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Abstract. Traditional Chinese medicine (TCM) is an important avenue
for disease prevention and treatment for the Chinese people and is gain-
ing popularity among others. However, many remain skeptical and even
critical of TCM because a number of its shortcomings. One key short-
coming is the lack of a scientific foundation and hence objective diag-
nosis standards. When viewed as a black box, TCM diagnosis is simply
a classifier that classifies patients into different classes based on their
symptoms. A fundamental question is: Do those classes exist in reality?
To seek an answer from the machine learning perspective, one would
naturally use cluster analysis. Previous clustering methods are unable
to handle the complexity of TCM. We have therefore developed a new
clustering method in the form of hierarchical latent class (HLC) mod-
els. In this paper, we provide a brief review of HLC models and present
a case study to demonstrate the possibility of establishing a statistical
foundation for TCM using HLC models.

Area: machine learning, data mining, kdd; Paradigm: probabilistic or numeric;
Technique: bayesian networks; Application: traditional Chinese medicine.

Introduction

In TCM Diagnosis, patient information is collected through an overall observa-
tion of symptoms and signs rather than micro-level laboratory tests. The conclu-
sion of TCM diagnosis is called syndrome and the process of reaching a diagnostic
conclusion from symptoms is called syndrome differentiation. There are several
syndrome differentiation systems, each focusing on a different perspective of the
human body and with its own theory. The theories describe relationships be-
tween syndrome factors and symptoms, as illustrated by this excerpt:

Kidney yang 3 (Yang et al. 1998) is the basis of all yang in the body.
When kidney yang is in deficiency, it cannot warm the body and the

3 Words in small capital letters are reserved for TCM terms.
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patient feels cold, resulting in intolerance to cold, cold limbs, and cold
lumbus and back. Deficiency of kidney yang also leads to spleen dis-
orders, resulting in loose stools and indigested grain in the stool. 4

Here syndrome factors such as kidney yang failing to warm the body
and spleen disorders due to kidney yang deficiency are not directly
observed. They are similar in nature to concepts such as ‘intelligence’ and are
indirectly measured through their manifestations. Hence we call them latent
variables. In contrast, symptom variables such as ‘cold limbs’ and ‘loose stools’
are directly observed and we call them manifest variables. TCM theories involve a
large number of latent and manifest variables. Abstractly speaking, they describe
relationships among latent variables, and between latent variables and manifest
variables. Hence they can be viewed as latent structure models specified in natural
language.

TCM is an important avenue for disease prevention and treatment for ethnic
Chinese and is gaining popularity among others. However, it suffers a serious
credibility problem especially in the west. One reason is the lack of rigorous
randomized trials in support for the efficacy of TCM herb treatments (Normile
2003). Another equally important reason, on which this paper focuses, is the
lack of scientific validations for TCM theories. Researchers in China have been
searching for such validations in the form of laboratory tests for more than half a
century, but there has been little success. We propose and investigate a statistical
approach. In the next three paragraphs, we explain the premise and the main
idea of the approach.

We human beings often invoke latent variables to explain regularities that
we observe. Here is an experience that many might share. I (the first author)
was looking at some apartment buildings nearby one night. I noticed that, for a
period of time, the lighting from several apartments was changing in brightness
and color at the same times and in perfect synchrony. This caught my attention
and my brain immediately concluded that there must be a common cause that
was responsible for changes. My brain did so without knowing what the common
cause was. So, a latent variable was introduced to explain the regularity that I
observed. What I tried to do next was to find the identity of the latent variable.

We conjecture that, in a similar vein, latent syndrome variables in TCM were
introduced to explain observed regularities about the occurrence of symptoms.
Take the concept kidney yang failing to warm the body as an example.
We believe that in ancient times it was first observed that symptoms such as
intolerance to cold, cold limbs, and cold lumbus and back often occur together
in patients, and then, to explain the phenomenon, the latent variable kidney
yang failing to warm the body was created.

When explaining the phenomenon of synchronous change in lighting, I re-
sorted to my knowledge about the world and concluded that the common cause
must be that residents in those apartments were watching the same TV channel.
Similarly, when explaining patterns about the occurrence of symptoms, ancient

4 Through out this paper, citations about TCM theories are mostly from (Yang et al.
1998), a bilingual textbook.
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Fig. 1. An example HLC model and the corresponding unrooted HLC model. The Xi’s
are latent variables and the Yj ’s are manifest variables.

