Zt 1 7 (1)

where

7(1) = Plg, =] 0,)) (7.11)

81

is the probability of being in state ¢ at time ¢, and

.. def . .
§\(i,5) = Plg, =i,q,,, =j | 0, (7.12)

is the probability of being in state ¢ at time ¢ and state j at time ¢+ 1, given the model A
and the observation sequence O. The likelihood functions v(-) and £(-) can be efficiently
computed by the forward-backward algorithm [69].

The reestimation formula of b depends on the functional form of the state observation
pdf. Here, we will consider only the two cases when the state output distribution is either

a single Gaussian distribution or a mixture Gaussian density.

Case I: Single Gaussian Output Distribution
That is, b;j(0;) = N(o4; p;, B;). Then

g = Zm e (7.13)

‘ Zthl 'Yt/\('t)
& ZtT:1 ’Vt/\(i) (Ot - ﬂi)(ot — ﬂz’)/
Y, = 7.14
Zthl %‘A(’) ()

where (o — ;)" is the transpose of (o; — f1;).

Conceptually, the reestimate of the mean (covariance) of a Gaussian of state ¢ is the
normalized sum of its observations (cross product of deviations from mean observations)

weighted by their probability of being in state i.

Case II: Mixture Gaussian Output Distribution
That is, b;(0¢) = X M_, cim N(0t; iy Zim), 2M_ i = 1.

Since an HMM state with a mixture density is equivalent to a multi-state HMM with
single-mixture densities [36], the reestimates of b are similar to those of Case I except that
the quantity ~; (i) is modified as +;*(i,m) which is the probability of being in state i and
the m-th mixture component at time ¢, given the model A and the observation sequence

O. Hence,

T Afs
éim — TEt:lj\;/t (’L?Am.) (715)
Zt:l Em:l V¢ (17 m)
Z?:l ’YtA ({La m) Oy

frim = (7.16)

82

T Az _n. Y
Eim — Zt:l Vi (7’3 In;) (Ofi\ : “z)(ol‘ p‘z)) (717)
>i=1 Y (i,m)

7.1.3 Viterbi Training

A simple variant of the Baum-Welch training algorithm, called the Viterbi training al-
gorithm, is commonly used in practice. It is simpler and faster, and by many reports
as effective as the Baum-Welch algorithm. Essentially, instead of considering all possi-
ble state segmentations to decide the updates as in the Baum-Welch algorithm, Viterbi
training uses only the most likely state sequence. That is, Viterbi training modifies the @

function as follows:

QNN € P(g0, | O,)) - log P(O, qar | N) (7.18)

where
Aoz = argmax P(07 q |)‘) : (719)
q

All the reestimation formulas of =, a, and b for the Baum-Welch method shown above can
be readily adapted for Viterbi training by simply changing the definitions of the likelihood

functions y(-) and &(-) as follows:

) 1if ¢, =1
V(i) = t
0 otherwise
1 if ¢ =+¢ and =7
gip=4 " o

0 otherwise

7.2 Extension to Maximum Likelihood Estimation of SD-

CHMM Parameters

SDCHMM parameters may be estimated using the EM algorithm in much the same way
as CDHMM parameters are estimated above. In fact, the additional constraints imposed
by the SDTS only alter the way in which statistics are gathered from the observations in

the estimation of distribution parameters. Moreover, since the SDTS concerns all acoustic

83

models, the main difference between CDHMM estimation and SDCHMM estimation is that
while each CDHMM may be estimated in isolation, all SDCHMMSs have to be estimated
at the same time.

In the following, let us denote the whole set of SDCHMMs of all speech units by A,
and augment each observation sequence O and model parameters =, a;, and b; to o, w,

a?, and b} respectively to make their model dependency explicit. The new Q function is

modified as:
QA L) ¥ gy |log] P(O*,q| N \oA,A (7.20)
AEA
= > > P(q| 0")) -logP(0*,q |) (7.21)
AEA q
N N %Y
= Y Qr\ME)+ YD Qa;(\ad) + YD Qp.(Nb) . (7:22)
AEA AeA =1 A€EA =1

where Qz (A, 7%), Qa; (A7) and Qp, (), b)) are defined as in Equations (7.6)—(7.8).

7.2.1 Reestimation of w and ¢ in SDCHMM

It is clear that from the theory of SDCHMM (Equation (4.5)) that only the state ob-
servation pdf b(-) of the CDHMM is modified, while the definitions of the initial-state
probabilities 7w and state-transition probabilities a are kept intact. Hence, = and a can
still be estimated separately for each SDCHMM, and their reestimation formulas remain
the same as those of the conventional CDHMM given by Equations (7.9) and (7.10) re-

spectively.

7.2.2 Reestimation of b in SDCHMM

According to the theory of SDCHMM, the state observation pdf b2(-) of state i of a K-
stream SDCHMM) is assumed to be a mixture density with M components b2, (-) and
mixture weights ¢;,, 1 < m < M, such that b (-) is a product of K subspace pdf’s

b} .. (-), 1 <k < K, of the same functional form. That is,

M M
b 0}) = > cimb,(01), Y cim =1 (7.23)
m=1 m=1

84

M K
= Z_ (Cim 11 b?mk(o,?k)) (7.24)

k=1
where b7, (-) and o} are the projections of b}, (-) and o} onto the k-th feature subspace
respectively.

The reestimation formula for the mixture weights c¢;,, is the same as in the case of
CDHMM given by Equation (7.15) since it does not depend on the functional form of the
component, distribution. For the reestimation of component distribution, again, only a
single Gaussian distribution and a mixture Gaussian density are considered.

Let us denote the whole set of state output distributions of all models by B. From

Equation (7.22), the @ function for B is given by

N
QpA,B) = 3 3"Q, (\b) . (7.25)

AEA =1

Case I: Single Gaussian Qutput Distribution
Let us first look at the special case when there is only one Gaussian in the mixture density.

Equation (7.24) may then be simplified to

K
b} (0p) = I b (o) (7.26)
k=1

by dropping the mixture weight of unity and the mixture component subscript m. Sub-

stituting Equation (7.8) and Equation (7.26) into Equation (7.25), we have

A N T N
QpA,B) = 3 > > P, =i]| 0\) log(b; (07))

AEA i=1t=1

N T Ko
= Z ZZP(% =i| O \)- (log H bik("?k))

AEA 1=1 t=1 k=1
N T K)
= Z ZZP(‘I: =i OA,A) : (Z log(bik(f’?\k))>
AeA i=1 t=1 k=1
K N o
= Z Z ZZP(‘L =1 OA,A) : 10g(bik(0?k))
k=1 \\€A i=1t=1

K
= > Qp, (A By) (7.27)
k=1

85

where
N T N
Qp, (A > > P(g, =i| O \)-log(bi(o))) - (7.28)
A€EA i=1t=1

As the streams are assumed independent in the local acoustic space, each @ B, (A, B k)
can be maximized independently.

Now suppose there are L; subspace pdf prototypes hy(-), 1 < | < L, in the k-th
stream of the set of K-stream SDCHMMs A, 1 < k < K. Each subspace pdf, say, b3} (-)
in stream k of state ¢, is tied to one of the subspace pdf prototypes of the stream, say,
hii(-), 1 <1 < L. Thatis, VA€ A, Vi € [1,N], Vk € [1,K], 31 € [1,L;] such that
b3.(-) = hi(+). Then the reestimation of b, (-) becomes the reestimation of h(-) and may

be expressed verbally as follows:

)) reestimation of the pdf parameters as in conventional
reestimation of the

CDHMM, but the statistics are gathered from all
parameters of pdf =

haa() frames belonging to all b2 () = hy(+) over all states
k(0

and all models.

Thus the @ function for the subspace pdf’s in the k-th stream of Equation (7.28) can

be rewritten as:

N T
QBk (A7Bk) = Z ZZP(Qt =1 ‘ OAa)\) ’ IOg(iLkl(O?k)) such that bz/\k() = h’kl()
AEA =1 t=1
Ly T R
=Y (Y > S P =i|0*N loglhu(o)) | - (7.29)

=1 /\EA b/\ h’klt 1

In particular if the pdf’s are Gaussians, that is,

hii(owk) = N(0wk; by Bia)
then the new model is
2nen 2, b =hy Yo 97 (i) - o,
EAEA Z» . bA \=hi Zt:l V¢ ()

EAGAE bA =hy Zt 174 ()(Otk Hk.!)(otk)
Y = SV . (7.31)
ZAeA Zz : bg\kEhM Zt:l Vi (Z)

Py = (7.30)

86

Case II: Mixture Gaussian Output Distribution
Again extending the reestimation of b to the general case of mixture densities can simply
be done by taking into account all mixture components, and substituting +; (i, m) for v;\(7)

in Equations (7.30) and (7.31) as follows:

T A LA
Z/\eA Zi’m . b{'\mkEhkl oim1 Vi (1, m) Oy,

ﬁ'kl = : T N/ (732)
Z)\eA Zi,m : bz{\mkEhkl D=1 (z,m)

DA, L b =hu Yt 7 (6ym) (0, — i) (03 — Frt)’
S = o ST . (7.33)
XA 2up bg\mkEhkl t=1 "7t \b,

7.2.3 Remarks

Although the reestimation formulas of SDCHMMs look much like those of semi-continuous

HMMs (SCHMMs) (or tied-mixture HMM), there are several important differences:

e While all SCHMM states share the same set of subspace Gaussians, the tying of
subspace Gaussians among the SDCHMM states is governed by the SDTS and is

generally not the same for all the states. This requires the modifier Ei b

imk

=hg
in the reestimation formulas of SDCHMM.

e Since streams in an SCHMM are assumed globally independent, the model param-
eters of each stream are estimated independently. Thus, for a K-stream SCHMM,
there will be K different sets of =, a, state density mixture weights and distribution
prototypes. On the other hand, streams are locally independent in an SDCHMM.
Except for the K different sets of distribution prototypes, one for each stream, a
K-stream SDCHMM has only one set of other model parameters (w, a, and state

density mixture weights).

e Similarly, the likelihood functions v(-) and &(-) are computed only once for all streams
of an SDCHMM, whereas an SCHMM requires their computation separately for each

stream.

87

7.3 Evaluation of Direct SDCHMM Training

In this section, we study the following problem:

If the “perfect” subspace Gaussian tying structure for the acoustic models of a
task is known, how much training data is required to directly train SDCHMMs

for the task?

An SGTS used for direct SDCHMM training of a task is considered “perfect” if it is
obtained through model conversion of CDHMMSs to SDCHMMs of the same task. On the
other hand, an SGTS is said to be “imperfect” for SDCHMM training if it is obtained
from model conversion of CDHMMs of a different task, or CDHMMSs of the same task but
acquired in a different environment (ambient noise, channel, gender, etc.). The perfect
SGTS is employed in this thesis to study the upper bound for the effectiveness of direct
SDCHMM training when the exact SGTS for a task is known.

The ATIS task is again chosen for evaluating the direct SDCHMM training scheme.
Both context-independent (CI) and context-dependent (CD) SDCHMMSs will be trained
and evaluated. Nonetheless, more emphasis is put on the CI models simply because the
simpler and fewer CI models allow us to train and test many CDHMMs and SDCHMMs
of various complexities in a manageable amount of time. Moreover, CI modeling tends
to be more stable as there is usually ample coverage of training data for the CI phones.
In contrast, CD modeling requires delicate fine-tuning effort to obtain a good balance
between training data and model accuracy, which may complicate our main research goal
here.

Speech is converted into 39-dimensional feature vectors as described in Section 3.2.1.
Each phone model is a 3-state left-to-right HMM with the exception of one noise model
which has only one state. The testing conditions (test dataset, vocabulary, pronunciation
models, language models, decoding algorithm, and beam-width) are exactly the same as
those described in Table 3.3. All these have been used consistently throughout this thesis.

Lastly, the number of streams is fixed to 20 for all SDCHMMs trained below. This
follows from the conclusion in Chapter 5 which suggests that 20 streams give a good

balance between accuracy, computation time, and model memory on the ATIS task.

88

7.3.1 Methodology

To evaluate the effectiveness of direct SDCHMM training, its training data requirement
is compared with that for CDHMM training. The evaluation procedure consists of the

following basic steps:

Step 1. Generate N data subsets S;, 1 < ¢ < N, from all the given training data by
progressively cutting the data in half. That is, the amount of data in S;y; is half of

that in S;.
Step 2. Train CDHMM acoustic models with all available training data in Sj.
Step 3. Convert the CDHMMs to SDCHMMs as described in Chapter 5 (Figure 7.1(a)).
Step 4. Deduce the subspace distribution tying structure from the converted SDCHMMs.
Step 5. For each data subset (S;, Sz, Ss, ..., Sy), repeat Steps 6 and 7.

Step 6. Train CDHMMs and adjust (lower) the number of components in each state
mixture density to obtain the best CDHMMs with the reduced amount of training
data.

Step 7. Train SDCHMM acoustic models using the direct SDCHMM training scheme as
shown in Figure 7.1(b) with the SDTS obtained in Step 4.

Step 8. Compare the recognition performance of all CDHMMs and SDCHMMs obtained

in the above steps.

