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Abstract
Last year, we showed that the computation of a GMM-UBM-
based speaker verification (SV) system may be sped up by 30
times by using a high-density discrete model (HDDM) on the
NIST 2002 evaluation task. The speedup was obtained using a
special case of the product-code vector quantization in which
each dimension is scalar-quantized in the construction of the
discrete model. However, the speedup resulted in a drop of an
absolute 1.5% in equal-error rate (EER). In this paper, our pre-
vious work is generalized to the use of subvector quantization
(SVQ) in the construction of HDDM. For the same NIST 2002
SV task, the use of SVQ leads to an overall speedup by a factor
of 8–25 with no significant loss in EER performance.

Index Terms: speaker verification, high-density discrete
model, subvector quantization, split vector quantization

1. Introduction
Most state-of-the-art speaker verification (SV) systems use
Gaussian mixture model (GMM) to represent the universal
background model (UBM) and the speaker models (SM). For
an SV system that employs log-likelihood ratio between SM
and UBM to make the decision, its computational efficiency is
largely determined by the GMM computation. The most com-
mon method to speedup GMM computation in such SV systems
is to find out from the UBM the top N Gaussian components
that give the highest likelihoods for an evaluating speech frame,
and then compute the GMM log-likelihoods of the UBM and
SM using only those N components [1, 2]. For large UBM and
small N , it is claimed that the method reduces the number of
Gaussian evaluations almost by half, with negligible effect on
verification accuracy.

In our previous work [3], we investigated another way to
adjust the acoustic resolution of a GMM to achieve fast GMM
computation. We employed scalar quantization (SQ) and con-
verted a continuous-density GMM to a high-density discrete
model (HDDM). Because of the use of per-dimension SQ, a
full-space codeword can be determined quickly in O(d) time
where d is the dimension of the full-space feature vectors,
whereas the use of discrete density model reduces the sub-
sequent GMM log-likelihood computation to a simple table-
lookup. As a result, compared with GMM, HDDM gives a
speedup of 30 times in the NIST 2002 SV task; however, the
EER drops by an absolute 1.5%.
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In this paper, we will show that performance of HDDM
can be improved to that of the baseline GMM-UBM system
while maintaining its fast speed by using more codewords and
subvector quantization1 (SVQ). It is well-known that given the
same number of bits, VQ is more efficient than SQ in the sense
that it results in smaller quantization error. However, it requires
more space to store a VQ codebook and a longer time to find a
VQ codeword. A good trade-off between time and space re-
quirement can be obtained by SVQ which is well proven in
the work of LPC coding [4], subspace distribution clustering
hidden Markov modeling [7], discrete mixture hidden Markov
modeling [6], and so forth. We call the new HDDM, subvector-
quantized high-density discrete model (SVQ-HDDM), and the
old HDDM proposed in our previous work [3] that employs
SQ will be called scalar-quantized high-density discrete model
(SQ-HDDM) hereafter.

The major drawback of SVQ-HDDM is its larger model
size compared to GMM. However, we will show later in the ex-
periments that the model size, although larger, is acceptable for
many real SV applications depending on its actual operation.

2. Subvector-Quantized High-Density
Discrete Model (SVQ-HDDM)

Before the construction of an SVQ-HDDM, each d-dimensional
acoustic vector xt is first partitioned into L subvectors,

xt = [x1t, x2t, . . . , xLt]. (1)

Subvectors of each partition are then vector-quantized to create
an SVQ codebook for the partition. Full-space VQ codewords
can then be constructed as the products of SVQ codewords,
one from each of the L partitions. Let’s denote the relation as
V Q(xt) ≡ SV Q1(x1t) : SV Q2(x2t) : · · · : SV QL(xLt),
where V Q(·) and SV Qi(·) represent the VQ codeword given
the full-space acoustic vector and the SVQ codeword in the ith
partition given the acoustic subvector in that partition respec-
tively. While an SVQ codeword (or bin) represents a multi-
dimensional Voronoi cell in the space of one of the L partitions,
a VQ codeword (or bin) constructed above is a d-dimensional
convex polytope. Suppose the SVQ codebook of the ith par-
tition consists of ni SVQ codewords, and nmax is the maxi-
mum codebook size among the SVQ codebooks of the L parti-
tions. Then there will be

