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Maxima in Convex Regions 

Mordecai J. Golin* 

Abstract 

Suppose that C is a bounded convex region. Let pl, . . . , p,, 
be points drawn from the uniform distribution over C and 
let M,” be the number of the points which are maximal. 
In this note we examine the asymptotics of E (M$‘) as 
n -t 00. We show, for example, that if C is planar then, 
either E (M$) = 0 (6) or E (Mz) = 0 (log n) , and 
give a simple geometric criterion that tells which of the two 
behaviors applies. This note also addresses the asymptotics 
of E (Mz) when C is a higher-dimension,al convex region, 
and discusses the asymptotic behavior of the higher moments 
of M,” as well. Some immediate algorithmic implications 
that follow from knowing E (M$) are also examined, e.g., 
the existence of heuristics for finding maxima that have fast 
expected running times when their input points are drawn 
from any of many different possible distributions. 

1 Introduction 

In this note we analyze Mz, the number of maxi- 
mal points in a set of 11 Independently Identically Dis- 
tributed (M.D.) points drawn from t,he uniform distri- 
bution over some bounded convex region C. 

The corresponding question for convex hull points 
has been well studied. Renyi and Sulanke [S] [9] proved 
that if n points are chosen I.I.D. from C then, if C 
is a convex polygon, the expected number of convex 
hull points is O(logn) while, if C is convex and has a 
doubly continuously-differentiable boundary the answer 
is 0 (n’13) . Dwyer [5] p rovides a survey of more recent 
results. These purely geometric facts have been useful to 
computational geometers because t,hey lead directly to 
bounds on the expected running time for some convex 
hull finding algorithms. The classic example is in the 
analysis of Gift-Wrapping [7]. 

The expected number of maximal points has not 
been examined nearly as closely. It, has been known for 
many years, see e.g., [2], that, if C is the unit square then 
E (ME) = O(logn). Recently Dwyer [5] proved that 

E P3 = O(fi) when C is a circle and also proved 
r 
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a general upper bound E (Mz) = 0 (nl-l/d) that is 
valid for any bounded convex d-dimensional region. 

In this paper we study the asymptotics of E (h&f) 
in detail, concentrating on the planar case. The re- 
sults of this study will enable us to study the aver- 
age case behavior of some maxima-finding algorithms 
in much the same way that Renyi and Sulanke’s re- 
sults about the expected number of convex hull points 
permitted the analysis of some convex hull finding al- 
gorithms. Note that the condition that C be convex 
is important. If it is abandoned then it can be shown 
that, for all f(n) 2 n/log’ n that are slowly varying at 
infinity, there is some C such that E (MC) = @(f(n)) 
(see [S]) for details). If C is const#rained to be convex 
the situation is very different. We prove in this paper 
that, for convex planar C, either E (h&f) = O(fi) or 

E (M,c) = 0 (log n) ; nothing between these two func- 
tions is possible. Our proof is constructive in that it 
provides necessary and sufficient geometric conditions 
on C for when each of the two behaviors apply. We 
also give sufficient, conditions for E (Mz) = O(1) and 
E (MC) = @(log n). In the non-planar case we give 

sufficient, conditions for E (A/i,“) = 0 (logd-’ n) and 

E (A&$‘) = O(nl-‘ld). Finally, a theorem due to De- 
vroye will allow us to translate all of our statements 
about, expectations into statements about higher mo- 
ments as well. 

Knowledge of the asymptotic behavior of E (M,f) 
will let us prove facts about the average running time of 
some maxima finding algorithms. For example, it will 
let us prove that the divide-and-conquer algorithm pre- 
sented in [2] has an expected O(n) running time when 
the input points are chosen from a large number of dis- 
tributions and not, only from the hypercube distribution 
assumed in that paper. 

The remainder of this section introduces the nota- 
tion that we will use. Section 2 presents our results 
along with some immediate algorithmic implications. 
Section 3 lists some useful tools. Section 4 contains the 
proof of our main theorem. In section 5 we conclude by 
presenting some open problems. 

Note: In this extended abstract we only provide a proof 
of the main Theorem. Considerations of space require us to 

352 



MAXIMA IN CONVEX REGIONS 353 

present the secondary theorems ant1 lemmas without form.al 

proofs. 