7.3.2 Preparation of Training Datasets

A collection of 16,896 utterances from the ATIS-2 and ATIS-3 corpora(see Section 3.1),
which were acquired at five sites (BBN, CMU, MIT, NIST, and SRI), are employed in
this study. They are divided into 16 datasets of roughly 1,000 utterances each, denoted
as S1, S2, S3, ..., to S16, so that data from the five sites are spread out into each dataset
as evenly as possible. The 100 longest utterances from S16 are selected for bootstrapping

HMDMs and this set is denoted as dataset A. Other smaller datasets are derived as follows:

89

Table 7.1: ATIS: Training datasets (* Datasets are phonetically labeled by the
baseline ATIS recognizers. | Figures are averages.)

[DATASET | #FRAMES | DURATION (min.) |

DESCRIPTION

X 13,000,205 | 2,167 baseline CD CDHMMs training data
Y 6,444,959 1,074 baseline CI CDHMMs training data
Test 545,642 91 981 (1994 ARPA’s official) test utterances
S1-16 8,883,240 1,480 16,896 utterances
S1-4 2,140,470 357 4,226 utterances
S1-2 1,080,650 180 2,114 utterances
S1 527,599 88 1,055 utterances
S0 249,565 42 500 utterances from subset S1

‘ Ax 101,309 17 100 utterances from subset S16
Bx 49,616 8.3 50 utterances from subset A
Cx 27,811 4.6 25 utterances from subset B
Dx 12,421 2.1 12 utterances from subset C
E1-E10x 7,7587 1.297 15 utterances from subset S15
F1-F10% 2,7027 0.45¢% 5 utterances from subset S15

e dataset SO contains 500 utterances from dataset S1

o dataset B contains 50 utterances from dataset A

dataset C contains 25 utterances from dataset B

dataset D contains 12 utterances from dataset C

E-sets comprise 10 datasets denoted as E1, E2, ..., E10, and each contains 15 utterances

from dataset S15, three from each of the five collecting sites.

F-sets comprise 10 datasets denoted as F1, F2, ..., F10, which are sub-sampled from the

corresponding E-sets such that each contains five utterances, one from each of the five

collecting sites.

All the various datasets are summarized in Table 7.1. Datasets S5 to S14 are not used

at all in this study. Datasets A, B, C, D, the E-sets, and the F-sets are all phonetically

labeled. This is done by aligning each utterance with its transcription through Viterbi

90

decoding using the baseline CI-CDHMM (CD-CDHMM) ATIS recognizers of Chapter 3
when CI(CD) SDCHMMs are trained.

7.3.3 Hybrid Viterbi/Baum-Welch Training Procedure

In this evaluation, we adopt a combination of Viterbi training (VT) and Baum-Welch (BW)
reestimation to train all acoustic models, with an additional step of segmental k-means (SKM)
training for CDHMM training. The hybrid VI /BW training procedure takes advantage
of the simplicity of Viterbi training and the accuracy of Baum-Welch. The procedures
for training CDHMMs and SDCHMMs are schematically depicted in Figure 7.2, and the
details are described in Algorithm 5 and Algorithm 6.

The training procedures for CDHMMs and SDCHMMSs are very similar, but the fol-

lowing differences are worthy of notice:

e While each CDHMM phone may be trained in isolation (using Viterbi training), all
SDCHMM phones must be estimated at the same time since all of them contribute

to the statistics of the subspace Gaussian prototypes.

e SDCHMM training does not need the segmental k-means algorithm to derive the
required model complexity of M mixtures per state because the complexities of all

models are defined in the given SGTS.

e The asymmetry in the SGTS is crucial to successful training of the SDCHMM. If we
initialize all components of an M-mixture CDHMM in the same way (as SDCHMMs
are initialized in Algorithm 6), they will remain identical after training. The resulting
M -mixture CDHMM is functionally no different from a 1-mixture CDHMM. On the
other hand, in the case of SDCHMM initialization, since it is impossible for all
mixture components of all phones to tie to the prototypes in exactly the same way,
each subspace Gaussian prototype will not receive the same set of observations after

initialization.

Finally, since strictly left-to-right 3-state HMMs are used, all initial-state probabilities

are zero, except those of the first states which have total probability of unity. That is, for all

(small set of)
labelled data

|

uniform state
segmentation

CDHMM
initialization

phone-level ’D

Baum-Welch

bootstrapped
1-mixture
CDHMMs

segmental
k-means

phone-level @

Baum-Welch

xture
MMs

all training
data

phone-level
segmentation

phone-level ’D

Baum-Welch

91

(small set of)
labelled data

|

uniform state
segmentation

a priori knowledge of
subspace distribution ————

tying structure

l

initialization

SDCHMM

R -

all training
data

(a) CDHMM training

phone-level
Baum-Welch

bootstrapped
M-mixture
SDCHMMs

phone-level
~

segmentation

»

phone-level
Baum-Welch

M-mixture
SDCHMMs

(b) SDCHMM training

Figure 7.2: Hybrid Viterbi/Baum-Welch training procedure

92

Algorithm 5: Hybrid Viterbi/Baum-Welch training algorithm for estimating CDHMM

Goal: To train CDHMM acoustic models. Each state output distribution is a mixture
Gaussian density with M components and diagonal covariances.

Step 1. Uniform State Segmentation: Segment the small set of phonetically labeled boot-
strap data into HMM states evenly. That is, if a labeled phone has T frames of
speech, and is modeled by an N-state CDHMM, each state will have T'/N frames.

Step 2. CDHMM Initialization: A 1-mixture CDHMM is initialized for each phone with
the state-segmented data.

Step 3. Phone-Level Baum-Welch (BW) Reestimation: Each initial CDHMM is reesti-
mated with several BW iterations until the model converges to obtain the boot-
strapped 1-mixture CDHMMSs. The boundaries of the labeled phones are kept intact
during the reestimation.

Step 4. Segmental k-means (SKM) training: Segment all training data with the boot-
strapped 1-mixture CDHMMSs using Viterbi segmentation so that each frame of
speech is labeled with an HMM state. Then for each state, cluster all the speech
vectors of the state into a maximum of M ensembles using the k-means clustering
method to obtain the required model complexity of M-mixture densities.

Step 5. Phone-Level Baum-Welch Reestimation: Refine the M-mixture CDHMMSs with
more BW iterations. Again phone boundaries determined from the Viterbi segmen-
tation is fixed during the reestimation.

Step 6. Phone-Level Viterbi Segmentation: Phonetically re-segment all training data
with the most current M-mixture CDHMMs. No state segmentation is required.

Step 7. Perform phone-level Baum-Welch reestimation.

Step 8. Repeat Steps 6 and 7 until the models converge.

models, 7 = 1.0 and 13 = 73 = 0.0. We further simplify our training procedures by fixing
all state-transition probabilities to 0.5 as many researchers have found that in practice,

an estimated state-transition matrix makes no difference in recognition performance [46].

7.3.4 Experiment I: Effectiveness of Direct SDCHMM Training

We first check, for the same amount of training data, whether SDCHMMs trained by the
direct SDCHMM training algorithm achieve the same recognition performance as that of

the SDCHMMs converted from CDHMMs. Only CI models are trained in this experiment,

93

Algorithm 6: Hybrid Viterbi/Baum-Welch training algorithm for estimating SDCHMMs

Goal: To train SDCHMM acoustic models with a given subspace Gaussian tying struc-
ture (SGTS). Each state output distribution is a mixture Gaussian density with M
components and diagonal covariances.

Step 1. Uniform State Segmentation: Segment the small set of phonetically labeled boot-
strap data into HMM states evenly. That is, if a labeled phone has T frames of
speech, and is modeled by an N-state SDCHMM, each state will have T'/N frames.

Step 2. SDCHMM Initialization: Initialize all states of all phones with the uniformly-
segmented state frames. Each frame is assumed to contribute equally to each Gaus-
sian component of its M-mixture SDCHMM state — that is, the probability of a
frame being generated by each Gaussian component is 1/M.

Step 3. Phone-Level Baum-Welch (BW) Reestimation: All initial SDCHMMs are rees-
timated with several BW iterations until the models converge to obtain the boot-
strapped M-mixture SDCHMMs. The boundaries of the labeled phones are kept
intact during the reestimation.

Step 4. Phone-Level Viterbi Segmentation: Phonetically re-segment «ll training data
with the most current AM-mixture SDCHMMSs so that each frame of speech is la-
beled with an HMM (phone). No state segmentation is required.

Step 5. Phone-Level Baum-Welch Reestimation: Refine the M-mixture SDCHMMs with
more BW iterations. Again phone boundaries determined from the Viterbi segmen-
tation is fixed during the reestimation.

Step 6. Repeat Steps 4 and 5 until the models converge.

and the SGTS from the converted SDCHMNMs is used for direct SDCHMM training. The
number of VT cycles and BW iterations at various stages of the training procedure are

determined empirically when the expected log likelihoods of the models converge.

(A) Procedure

1. Training of CDHMMs: CDHMMs are trained with the dataset S1-4 (meaning a
combination of S1, S2, S3, and S4). Following the CDHMM training procedure of
Algorithm 5, the phonetically labeled data of dataset A is used to bootstrap a 1-
mixture CDHMM for each of the 48 (CI) monophones. Five BW iterations are run

after model initialization. Using the bootstrapped 1-mixture CDHMMs and all the

94

training utterances in S1-4, CDHMMs with 16-mixture or 32-mixture densities are
obtained with one iteration of segmental k-means training. The models are then
reestimated with 20 BW iterations. Lastly, one cycle of the hybrid VI /BW training
with 10 BW iterations gives the final models. The number of Gaussians in the

16-mixture and 32-mixture CDHMMSs are 2,143 and 4,086 respectively.

2. Derivation of SGTS: The 16-mixture and 32-mixture CDHMMs trained with S1-4

are converted to 20-stream SDCHMMs with 16, 32, 64, and 128 subspace Gaussian
prototypes per stream. Recognition on the ATIS test data determines the best
SDCHMMs in each case of model complexity: 128 prototypes for the 16-mixture
SDCHMMs and 64 prototypes for the 32-mixture SDCHMMs. SGTS’s are derived
from the best sets of 16-mixture and 32-mixture SDCHMMSs and are denoted as
CI-SGTS-M16-n128 and CI-SGTS-M32-n64 respectively.

3. Training of SDCHMMs: Two sets of SDCHMMSs are trained with the dataset S1—

4 using each of the two SGTS’s derived above. Following the SDCHMM training
procedure of Algorithm 6, 20-stream SDCHMMs with the given SGTS are initialized
with the bootstrap data from dataset A. Five BW iterations are run to get the
bootstrapped SDCHMMSs. All the training data are then phonetically re-labeled by
Viterbi alignment, and another 5 BW iterations give us the final SDCHMMs.

(B) Result and Discussion

The recognition results of the three sets of models:

e CI CDHMMs trained from the dataset S1-4
e CI SDCHMMs converted from the CDHMMs (converted SDCHMMs)

e CI SDCHMMs directly trained from the dataset S1-4 using the SGTS of the con-

verted SDCHMMs (trained SDCHMMs)

on the ATIS test data are shown in Table 7.2.

The new 16-mixture CI CDHMMs actually perform slightly better than the baseline

16-mixture CI CDHMMs (9.0% vs. 9.4% (see Table 3.3)), though they are trained with

95

Table 7.2: ATIS: Comparison of recognition accuracies among Cl CDHMMs,
Cl SDCHMMs converted from the CDHMMs, and CI SDCHMMs
estimated by direct SDCHMM training using the SGTS of the
converted SDCHMMs

#MIXTURES TOTAL #PROTOTYPES WORD ERROR RATE (%)
PER #GAUSSIAN PER CDHMM | CONVERTED | TRAINED
STATE COMPONENTS STREAM SDCHMM SDCHMM
16 2143 128 9.0 9.5 9.3
32 4086 64 8.5 8.7 8.7

only ~4,000 utterances (while the baseline system is trained with ~12,000 utterances). The
baseline system is trained using the standard SKM algorithm, while the new CDHMMs
are trained by the new hybrid VT /BW algorithm. This shows that the VT /BW training

algorithm works well.

Secondly, even though the baseline 16-mixture CDHMMs and the new 16-mixture
CDHMMs are trained in very different ways, the 20-stream SDCHMMSs converted from
both sets of CDHMMs have exactly the same recognition performance (as judged by their
word error rates (Table 3.3 vs. Table 7.2). This suggests that the model conversion scheme
to create SDCHMMs from CDHMMs is robust.

Thirdly and most importantly, the SDCHMMs trained from scratch using our novel
direct SDCHMM training algorithm perform as well as the converted SDCHMMs. The
result demonstrates the effectiveness of direct SDCHMM training. In fact, the average
Bhattacharyya distances per prototype between the converted SDCHMMs and the trained
SDCHMMs for the two cases of CI-SGTS-M16-n128 and CI-SGTS-M32-n64 are 0.038 and
0.014 respectively. These distances translate to high Bhattacharyya errors? of 48.1% and
49.3% respectively, suggesting that the two sets of subspace Gaussians in the converted
SDCHMMs and the trained SDCHMMs are very similar. Thus if one is only given the
SGTS and the training data of a set of converted SDCHMMSs, the SDCHMMs can be

“recovered” by our direct SDCHMM training algorithm to a fair degree of approximation.

?Bhattacharyya error is defined here as 0.5 exp(— Bhattacharyya distance) x 100%. As a reference,
should any two Gaussians be identical, their Bhattacharyya distance will be zero, giving a Bhattacharyya
error of 50%.