Chinese resorted to their understanding of the world and the human body. This
explains why concepts from ancient Chinese philosophy such as yin and yang
are prevalent in TCM theories. Words such as kidney and spleen also appear in
TCM theories because there was primitive anatomy in ancient times. However,
the functions that TCM associates with kidney and spleen are understandably
different from the functions of kidney and spleen in modern western medicine.

Thus, the premise of our work is that TCM theories originated from reg-
ularities ancient Chinese doctors observed in their experiences with patients.
The main idea of our approach, called the latent structure approach, is to collect
patient symptom data systematically, analyze the data based on statistical prin-
ciples, and thereby obtain mathematical latent structure models. If the math-
ematical latent structure models match the relevant aspects of TCM theories,
then we would have validated those aspects of TCM theories statistically. This
would also suggest the possibility of laying a statistical foundation for TCM
through data analysis and thereby turning it into a modern science.

In the past few years, we have developed a class of latent structure models
called hierarchical latent class (HLC) models, and have used HLC models in a
case study to test the idea of the latent structure approach. In this paper, we
briefly review HLC models, describe the case study and report the findings.

1 HIERARCHICAL LATENT CLASS MODELS

Hierarchical latent class (HLC) models (2004) are tree-structured Bayesian net-
works where variables at leaf nodes are observed and are hence called manifest
variables, while variables at internal nodes are hidden and hence are called la-
tent variables. All variables are assumed discrete. HLC models generalize latent
class (LC) models (Lazarsfeld and Henry 1968) and were first identified as a
potentially useful class of Bayesian networks by Pearl (1988).

Fig. 1 shows an example HLC model (left diagram). A latent class (LC) model
is an HLC model where there is only one latent node. We usually write an HLC
model as a pair M = (m, θ), where θ is the collection of parameters. The first
component m consists of the model structure and cardinalities of the variables.
We will sometimes refer to m also as an HLC model. When it is necessary to
distinguish between m and the pair (m, θ), we call m an uninstantiated HLC
model and the pair (m, θ) an instantiated HLC model.
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Two instantiated HLC models M=(m, θ) and M ′=(m′, θ′) are marginally equiv-
alent if they share the same manifest variables Y1, Y2, . . . , Yn and

P (Y1, . . . , Yn|m, θ) = P (Y1, . . . , Yn|m
′

, θ
′). (1)

An uninstantiated HLC models m includes another m′ if for any parameteriza-
tion θ′ of m′, there exists parameterization θ of m such that (m, θ) and (m′, θ′) are
marginally equivalent, i.e. if m can represent any distributions over the manifest
variables that m′ can. If m includes m′ and vice versa, we say that m and m′

are marginally equivalent. Marginally equivalent (instantiated or uninstantiated)
models are equivalent if they have the same number of independent parameters.
One cannot distinguish between equivalent models using penalized likelihood
scores.

Let X1 be the root of an HLC model m. Suppose X2 is a child of X1 and it is a
latent node. Define another HLC model m′ by reversing the arrow X1→X2. In m′,
X2 is the root. The operation is hence called root walking; the root has walked
from X1 to X2. Root walking leads to equivalent models (Zhang 2004). This
implies that it is impossible to determine edge orientation from data. We can
learn only unrooted HLC models, which are HLC models with all directions on the
edges dropped. Fig. 1 also shows an example unrooted HLC model. An unrooted
HLC model represents a class of HLC models. Members of the class are obtained
by rooting the model at various nodes. Semantically it is a Markov random field
on an undirected tree. The leaf nodes are observed while the interior nodes are
latent. Marginal equivalence and equivalence can be defined for unrooted HLC
models in the same way as for rooted models. From now on when we speak of
HLC models we always mean unrooted HLC models unless it is explicitly stated
otherwise.

Let |X| stand for the cardinality of a variable X. For a latent variable Z in an
HLC model, enumerate its neighbors as X1, X2, . . . , Xk. An HLC model is regular
if for any latent variable Z, |Z| ≤

∏
k

i=1 |Xi|/maxk
i=1 |Xi|, and when Z has only

two neighbors, strict inequality holds and one of the neighbors must be a latent
node. Note that this definition applies to both instantiated and uninstantiated
models.

Given an irregular instantiated model m, there exists a regular model that is
marginally equivalent to m and has fewer independent parameters (Zhang 2004).
The process of obtaining the regular model is called regularization. It is evident
that if penalized likelihood is used for model selection, the regularized model is
always preferred over m itself.