1.1 Notation And Helpful Facts. If p = (p.z,p.y) 
and q = (q.z,q.y) are planar points we say that p 
dominates q if p.2 2 q.x and p.y 2 q.y. Similarly, if 
p = (p.l,p.2 ,... ,p.d) and q = (q.1, q.2,. .,q.d) are d- 
dimensional points we say that p dominates q if p.i > q.i 
for all 1 5 i 5 d. If S = (~1, . . . , pn} is a set of points 
we say that P is maximal in S if there is no q E S, q # p, 
such that q dominates p. 

We set 

MAX(S) = {p : p is maximal in S}. 

See Figures 1 (a), (b) and (c). Suppose C is a 
measurable set. Let S = {yl, . . . . p,} be a set of 
n points drawn Independently Identically Distributed 
(I.I.D.) from the uniform distribution over C. Set M,” = 
IMAX(S to be th e number of maximal points in S. We 
will study E (Mz) , th e expected number of maximal 
points. 

A region C is convex if for all points p,q E C the 
line segment connecting y and q is also in C. A function 
f is convex in an interval [(Y, /3] if f((1 - X)zl + XQ) 5 
(1 - A)f(~l) + Xf(xz) for all LY 5 x1 < 22 5 p and 
0 < J 5 1. Note that if f is convex then its left and 
right derivatives f:(z) and f:(x) are defined at all 
(Y 5 z 5 p except for the left derivative at z = LY and 
the right derivative at 2 = /3 which are both undefined. 
Furthermore 

(1.1) < f;(x2)< f(23)-Jf(Z2) - 
23 -22 

for all (Y 5 x1 < 22 < x3 5 p. This fact will be very 
useful in the proof of Theorem 1. Finally, a function f 
is concave if -f is convex. 

2 Results and Applications 

This section presents our results and some immediate 
algorithmic applications. The following notation is 
used throughout: C is a bounded measurable region; 

P1, . . ..Pn are points chosen Independently Identically 
Distributed (I.I.D.) from the uniform distribution over 
C; AI,” = IMAX ({pl, . . . , p,,})l , the number of the 
points which are maximal; E (Mz) is the expected 
number of maximal points. 

We will always assume that C is a closed region. We 
do this to ensure that C contains its boundary, 8C : this 
assumption makes our proofs slightly simpler. Notice 
though that the assumption is not restrictive. If C is 

u71y bounded convex region then E (Mz) = E (Mz) 

because a point, chosen from the uniform distribution 
over c is in dC with probability zero. It thus suffices 
to analyze E (AI:) for closed C. 

2.1 Results. 
THEOREM 1. (THE GAP THEOREM) Let C be a 

planur convex region. We say that a point p E C is 
the upper-right-hand-corner of C if p dominates every 
point q E C. The expected number of muximu among n 
points chosen I.I.D. uniformly from C is qualitatively 
dependent upon whether C has an upper-right-hand- 
corner: 

l If C does not have an upper-right-hand-corner then 
E (M,c) = O(fi). 

l If C does have an upper-right-hand-corner then 
E (Mz) = O(logn). 

The proof is given in Section 4. Note that the 
theorem implies that, for convex planar C, E (Mz) can 
not behave like a function asymptotically between log n 
and fi, i.e., there is a gap between the two possible 
behaviors. 

EXAMPLE 1. Figures 1 (b), (c), (d), (f), and (h) all 
have upper-right-hand-corners and thus have E (Mz) = 
O(logn) : figures 1 (a), (e), and (g) don’t and so have 
E (M,c) = O(A). 

Theorem 1 tells us that when C does not have an 
upper-right-hand-corner then E (Mz) = O(A). When 
C does have such a corner then all that we know is 
that E (Mz) = O(logn). To derive tighter bounds it is 
necessary to have better information about the tangents 
to the boundary of C at the corner. We digress to 
introduce notation describing these tangents. 

Let C be a convex region. If C has an upper-right- 
hand-corner then the boundary curve of C as it leaves 
p can be divided into two parts: one curve that goes 
down and the other that goes to the left. 