96

7.3.5 Experiment II: Data Requirement for Training Context-Independent
SDCHMM

Once the effectiveness of direct SDCHMM training is established, we go a step further to
investigate how many training data are required. In this experiment, the data require-
ment for training CI SDCHMMs is compared to that for training CI CDHMMs using the
methodology described in Section 7.3.1.

(A) Procedure

The same procedure for training CDHMMs as in Experiment I is repeated with five training
datasets: A only, SO only, S1 only, S1-2, and S1-4. Dataset A is used to bootstrap all
models. The maximum number of mixtures® in each state density is also varied from one
to 32 in powers of two.

Similarly, the same SDCHMM training procedure of Experiment I is repeated with
the five datasets. In addition, we also train SDCHMMSs with the smaller datasets: B only,
C only, and D only. These latter SDCHMMs are only bootstrapped with the training
data under study in each case (and not with dataset A) using three BW iterations. It
is found that no more VI /BW cycles are needed as the models already converge after

bootstrapping.

(B) Result and Discussion

The recognition accuracies of all CDHMMs and SDCHMMs trained above are shown in
Figure 7.3. In addition, Table 7.3 presents the model complexities, in terms of the total
number of Gaussians, of all the CDHMMs.

As the model complexity decreases, the accuracy or resolution power of HMMs is
compromised. This may be caused by limited amount of training data, or by hard-limiting
the number of mixtures in each state density. The effect is clearly observed in Table 7.3 and
Figure 7.3: When the model complexity (measured in terms of the number of Gaussians)
is reduced, the recognition accuracy drops. The recognition performance of all CDHMMs
with different number of mixtures falls off when they are presented with fewer than 197
minutes of training speech (dataset S1-2). In contrast, the recognition performance of
the 20-stream SDCHMMs trained with CI-SGTS-M16-n128 or CI-SGTS-M32-n64 using

#Note that the final number of mixtures in a density produced by the segmental k-means algorithm (Al-
gorithm 1) can be fewer than what the user specifies, when there are too few training data in the state.

97

Table 7.3: ATIS: Number of Gaussians in CDHMMs trained with different
datasets and various numbers of mixtures per state

% Word Error

#MIXTURES TRAINING DATASET
PERSTATE [A [S0O [SI [S1-2][S14
1 142 | 142 | 142 | 142 | 142
2 257 | 273 [280 | 283 | 283
4 452 [516 | 535 |[559 | 563
8 735 | 927 [1022 | 1077 | 1117
16 1019 | 1563 | 1863 | 2050 | 2143
32 1249 | 2268 | 3150 | 3734 | 4086
241 24
---- CDHMM .
— 20-stream SDCHMM \\\\\
221 REREEE bR e Mo1 22
201 20
18 18
16- N r16
M=2
14 N el 14
o] M=16, nD=128 T eeme-. - M=4 |10
T~ M=8
10 D\D\D\D \\‘*\‘.\ 10
M=32, n=64 Pm——o=—==0 M=16
g M=32 | 8
(D) (C) (B (A) (S0) (S1) (S1-2) (S1-4)
2.1 46 83 17.0 59.0 105.0 197.0 374.0

Total Duration of Training Utterances (minutes)

Figure 7.3: ATIS: Comparison between the amount of training data required
for COHMM training and direct SDCHMM training (M = #mix-
tures and n = #subspace Gaussian prototypes per stream)

98

the direct SDCHMM training algorithm does not start to fall significantly until there is
less than 8.3 minutes of training speech (dataset B). Moreover, the performance of these
two sets of SDCHMMs, trained with only 8.3 minutes of speech, is unmatched by any
CDHMMs (with the same or simpler model complexity) trained with less than 197 minutes
of speech in this study. This is a roughly 20-fold reduction in the amount of training data
for SDCHMMs. The result should be attributed to the fewer model parameters (mixture
weights, Gaussian means, and variances) of SDCHMMs — the ratios of the number of
model parameters in the two SDCHMMs to that in their parent CDHMMs are 1:14 (for
CI-SGTS-M16-n128) and 1:36 (for CI-SGTS-M32-n64).

Furthermore, as the amount of training data is reduced, the performance of SDCHMMs
degrades gracefully whereas the performance of CDHMMs drops sharply. For example,
when the amount of training data is pared down from 374 minutes (dataset S1-4) to
17 minutes (dataset A) the word error rates (WERs) of the 16-mixture and 32-mixture
CDHMMs increases by almost 100%. On the other hand, the WER of the correspond-
ing SDCHMMs trained using CI-SGTS-M16-n128 and CI-SGTS-M32-n64 drops by only
~20% when the amount of training data is slashed from 374 minutes (dataset S1-4) to
2.1 minutes (dataset D). At first sight, this does not seem to be possible: For instance,
when the 32-mixture SDCHMMSs are trained with CI-SGTS-M32-n64 and the dataset D,
there are only 12421 frames of speech to train the 4,086 Gaussians of the 48 monophones.
That is, on average, there are about only 259 training frames per phone or three training
frames per Gaussian! Even worse is the fact that some phones are rare, or do not even
appear in the small training dataset D as shown in the frame distribution over the phones
in Figure 7.4(a). For example, phones “hh” and “oy” do not occur in dataset D, and
consonants like “el”, “g”, “jh”, “nx”, “th”, and “uh” are rare. However, if one looks at
the frame distribution over the 64 subspace Gaussians of each stream of the SDCHMMSs
in Figure 7.4(b), one should be convinced that there are ample estimation data for most of
the subspace Gaussians (194 frames on average), and there is full coverage for all of them.
Thus the efficient sharing of Gaussian parameters in the SDCHMMSs plays an equally

important role in reducing the training data requirements.

Another benefit of the greatly reduced number of model parameters in SDCHMMs
is that the direct SDCHMM training procedure is simpler and faster than the CDHMM
training scheme. For datasets larger than SO, direct SDCHMM training requires only
one VT /BW pass on the bootstrapped models, while CDHMM training requires an extra
SKM/BW pass. On smaller datasets, A to D, the models converge even faster — within

(yoeads Jo sawely TgpgT ‘SeAnulw T'g) @ 19selep Sulules] Jo UOIINQLIISIP dwelq f°) unJi4

sueissner) sdedsqns ay3 41onQ (q)

s10J08\ Bulurel] jo JaquinN

000} 008 009 00% 00¢

0octH

Number of Subspace Gaussians
40 60 80 100 120

uiw

P61 = Ueaw
6

9LL = "AOp "pIS
bl = xew

20

40 60 80 100 120

sauoyd ay3 19nQ (&)

auoyd

200
L

Number of Training Vectors

400 600 800
L L L

1000

1200

uiw

0

652 = Uesw
Y0E | = Xew

162 = "ASp ‘IS

200

400 600 800

1000

1200

66

100

3 - 14
testing data
N g 12
e - 10
S
TR 8
°
=
O A . o
e 6
< A \ -4
._._.\. L] L] L]
training data
o -2
O = -0
0 5 10 15 20

Number of Baum-Welch lterations

Figure 7.5: ATIS: Over-training with small amount of training data (dataset
D, 2.1 minutes of speech)

the BW iterations during bootstrapping. SDCHMM training also goes through fewer BW
iterations on the VT /BW pass than CDHMM training. However, there is one important
caveat on training SDCHMMs with a small amount of data: We observe that they can
easily be over-trained. For example, Figure 7.5 shows the WERs on both the training
and testing data after each BW iteration during the SDCHMM training using CI-SGTS-
M16-n128 and dataset D. The training flattens quickly after five BW iterations but over-
training occurs after two BW iterations. Thus in practice, we need to stop training with

a cross-validation technique.

101

7.3.6 Experiment ITI: Performance Variability with Little Training Data
(A) Procedure

When the amount of training data is small, the effect of random sampling of training data
may become important. To check the performance variability of SDCHMM training with
little training data, we repeat the SDCHMM training procedure of Experiment IT with 20
even smaller datasets: E1 only, E2 only, ..., E10 only, F1 only, F2 only, ..., and F10 only.
Each of the E-sets contains 15 utterances, and each of the F-sets contains five utterances,
with durations ranging from 13.35 seconds to 97.82 seconds of speech. Both CI-SGTS-
M16-n128 and CI-SGTS-M32-n64 are tried. We find that with these very small datasets,

only one BW iteration after SDCHMM initialization is enough for model convergence.

(B) Result and Discussion

Figure 7.6 shows the scatter plots of the recognition accuracies of SDCHMMSs trained with
each of the two SGTS’s over each of the 20 datasets. Superimposed on each scatter plot is
a cubic B-spline fit generated by the statistical software S-PLUS [81]. The performance of
the CI-SGTS-M32-n64 SDCHMMs degrades more slowly than that of the CI-SGTS-M16-
n128 SDCHMMSs when the amount of training data decreases. This is clearly due to the
fact that there are even fewer model parameters and more sharing among the subspace
Gaussians of the CI-SGTS-M32-n64 SDCHMMSs. Nonetheless, it is observed that the 20
individual recognition results for each set of SDCHMMs fit well into the curve-fitting spline
with only small fluctuations. Combining these results with those of Experiment II, we see
a consistent trend that SDCHMMs can be trained with many fewer data over different

samples of training sets.

7.3.7 Experiment I'V: Data Requirement for Training Context-Dependent
SDCHMM

Since Experiment II already shows that context-independent SDCHMMs require much less
training data than CDHMMs, we next investigate if context-dependent (CD) SDCHMMs
also require little training data. Thus, only CD SDCHMMs are trained.

(A) Procedure

As mentioned before, CD modeling requires more fine tuning to control the phonetic cov-

erage (e.g. through using other parameter tying techniques such as state tying). In order

102

204 " - 20
B M=16,n=128
. A M=32n-=64
18 1 - 18
16 1 - 16
S
ey |
L
ke i A N - L
S 14 4 14
= s s
0\0 A A []
12 \) e T F:
107 baseline M=16, n=128 SDCHMM (95%) ___________________| 10
8 baseline M=32, n=64 SDCHMM (8.7%) I

10 20 30 40 50 60 70 80 90 100
Total Duration of Training Utterances (seconds)

Figure 7.6: ATIS: Variability with few training data(M = #mixtures and
n = #subspace Gaussian prototypes per stream)

not to let other factors possibly complicate our main research goal here, we start from
the baseline context-dependent ATIS CDHMMSs of Chapter 3. The subspace Gaussian
tying structure, denoted as CD-SGTS-M20-n64, is extracted from the 20-stream SDCH-
MDMs converted from this baseline CD CDHMMSs, which have 20-mixtures and 64 sub-
space Gaussian prototypes per stream. This SGTS is used for all CD SDCHMM training
in this experiment. We also have all training data phonetically labeled by the baseline
CD CDHMMs. To save training computation, subsequent SDCHMM training will not
re-segment any training data.

The exact training procedure is as follows: For datasets no smaller than SO (i.e. SO only,
S1 only, S1-2, S1-4, S1-8, and S1-16), CD SDCHMMs are again initialized with the CD-
SGTS-M20-n64 using the phonetically transcribed dataset A as described in Algorithm 6.
Then it is found that one BW iteration is enough to get the bootstrapped CD SDCHMMs.
The bootstrapped models are reestimated by running the BW training algorithm on the

103

training data under study. Again one BW iteration is enough for the models to converge.
On the other hand, for the smaller datasets(i.e. A only, B only, C only, and D only),
the bootstrapping — uniform state segmentation followed by SDCHMM initialization and
one BW iteration — alone is found to be sufficient as further BW reestimation gives no

further improvement on the models’ likelihoods.

(B) Result and Discussion

The middle curve of Figure 7.7 shows the recognition performance of the resulting CD
SDCHMMs. While we may expect a large performance degradation with little training
data (since the CD models are more complex than the CI models), that the asymptotic
performance does not meet the baseline performance and occurs with more than 735
minutes of speech (dataset S1-8) is a big disappointment.

One possible explanation may be the insufficient coverage of the triphones being mod-
eled in the smaller training datasets. In the baseline system, all triphones appearing in all
of the ATIS corpora are modeled; there are altogether 9,769 of them. However, due to in-
sufficient coverage for some triphones, an additional 8,000 utterances from the Wall Street
Journal corpus are employed to provide the coverage. To check our conjecture, we find
out the number of triphones that are not covered in each training dataset, and the result
is overlaid onto Figure 7.7 (the top curve). When the amount of training data is less than
59 minutes (dataset S0), the triphones coverage is only about 5% (in the smallest dataset
D) — 30% (in dataset SO); the low coverage seems to cause the irregular performance of
the trained CD SDCHMMs. Even with all data from S1-16, about 8% of the triphones
are unrepresented. This may explain the gap between the asymptotic performance of the
trained CD SDCHMMs, and that of the baseline (converted) CD SDCHMMs (WERs of
5.5% vs. 5.0%).

In addition, we have the following two observations about training CD SDCHMM:

e Although there is inadequate triphone coverage with a limited amount of training
data, there is still high coverage of the subspace Gaussians of the CD SDCHMMs

(full coverage in all our experiments).

e When a speech unit is not observed in the training data, the main effect on SDCHMM
training is that the mixture weights of its SDCHMM will not be learned — they stay
at their initial values of 1/M (where M is the number of Gaussian mixtures in the

state density) and are not reestimated in subsequent VT /BW training cycles.

