THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY
Department of Computer Science

COMP 171 : Data Structures and Algorithms

Fall 2005
Programming Assignment 1
Due date and time : October 4, 2005, 23:59

1 Rules, Submission procedures, and Grading

Rules and submission procedures. There are two programming tasks in this assign-
ment: problem A and problem B. You need to produce ONE ZIPPED FILE FOR EACH
PROBLEM. Each zipped file must:

e contain your source files and documentation (including your acknowledgments).
e be completely self-contained; your program can only refer to the normal C++ libraries.

e compile and run using VC++ under Windows.

A good programming practice is to keep separate .h files and .cpp files in the zipped file,
but this is not a grading criteria. You MUST name your zipped files as indicated below:

| TAsk NAME | NAME OF ZIPPED FILE |

Problem A palA.zip
Problem B palB.zip

Grading. Your solution will be graded on:
e Correctness (80 percent).

— When your program does not compile, you may receive partial credits at our
discretion.

— When your program does not run correctly, we will inspect the results and your
code visually and you may receive up to half marks for that operation.

e Programming style (10 percent).

e Program documentation (10 percent).
This includes your acknowledgments. You must explicitly acknowledge the resources
(books, web sites, and so on) that you have consulted and the people you have dis-
cussed the assignment with (if they are other COMP 171 students, state their full
names and student ids).

If you have not consulted anyone, then state that explicitly as follows: The work
included in this program is all my own work.

2 Problem A: Univariate Polynomial Manipulation

Task description. Design, implement and test an ADT, Polynomial, that provides some
of the basic operations for univariate polynomials. For example, P(x) = 3z* — 7z + 18 is
such a polynomial.

Your ADT Polynomial should have a data member belonging to the class CircularList
which keeps the terms (term consists of coefficient and exponent) in the polynomial in a
circular linked list. The circular list representation of a polynomial has one node for each
term that has non-zero coefficient. The terms are in decreasing order of exponent and the

head node has its coefficient and exponent field equal to 0 and -1 respectively. The following
figure gives some examples.

(@) P4(x) = 88x* + 6x*° - 25x

'
o [—fse[a0] {6 [s0] F-rasf 1] |

(b) Po(x) = -5x™ + 2x™+ 7x* - 2

"
o [4] L8]] {2 0] <7 [4] Ff2[a]]

(c) P3(x)=0

0]

You must use the three classes Node, ListIterator, and List (should be modified to
adapt the change to circular structure) covered in class to do the job:

e You can modify and/or simplify the specific details of these three classes, but you
must adhere to the principles of hiding Node from the public and accessing via list
iterators instead of explicit node pointers.

e In particular, Node must be hidden from your Polynomial class.

Note that it is a good programming style to destroy nodes when they are no longer needed.

The ADT Polynomial should support the following operations. Note that some opera-
tors should be overloaded to make your code more readable. You may add any other
public/private member functions that you think are necessary.

(a) Polynomial()
- Create the zero polynomial, that is P(x) = 0. Polynomial() is the class default
constructor.

(b) friend istream& operator>>(istream&, const Polynomial&) ;
- Read in a polynomial from cin. Each polynomial has the following form:

crejcey - ey 0 —1

where ¢; and e; are integers denoting the coefficient and exponent of the ith term,
respectively. The last pair 0 — 1 denotes the end of polynomial.

You can assume that the exponents are in decreasing order; that is e; > ey > ... >
em > 0, and there is no zero coefficient in the input; that is ¢; # 0 for all .

(c) friend ostream& operator<<(ostream&, const Polynomial&) ;
- Output the polynomial to cout. The output format should be the same as the input
format. That is, the exponents should be in decreasing order and all coefficients are
non-zero. Also it should end with the pair 0 — 1.

(d) friend Polynomial& operator+(const Polynomial& pl, const Polynomial& p2);
- Add the two polynomials p1 and p2 and return the result.

(e) friend Polynomial& operator-(const Polynomial& pl, const Polynomial& p2);
- Subtract the first polynomial p1 from the second polynomial p2 and return the result.

(f) friend Polynomial& operator*(const Polynomial& pl, const Polynomial& p2);
- Multiply the two polynomials p1 and p2 and return the result.

Input and output. You need to write a main program which obtains an input line from
users. The end of input is signalled by the Ctrl-Z character (EOF character in VC++) which
your program should detect. Each input line is a sequence of integers that are separated by
blanks and have one of the following three possible formats:

1 <polynomial> <polynomial>
2 <polynomial> <polynomial>
3 <polynomial> <polynomial>

where <polynomial> represents one polynomial. 1 means that the two polynomials are to
be added; 2 means that the second polynomial should be subtracted from the first polyno-
mial; and 3 means that the two polynomials are to be multiplied.

For each input line, your program should output to cout one separate line containing
the result using the <polynomial> format.

Note that you should make use of the overloaded input and output operator functions to
get polynomials and output the result respectively. Similarity, you should use the overloaded
arithmetic operators to calculate the results.

3 Problem B: Infix to Postfix Conversion

Task description. Implement and test a program to convert standard arithmetic expres-
sions (infix expressions) into postfix expressions.

An infix expression is the usual way such mathematical expressions are written. It is
called infix because each operator appears in between its operands. In postfix expression,
the operator is written after its operands. For example,

Infix form: a+b-c+d*xe—-a*c
Postfix form: ab+c-dex+ac*-

As you can see from the above example, the order of the operands is the same in infix
and postfix. When we scan an expression for the first time, we can form the postfix by im-
mediately passing any operands to the output. To handle the operators, we need a storage
to store them until it is time to pass them to the output.

For this problem, you should use a stack ADT as the storage. You can either implement
your own stack ADT or use the stack ADT in the standard C++ library. You should first
read Weiss, section 3.3.3.

Input and output. You need to write a main program which obtains an input line from
users. The end of input is signalled by the Ctrl-Z character (EOF character in VC++)
which your program should detect. Each input line contains one string which is a legal infix
expression. Assume that the input infix expression:

e is a legal infix expression that contains at most 100 characters.

e has only three operators: multiplication (*), addition (4) and subtraction (-) and
possibly parentheses “(” and “)”.

e has variables taken from the set {a, b, ..., z}.
e contains no blank.

For each input line, your program should output to cout a separate line containing con-
taining the corresponding postfix expression.