We define two functions d(a) and l(a) : d(cr) = p 
where p is such that (p. x - p,p.y - Cu) is on the down 
curve and I(U) = p where /3 is such that (p.x--cy,p.y-p) 
is on the left, curve. See Figure 2. 

While these functions are not defined for all real (Y, 
the convexity of C ensures that there is always some 
6 > 0 such that both of the functions are well defined, 
convex and nondecreasing in [0, E] with d(0) = l(0) = 0. 
Because the functions are convex, their left and right 
derivatives exist everywhere in the interval except for 
the undefined left, derivative at 0 and the undefined right 
one at E. 

The down tangent to C at p is the tangent to the 
down curve at p. The slope of this tangent line is totally 
determined by the value of the right derivative d;(O). If 
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Figure 1: Figures (a), (b), and (c) each contain 10 points the maxima of which are marked by x-s: (a) contains 
5 maximal points, (b) 1 maximal point and (c) 3 maximal points. Figures (b), (c), (d), (f) and (h) all have 
upper-right-hand-corners (marked with a large point); the other figures don’t, have a corner. Figures (c) and (d) 
have horizontal left tangents; figures (c) and (h) h ave vertical down ones. Figure (d) has a doubly differentiable 
left tangent curve coming out of its upper-right-hand-corner. 
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Figure 2: C has an upper-right-hand-corner p with a vertical down tangent at p and a non-horizontal left one. 
The middle figure portrays d(a), the displacement, of the down boundary curve from the vertical line through p 
and the rightmost figure portrays I(a), the displacement between the left boundary curve and the horizontal line 
through p. 
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d;(O) = 0 then the tangent, line is vertical. Similarly, if 
I’+(O) = 0 then the lefl ionye&. line, the tangent to the 
left curve, is horizontal. This is illustrat,ed in Figure 2. 

The next two theorems discuss the behavior of 
E (Mz) when C has an upper-right-hand-corner . 

THEOREM 2. Let C be a convex plunur region with 
upper-right-hand-corner p. If the down tangent ut p is 
not vertical and the left tangent at p is not horizontal 
then E (Mz) = O(l), i.e., it is bonnded. Otherwise 

E (M,c) = w(l), i.e. it is unbounded. 

EXAMPLE 2. Figures 1 (b) and (f) have E (Mz) = 
O(1); figures 1 (c), (d), and (h) have E (Mz) = R(1). 

We now present a tight lower bound for many of the 
cases in which the left tangent is horizontal and/or the 
down tangent is vertical. 

THEOREM 3. Let C be u conuex plunur region with 
upper-right-hand-corner p. Snppose f&her thud one of 
the following (Lipschitz-like) conditions is fnlflled: 

The down tangent is not vertical and there ure 
positive constants 6 and c ~7~~11 that I(U) 5 CLU~+~. 

The left tangent is not ‘horizontal and there ure 
positive constants 6 and c such that d(a) 5 CCY~+~. 

There ure positive constunts 6 und c such that 
d(a). < ~(yl+~ and I(W) 5 ccr’+‘. 

Then E (Mz) = O(logn). 

Note that the condition 1(cy) 5 c(ult6 forces the left 
tangent to be horizontal and the condition I 2 CLU’+~ 
forces the down tangent to be vertical. Actually, these 
conditions can be thought of as requiring not, only the 
left (down) tangent to be horizontal (vertical) but, the 
requiring the entire curve leaving p itself to be “almost” 
horizontal (vertical) near y. These conditions might 
seem artificial but, in practice, are satisfied quite often 
as the following examples will illustrate. 

EXAMPLE 3. Suppose C has an upper-right-hand- 
corner p and its down tangent at p is vertical. If d 
is continuously doubly differentiable in some interval 
[0, E] then Taylor’s theorem with remainder tells us that 
there is some c such that d(a) 5 CU’ so Theorem 3 
tells us that E (Mz) = O(logn). The same is true if 
its left tangent is horizontal and 1 is any continuously 
doubly differentiable function. Thus Figure l(d), whose 
left curve is the upper left quarter of a circle, has 
E (M,c) = @(log n). 