104

. _ ________ __________ fotal#models=9769 _ __ ______________| - 10
X_
10 T~
X~ . SDCHMM (SGTS))
X~ A —— SDCHMM (SGTS + weights)
S X —— #models with no data r8
9 1 T~ N
\\
\x\)
\\
§ 8 1 \\
i .
© N -
. — . x\
* 7 7 / \ . . / \ \\\

S baseline SDGHMM Error = 5.0% |
® © ® A (S0) (S1) (S1-2) (S1-4) (S1-8) (S1-16)
21 46 83 170 59.0 105.0 197.0 374.0 735.0 1480.0

Total Duration of Training Utterances (minutes)

Figure 7.7: ATIS: Data requirement for CD SDCHMM training

Hence, to confirm our conjecture that the poor performance of CD SDCHMM training
is due to poor triphone coverage in the given training data, we repeat the experiment
by borrowing the mixture weights from the baseline CD SDCHMMs, and by fixing them
during direct SDCHMM training. For the small datasets A, B, C, and D, two to five
BW iterations are now required, whereas only one BW iteration after bootstrapping is
still adequate for larger datasets. The result is presented in the bottom curve on Fig-
ure 7.7. By incorporating additional a priori knowledge of the mixture weight (on top of
the SGTS, CD-SGTS-M20-n64), the CD SDCHMMs (which have a model complexity of
76,154 Gaussians), can now be trained from as little as 8.3 minutes of speech (dataset
B) with no degradation in performance when compared with the baseline CD CDHMMs,

even when only 14% of the triphones are observed in the training data.

Number of Models with No Training Data (x 1000)

105

Table 7.4: Comparing data requirements for SDCHMM training and
CDHMM training (M = #mixtures per state, N = total #Gaus-
sian components, n = #subspace Gaussian prototypes per stream,
T = amount of training data in minutes, and WER = word error

rate (%))
20-stream SDCHMM CDHMM
M| N | n | T(mn) [WER | M| N [T(min) [WER
16 | 2143 [128 | 21 115 || 32 | 2268 42 11.6
4.6 104 || 16 | 1863 88 10.3
8.3 10.0 || 16 [1863 88 10.3
17 9.8 [32 [3150 88 9.7
32 | 4086 | 64 2.1 103 || 16 [1863 42 10.3
4.6 9.5 | 16 | 1863 | 180 9.6
8.3 9.0 [323734 | 180 8.6
17 9.0 | 32 [3734 | 180 8.6

7.4 Summary and Discussion

In this chapter, we successfully train SDCHMMs directly from much less data without
training intermediate CDHMMSs. For example, Table 7.4 compares the performance of
CI SDCHMMs thus trained with CI CDHMMSs of the smallest possible model complexity
that can be trained with the least amount of speech and give similar recognition accuracy.
It can be seen that the amount of data required for direct SDCHMM training is about 10
— 20 times less than that for CDHMM training. Such great reduction in the amount of
training data is attributed to the many fewer model parameters in SDCHMMs as well as
to the efficacious tying of subspace Gaussians among the models. While the fewer model
parameters, in theory, require less estimation data, should the tying of subspace Gaussians
not be efficacious, SDCHMM training would have required even sampling of the phones
in the training data. However our experiments show that even when many phones are
under-represented in the training data (Figure 7.4(a) or Figure 7.7), there is still a good
coverage of the subspace Gaussians (Figure 7.4(b)); hence, good estimation of SDCHMMs
is still possible.

When the amount of training data is small (say, less than 8 minutes of speech on the
ATIS task), the performance of the ensuing SDCHMMs degrades gracefully. However,

over-training readily occurs in this case. In this study, we exhaustively search for the best

106

BW iteration to stop using the test data. In practice, cross-validation using unseen data
should be employed.

Direct SDCHMM training requires a priori knowledge of, at least, the subspace Gaus-
sian tying structure. Although in our experiments, the tying structure is derived from an
existing recognizer on the same task, our results are still significant. One possible applica-
tion is speaker enrollment — using a speaker-independent SGTS to train speaker-specific
SDCHMMs with little enrollment data.

Results of Experiment IV also suggest that if more a priori information is available,
even less training data may be sufficient. For instance, we may also incorporate the
mixture weights and/or Gaussian variances in addition to the SGTS from the converted
SDCHMMs (from which the SGTS is derived), and fix them during SDCHMM training.
This may be found useful in speaker (environment) adaptation.

Of course, we still need one set of CDHMMSs from which to derive the SGTS for
SDCHMM training. It will be interesting to investigate if the SGTS is task independent
so that one may deduce a “generic” SGTS from a very accurate CDHMMSs and apply it
to SDCHMM training in other tasks.

Chapter 8

Conclusions and Future Work

This thesis addresses the problem of high computational cost (in both time and space) of
contemporary speech recognizers by greatly reducing the number of parameters in their
acoustic models. We choose to tackle the problem by making more compact acoustic
models because they constitute a major component of any speech recognizer, and com-
puting their likelihoods takes up 50-70% of total recognition time for many typical tasks
(other than very large vocabulary recognition). We start with a set of continuous den-
sity hidden Markov models (CDHMMSs) using mixture Gaussian densities with diagonal
covariances, which are currently the most accurate models for speech recognition. Then,
by exercising the technique of parameter tying at a finer sub-phonetic level, namely that
of subspace distributions, we arrive at a set of more compact models which we call the
subspace distribution clustering hidden Markov models (SDCHMMs).

While it can be trivial to reduce the computational cost of a speech recognizer at the
expense of its accuracy, it is much harder to increase its speed and reduce its memory
footprint while retaining its accuracy at the same time. Since the problem is mainly
attributed to the large number of model parameters, we employ the proven technique
of parameter tying to reduce the redundancy in CDHMMs — and thus create a more
efficient representation of the acoustic models (SDCHMMSs). The technique of parameter
tying has the additional benefit of reducing the amount of data required to train the new
SDCHMMs.

In this thesis, we have given a full account of the theory and the implementation of
SDCHMM. Through a series of training and recognition experiments on the ATIS task, we
demonstrate that in comparison to the CDHMMs, the new SDCHMMSs have the following

advantages:

e They reduce the number of Gaussian parameters (means and variances) by as much

as three orders of magnitude.

107

108

They reduce the total number of model parameters (mixture weights, Gaussian

means, and variances) by 20-80 times.

They achieve 7- to 18-fold decrease in memory size.

They run 30-60% faster.

They can be directly estimated with 10—20 times less training data.

All these are achieved with no loss in recognition accuracy.

8.1 Contributions

The most significant contribution of this thesis is the formulation of a new acoustic
modeling method which we call subspace distribution clustering hidden Markov model-
ing (SDCHMM). The theory of SDCHMM is formulated as a simple derivative of CDHMM
based on tying subspace distributions from a set of conventional CDHMMs. Two meth-
ods are presented to implement the SDCHMMSs as shown in Figure 8.1: One requires
training intermediate CDHMMSs and the other requires a priori knowledge of the subspace
distribution tying structure (SD'TS).

Working with the implementation and evaluation of SDCHMM, this thesis contains

further contributions as follows:

New Unit of Parameter Tying

We show that tying at an even finer sub-phonetic unit, the subspace distribution, is possi-
ble. The hypothesis is that speech sounds are more alike in some acoustic subspaces than in
the full acoustic space. An analysis of the ensuing SDCHMMSs shows that similar phoneme
pairs indeed share more subspace Gaussians than non-similar phoneme pairs. Empirically
we also show that fewer subspace Gaussian prototypes are required in SDCHMMs with

more streams.

Generalization of CDHMM with Locally Independent Streams

We generalize the formulation of CDHMM by introducing the notion of locally independent
streams. By splitting the local acoustic space of each distribution of the CDHMMs into
disjoint subspaces (or streams), and tying the subspace distributions, SDCHMMs maintain

the accuracy of CDHMMs by retaining the essential complexity but reducing redundancy

109

CDHMM - speech
Training - training data
Y
continuous density
HMM
Y Y
stream Dsi’:t?isbpuat(i::n subspace distribution Sggl?lﬁM
definition Clustering tying structure AT

subspace distribution
clustering HMM

Figure 8.1: Two methods of training SDCHMMs

in the latter through efficient representation of the acoustic space. While the use of
streams is not new, streams are usually assumed globally independent — an obviously
wrong assumption — in other HMM derivatives (for example, discrete HMM or semi-
continuous HMM). Locally independent streams in SDCHMM come naturally from the
theory of CDHMM with diagonal covariances; from this perspective, they are not an

assumption at all.

Generalization of CDHMM and FPTHMM

The SDCHMM provides a full spectrum of HMMSs with variable number of streams, with
the CDHMM at one end of the spectrum utilizing full-space distributions and the feature-
parameter-tying HMM (FPTHMM) at the other extreme utilizing scalar distributions.
One may pick the optimal SDCHMMs according to the relevant system requirements and

configuration (recognition accuracy, processing power, and RAM /cache space).

110

Direct Training of Parameter-Tying HMM from Speech

Parameter-tying HMMs are usually created in two steps: The parent HMMs are first
trained from scratch, and the parameters of interest are then tied in a separate procedure.
While it is common and straightforward to re-train the resulting HMMs (wherein some
model parameters are tied), we introduce the novel idea of treating the subspace distri-
bution tying structure as part of the HMM architecture to facilitate training SDCHMMs
directly from speech data without intermediate CDHMMs. As a result, we demonstrate
that SDCHMMSs can be trained from much less data than CDHMMs.

8.2 Future Work

In this thesis, we have presented a complete description of the theory of SDCHMMs
and we have proposed a definition of streams, a novel Gaussian clustering algorithm,
and two methods of SDCHMM implementation. The results of their evaluation on the
ATIS task are very encouraging. Nonetheless, more experiments on tasks of different
perplexities and recording conditions should be done to confirm the current findings. In
addition, techniques which deal with current HMMs should be reconsidered in the context
of SDCHMMs to make use of its compactness and its SDTS. The following are some

interesting topics we will be pursuing in the near future.

Model Improvement

Currently we adopt a definition of streams, which uses the heuristic that correlated features
tend to cluster in a similar manner. It is obtained by a greedy algorithm and it works
reasonably well in this study. Nevertheless, it will be preferable to have a more formal
definition of streams without the use of any heuristics.

The importance of stream definition will become more evident when we investigate
other functionals for the mixture component distribution. One plausible candidate is a
Gaussian distribution with block-diagonal covariance. In the past, Gaussian distributions
with diagonal covariance were the most popular choice because of their trainability and
computational efficiency. However, it is claimed in [53] that better acoustic models are
obtained with explicit modeling of correlations among cepstral parameters. Though Gaus-
sian distributions with full covariance are able to model such correlations, they are too
costly for likelihood computations, for storage, and for training. Hence, Gaussian distribu-

tions with block-diagonal covariance, which only model the most important correlations

111

explicitly seem to be a good compromise. For example, for the 39-dimensional feature
vector in our recognition system, its diagonal covariance involves 39 variances, and its full
covariance has 39 x 39 = 1521 parameters. A 13-stream block-diagonal covariance of the
features with 3 features per stream will only have 3 x 3 x 13 = 117 parameters — only
three times the number of parameters in a diagonal covariance. In fact, [89] used such a
distribution with two streams: One for the static features and the other for the dynamic
features. In the context of our SDCHMM, more streams are preferable, and that will also
mean a much smaller increase in distribution parameters when compared with the use of

diagonal covariance.

Hybrid Speaker-Dependent Training/Speaker Adaptation (SDT/SA)

One of the most exciting findings in this thesis is the small data requirement for training
SDCHMMs. Though it is generally agreed that speaker-dependent (SD) models perform
better than speaker-independent (SI) models, speaker-dependent training is greatly ham-
pered by the lack of speaker-specific training data. However, in Chapter 7, we show that
speaker-independent SDCHMMSs can be trained with as little as 8 minutes of ATIS speech.
This opens up new possibilities for training speaker-dependent SDCHMMs with little data.

The idea is to reduce the amount of data required for training speaker-dependent SD-
CHMMs through the incorporation of a priori knowledge of a speaker-independent SDT'S,
which can be derived from a large amount of training data. The underlying assumption is
that the SDTS is speaker independent, or approximately speaker independent. From an-
other perspective, the procedure can also be considered as a speaker adaptation procedure
— adapting the model parameters of speaker-independent SDCHMMSs while keeping the
speaker-independent SDTS intact. Generalizing this hybrid SDT/SA approach, one may
employ the following schemes in training speaker-dependent SDCHMMSs, progressively

using more o priori information from the speaker-independent models:
e SD data + SI SDTS — SD SDCHMMs
e SD data + SI SDTS + SI mixture-weights — SD SDCHMDMs
e SD data + SI SDTS + SI mixture-weights + SI variances — SD SDCHMMs.

One may further enhance the robustness of the SD SDCHMMs through interpolation
with the SI SDCHMMs.

112

Speaker Adaptation

The SDTS derived from SDCHMMSs may be used in speaker adaptation of non-SDCHMMs
as well. There are two common approaches for speaker adaptation: The Bayesian learning
approach and transformation-based approach, best exemplified by the MAP [19] and the
MLLR [51] techniques respectively. With either approach, when very little speaker-specific
data is available, one is generally required to put the model parameters (usually only the
Gaussian means) into equivalence classes to share the scarce resources. Since our analysis
in Chapter 6 suggests that the SDTS is phonetically plausible, one may use the SDTS to
define the equivalence classes. For instance, if one starts with CDHMMs, one may derive
the equivalence classes from an SDTS obtained by converting the CDHMMs to SDCHMMs
with an appropriate number of subspace distribution prototypes per stream, depending

on the amount of adaptation data — fewer prototypes when there are fewer data.