∏L
i=1 ni VQ bins in the full acoustic

space. For instance, if each d-dimensional acoustic vector is

1The technique is more commonly called “split vector quantiza-
tion” [4] in the signal coding community. On the other hand, it has been
called “subvector quantization” in various acoustic modeling methods
such as the discrete mixture hidden Markov modeling [5, 6]. We decide
to use the latter name.



partitioned into 6 subvectors (i.e., L = 6), and each partition is
vector-quantized using 3 bits (i.e., there are 23 = 8 SVQ bins
for each partition), then there will be 86 = 262, 144 VQ bins in
the full-space.

Although SVQ is employed, it is only used to efficiently
index a VQ codeword in the original d-dimensional acoustic
space through the combinatorial effect of per-partition SVQ
codewords. Finally, an SVQ-HDDM is a single discrete den-
sity function indexed by the VQ codewords constructed from
SVQ codewords in the way described above.

2.1. Conversion of a GMM to an SVQ-HDDM

Let the probability density function (pdf) of a continuous-
density GMM with diagonal covariances be

p(xt) =

M∑
m=1

(
cmN (xt;µm, σ

2
m)
)
, (2)

where M is the number of mixture components, and cm, µm,
and σ2

m are the mixture weight, mean vector, and variance vec-
tor of the mth Gaussian component. Since each Gaussian com-
ponent is assumed to have diagonal covariance, it can be rewrit-
ten as the product of any number of subvector Gaussians. Thus,
if we partition the acoustic vectors as in Eqn.(1), then we have

p(xt) =

M∑
m=1

(
cm

L∏
i=1

N (xit;µim, σ
2
im)

)
, (3)

where xit, µim and σ2
im are the ith subvector of xt, µm and σ2

m

respectively.
The conversion of a GMM pdf to a probability mass func-

tion (pmf) of the corresponding SVQ-HDDM consists in find-
ing the probability of each VQ bin. The computation boils
down to integrating a GMM pdf over the convex polytope rep-
resenting each VQ codeword. If the VQ codeword h is con-
structed from L SVQ codewords hi, i = 1, 2, . . . , L, then we
have h ≡ h1 : h2 : · · · : hL. Let’s also denote the convex
polytope of h by Ω(V Qh) and the convex polytope of hi by
Ω(SV Qhi), i = 1, . . . , L. Hence, the probability of the VQ
codeword h is given by

P (xt ∈ Ω(V Qh))

=

M∑
m=1

(
cm

∫
Ω(V Qh)

N (xt;µm, σ
2
m)

)

=

M∑
m=1

(
cm

L∏
i=1

∫
Ω(SV Qhi

)

N (xit;µim, σ
2
im)

)
. (4)

There is no closed-form solution for the integrals over the
convex polytope of each SVQ codeword Ω(SV Qhi). In this pa-
per, Matlab was used to compute the integrals. Although Matlab
provides a few numerical routines that evaluate double or triple
integration, we developed our own integration program using
Matlab’s single integration routines, quad and quadgk, to eval-
uate integrals of any order. quad is fast but imprecise, whereas
quadgk can be very precise but runs too slow. Our new program
tries to obtain a good trade-off between their integration speed
and precision. Essentially, we only used quadgk for the integra-
tion of the innermost dimension, and quad for the integration of
the remaining dimensions.

2.2. Time Complexity

The time complexity of finding a VQ codeword from its con-
stituent SVQ codewords is O(nmaxL), and that of finding an
SVQ-HDDM probability is O(1) as it is simply a table lookup.
As a consequence, the cost of SVQ-HDDM likelihood compu-
tation is largely determined by the search of codewords. Such
search can be very fast provided the maximum SVQ codebook
size nmax is sufficiently small.