EXAMPLE 4. As a special case of Example 3 we 
have that if C is a convex polygon with an upper- 
right-hand-corner and either a vertical down tangent 
and/or a horizontal left tangent at the corner then 
E (Mz) = O(logn), e.g. Figures 1 (c) and (h) have 
E (A& = @(log nj. Combinine Theorems 1. 2 and 3 
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we therefore find t,hat. if C is a convex polygon then 
E (Mz) = O(A), E (Mz) = O(logn), or E (Mz) = 
O(1); not,hing else is possible. 

Suppose that C has an upper-right-hand-corner 
with a vert,ical and/or horizontal tangent but this 
tangent, does not satisfy the Lipschitz-type condition of 
Theorem 3. Is it possible to show that E (Mz) must 
be either O(1) or @(log n) as Example 4 tells us must 
be the case when C is restricted to be a polygon? The 
answer, unfortunately, is no, as the following example 
illustrates. 

EXAMPLE 5. Let C be the region whose boundary 
is the line segment connecting (0,O) with (--e-l, -e-l) 

andthecurve{(-&,Y) : O<y<-e-l}.Itcanbe 

shown that, for this C, E (Mz) = O(lnln n) and from 
Theorem 2 we already know E (Mz) = w(l). 

All the results mentioned so far are only applicable 
to convex plunur regions. The situation is somewhat 
more complicated if the regions are higher-dimensional. 
We must now introduce some new notation. Let C be a 
fixed d-dimensional region and p = (y.1, p.2, . . . , pd) E 
C. We define maximal-rank(p) = k where k is the size 
of the largest, set of indices I C {1,2,. . , d}, III = k 
such that for all points q E S we have p.i 2 q.i Vi E I. 
Every maximal point in C will have maximal-rank > 0; 
the definition can be thought of as quantifying “how 
maximal” a point really is. We then define 

maximal-rank(C) = ~Ea~maximal-rank(p). 

For example, if C is two-dimensional and has an 
upper-right-hand-corner then maximal-rank(C) = 2, 
otherwise, maximal-rank(C) = 1. 

If c is a d-dimensional 
hypercube then mrlximnl-rank(C) = d; if C is a d- 
dimensional hypersphere then maximal-rank(C) = 1. 
We can now write down the d-dimensional analogue to 
the Gap Theorem: 

THEOREM 4. Let C be a d-dimensional convex re- 
gion. 

l If maximal-rank(C) = 1 then E (Mz) = 
0 (n 1-W) 

l If maximcll-rank(C) = d then E (Mz) = 

0 (log”-’ n) . 

Note that this theorem subsumes the two- 
dimensional Gap Theorem. Note too that in the d- 
dimensional case, unlike in the two-dimensional one, it 
is possible to have C with E (Mz) between nl-lld and 

1% d-1 It, seems to be an open question to fully char- 
acterize the possible behavior of E (Mz) when C is d- 
dimensional. 
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We close this section by quickly discussing the 
behavior of the higher moments E ((Mz)‘) , p > 1. 
Even though we have restricted ourselves to analyzing 
only the expectation of M,” there is a remarkable result 
due to Devroye [4] which lets us transform all of the 
statements presented in this section into statements 
about the higher moments. Devroye’s theorem tells us 
that if E (Mz) = O(g(n)) where g is a nondecreasing 
function then E ((Mz)‘) = 0 (gP(n)) (the same is true 
if 00 is replaced by 00). 

Whenever, in one of this sections results, we stated 
that E (Mz) was O(g(n)) or @(g(n)) the function g 
was nondecreasing and Devroye’s theorem is applicable. 
For example, using Devroye’s theorem we can rewrite 
Theorem 1 to say that if C does not have an upper- 
right-hand-corner then E ((Mz)‘) = 0 (np/‘) while if 
it does have a corner E ((M~)p) = 0 (logp n) . The 
other results about maxima in this section can all be 
generalized in exactly the same way. 

2.2 Algorithmic Applications. Maxima have ap- 
plications in statistics, economics, graphics, and compu- 
tational geometry [7] to name just a few fields. For this 
reason there is a large literature describing algorithms 
to calculate them. Many of these algorithms have been 
designed to have good average case behaviors when the 
input points are chosen from certain distributions [l] [2] 
[3]. Detailed information describing the asymptotic be- 
havior of E (Mz) , such as presented in the first part of 
this section, can lead to better analyses of these algo- 
rithms. We present two such immediate applications. 