Assume that there is a collection D of i.i.d samples on a given set of manifest
variables that were generated by an unknown regular HLC model. The learning
task is to reconstruct the regular unrooted HLC models that corresponds to the
generative model.

Although not using the terminology of HLC models, Connolly (1993) pro-
posed the first, somewhat ad hoc, algorithm for learning HLC models and tested
it on one toy example with 4 manifest variables. A more principled hill-climbing
algorithm was developed by Zhang (2004). The algorithm consists of two search
routines, one optimizes model structure while the other optimizes cardinalities of
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latent variables in a given model structure. It is hence called double hill-climbing
(DHC). It can deal with data sets with about one dozen manifest variables.
Zhang and Kočka (2004) proposed another algorithm called heuristic single hill-
climbing (HSHC). HSHC combines the two search routines of DHC into one
and incorporates the idea of structural EM (Friedman 1997) to reduce the time
spent in parameter optimization. HSHC can deal with data sets with dozens of
manifest variables.

Results presented in this paper were obtained using the HSHC algorithm.
The algorithm hill-climbs in the space of all unrooted regular HLC models for
the given manifest variables. We assume that the BIC score is used to guide the
search. The BIC score of a model m is:

BIC(m|D) = logP (D|m,θ
∗) −

d(m)

2
logN

where θ∗ is the ML estimate of model parameters, d(m) is the standard dimension
of m, i.e. the number of independent parameters, and N is the sample size.

Geiger et al. (1996) argued that, when latent variables are present, it is
inappropriate to use standard model dimension in the BIC score. One should
instead of use what is called effective model dimension. Unfortunately, it is rather
difficult to compute effective model dimensions. In this paper, we use standard
model dimensions and leave it to future work to investigate the impact of this
choice. Empirical results of Zhang (2004) show that the DHC algorithm is able
to obtain high quality models with standard model dimensions. As will be seen,
results presented in this paper indicate that the HSHC algorithm is also able to
obtain high quality models with standard model dimensions.

2 Data and Data Analysis

The data set used in our case study involves 35 symptom variables, which are
considered important when deciding whether a patient suffers from the so-called
kidney deficiency syndrome, and if so, which subtype. Each variable has four
possible values: none, light, medium, and severe. The data were collected from
senior citizen communities, where the kidney deficiency syndrome frequently
occurs. There are totally 2,600 records. Each record consists of values for the 35
symptom variables, but there is no information about syndrome types.

We refer the relevant TCM theory that explains the occurrence of the 35
symptoms as the TCM kidney theory. As mentioned earlier, this is a latent
structure model specified in natural language. The objective of the case study
is to induce a mathematical latent structure model from the data based on
statistical principles and compare it with the TCM kidney theory to see whether
and how well they match.

The kidney data were analyzed using the HSHC algorithm. The best model
that we obtained is denoted by M . Its BIC score is -73,860 and its structure is
shown in Fig. 2. In the model, Y0 to Y34 are the manifest variables that appear
in the data, while X0 to X13 are the latent variables introduced in the process
data analysis.
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Fig. 2. The structure of the best model M found for kidney data. The abbreviation
HSFCV stands for Hot Sensation in Five Centers with Vexation, where the five centers
refer to the centers of two palms, the centers of two feet, and the heart. The integer
next to a latent variable is the number of possible states of the variable.

3 Latent Variables

We now set out to compare the structure of model M with the TCM kidney
theory. According to the semantics of HLC models, the left most part of model
M states that there is a latent variable X1 that is (1) directly related to the
symptoms intolerance to cold (Y2), cold lumbus and back (Y3), and cold limbs
(Y4); and (2) through another latent variable X2 indirectly related to loose stools
(Y0) and indigested grain in the stool (Y1). On the other hand, the TCM kidney
theory asserts that when kidney yang is in deficiency, it cannot warm the body
and the patient feels cold, resulting in manifestations such as cold lumbus and
back, intolerance to cold, and cold limbs. Deficiency of kidney yang also leads
to spleen disorders, resulting in symptoms such as loose stools and indigested
grain in the stool.

Here model M and the TCM kidney theory both mention the same five
symptom variables; they both describe how two latent variables are related to
those five symptoms; and the relationships described in the two cases share the
same structure. The only difference is that the latter has named the two latent
variables and given an explanation to the relationships, while model M simply
states the relationships. Therefore, we have a good match between model M
and the TCM kidney theory here. The latent variable X1 can be interpreted
as kidney yang failing to warm the body, while X2 can be interpreted as
spleen disorders due to kidney yang deficiency (kyd).