Scalar-quantized HDDM (SQ-HDDM) and traditional VQ-
based discrete model (VQDM) are special cases of SVQ-
HDDM. An SQ-HDDM is an SVQ-HDDM in which each par-
tition consists of a single dimension (i.e., L = d), so that SVQ
in SVQ-HDDM is reduced to SQ in SQ-HDDM. On the other
hand, a VQDM is equivalent to an SVQ-HDDM with only one
partition (i.e., L = 1). Given a fixed number of bits, a VQDM
is more accurate than an SQ-HDDM because VQ yields smaller
quantization error than SQ. However, an SQ-HDDM finds code-
words much faster than a VQDM since the SQ codebook size is
much smaller. By carefully choosing the number of partitions,
SVQ-HDDM may obtain a good trade-off between the accuracy
of VQDM and the speed of SQ-HDDM.

2.3. Practical Issues

We discuss some practical issues of SVQ-HDDM below.
• Partition of a feature vector into subvectors

In theory, we may partition the feature vectors in any
manner. For simplicity, we partition the vector into sub-
vectors of consecutive dimensions.

• Subvector dimension, w
There is a trade-off on the subvector dimension. Given
a fixed number of bits, larger subvector dimension will
minimize the quantization error at the expense of more
storage space and slower search time for SVQ code-
words. In addition, The computation of the integrals
in Eqn.(4) grows non-linearly with the subvector dimen-
sion. Here, subvector dimensions are limited to 2 and 3.
Furthermore, again for simplicity, subvectors of all dif-
ferent partitions have the same dimension. i.e., wL = d.

• Multiple-stream SVQ-HDDM
Multiple-stream SVQ-HDDM is introduced to get an
SVQ-HDDM of reasonable size and resolution. As will
be seen later, 24-dimensional acoustic vectors consist-
ing of 12 static and 12 dynamic MFCCs were used in
our experiments. If each feature vector is partitioned
into 12 2-dimensional subvectors which are subvector-
quantized with 4 bits per partition (i.e., 16 SVQ bins per
partition), then there will be (24)12 = 256 trillion VQ
bins! However, if the feature vectors are split into two
12-dimensional independent streams, and each stream is
modeled independently by an SVQ-HDDM again with a
subvector dimension of two, then the number of VQ bins
is greatly reduced to 2× (24)6 = 32 million.
To obtain a K-stream SVQ-HDDM, a GMM is first ap-
proximated by a K-stream GMM before the conversion
method described in Section 2.1 is applied. The ma-
jor shortcoming is the loss of correlation among features
across the streams. Here only two streams are used.

• Model size
In general, the model size of SVQ-HDDM is larger than
its parent GMM as it stores all discrete probability val-
ues. Table 1 shows the model sizes of SQ-HDDMs and
SVQ-HDDMs of varied resolutions used in this paper.



Table 1: 2-stream HDDMs of varied resolutions. (w = subvec-
tor dimension. Probabilities are assumed 4-byte floating point
numbers. The model size is in megabytes (MB).)

Model w Bit Allocation/Partition Size
SQ-HDDM-a 1 (222222221111, 111111111111) 4
SQ-HDDM-b 1 (222222221111, 222222221111) 8
SQ-HDDM-c 1 (222222222111, 222222222111) 16
SQ-HDDM-d 1 (222222222211, 222222222211) 32
SQ-HDDM-e 1 (222222222221, 222222222221) 64
SQ-HDDM-f 1 (222222222222, 222222222222) 128

SVQ-HDDM-a 2 (444422, 222222) 4
SVQ-HDDM-b 2 (444422, 444422) 8
SVQ-HDDM-c 2 (444432, 444432) 16
SVQ-HDDM-d 2 (444442, 444442) 32
SVQ-HDDM-e 2 (444443, 444443) 64
SVQ-HDDM-f 2 (444444, 444444) 128
SVQ-HDDM-g 3 (6666, 6666) 128