A similar approach may be applied for adaptation to other environmental factors (such

as noise, channel, etc.) as well.

Task-Independent Model Bootstrapping

It will be also interesting to see if the SDTS derived from one speech corpus can be
applied to another corpus, particularly when the latter is acquired under similar recording
conditions. If this is the case, one may obtain a set of bootstrapped SDCHMMs for a new
task quickly with few training data using a well-trained SDTS. Thereafter, one has the
option to continue SDCHMM training, or convert the set of SDCHMMs to CDHMMs for

further training.

8.3 Final Remarks

At the outset, our aim was to derive more compact acoustic models. In conclusion, we

obtain two reduced upper bounds on the acoustic models of ATIS:

e A reduced upper bound on the minimum number of Gaussian parameters. Table 5.2
suggests that for the 39-dimensional speech features (12 MFCCs and normalized
energy, and their first- and second-order derivatives) we use for the ATIS task, 32—

128 Gaussian prototypes per stream are adequate with 13-39 streams.

113

e A reduced upper bound on the minimum data requirement for training HMMs. In
conventional training of continuous density HMMs, each HMM is trained indepen-
dently, requiring a large amount of training data. The analysis in Chapter 6 suggests
that the subspace Gaussian tying structure can capture the inter-relationship among
the phones. By making use of this prior knowledge in the direct SDCHMM training
scheme of Chapter 7, the whole set of HMMs can be trained simultaneously with

about eight minutes of ATIS speech.

It is our belief that more compact acoustic models are possible, and we hope that this

thesis sheds some light in this direction.

[1]

2]

[3]

Bibliography

G. Antoniol, F. Brugnara, M. Cettolo, and M. Federico. “Language Model Rep-
resentation for Beam-Search Decoding”. In Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 588-591,
1995.

E. Barnard, R.A. Cole, M. Fanty, and P. Vermeulen. “Real-World Speech Recogni-
tion with Neural Networks”. In J. Alspector, R. Goodman, and T.X. Brown, edi-
tors, Proceedings of the International Workshop on Applications of Neural Networks
to Telecommunications 2, pages 186-193. Lawrence Erlbaum Associates, Publishers,
1995.

L.E. Baum, T. Petrie, G. Soules, and N. Weiss. “A Maximization Technique Occurring
in the Statistical Analysis of Probabilistic Functions of Markov Chains”. Annals of
Mathematical Statistics, 41:164-171, 1970.

J.R. Bellegarda and D. Nahamoo. “Tied Mixture Continuous Parameter Modeling for
Speech Recognition”. IEEE Transactions on Acoustics, Speech and Signal Processing,
38(12):2033-2045, December 1990.

P. Beyerlein. “Fast Log-Likelihood Computation for Mixture Densities in a High-
Dimensional Feature Space”. In Proceedings of the International Conference on Spo-
ken Language Processing, volume 1, pages 271-274, 1994.

P. Beyerlein and M. Ullrich. “Hamming Distance Approximation for a Fast Log-
Likelihood Computation for Mixture Densities”. In Proceedings of the FEuropean
Conference on Speech Communication and Technology, volume 2, pages 1083—-1086,
1995.

E. Bocchieri. “A Study of the Beam-Search Algorithm for Large Vocabulary Contin-
uous Speech Recognition and Methods for Improved Efficiency”. In Proceedings of
the Furopean Conference on Speech Communication and Technology, volume 3, pages
1521-1523, 1993.

114

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

115

E. Bocchieri. “Vector Quantization for the Efficient Computation of Continuous Den-
sity Likelihoods”. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 2, pages 692-695, 1993.

E. Bocchieri and G. Riccardi. “State Tying of Triphone HMM’s for the 1994 AT&T
ARPA ATIS Recognizer”. In Proceedings of the European Conference on Speech
Communication and Technology, volume 2, pages 1499-1502, 1995.

E. Bocchieri, G. Riccardi, and J. Anantharaman. “The 1994 AT&T ATIS CHRONUS
Recognizer”. In Proceedings of ARPA Spoken Language Systems Technology Work-
shop, pages 265-268. Morgan Kaufmann Publishers, 1995.

H. Bourlard and N. Morgan. “Hybrid Connectionist Models for Continuous Speech
Recognition”. In C.H. Lee, F.K. Soong, and K.K. Paliwal, editors, Automatic Speech
and Speaker Recognition (Advanced Topics), chapter 11, pages 259-283. Kluwer Aca-
demic Publishers, 1996.

M. Cohen, Z. Rivlin, and H. Bratt. “Speech Recognition in the ATIS Domain Using
Multiple Knowledge Sources”. In Proceedings of ARPA Spoken Language Systems
Technology Workshop, pages 261-264. Morgan Kaufmann Publishers, 1995.

D. Dahl et al. “Expanding the Scope of the ATIS Task: The ATIS-3 Corpus”. In
Proceedings of ARPA Human Language Technology Workshop. Morgan Kaufmann
Publishers, 1994.

L. Deng. “A Generalized Hidden Markov Model with State-Conditioned Trend Func-
tions of Time for the Speech Signal”. Signal Processing, 27(1):65-78, January 1992.

V. Digalakis and H. Murveit. “Genones: Optimizing the Degree of Tying in a Large
Vocabulary HMM-based Speech Recognizer”. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 537—
540, 1994.

J. Fritsch, I. Rogina, T. Sloboda, and A. Waibel. “Speeding Up the Score Computa-
tion of HMM Speech Recognizers with the Bucket Voronoi Intersection Algorithm”. In
Proceedings of the Furopean Conference on Speech Communication and Technology,
volume 2, pages 1091-1094, 1995.

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, Inc.,
2nd edition, 1990.

116

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Furui. “Speaker-Independent Isolated Word Recognition Using Dynamic Features
of Speech Spectrum”. IEEE Transactions on Acoustics, Speech and Signal Processing,
34(1):52-59, February 1986.

Jean-Luc Gauvain and C.H. Lee. “Maximum a Posteriori Estimation for Multivariate
Gaussian Mixture Observations of Markov Chains”. IEEE Transactions on Speech
and Audio Processing, 2(2):291-298, April 1994.

Y. Gong. “Stochastic Trajectory Modeling and Sentence Searching for Continuous
Speech Recognition”. IEEE Transactions on Speech and Audio Processing, 5(1):33—
44, January 1997.

P.S. Gopalakrishnan and L.R. Bahl. “Fast Match Techniques”. In C.H. Lee, F.K.
Soong, and K.K. Paliwal, editors, Automatic Speech and Speaker Recognition (Ad-
vanced Topics), chapter 17, pages 413-428. Kluwer Academic Publishers, 1996.

S. Greenberg. “Understanding Speech Understanding Towards a Unified Theory of
Speech Perception”. In W.A. Ainsworth and S. Greenberg, editors, Proceedings of the
ESCA Tutorial and Advanced Research Workshop on the Auditory Basis of Speech
Perception, pages 1-8. Keele University, UK, 1996.

C.T. Hemphill, J.J. Godfrey, and G.R. Doddington. “The ATIS Spoken Language
Systems Pilot Corpus”. In Proceedings of the DARPA Speech and Natural Language
Workshop. Morgan Kaufmann Publishers, 1990.

H. Hermansky. “Perceptual Linear Predictive (PLP) Analysis of Speech”. Journal of
Acoustical Society of America, 87(4):1738-1752, April 1990.

L. Hirschman et al. “Multi-Site Data Collection and Evaluation in Spoken Language
Understanding”. In Proceedings of ARPA Human Language Technology Workshop.
Morgan Kaufmann Publishers, 1993.

E. Horowitz and S. Sahni. Fundamentals of Computer Algorithm. Computer Science
Press, 1978.

Z. Hu, J. Schalkwyk, E. Barnard, and R. Cole. “Speech Recognition Using Syllable-
Like Units”. In Proceedings of the International Conference on Spoken Language

Processing, volume 2, pages 1117-1120, 1996.

X. Huang et al. “The SPHINX-II Speech Recognition System: An Overview”. Journal
of Computer Speech and Language, 7(2):137-148, April 1993.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

117

X. Huang and M.A. Jack. “Semi-continuous Hidden Markov Models for Speech Sig-
nals”. Journal of Computer Speech and Language, 3(3):239-251, July 1989.

X.D. Huang, Y. Ariki, and M.A. Jack. “Fundamentals of Pattern Recognition”. In
Hidden Markov Models for Speech Recognition, chapter 2, pages 10-51. Edinburgh
University Press, 1990.

X.D. Huang, Y. Ariki, and M.A. Jack. Hidden Markov Models for Speech Recognition.
Edinburgh University Press, 1990.

M. Hwang. “Shared Distribution Hidden Markov Models for Speech Recognition”.
IEEFE Transactions on Speech and Audio Processing, 1(4):414-420, October 1993.

R.J. Jones, S. Downey, and J. S. Mason. “Continuous Speech Recognition Using
Syllables”. In Proceedings of the Furopean Conference on Speech Communication
and Technology, volume 3, pages 1171-1174, 1997.

B.H. Juang, W. Chou, and C.H. Lee. “Minimum Classification Error Rate Meth-
ods for Speech Recognition”. IEEE Transactions on Speech and Audio Processing,
5(3):257-265, May 1997.

B.H. Juang, D.Y. Gray, and A.H. Gray, Jr. “Distortion Performance of Vector Quan-
tization for LPC Voice Coding”. IEEFE Transactions on Acoustics, Speech and Signal
Processing, 30(2):307-309, April 1982.

B.H. Juang, S.E. Levinson, and M.M. Sondhi. “Maximum Likelihood Estimation
for Multivariate Mixture Observations of Markov Chains”. IEEE Transactions on
Information Theory, 32(2):307-309, March 1986.

B.H. Juang and L.R. Rabiner. “Mixture Autoregressive Hidden Markov Models for
Speech Signals”. IEEE Transactions on Acoustics, Speech and Signal Processing,
33(6):1404-1413, December 1985.

B.H. Juang and L.R. Rabiner. “A Segmental K-means Algorithm for Estimating
Parameters of Hidden Markov Models”. IEEE Transactions on Acoustics, Speech
and Signal Processing, 38(9):1639-1641, September 1990.

S.K. Kachigan. Multivariate Statistical Analysis (A Conceptual Introduction). Radius
Press, 1991.

N.S. Kim and C.K. Un. “Frame-Correlated Hidden Markov Model Based on Extended
Logarithmic Pool”. IEEE Transactions on Speech and Audio Processing, 5(2):149—
160, March 1997.

118

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Y. Komori, M. Yamada, H. Yamamoto, and Y. Ohora. “An Efficient Output Prob-
ability Computation for Continuous HMM Using Rough and Detail Models”. In
Proceedings of the European Conference on Speech Communication and Technology,
volume 2, pages 1087-1090, 1995.

T. Kosaka and S. Sagayama. “Tree-structured Speaker Clustering for Fast Speaker
Adaptation”. In Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, volume 1, pages 245-248, 1994.

P. Ladefoged. A Course in Phonetics. Harcourt Brace Jovanovich College Publishers,
3rd edition, 1993.

K.W. Law and C.F. Chan. “Split-Dimension Vector Quantization of Parcor Coeffi-
cients for Low Bit Rate Speech Coding”. IEEE Transactions on Speech and Audio
Processing, 2(3):443-446, July 1994.

C.H. Lee. “Acoustic Modeling of Subword Units for Speech Recognition”. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 2, pages 721-724, 1990.

C.H. Lee, C.H. Lin, and B.H. Juang. “A Study on Speaker Adaptation of the Param-
eters of Continuous Density Hidden Markov Models”. IEEE Transactions on Signal
Processing, 39(4):806-814, April 1991.

K.F. Lee. “Context-Dependent Phonetic Hidden Markov Models for Speaker-
Independent Continuous Speech Recognition”. IEEE Transactions on Acoustics,
Speech and Signal Processing, 38(4):599-609, April 1990.

K.F. Lee, S. Hayamizu, H.W. Hon, C. Huang, J. Swartz, and R. Weide. “Allophone
Clustering for Continuous Speech Recognition”. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, volume 2, pages
749-752, 1990.

K.F. Lee and H.W. Hon. “Large-Vocabulary Speaker-Independent Continuous Speech
Recognition Using HMM”. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages 123—-126, 1988.

K.F. Lee and H-W. Hon. “Speaker-Independent Phone Recognition Using Hidden
Markov Models”. IEEE Transactions on Acoustics, Speech and Signal Processing,
37(11):1641-1648, November 1989.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

119

C.J. Leggetter and P.C. Woodland. “Maximum Likelihood Linear Regression for
Speaker Adaptation of Continuous Density Hidden Markov Models”. Journal of
Computer Speech and Language, 9(2):171-185, April 1995.

E. Levin and R. Pieraccini. “CHRONUS, The Next Generation”. In Proceedings
of ARPA Spoken Language Systems Technology Workshop, pages 269-271. Morgan
Kaufmann Publishers, 1995.

A. Ljolje. “The Importance of Cepstral Parameter Correlations in Speech Recogni-
tion”. Journal of Computer Speech and Language, 8(3):223-232, July 1994.