Bentley, Kung, et. al [2] present an algorithm that, 
they prove finds, in O(n) expected time, the maxima 
of n input points chosen I.I.D. from a d-dimensional 
hyper-rectangle rectangle with sides parallel to the 
Cartesian axes. Their proof is dependent! only upon the 
fact that, when C is the hyper-rectangle, E (Mz) = 

0 (logd-’ n) . Th eorem 4 therefore tells us that, their 

algorithm continues to run in O(n) expected time 
not only when the points are chosen from the hyper- 
rectangles, but when they are chosen from any convex 
C with matinal-rank(C) = d. In two dimensions this 
means that if C has an upper-right-hand-corner then 
their algorithm finds the maxima in O(n) time. 

The algorithm discussed above is not particularly 
simple to program and, for this reason, Bentley, Clark- 
son and Levine introduce [l] a new easily coded maxima- 
finding algorithm, the Move-To-Front, heuristic, which 
empirical evidence suggests runs extremely quickly. The 
expected running time of this algorithm can be shown 

to be bounded above by 

(2.2) 

when t.he input points are chosen I.I.D. from the uniform 
distribution over C. Using the fact that, if C is a 
rectangle with sides parallel to the Cartesian axes then 
E (Mz) = @(log n), they used the above equation to 
show that the expected running time of their algorithm 
is bounded above by O(nlogn) when C is such a 
rectangle. Armed with the results of the previous 
subsection we can say much more. For example, if C is 
any convex planar region that has an upper-right-hand- 
corner then plugging the result, of Theorem 1 into (2.2) 
tells us that Bentley, Clarkson and Levine’s algorithm 
will run in O(n log n) expected time on n points chosen 
I.I.D. uniformly from C. If, furthermore, C’s down 
tangent, at, the corner is not vertical and its left tangent 
at, the corner is not, horizontal then Theorem 2 tells us 
that the algorithm will run in O(n) time. 

3 Tools of the Trade 

In this section we describe some lemmas that will 
be useful in the analysis of E (Mz) . The proofs of 
the lemmas are relatively straightforward but, because 
of space considerat,ions, are omitted in this extended 
abstract. 

There are a class of affine transformations under 
which E (kfz) remains invariant. 

LEMMA 1. (SCALING) Let T be one of the following 
three types of trunsformations: 

1. Trunslution: T(z, y) = (z + n, y+ b) where a, b are 
uny red nnmbers. 

2. Reflection over the line z = y : T(z, y) = (y, z). 

3. Positive Sculing: T(z, y) = (ax, by) where a, b > 0. 
Then, for uny meusuruble region C, E (Adz) = 

E (MT’) , where TC = {T(z, y) : (2, y) E C}. 

We will find it, very useful to be able to upper-bound 
E (Mz) by upper-bounding the expected number of 
maxima in C’s component parts. 

LEMMA 2. Let C = CI U Ca where Cl C2 are not 
necessarily disjoint. Let S = {ql, . . . , q,,} c C. Then 
(u) MAX(S) n Cl c MAX(S n Cl). Further suppose 
that E (Mzl) = O(fi(n)) and E (M?) = O(fi(n)) 
where fi and f;! ure nondecreasing fnnctions. Then (b) 

E (Wf) = O(fdn) + n(n)). 
There is a corresponding lemma that, in special 

instances, lets us lower-bound E (Mz) . 
LEMMA 3. Let C,C’ be measurable regions with 

C’ c C and the property that only points in C’ can 
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dominute points in C’, i.e. if p E C dominutes q E C’ 

then p must be in Cl. Then if E (M,C’) = R(logn) we 

Let, m = [fij and set, Z; = A, 0 5 i < m. Define 

Ai, 0 2 i < m to be t,he r%ioll 

must have E (Adz) = fi(logn). Similarly if E (Mz’) = Ai = C n ((2, y) : Xi 5 X < Xi+l, Y > f (Xi+l)}. 