3. Experimental Evaluation
NIST SRE 2001 and 2002 were used in this work. Specifically,
all of the 1006 male utterances (from > 120 speakers) in NIST
2001 were used for creating the GMM-UBM, and speaker mod-
els were created by MAP adaptation [2] on the GMM-UBM for
each of the 139 male speakers in NIST 2002. Each adaptation
utterance is about 2 minutes long but half of the contents is si-
lence. Each of the 1442 male verification utterances in NIST
2002, with an average duration of 16.3s, was scored against 11
hypothesized speakers. This amounts to 1,232 speaker trials and
14,630 impostor attempts.

The features used were 12 MFCCs plus their first deriva-
tives, leading to 24-dimensional acoustic vectors. Cepstral
mean normalization was applied to the MFCCs, followed by
feature warping. Speaker verification is based on the log-
likelihood ratio between a speaker model and the UBM.

Table 2: EER performance of 1-stream or 2-stream GMMs of
varied number of mixtures,M . (K = #streams; all/top5 = GMM
likelihood computation using all/top 5 Gaussians components.)

M K = 1, all K = 2, all K = 1, top5
1024 11.11 11.68 11.84
512 10.66 12.08 11.43
256 11.45 12.32 11.88
128 11.72 12.50 12.37
64 12.52 13.30 13.20

3.1. SV Performance of Baseline GMMs

1-stream GMMs with 64–1024 Gaussian components were
trained and converted to 2-stream GMMs; their SV performance
is shown in Table 2. The GMM likelihoods were computed us-
ing either only the top-5 Gaussian components — which is the
standard speedup method employed by the SV community —
or all Gaussian components.

The effect of loss of correlation in multi-stream model-
ing can readily be seen in the performance of 1-stream GMMs
and their 2-stream counterparts: as expected, 1-stream GMMs
have better EER performance than their 2-stream counterparts
(10.66% vs. 11.68%). The use of the top-5 Gaussian compo-

nents in GMM likelihood computation actually results in sig-
nificant performance degradation (10.66% vs. 11.43%). But
since it speeds up the calculation by almost 50% and is the
common practice, we continued to use it for all SV experiments
using GMMs. On the other hand, that the performance degra-
dation due to the heuristic use of top-5 Gaussians in GMM
likelihood computation is comparable to that due to the use
of two independent feature streams (11.68% vs. 11.43%) can
be a good news for the proposed high-density discrete model-
ing (HDDM) because HDDM always uses all Gaussian compo-
nents in a GMM.

Table 3: SV performance of various SQ-HDDMs and SVQ-
HDDMs converted from a 2-stream GMMs with 1024 compo-
nents.

Model SQ-HDDM SVQ-HDDM
Index EER minDCF EER minDCF

a 12.97 0.0671 12.60 0.0661
b 12.93 0.0662 12.43 0.0662
c 12.47 0.0654 12.20 0.0651
d 12.39 0.0649 12.14 0.0649
e 12.16 0.0644 11.79 0.0640
f 12.11 0.0635 11.60 0.0631
g — — 11.48 0.0618

3.2. SQ-HDDM vs. SVQ-HDDM

For a given number of bits, the model size of an HDDM is the
same regardless of the model order of the GMM they are con-
verted from, the number of partitions, and the subvector dimen-
sion. Thus, one is free to choose the best GMM to convert to
HDDM. Based on the results shown in Table 2, the 2-stream
GMM with 1024 components has the lowest EER, and thus was
chosen and converted to both SQ-HDDMs and SVQ-HDDMs
of varied configurations indexed from ‘a’ to ‘g’ as shown in Ta-
ble 1.

Table 3 summarizes the SV performance of the various
SQ-HDDMs and SVQ-HDDMs. Among all the HDDMs, SQ-
HDDM-a, having an EER of 12.97% was reported in [3], will
serve as our HDDM baseline for the ensuing discussion. The
results clearly show that

• SV performance improves with increasing codebook size
(or equivalently, the model size of HDDMs, or the num-
ber of bits).