To the right of X1, model M states that there is a latent variable X3 that
is directly related to the symptoms of edema in legs (Y5) and facial edema (Y6).
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On the other hand, the TCM kidney theory asserts that when kidney yang is
in deficiency, it cannot control water, which overflows to the surface of the face
and the legs, resulting in facial edema and edema in legs. Here we see another
good match. The latent variable X3 can be interpreted edema due to kyd.

To the right of X3, model M states that there is a latent variable X4 that
is (1) directly related to the symptoms of urine leakage after urination (Y7),
frequent nocturnal urination (Y8) and frequent urination (day) (Y11); and (2)
through another latent variable X5 indirectly related to urinary incontinence
(day) (Y9) and nocturnal enuresis (Y10). On the other hand, the TCM kidney
theory asserts that when kidney fails to control the urinary bladder, one would
observe clinical manifestations such as frequent urination, urine leakage after
urination, frequent nocturnal urination, and in severe cases urinary incontinence
and nocturnal enuresis. Once again, there is a good match between this part of
M and the relevant aspect of the TCM kidney theory. The latent variable X4

can be interpreted as kidney failing to control ub, where ub stands for
the urinary bladder.

According to the TCM kidney theory, clinical manifestations of the kidney
essence insufficiency syndrome includes premature baldness, tinnitus, deaf-
ness, poor memory, trance, declination of intelligence, fatigue, weakness, and so
on. Those match the symptom variables in model M that are located under X8

fairly well and hence X8 can be interpreted as kidney essence insufficiency.
The clinical manifestations of the kidney yin deficiency syndrome includes
dry throat, tidal fever or hectic fever, fidgeting, hot sensation in the five centers,
insomnia, yellow urine, rapid and thready pulse, and so on. Those match the
symptom variables under X10 fairly well and hence X10 can be interpreted as
kidney yin deficiency. Finally, the TCM kidney theory asserts that kid-
ney deficiency can be caused by prolonged illness and manifests as one or
more sub-kidney deficiency syndromes such as kidney yang deficiency,
kidney failing to control ub, kidney essence deficiency, and kidney
yin deficiency. Moreover, patients suffering from kidney deficiency usually
share common symptoms such as lumbago, sore and weak lumbus and knees,
and mental and physical fatigue. Those and the structure of M suggest that X0

should be interpreted as kidney deficiency.

All symptom variables in the case study are those that a TCM doctor would
consider when making a diagnostic decision about kidney deficiency. Hence
there is no surprise that one of the latent variables can be interpreted as kidney
deficiency. However, it is very interesting that some of the latent variables
in model M correspond to syndrome factors such as kidney yang failing
to warm the body, spleen disorders due to kyd, edema due to kyd,
kidney failing to control ub, kidney essence deficiency, and kidney
yin deficiency, as each of them is associated with only a subset of the symptom
variables in the TCM kidney theory. As the latent variables were introduced
by data analysis based on a statistical principle, the case study had provided
statistical validation for the introduction of those syndrome factors to the TCM
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Fig. 3. Characteristics of the 4 clusters identified by the states of the latent variable
X4: The diagrams show the probability distributions of the symptom variables Y7, Y8,
Y9, Y10, and Y11 in each of the clusters. The table shows the most typical members of
the clusters.

kidney theory and for what are asserted about their relationships with symptom
variables.

There are also aspects of M that do not match TCM theory well. One mis-
match is in the scope: model M involves fewer symptom variables than all those
TCM associates with kidney. Another kind of mismatch is more technical. Con-
sider the symptoms insomnia and vertigo. According to the TCM kidney theory,
they can be caused both by kidney yin deficiency and kidney essence in-
sufficiency. However, in M they are directly connected only to X10, and not
to X8. Such mismatches are due to the restriction that HLC models must be
tree-structured. Those mismatches suggest future research directions. However,
they do not defeat the conclusion that the case study has provided statistical
validation for the TCM kidney theory.

4 Latent Classes

By analyzing the kidney data using HLC models, we have not only obtained a
latent structure, but also clustered the data in multiple ways. As indicated in
Fig. 2, the latent variable X1 has 5 states. This means that the data has in one
way been grouped into 5 clusters, with one cluster corresponding to each state of
X1. Similarly, the fact that X4 has 4 states means that the data has in another
way been grouped into 4 clusters, with one cluster corresponding to each state of
X4. In the following, we examine the meaning of those latent classes and point
out that they, like the latent variables, provide statistical validation for aspects
of the TCM kidney theory. We use the 4 clusters given by X4 as an example.