C?(6) then E (AI:) = R(&i). 
\ I 

We will need the following special case in the proof 
We have defined the Ai so that, with constant 

of Theorem 1. It can be proven by direct calculation. 
probability, at least one of the points in S will be 

EXAMPLE 6. Let a, b > 0 and let, C be a right, 
in A;. To see this, note that Ai, contains the (open) 

triangle with vertices (O,O), (0, b), and (-a,O). Then 
triangle x with vertices (xi, f(xi)), (xi,f(xi+l)), and 

E (M,“) = O(logn). We emphasize that the constants 
(zzi+l, f(xi+l)). Applying inequality (4.4) yields 

implicit in the 0 notation are independent of a and b. 
This follows from the positive-scaling part of Lemma 1. 

We conclude this section with a lemma which will 
be crucial in the proof of Theorem 1. It lets us show 
that if C = T U V such that T dominates V in a very 
particular way then V will not. contain many maxima. 

LEMMA 4. Let a, b be positive constants und let T 
be the triangle with vertices (O,O), (O,(l), and (-b,O). 
Let V be any bounded meusuruble region totally con- 
tained in the quarter plune {(x, y) : x < 0, y < 0). Set 
C = T U V and let S = {pl, . . , p,,} be points chosen 
I.I.D. uniformly from C. The expected number of these 
points vlhich are in V and ure rnuzirnul will be O(1) : 

ArecA 2 Area(Z) 1 i(xi+l-xi) (f(xi)-f(xi+l>) 2 &. 

Letting c = Area(C) we find that 

Pr (IAi n SI > 0) = 1 - 1 - 
Area(A) n , 1 -e-k 1 Area(C) - ’ 

(4.5) 
A point, q E C can not dominate a point in Ai 

unless q E Ai as well. One consequence of this is 
that, MAX(S) n Ai = MAX(S n Ai); another is that 
if IS n Ail > 0 th en IMAX(S n Ai)l > 0. Combining 
these two facts with inequality (4.5) we find that 

E(IMAX(S) n VI) = O(1). E (IMAX(S L c E (IMAWS n &)I) 
fl<i<m 

4 Proof of the Gap Theorem 

Proof of Theorem I: In the proof we assume that, S = 

{P1, .‘., p,} is a set of points chosen I.I.D. uniformly 
from the C under consideration, i.e. E(M,C) = 

E (IMAX(S . 
(a) The case that C does not huve un upper-right-hund- 
corner.’ 

We must prove that E (Mz) = O(fi) when C has 
an upper-right-hand-corner. As mentioned in the first 
section Dwyer [5] has proven a general upper bound; 
for all convex C, E (Mz) = O(fi). It0 will therefore 

suffice to prove that E (Mz) = a(&) for C of the 
type described. We prove this in two stages. 
(i) We start by assuming that C is a region that has the 
following form 

(4.3) c = ((2, y) : 0 < 2 5 1, 0 5 y 2 f(z)} 

where f(x) : [0, l] + [0, l] is a concave function with 

f(O) = 1, f(l) = 0, and f;(O) < 0. See Figure 3 (a). 
Note that the fact that f is concave and has 

negative right derivative at. 0 immediately implies that 
f is a monotonically decreasing function in [0, 11. It 
actually implies more than that. Let, t = -f:(O) > 0. 
Using equation (1.1) we see that 

(4.4)f(x) - f(x’) > 1(x’ - x), vx, I’, 0 5 2 < 2’ 5 1. 

2 m(l-e-f) =Q(J;I). 

(ii) We now prove the first part of the theorem in its 
full generality. Let C be a bounded convex region 
that does not have an upper-right-hand-corner. We will 
show that, C contains some region Cl equivalent, after 
translation and positive scaling, to the type of region 
analyzed in part (i) and therefore E (Mzl) = R (fi) . 
Furthermore no point in C \ C1 will be able to dominate 
a point in Cl so Lemma 3 will let us conclude that 
E(M,C)=fi(fi). 