P.C. Loizou and A.S. Spanias. “High-Performance Alphabet Recognition”. IEFEE
Transactions on Speech and Audio Processing, 4(6):430-445, November 1996.

B. Lowerre and R. Reddy. “The Harpy Speech Understanding System”. In Trends in
Speech Recognition, pages 340-360. Prentice Hall, 1980.

B.T. Lowerre. Dynamic Speaker Adaptation in the Harpy Speech Recognition System.
PhD thesis, Department of Computer Science, Carnegie Mellon University, April
1976.

B. Mak and E. Barnard. “Phone Clustering Using the Bhattacharyya Distance”.
In Proceedings of the International Conference on Spoken Language Processing, vol-
ume 4, pages 2005-2008, 1996.

J.F. Mari, J.P. Haton, and A. Kriouile. “Automatic Word Recognition Based on
Second-Order Hidden Markov Models”. IEEE Transactions on Speech and Audio
Processing, 5(1):22-25, January 1997.

H. Ney, R. Haeb-Umbach, B. Tran, and M. Oerder. “Improvements in Beam Search
for 10000-Word Continuous Speech Recognition”. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, volume 1, pages
9-12, 1992.

H. Ney, D. Mergel, A. Noll, and A. Paeseler. “A Data-Driven Organization of the
Dynamic Programming Beam Search for Continuous Speech Recognition”. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 1, pages 833-836, 1987.

L. Nguyen et al. “The 1994 BBN/BYBLOS Speech Recognition System”. In Proceed-
ings of ARPA Spoken Language Systems Technology Workshop, pages 77-81. Morgan
Kaufmann Publishers, 1995.

120

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

M. Ostendorf and S. Roukos. “A Stochastic Segment Model for Phoneme-Based
Continuous Speech Recognition”. IEEFE Transactions on Acoustics, Speech and Signal
Processing, 37(12):1857-1869, December 1989.

M. Padmanabhan, D. Nahamoo L.R. Bahl, and P. de Souza. “Decision-Tree Based
Quantization of the Feature Space of a Speech Recognizer”. In Proceedings of the Eu-
ropean Conference on Speech Communication and Technology, pages 147-150, 1997.

K.K. Paliwal. “Use of Temporal Correlation Between Successive Frames in a Hidden
Markov Model Based Speech Recognizer”. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 215-218,
1993.

K.K. Paliwal and B.S. Atal. “Efficient Vector Quantization of LPC Parameters”.
IEEE Transactions on Speech and Audio Processing, 1(1):3-14, January 1993.

D.S. Pallett et al. “1994 Benchmark Tests for the ARPA Spoken Language Program”.
In Proceedings of ARPA Human Language Technology Workshop, pages 5—36. Morgan
Kaufmann Publishers, 1995.

D.B. Paul and J.M. Baker. “The Design for the Wall Street Journal-based CSR Cor-
pus”. In Proceedings of the International Conference on Spoken Language Processing,
volume 2, pages 899-902, 1992.

A.B. Poritz. “Linear Predictive Hidden Markov Models and the Speech Signal”. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 2, pages 1291-1294, 1982.

L. Rabiner and B.H. Juang. Fundamentals of Speech Recognition. Prentice Hall, 1993.

L.R. Rabiner and B.H. Juang. “An Introduction to Hidden Markov Models”. IEEE
ASSP Magazine, 3(1):4-16, January 1986.

L.R. Rabiner, B.H. Juang, S.E. Levinson, and M.M. Sondhi. “Recognition of Isolated
Digits Using Hidden Markov Models with Continuous Mixture Densities”. AT&T
Technical Journal, 64(6):1211-1233, July-August 1985.

L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals. Prentice Hall,
1978.

M.K. Ravishankar. “Efficient Algorithms for Speech Recognition”. PhD thesis, School
of Computer Science, Carnegie Mellon University, 1996.

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

121

G. Riccardi, E. Bocchieri, and R. Pieraccini. “Non-deterministic Stochastic Language
Models for Speech Recognition”. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, volume 1, pages 237-240, 1995.

G. Riccardi, R. Pieraccini, and E. Bocchieri. “Stochastic Automata for Language
Modeling”. Journal of Computer Speech and Language, 10(4):265-293, October 1996.

T. Robinson, M. Hochberg, and S. Renals. “The Use of Recurrent Neural Networks
in Continuous Speech Recognition”. In C.H. Lee, F.K. Soong, and K.K. Paliwal,
editors, Automatic Speech and Speaker Recognition (Advanced Topics), chapter 10,
pages 233-258. Kluwer Academic Publishers, 1996.

S. Sagayama. “Hidden Markov Network for Precise and Robust Acoustic Model-
ing”. In C.H. Lee, F.K. Soong, and K.K. Paliwal, editors, Automatic Speech and
Speaker Recognition (Advanced Topics), chapter 7, pages 159-184. Kluwer Academic
Publishers, 1996.

S. Sagayama and S. Takahashi. “On the Use of Scalar Quantization for Fast HMM
Computation”. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 1, pages 213-216, 1995.

F. Seide. “Fast Likelihood Computation for Continuous-Mixture Densities Using a
Tree-Based Nearest Neighbor Search”. In Proceedings of the European Conference on

Speech Communication and Technology, volume 2, pages 1079-1082, 1995.

E. Singer and R.P. Lippmann. “A Speech Recognizer Using Radial Basis Function
Neural Networks in an HMM Framework”. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 629-632,
1992.

StatSci, a Division of MathSoft, Inc. S-PLUS Guide to Statistics and Mathematical
Analysis, pages 6-52. StatSci, Seattle, Washington, 3.2 edition, 1993.

S.S. Stevens and J. Volkmann. “The Relation of Pitch of Frequency: A Revised
Scale”. American Journal of Psychology, 53:329-353, 1940.

S. Takahashi, T. Matsuoka, Y. Minami, and K. Shikano. “Phoneme HMMs Con-
strained by Frame Correlations”. In Proceedings of the IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, volume 2, pages 219-222, 1993.

S. Takahashi and S. Sagayama. “Effects of Variance Tying for Four-Level Tied Struc-
ture Phone Models”. In Proceedings of ASI Conference, volume 1-Q-23, pages 141—
142, 1995.

122

[85]

[86]

[87]

[88]

[89]

[90]

S. Takahashi and S. Sagayama. “Four-Level Tied-Structure for Efficient Representa-
tion of Acoustic Modeling”. In Proceedings of the IEEFE International Conference on
Acoustics, Speech, and Signal Processing, volume 1, pages 520-523, 1995.

A.J. Viterbi. “Error Bounds for Convolutional Codes and an Asymptotically Optimal
Decoding Algorithm”. IEEFE Transactions on Information Theory, 13:260-269, April
1967.

P.C. Woodland, C.J. Leggetter, J.J. Odell, V. Valtchev, and S.J. Young. “The De-
velopment of the 1994 HTK Large Vocabulary Speech Recognition System”. In Pro-
ceedings of ARPA Spoken Language Systems Technology Workshop, pages 104—-109.
Morgan Kaufmann Publishers, 1995.

S.J. Young and P.C. Woodland. “The Use of State Tying in Continuous Speech
Recognition”. In Proceedings of the European Conference on Speech Communication
and Technology, volume 3, pages 2203—2206, 1993.

Yunxin Zhao. “A Speaker-Independent Continuous Speech Recognition System Us-
ing Continuous Mixture Gaussian Density HMM of Phoneme-Sized Units”. IEEFE
Transactions on Speech and Audio Processing, 1(3):345-361, July 1993.

E. Zwicker, G. Flottorp, and S.S. Stevens. “Critical Bandwidth in Loudness Summa-
tion”. Journal of Acoustical Society of America, 29:548-557, 1957.

Appendix A

Smaller Quantization Error in Lower

Dimensions

In this Appendix, we want to show that for a set of Gaussian ensembles with diagonal
covariance matrices, the Gaussian quantization error is always smaller when quantization
is done in lower dimensions.

Let us consider three 2-dimensional Gaussians G; with n; vectors and mean (x;,y;),
1 <¢ < 3, and diagonal covariances as shown in Figure A.1. Let us denote the distortion
of a Gaussian ensemble in the 2-dimensional space as D,,, and that in the F, and F,
dimension by D, and D, respectively. We further assume a distortion measure with the
following additivity property:
Additivity Property:

D,y =D, + D, (A.1)

That is, the distortion of a full-space Gaussian (with diagonal covariance) is the sum of
the distortions of its independent subspace Gaussians. As an example, the Euclidean
distortion measure defined in Equation (3.2) satisfies this property.

Now let us compute the increase in distortion when two of the three Gaussians are
clustered in 2-dimensional or 1-dimensional space. (Clearly, by the definition of the distor-
tion, the total distortion of the Gaussians before clustering is the same, regardless whether

it is computed in 2-dimensional or 1-dimensional space.)

123

124

<™

X4 X9 X3 x
Figure A.1: Smaller quantization error in lower dimensions

Gaussian Clustering in 2-Dimensional Space
Without loss of generality, let us assume that among the three Gaussian pairs: {G1,G2},
{G1,G3}, and {G2,G3}, clustering G;, and G;,, 1 < ip # jo < 3, gives the minimum

increase in distortion. That is,

Gaussian Clustering in 1-Dimensional Space

Now, if the 2-dimensional Gaussians are projected onto each of the orthogonal 1-dimensional
subspaces F;, and F),, we obtain three 1-dimensional Gaussians in each of the subspaces:
Giz, Gag, and Gz, in Fy, and Gy, Gy, and G, in Fy,. In the subspace F;, let us assume
that G;, and G;,, 1 <14y # ji < 3, cluster together with the minimum increase in distor-
tion. Similarly, in the subspace Fy, G;, and G;,, 1 < iy # jo < 3, cluster together with

the minimum increase in distortion. That is,
AD;(i1,J1) < ADy(1,5), 1<i#j<3 (A.3)
and

125

Hence, we have
AD, (i1, 1) < ADx(io, jo) (A.5)
and
AD, (12, j2) < ADy(io, jo) - (A.6)
Adding Equations (A.5) and (A.6), we have

ADy (i1, J1) + ADy(iz, j2)
ADI(Z07]0) + ADy(iOaJO)
ADy, (10, Jo) - (by the additivity property)

IA

It is straightforward to extend the proof to Gaussians of higher dimensions.

Note that the fact that smaller quantization errors are obtained in lower dimensions
does not contradict the general claim that vector quantization (VQ) is more efficient than
scalar quantization (SQ) (or quantization in lower dimension). The former only implies
that for the same number of prototypes per stream, the quantization error is smaller when
there are more streams of lower dimensions. However, if we measure the quantization
efficiency in terms of the number of coding bits, the smaller quantization errors obtained
with K streams is achieved at the expense of K times the number of bits required by VQ.
In other words, it is generally found that for the same number of coding bits, quantization
in the full space achieves smaller quantization errors than quantization in the subspaces.
For example, for a 10-dimensional vector space, if we use one bit to encode the full space
in VQ, there are only two 10-dimensional prototypes to represent the full space, giving rise
to enormous quantization errors. However, even one bit per feature in SQ can effectively
represent 2! = 1,024 different full-space prototypes with much smaller errors. On the
other hand, it is more efficient to use ten bits to directly encode the full space with
VQ than SQ, since VQ does not make the assumption of feature independence and thus
produces better prototypes with less quantization errors. One major shortcoming of VQ is
its larger memory requirement: For the same example, encoding the 10-dimensional space
with 10-bit VQ requires a codebook of 1,024 10-dimensional vectors, whereas a 10-bit SQ
codebook contains only 2! x 10 = 20 scalars which is equivalent to two 10-dimensional

vectors in memory size.