Fig. 3 shows the probability distributions of the 5 symptom variables Y7 to
Y11 in each of the 4 clusters given by X4. There is one diagram for each cluster.
In each diagram, there are 5 bars, each corresponding to one of the 5 symptom
variables. The bars consist of up to 4 segments, each corresponding to one state of
the symptom variables. Note that the white segments are located at the top and
they reach up to the top boundary of the diagrams. White and black segments
represent the probabilities of the symptoms being absent and severe respectively,
while the two shades of grey represent those for two intermediate states. The
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bar diagrams provide an overall characterization of the clusters. In contrast,
information about the most typical members of the clusters gives us a more
concrete idea about their members. The most typical member of the cluster X4 =
s0, for instance, is the configuration of the states of the variables Y7 to Y11 that
maximizes the probability P (X4 = s0|Y7, Y8, Y9, Y10, Y11). This configuration
might not be unique. Nonetheless, we still speak of ‘the most typical member’
for simplicity.

We can now digest the meanings of the 4 clusters. First of all, the meaning
of X4 is kidney failing to control ub (kfcub). Hence the clusters can be
viewed as different states of kfcub. Five symptoms are involved here, namely
urine leakage after urination (ULU) (Y7), frequent nocturnal urination (FNU)
(Y8), urinary incontinence (UI) (Y9), nocturnal enuresis (NE) (Y10), and frequent
urination (FU) (Y11). In the cluster X4 = s0, the five symptoms almost never
occur and the most typical member has none of those symptoms. Hence, the
cluster can be interpreted as no kfcub. In the cluster X4 = s3, on the other
hand, the five symptoms have high probabilities of occurring and for the most
typical member, all the symptoms occur at the severe level. Hence, this cluster
can be interpreted as severe kfcub.

Next consider the clusters X4 = s1 and X4 = s2. The overall probability
of the symptoms occurring is higher in X4 = s1, while the probability of the
symptoms occurring at the medium or severe levels are higher in X4 = s2.
For the most typical member of X4 = s1, three of the symptoms, namely FU,
ULU, and FNU, occur only at the light level, while for the most typical member
of X4 = s2, only one of the symptom, namely FNU, occurs at the severe level.
Therefore, both clusters can be interpreted as light kfcub. We interpret X4 = s1

as light kfcub (A) and X4 = s2 as light kfcub (B).

The latent classes contain information that validates aspects of the TCM
kidney theory. As mentioned in the previous section, the TCM kidney theory
associates the symptoms FU, ULU and FNU with kfcub and it asserts that UI
and NE occurs only in the case of severe kfcub. This is consistent with the bar
diagrams in Fig. 3. We see that, in the first three clusters where kfcub is not
severe, UI and NE either do not occur at all or occur only at the light level with
low probabilities. In the last cluster where kfcub is severe, the probabilities
of UI and NE occurring are high, but still comparatively lower than those of
the other three symptoms. The TCM kidney theory also asserts that FNU is
a typical symptom of kidney deficiency, meaning that it occurs frequently
among patient suffering from the syndrome. This again is consistent with the
bar diagrams. We see that the probability of FNU occurring is high in the three
clusters where kfcub is present, namely the last three clusters. Moreover, it
occurs for the most typical members of all the three clusters.

In the TCM kidney theory, there are other qualitative assertions about rel-
ative symptom occurrence frequencies in addition to those mentioned in the
previous paragraph. All such assertions that are relevant to model M are consis-
tent with model M . Therefore, our case study has provided statistical validation
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for those assertions. Moreover, it has refined the assertions by providing proba-
bilistic quantifications.

5 Conclusion and Future Work

The TCM kidney theory was formed in ancient times, while model M was
obtained through modern day data analysis. It is very interesting that they
match each other well. This shows that, contrary to popular perception, there
are scientific truths in TCM theories. It also suggests the possibility of laying
a statistical foundation for TCM through data analysis. The statistical model
and latent clusters resulting from data analysis can be used in future research to
improve diagnosis and treatment as follows: (1) Study the characteristics of each
cluster and decide a treatment for it, (2) collect symptom information about a
patient and use the model to compute the posterior probabilities of the patient
belonging to various clusters (this is model-based diagnosis), and (3) combine
the treatments prescribed for the individual clusters based on the probability
values to formulate a treatment for the patient.
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