We define x,,, = max{x : (x,Y> E Cl and 
YWWZ = max{y : (x, y) E C}. We also define Z = 
max{z : (x, z/moZ) E C} and jj = max{x : (x,,,, y) E 
C}. The points RH = (Z, ymazt) and HR = (xmaz, g) 
are, respectively, the rightmost, point with maximal y- 
coordinate in C and the highest point with maximal x- 
coordinate. Figures (3b) and (3~). Note that RH # HR 
since otherwise RH is the upper-right-hand-corner of C 
and the assumption is that, C does not have an upper- 
right-hand-corner. 

Let, 1 be the line segment connecting RH and HR. 
Let the equation of this line (segment) be y = l(x). By 
its definition, 1 has a negative slope. It therefore makes 
sense to talk about a point being above or below 1. Also, 
by t,he convexity of C and the fact that RH, HR E C 
we know that, 1 c C as well. 
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Figure 3: Steps in the proof of Theorem 1. 

Let f be the function f(x) = max{y : (5,~) E C}. 
For x, Z < x 5 x,,, this function is well defined, 
concave and monotonically decreasing. Since 1 c C we 
know that l(z) 5 f(z) for all 3: in this domain. 

Let (z’, y’) be the midpoint of 1 : x’ = @+2,,,)/2, 
y’ = (y + ymaz)/2 = 1(z’). Suppose that f(d) > l(d) = 
y’. Let C1 = C n {(z,y) : 2 2 z’, y > y’}. See 
Figure 3 (b). This region is nonempty since it cont,ains 
(z’, f(d)). Furthermore, after translation and positive 
scaling, Cl is in exactly the form addressed by part. (i) 
above so E (Mzl) = 0 (a. No point in C \ Cl can 
dominate a point in 171 so, from Lemma 3, we find t,hat 
E(M,+Q(,/$ 

Assume then that f(d) = y’. Figure 3 (c). The 
concavity of f then requires that f(z) = I(z) for all 
3: 5 2 5 x,,,. There thus must then be must be some 
c > 0 such that (z’, y’ - a) E C for all (Y < c. Let 6 be 
small enough so that y’ - E > g. The triangle 

Cl = cn{(x,Y) : x>x',y>y'--e} 

is nonempty. After translation and positive scaling this 
triangle is also in exactly the form addressed by part 
(i) above so E (Mzl) = R (fi) and from Lemma 3 we 
find that E (Mz) = Q(fi . 

We have thus shown that E (Mz) = Q (fi) for all 
convex regions C that, do not have an upper-right-hand- 
corner and have finished this part of the proof. 

(b) The case that C does have on upper-right-hund- 
corner p: 

We must show that, for C of this type E (ME) = 
0 (log n) . The proof is divided into three stages. 
(i) Let, 0 5 s 5 1, 0 5 r 5 1 be constants and let C be 
the region whose boundary is composed of the following 
curves: the line segment connecting (1,l) and (0,O); the 
horizontal line segment connecting (0,O) and (s, 0); the 
vertical line segment connecting (1,l) and (1, r); the 
curve (2, f(x)), s < z 5 1 where f : [s, l] 4 [r, l] is 
a convex monotonically increasing function such that 
f(s) = 0, f(1) = r, and f:(l) 5 00. See Figure 3 (d). 
We show that for C of this type E (Mz) = 0 (log n) . 

Recall that the set S = {pl, . . . , pn} is composed 
of points chosen I.I.D. uniformly from C. We use the 
notation q = (q.z, q.y) to denote the components of a 
two-dimensional point q. Let z’ = max{q.z : q E S}. 
Let y’ = min{y : (z’,y) E C} : if x’ < s then y’ = 0 
while if z’ 1 s then y’ = f(d). We define two new 
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regions and a line segment 

Cl = cfl{(x,y): x<x’,y>y’} 

cz = Ci-l{(x,y) : 2 < x’, y < y’} 

1 = Crl{(x,y) :x=x’}. 

Our definitions ensure that S C Cl U Cz U 1 and that 
there is at least one point q E S with q.z E 1. 

Now 1 is a vertical line so the highest point in 1 
dominates every other point in 1 and [MAX(S) n 11 = 1. 
Let q be this highest point. From the definition of y’ 
we also know that p.y 2 y’. Therefore q dominates all 
of the points in S n C, and IMAX n Czl = 0. 