Appendix B

Count of Common Subspace Gaussians

between Phones

126

Table B.1: ATIS: Number of common subspace Gaussians between any two phones (a) 1st state

127

m nngnxp r s shtthvwy z

[a\Nap)

4 5
5 7

1
2
1 4 8 4 2

3

3 47 8 6 8 6

25 23455 2281116 442 215432 2 243

1 29144 4 3 6 045 4582263132474

3 3 6107

3 977 5104 8 8 5 4

3 2 3 5

7

5

3 6 141512 9 11

3 4 7 511

581 9 5

5 12

3 411 8 12801014 4 10

51114 7 4 0 7

3 413

aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh uw[b ch d dhdx el en f g hh jh k

3 4/6 8 54 7 4115 8117 6 2 2 2

128 4102 119 9 5|1 3 2 2 45 85 46 7 6113 4136 3 5 73 6
3 7 6

7 111313

8 6 8 8 7 21

5128 780279 5 11218|6 4 5 6 5 8 8

14 8

1

6 114 6 91 06 10608 2(3 12046 2012017247 304131022¢6 2

1 2 81180211513 4 2 13201 2614 2 1 2 6 5104 81625 9 7 108 7

16 33 2 2 2 243262 43 3 3 5801125189 4 02321 814172 4 3 5 1201 2 4 17181313 6 4

4 2 425 32 7 45 7(913161280 7 3 220310135 4105194 7 3 7131209 5 3

1

545 2 7 7 7 5115 9 81011106 10 6|4 4 1 6 78 9 2 3 3 5 2 5 2 748 2 42 3 2 26 17°E6 6

5123131011 2 2 3 8 7 1116121 4 0 5 3 25 5 11131631 8 12 4 5

3 24 44314 2 01

1

4 8 3 41 4 2 25342 33 412 521202820203 4 780518233 5 9 4 8107 7 522121513 8 9

1 316 5 445 03 81426191010 5 4 1618

13303 2 2 3

1 3 21714221613 2 1 1223 3 98 2 2 5 2 6 248 4 7 31161014 4 7

1 4114 98 6 6 76 6|2 2 74505513605 2801546385 43 43 31089

112 2125 6 7

2 6 2 42347754 46 3|32 451071509 3 45 512813203 71 7 2 5 9 5 75

3 83 82 9161 2122 8 5 3 8 4 3 6|1 43 97455 7 4388274358618 466 7786

1 3 3(2 8 46 3 2411776 4531 2 44638012313 2 2 4 25

3 3 6 8|416 7 11 7

56 25 14 5 5 9 6 6 84 40

5 4 3 5 2 4

1 2 21725322013 2 21622 41531 3 1 2 4 417 4 3 108017 9 13 5 4

331142 0 4

1

36 1 8 0 9

124205 2 22123512 2 2 51371113206 5 8156 9 103 &8 9 712106 2 4 9 4808 5 9
4587 17 6 253466 46 25 6|131014109 7 41213511143 3 5 5 612 7 2101312 8 80 9 5

5 7 4105 8 8 45 6 7109177 6 4 5/6 8 3105 6 8 4 8105 4109 7115 4 7 4 5 5 7 5 9805

2 325 07 4 35847456 22 4476 7 3615 91177965 471625124109 5 5 80

aa |80 8 9 15 8 5 9 8 8

ae |8 80 1

ah|9 180 2 9 6 5144 6 9 6 95 5108 8|3 31345503 20221012413 201

aofl5 8 28 3 7 13 5 4 6 5 4 9 2102 2 5|3 43 2 5 2 45 45 6 9122 1306 85 6 86 2 7105

aw|8 6 9 380 3 3134 6 6 1 2 5154 7 0(2 02 0176 015 21542 1202100101520

ax|5 8 6 7 380 8 3106 4149 511 11152 3 4 6 6 7 7 1 45 5 46 7 6 7839459 457287

axr|9 8 513 3 8 80 3 8206 8114 8 6 5 10(2 2 2 3 1 7 8 3 2 3 26 7 3 2 5 2 2165 6 1 3 2 6 8 4

ay(8 7145 133 3 8 5 6 5 5 3 9 9 1110 1

eh|8 214 4 4108 5811141214105 4 3 5(4 4 3 4 2118 4 5 4 33402 9 3529534252565

er{l2 7 6 6 6 6 20 6 1180128 137106 9 913 2 3 5 45 5 43 913115 35 16126 41 2 1 3 6 8

ey|811 9 5 6 4 6 51412807 9 9 11 9 5 5|2 4 1

ith|4 13 6 4

ix|1013 9 9 2 9 11 31413 927807 6 0 9 14|/2 4 2 4 310101 3 9 4 2 8 5 7 3 7 15 4 2 2 15 6 9 4

iy|2 3 5 2 5 5 4 9107 9 9 78 7 6 8 9|4 6 1 4 2114 4 3 5 4 2 6 7 5125 2 3 4 4 011 4175

ow|ll 7 5101511 8 9 510115 6 78 106 3|3 4 3 3 7105 2 4 4 5 3 6 5 4 7 6 3 8 03 442676

oy|9 6 10 2 4 1

uh|{9 3 8 2 711 5103 9 5129 8 6 88 6|3 2 3 6 5106 1 2 4 3 3 6 8 6 5 5 5 3 3 6 2 3 2 5 4 2

uw|5 4 8 5 0 5 10 1 5 9 518149 3 2 6 8|5 8 5 9 7 6 4 5 5 3 8 2 6 5 3 6 9 2 6 3 8 2 75 6 5 4

b

dj{2 513 2 4 2 23315213 2 3 5(2521821161 21028 419227 4 4 4 3123 4 7 32151114 3 6

dh|2 4 3 2 06 3 3451644 3 06 9(18152180126 3 11204 10164 3 5 4 1129 6 112024131010 7

dx|4 7 4 5 1 6

ch|3 8 34 03 2 5 4 2 4 4 4 6 4
el

en{8 115 4 6 7 8 5 8 5148104 5 2 6 4|0 2 2 3 3 9803 4 4 415 51591405 4 4 2 2 5 481

f|5 5 05 0

g

hh|{6 11 2 5 5 5 3 8 4 9 3 3 95 4 2 4 3|81 4 43 3 41158 5 3 6 6 3 4 4 6 4 7114126 5 1011

jh|7 7 06 2 5 2

k|6 6 29 1 4 6

1

mf(3 2102 4 7 3 6 0557575 28 54143425456 32 18128132 2 3 0148 3 9 6

nl|4 2 11

ng|l 3 23 17 5 49555 3127 75 6|56 445 495 447 2 4 81380103 4 2 3 4 1 7 511 4
nx|3 4 402 8 2 231810756 35 9|1 53 1198143 8 4 5 6 6132010803 3 4 4 4 1126 5 7
p|6 716 03 2 256 2 412 3 05 2|20101212 4 2 025106 11243 2 3 3 3 805 41117181012 4 1

r
S

sh|7 8 0 6 0 5 6 4

thije 31 6 1 4 3 2 4 2 3 3114 03 7189 15241 2 231121212164 4 5 1 1 18 6 13141780 4 12 7 10

v

w
y
Z

128

Table B.1: ATIS: Number of common subspace Gaussians between any two phones (b) 2nd state

mnngnx p r ssh tthvwy z

26 7 2043402 2 28 2

6103 1 8 2 0 1

1

1033107 2041051342363 31012-51

1210001110

1 5 6 4

3 2

5 7 5 6 5 45 8 01

5 4

1300220000101 00122202011121

1 0 7 51510 2 2

5 13 2

02192 4 8 2 6 3 2

1

7 4 4

15558 711332156 6 7 6 15 2 210 451214

804 1 4 1 1 6 934253 0 4 5 91 4 2 0 6 4

80 3 2 3 3 611104 7 6 148 6 4 2 14

4 77

1

1140 2 3 2 5201107 3 3 35 4 3 3 280241113 1 0 28

0 224800116 2 2 22

3 2 6 6 1

1

aa ae ah ao aw ax axr ay eh er ey ih ix iy owoy uhuw[b ch d dhdx el en f g hh jh k

0 110 4 0 3

1

711

2
3 2 18 4|4 26 7 3 71052593119 257800943731

1 1 0 1 1312

4 080 2 1217 9
122 2 2143 3 2 0(2816 414100 8161 3 8 3 8 5 7 314235149 2 1 14

00 0000 01

1

0
1
1
1

1

1 06 2121818175 2 0222 8137 2 2 0 6 6 4 0 0197 4 7 2 4

3221345 407 4|176 1880145 6 1123 9 6 4 9 2 3 8 6 2 2 4101013

00 003 40

2 3 2|19 4171480 5 3 3185 9103 8 5 3146 3 3 2186 7 9 1 3

2 33004321

1

2 2043022 2 0002100131481 7 43113206 42016 2254 3 1 6

1

1

1 05 01902212181 1 18 3 7225 1 4 25 9 910168 5 701

0000331

013001

1 02 1|2 82 35 3 47 38072 4854335108 4871014

5 2|416 8 9 9 3

020436 11

3

5

009 3(8 1136102 1 3222 386 2 3 0 6185 3 1206 6 4 0 1

81 311103 7 51547611013 5|23 7 4315615 4 2 683 3 4 4173322 3¢6 235

110252 4 2 011 2(6 8 2 9 86 9118 3 2 3812118 6 2 3 2 06 7 7 3 6

2300430325 4|55 6 8146 3 05 3116 4 81368114 3 16 1756 6

1

2 7 31376 6 61 06 9 310181 6 4 2118 2 3 015148 4 2 3
2 2 8 4(2 3 42 35 4495 45 7232428224605 33

1

4 2 31005 20

3485 4 911 6 1101 8161

2 3 0 3 3

1 0 0 0

5 3 2 2 00 05

5
1

1

5 2 0 0j]0230 4 2 2 9160 8 6

3 8
1010370009 2(7 51910181 1 216 414202 0 6 2 6154 1 0806 5 4 0 5

3 0011252 214 2|5147106 0 4258 8 8 6 2 6 1 2 114611116 80 8 4 2 11

5 4 2 4 6 2

00 41

4
1

1

1 3 0159 4137 4 2 45 766 3761780365 8806 3 6

12722 2 3 2111514417 1110277 9503714467145 4512446380101

1

10 3 010 4

02 0310 3

212144 4 3 4 4 6 114141 5 6 4 4 6 3 328225 116 1 2 80

102 0402 2 11

4 2 2 3 6 5 4

aa (8014 2 28 2411 11 7 181516 2 41314 0 0 9|0 2 0 0 010160 0 6 0 0O 8 1106 1 0 3 2 5 0 1 0 1 11 4

ae |14 80 3 1513 11 13 1826 18 17 4 1016 &8

ah|2 38 3 3 7 3 6 40185 2 6 317 2|3 48 45601356736 7335802410722

ao (2815 3 8 18 5 16 8 161812 6 9 1111 2 0 4|0 2 0 3 3 8144 0 6 0 0112 7 &8 2 05 3 413 3 2133

aw|2413 3 188 5 10126 7 126 7 7 25 3 0 9|2 4 0 0 1136 3 05 1 0105 5 9 014361112106

ax (1111 7 5 5 8 3 6 8 81711141511 0 1116/1 3 5 4 1 9101 1 2 5 2 3 3108 4 4 9 1 2 410 2135

axr|1113 3 1610 3 80 3 142812 7 4149 2 3 8|0 1112 3 9 214307566 12115513 3 3 6 4

ay|[7 18 6 8 12 6 3 818106 8 5 4 9 9 1

eh|1826 4 16 6 8 14 18802320 7 312 8 3 1 14/0 2 0 2 3 3110 0 8 0 0 118 4 31

er (1518 0 18 7 8 28102380209 913 7 2 0 15/0 2 0 2 0 3144 0 4 2 05 06 8 0010251131102

ey (1617 1 121217 12 6 202080 9 6 2420 4 1 180 2 0 1 0 8133 0 2 0 0 4 210100 0 1 0O 1 0 1 0 1150

th|2 4 8 6 6 11 7 8 7 9 980289 7 01312(0 2 3 3 4 7 6 0 3

ix|4105 9 714 4 5 3 9 6288 8 10 212130 1 4 4 3 6102 3 2 3 8 6 2 7103 2160 3 7 5 0 1 5 0

iy (1316 2 11 7 1514 4 121324 9 8 8012 1 3 10{0 4 0 5 210152 1 5 6 1 1 4149 0 0 1 5 8 0 2 4 4 20 2

ow|l4 8 6 112511 9 9 8 720710128 0 2 16/0 3 1 4 1159 2 1 1 1 0102 6103 1 2 1 5 0 2 1 417 2

oylfO 1 3 2 3 0 2 93 2 4021 021

uh|{0 0170 0 11 3

uw|9 11 2 4 9 16 8 7 14151812131016 2 4 8|0 0 2 4 213200 0 1 2 3 5 215114 3 4 0 0 2 2 0 1 15 2

b[0 0 3 0 2

ch|2 4 4 2 4 3
d|[{0 0 8 0 0 5
dh|0 3 4 3 0 4

dx|0 1 5 3 1

el{106 6 8 13 9 3 103 3 8 7 6 1015 2 7 13|1

enfl610 0 14 6 10 9 7 111413 6 1015 9 0 1 20010 4 2 6 3 7

fl0 314 3

g

hh|j6 8 5 6 5 2 4 4 8 4 2 5 2 5

jhlo 2 6 0

k|o 07002 000005381

1

m|l 2 6 2 5 3 5

nifloé 7 7 5106 3 8 6106 7146 0 9 153 3 2 2 5 6343 4 5 3 3 3128026134 3 5 6 6 1 6 1 5 4

ng|6 7 3 8 9 8 6 4 4 8105109 101 2 112 8 0 3 3 71252 2 4 6 0 41126806 2 2 4 6 2 2 1 4 6 4

nx|(1 2 3 2 0 4

ploos 01

T

s
sh

th{l1 2 1 3 1

v
w

y(118 2131013 6 51110156 52017 2 3 15/2 1 2 4 1126 1 0 0 2 0 2 3 5 6 6 2 3 0 2 0 2 31080 2

Z

Table B.1: ATIS: Number of common subspace Gaussians between any two phones (c) 3rd state

129

mnngnx p r ssh tthvwy z

3 9 3 6

5 6 7

5 7 7 3 6 9 7138

5 8 6118 8 6 8 9 8

3 6 7

3116 9 8 6 7 3116126 12108 6 106 7 9 10 4 7 11

56 8 9 2 4186 9135 4 4

5

5 4 1110 6 8 8 6

9 68 3 9 6 6 5 7108 9 6

4 8 3 9118 4 617

3 11

aa ae ah ao aw ax axr ay eh er ey ih ix iy owoy uhuw[b ch d dhdx el en f g hh jh k

7 7114 6 1116 8108 8 14146 9 412 99117 9 6 2 4 5 6 9 5105 8 7 8 7 8218 9 7116 3 5 7