• For the same model size, an SVQ-HDDM performs bet-
ter than an SQ-HDDM.

• SVQ-HDDMs with fewer partitions (or equivalently,
larger subvector dimension) are preferred.

• Here we used at most 24 bits for each stream to limit the
size of the generated HDDMs. Within the limit, none of
the generated SQ-HDDMs perform as well as the parent
2-stream GMM from which they were converted. On the
contrary, SVQ-HDDM-f and SVQ-HDDM-g both per-
form better than their parent 2-stream GMM (11.60%
and 11.48% vs. 11.68%). This shows the superiority
of SVQ over SQ in reducing the quantization error.

• The performance of SVQ-HDDM-g actually matches
that of the parent 1-stream GMM if the top-5 Gaussian
speedup heuristic is used.
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Figure 1: SV operating characteristics of various models when
the UBM and speaker models are pre-loaded to the memory.
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Figure 2: SV operating characteristics of various models when
the UBM and speaker models are loaded on-the-fly.

3.3. Operating Characteristics of Various Models

There can be two operation modes for an SV application de-
pending on whether the models are pre-loaded in memory.
Model pre-loading is preferred if there is sufficient memory
or when the number of speaker models is small. Thus, we
measured2 and reported the operating characteristics of various
GMMs, SQ-HDDMs, and SVQ-HDDMs on the NIST 2002 SV
task in two figures, depending on whether models were pre-
loaded in Fig. 1 and Fig. 2. In both cases, the performance of
the following models are compared:

• GMMs with varied number of Gaussian components.

• SQ-HDDMs and SVQ-HDDMs of varied resolutions
(indexed from ’a’ to ’f’) as shown in Table 1 and they
were converted from the GMMs with 1024 Gaussian
components.

From Fig. 1, we find that if all models are pre-loaded onto the
memory, for the same EER

2All experiments were performed on a Linux machine that runs on
the Intel CPU, Core 2 Duo E8400 @ 3.00GHz with 4GB RAM. The
computation time was collected over all 1442× 11 trials.

• SQ-HDDM is faster SVQ-HDDM which is in turn faster
than GMM. Since the speed of finding the HDDM likeli-
hood is the same for both SQ-HDDM and SVQ-HDDM
which is simply a table-lookup, SQ-HDDM is faster be-
cause the search for SQ codewords is faster. However,
SQ-HDDM cannot achieve the best performance of its
parent 1-stream or 2-stream GMM.

• On the other hand, SVQ-HDDM can achieve almost the
best performance of its parent 1-stream GMM at a much
faster speed.

• In general, for the same EER, SVQ-HDDM is 8-25 times
faster than GMM.

On the other hand, if speaker models are loaded on-the-
fly, Fig. 2 shows that the computational advantage of HDDM
(both SQ-HDDM and SVQ-HDDM) over GMM is largely off-
set by the memory loading time of its much bigger model. How-
ever, the memory loading time is affected greatly by the hard-
ware. We believe that using better server-grade hardware may
improve the operating characteristics of HDDMs in Fig. 2.

4. Conclusions
Last year, we proposed to speed up GMM computations in
speaker verification tasks by using scalar quantization (SQ) in
the construction of high-density discrete models (HDDM) from
the parent GMM. In this paper, we generalize the quantiza-
tion scheme to subvector quantization (SVQ). Empirical results
from NIST 2002 SV evaluation show that for the same model
size, SVQ produces HDDMs that are more accurate than SQ.
SVQ-HDDM can also achieve the same performance of its par-
ent GMM when sufficient number of bits is employed while
SQ-HDDMs cannot; yet, for the same EER performance, SVQ-
HDDMs are only 2 times slower than SQ-HDDMs . In sum-
mary, compared with its parent GMM, SVQ-HDDM may pro-
vide a significantly speedup of 8–25 times when the speaker
models are pre-loaded in memory.
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