We have already seen, in Example 6 that 
E (A@) = 0 (log n) The points in S n Cl have the 
same distribution as IS n (711 points chosen I.I.D. uni- 
formly from Cl. Thus 

E(WX(S) n C,l) I E (lMAX(S n Cl)!) 
= 0 (E(log IS n C,l)) = 0 (log TI) 

Using Lemma 2 to combine the results of the 
preceeding three paragraphs we find that 

E (M,c) = 0 (log n) 

and have finished part (i). 
(ii) We now slightly generalize the C’s dealt. with in 
the previous case. Let C be a convex planar region 
with upper-right-hand-corner p. Recall the definition of 
1 and d given in Section 2. We furt,her assume that, in 
1 and d’s domain of definition [0, E] the function 1 is the 
straight line l(cr) = (Y. This last condition simply means 
that “near” p the left tangent! is a line segment0 with 
slope 1. See Figure 3(e). We show that, for C’s of this 
type E (M,f) = 0 (log n) 

Without loss of generality we may assume that 
p = (1,l) and 6 = 1; otherwise we can translate and 
positively scale the region using Lemma 1 so that this 
is true. We define three regions in C : 

T = Cn{(x,y): y>0,3:<1--d(1)) 

u = Cn{(~,y) : ~2 0) 

V = cn{(x,Y) : Y 5 01 

Note that U is in exactly the form required by part 
(i) and thus from Lemma 2 

E(IMAX(S) n UI) 5 E(JMAX(Sn v)l) 

(4.6) = 0 (E(log IS n UI) = O(log n). 

Note too that V and T are in exactly the 
form required by Lemma 4 so if q1, . . , qm were 

m points chosen I.I.D. uniformly from V U T then 
E(IMAX(ql, . . , qm) n VI) = O(1). Thus 

E(IMAX(S)nVI) 5 E(IMAX(Sn(VUT))nVl) = O(1). 

Since C = VW we can combine this last inequality with 
equation (4.6) and apply Lemma 2 to derive E (d&f) = 
O(log n). 
(iii) We are now ready to prove the lemma in its 
full generality. Let, C be a region which satisfies the 
condition of the lemma. Let 1 be the line which bisects 
the angle formed by the left and down tangents at the 
upper-right-hand-corner p. We may assume that 1 has 
slope 1. Otherwise we may use Lemma 1 to positively 
scale C so that 1 does have slope 1 without changing the 
values of E (Mz) . We may also assume that p = (1,l). 
Thus 1 is the line z = y. We split C into two parts; that 
above the line and that below it: 

C,={(x,y)EC: x>y}, C1={(x,y)EC: XII/}. 

See Figure 3(f). C 1 is in exactly the form analyzed 
in part, (ii) so E (M,f)1 = O(log n). Let T(x, y) = (y, z) 
be the transformation that reflects over the line 2: = y. 
The reflection TCr of C2, has the form analyzed in 
part (ii) so E (MT”‘) = O(logn). From Lemma 1 
E (M?) = E (MT”‘) = O(logn). Using the fact that 
C = Cl U Cz and Lemma 2 we conclude by establishing 
that E (Mz) = O(logn) and are finished. n 

5 Conclusion And Some Open Problems 

In this note we studied the asymptotic behavior of 
E (M$) , the expected number of maxima in a set of n 
points chosen I.I.D. uniformly from a bounded convex 
set, C. We also discussed algorithmic appplications, and 
the asymptotics of the higher moments of M,“. Many 
problems in this area remain unanswered. To list just 
two: 

l When does M,” obey a central limit theorem? It is 
known that it does when C is the unit square. For 
other C the question seems to be open. 

l What, can be said about E (Mz) when C is a d- 
dimensional convex region, d > 2? As discussed in 
section 2 the results in this note can be somewhat 
generalized to higher dimensions but there are 
many cases still left unanalyzed. 

Acknowledgements : The author thanks Weiping Shi 
for bringing these problems to his attention, Luc De- 
vroye and Rex Dwyer for their emailed comments con- 
cerning t,he expected number of maxima, and Jon Bent- 
ley for the idea which led to the proof of Theorem 1, 
part (i). 
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