111114128021 13 7 7 18 14

5 13 8

1166 4 5 7148 4604 56 56 6118 7 2 8 3 3 3 2555 94846123373

6 8 5 7105 3117 2 6 6 65 6 85 3|6 2 3 3 486 35 45 3163 3 4 4 45 12 42 486 3

58 96 48 6106 6 9117 8 5 8 6 9(9101614165 3 58 7 10175 5 6 109 5 911 6 139 8 3 5 11

3 9 6|9 201110 8

3127 7 2

10 2 5

2

7 7 51513 4 8 119 5 8128 8 10 2 10 8|6 8 6 6 5165 4 5 6 6 58109 3 6108 5 4 4 5 1215 3

9138 811 9 21118217 7156 9 8 7 111104 6 7105 6 5 9 8 2 8 8 6 4 6 9 88 6 4 6 9 3104 5

58 73 2 2 7 85 86 9103 7 46 37189106 1 6 7119 4125116 3 6 9 6 801316105 0 1 48

6 4 8 59 710126 5 6 9 10(4 20139 7 2 2156 6 187 4 6 8 0 6 9 41380 9 1111 5

1

36 3 45 6105579475719 5{1015128 3 4 9 6133 6174 2 9 6 517 6 16 9 8012 7 2 0 15

59 2 5 26 5116 5 5 3 7 51261110124 7 7 8 7137 1 7 810107 3 5 11 71680 2 3 6

4 3 31

6 6 5 3 2 3 6106 7107 6 4 7 3 5 3|8229 9 3 3 46119 4103 7 5 2 6105 48111511 6 0 0 80

aa (8020 8 2219 8 101015 7107 8 6 15 3 6 4|8 7 6 5 5 6 7 75 6 6 5 7 8 65 2 9 95 6 3 9 46 5 6

ae 20801117 11 13 10 1227 7 101112 7 17 5 9 5 |4

ah |8 1180 9 1320 9 6 911 4 8136 13 611 7|3 8 3 9 75 3 5 9 75 45 2 39 87 8 75 3735325

a0 (2217 9 816 8 11 916 4 5 4 6 2 11 4 7 5|5 9 5 6 5 7 4 8 6 7 8 7156 6 4 7118 3 1 4 4 1115 3

aw|191113168 5 8 6 8 6 6 5 5 4 12 0 8 4102 3 5 7106 4 4 4105136 4 5 6 711 2 1 5 9 516 5 2

ax (|8 13208 58 4 7 7 111413111612 7 10154 7 7 5 8 5 7 6 8 2 5 8 4 911127 9 9 2 6 6 5 9 5 2 3

axr(1010 9 11 8 4 8 4 316 7 8124 8 1 9 11|19 4 7 7 4 3 5 6 6 5 2 4 8 6 7 3 4 4217 4108 2 9 3 6

ay(l1012 6 9 6 7 4 8011 8 19111517 7 16 6 10|11 9 9 10 7 11 5 4 10 8 10 7 11 4 3 4105 11 8 8 5 4 5 4 6 10

eh|1527 916 8 7 3 1180108 118 7 7 6 6 2|2 8 6 3575 46 7 2395605638505 56 21076

er

ey(l1010 4 5 6 14 7 19 8 8 80121021105 5 8|3 9 3 6 7 6 9 4 9 6 3108 8 8145 7 7 6 7 9 8 5 2 6 10

ith|7 11 8 4

ix |8 1213 6 5 11 12 15 8 14102180 8 10141021(6 9 7 7 8 6 9 2 7 8 7 1 8 7139 7 61510127 4 6 3 4 6

iy|6 7 6 2 416 4 17 7 6 2113 8 8 11 8 8 12(8 7 3 9 7 5 6 2 8 7 7 5 816109 125 6 3 6 5 3 5 5 14 4

ow|l51713111212 8 7 7 910 7 10118 4 12128 9 7 6 3 6 125 5 7 2 9108 8 9 5 8 9 75 7 6 5 707

oy|3 5 6 4 0 7

uh|{6 9 11 7 8 10 9 6 6 12 5 1810 8 12 4 8 14|6 13 5 7 3 5108 6 4 9 6 107139 6117 6 9 9 7 7 4 0 5

uw|4 5 7 5 4 1511102 9 8 14211212 5 1486 6 8 5 3 3114 9 2 6 6 8 7208 103 11 3105 1 5 4 5 3

b8 4 3 5104 9112 9 3 3 6 8 8 6 6 6[80 71413106 8 8 9 3 9 6 611 8 3 125 107 4109 12 4 2 8
ch|7 5 8 9 2 7 4 9 8119119 7 9 513 67809123 2 513103 20158 3 9 4 411 4 182015 7 6 3 0 22

d|6 8 353 7 7 9673673 7605 8|149818103 51116 2 11 9 61213136 3 6 9 13121411 6 3 9

dh|5 6 9 6 55 7103 96 979 6 6 7 5|1312188017 3 6 614 9 108 6129 7155 7109 8 13106 3 9
dx|5 117 5 7 8 4 75 6 7 8 8 7 3113 3(103101780 4 8 8165 8 3 5157 7150106 7 3 5128 5 3

el

en|7 8 34 6 7 5 55 4979612710118 5 5 6 8 68 5 3 1 4 3 5 925158 4 6 6 2 9 4 7 3 4 4

f|7 6 58 46 6 445 43 2 2 5 28 4813116 8 3 58 5 411104 1 8 5 3 9 5 7156147 2 2 6

g

hhij6 9 7 7 4 2 5 8 79 6 68 7 7 3 4 2|33 2 95414 7806 4 6103 311118 9 6 3 7 7 2 4 9

jh|6 8 5 8 10 5

k|5 547 5 8 4 7 310106 15 9 3 6 6|6159 8 3 3 310174 8805 3 3 8 420812 71713 7 0 1 10

1

m(8 7 2 6 6 9 6 45 8 810716 8 5 7 7|11 31212153 9 1 5105 3 10801714175 6116 2 9 7 11 5 7

n|(6 3 3 6 4117 3 6 7 8 813108 5 1320|8 9139 7 3258 6 3 5 3 91780279 7 4 6 8 9 7 8 4 3 5

ng|5 6 9 4 512 3 4 5 8146 9 9 9 5 9 8|3 4137 7 4155103 6 8 31427806 106 3 0 6 1010 4 3 2

nx|2 9 8 7 6 7 4106 7 5107 12 5 9 6 10{12 4 6 1515

pl9 7 7117 9 4 5 3 8 7 6 6 5 8 411 35113 5 0 4 4 9 511920105 71038 &8 9 917177 1 0 10

r
S

sh|{6 5 5 1

t

thi9 7 74 9 5 8 46118 7 4 3 6 2 7 1|9 714135 2 4149 7 9135 9 7107 17 9 1011128016 2 1 11

v

w|6 9 51116 5 9 4103 2 3 3 5 7 3 4 4(4 3 6 6 8 8 3 2 3 2 5 021114 4 8 1100 5 2 2 2807 0

y|5335 5 2 3 670566 414070 5|2033%56 42544155 3390413013780

Z

Appendix C

Statistical Significance Tests

The statistical significance test suite from NIST (National Institute of Standards and Tech-
nology) is used in ARPA evaluations of automatic speech recognition technologies. It

encompasses four tests:
e Matched Pair Sentence Segment (Word Error) Test (MP)
e Signed Paired Comparison (Speaker Word Accuracy) Test (SI)
e Wilcoxon Signed Rank (Speaker Word Accuracy) Test (WI)
e McNemar (Sentence Error) Test (MN).

Here, we apply the test suite to gauge the accuracy differences among four context-
independent (CI) SDCHMM systems and four context-dependent (CD) SDCHMM systems
of Table 5.2. The four systems in each case have 1, 13, 20, and 39 streams. The eight

systems are identified as follows:
e lstream.g2254.ci — 1-stream CI SDCHMM system with 2,254 full-space Gaussians

e 13stream.g256.ci — 13-stream CI SDCHMM system with 256 subspace Gaussians

prototypes per stream

e 20stream.gl28.ci — 20-stream CI SDCHMM system with 128 subspace Gaussians

prototypes per stream

o 39stream.g32.ci — 39-stream CI SDCHMM system with 32 subspace Gaussians pro-

totypes per stream

e lstream.g76154.cd — 1-stream CD SDCHMM system with 76,154 full-space Gaus-

sians

130

131

e 13stream.gl28.cd — 13-stream CD SDCHMM system with 128 subspace Gaussians

prototypes per stream

e 20stream.g64.cd — 20-stream CD SDCHMM system with 64 subspace Gaussians

prototypes per stream

o 39stream.gl6.cd — 39-stream CD SDCHMM system with 16 subspace Gaussians

prototypes per stream.

The test results are shown in Table C.1 and Table C.2. A system identifier showing up
in a table entry implies it is the better system when compared with the system having the
row identifier. We see that results from the three tests other than the MP Test suggest no
statistically significant difference in performance among the four systems in each of the two
groups. On the other hand, the MP Test finds that the SDCHMM systems are actually
better than the original CDHMM system (i.e. 1-stream SDCHMM system). Since each of
the four test measures different quantities (word errors, sentence errors and speaker word
errors) and employs different assumptions, it is fair to conclude that the new SDCHMM

systems are as accurate as the original CDHMM systems.

¢gl

Table C.1: ATIS: Statistical significance tests on the best CI SDCHMM systems

site Report of All Significance Tests
For the Context-Independent SDCHVM Test

Test Name Abbrev.
Matched Pair Sentence Segment (Word Error) Test MP
Signed Paired Comparison (Speaker Word Accuracy) Test ST
Wilcoxon Signed Rank (Speaker Word Accuracy) Test WI
McNemar (Sentence Error) Test MN
| lstream.g2254.ci | 13stream.g256.ci | 20stream.gl28.ci | 39stream.g32.ci |
—————————————————— e e e
lstream.g2254.ci MP 13stream.g256.ci | MP 20stream.gl28.ci | MP 39stream.g32.ci
ST same | ST same | ST same
WI same | WI same | WI same
MN same | MN same | MN same
—————————————————— i e e
13stream.g256.ci MP 20stream.gl28.ci | MP 39stream.g32.ci
ST same | ST same
WI same | WI Same
MN same | MN sSame
—————————————————— e
20stream.gl28.ci MP 39stream.g32.ci
ST same
WI same
MN same
—————————————————— e e e e it
39stream.g32.ci

Table C.2: ATIS: Statistical significance tests on the best CD SDCHMM systems

Composite Report of All Significance Tests
For the Contest-Dependent SDCHMM Test

Test Name Abbrev.
Matched Pair Sentence Segment (Word Error) Test MP
Signed Paired Comparison (Speaker Word Accuracy) Test ST
Wilcoxon Signed Rank (Speaker Word Accuracy) Test WI
McNemar (Sentence Error) Test MN
| lstream.g76154.cd | 13stream.gl28.cd | 20stream.g64d.cd | 39stream.gl6.cd |
——————————————————— et e e et
lstream.g76154.cd MP 13stream.gl28.cd | MP 20stream.g64.cd | MP 39stream.gl6.cd
ST same | SI same | ST same
WI same | WI same | WI same
MN same | MN same | MN same
——————————————————— e
13stream.gl28.cd MP 20stream.g64.cd | MP 39stream.gl6.cd
ST same | ST same
WI same | WI same
MN same | MN Same
——————————————————— e
20stream.g64.cd MP 39stream.gl6.cd
ST same
WI same
MN same
——————————————————— Rt et e et
39stream.gl6.cd

Biographical Note

Brian Kan-Wing MAK was born on the 28th of June, in an interesting year — which, when
written in Arabic numerals on a piece of paper, reads the same when the paper is turned
180° — in Hong Kong under the British rule. He received his B.Sc. (Eng.) in Electrical
Engineering from the University of Hong Kong in 1983. He did a lot of soul searching
during his college years, and was devoted to teaching upon graduation at St. Stephen’s
College (a high school) in Stanley, Hong Kong. In 1985, he obtained his Certificate of
Education from the School of Education, University Hong Kong with distinction.

Under the urge to learn more, he went abroad to further study and received his M.S.
in Computer Science from the University of California, Santa Barbara, USA, in 1989. He
spent the next three years as a Research Programmer in Speech Technology Laboratory
of Panasonic Technologies Inc., Santa Barbara. In the end of 1992, he went to the Chi-
nese University of Hong Kong, where he worked as a Research Assistant on a project of
Cantonese Speech Recognition in the Department of Electronic Engineering. It was at
that time he finally decided on a future career of speech research. In September 1993, he
began his pursuit of a Ph.D. in Computer Science from the Oregon Graduate Institute of
Science & Technology, Portland, Oregon, USA. During his Ph.D. study, he had performed
perceptual experiments to understand the relative contribution of vowels and consonants
in human speech understanding, and research on phone clustering and combining artificial
neural networks to improve speech recognition performance. In the Summer of 1996, he
went to AT&T Labs on an internship; his mentor was Enrico Bocchieri. The Summer
project later turned into his Ph.D. thesis. Since December 1996, he has been a Research
Consultant at AT&T Labs while completing his Ph.D. dissertation.

After receiving the Ph.D., he plans to teach and conduct research at the Hong Kong
University of Science and Technology.

Brian’s main research interest is automatic speech recognition. While he is generally
interested in all the various components of a speech recognition system, his current research
concentrates on acoustic modeling and speaker adaptation. In addition, he is interested
in the closely related area of machine learning.

134

