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Limit Theorems for Minimum-Weight Triangulations, Other Euclidean Functionals, 

and Probabilistic Recurrence Relations 
(Extended Abstract) 
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Abstract 
Let MWT(n) be the weight of a minimum-weight triangu- 
lation of n points chosen independently from the uniform 
distribution over [0, 112. Previous work [ll] has shown that 
E(MWT(n)) = e(&). 

In this paper we develop techniques for proving that 

v 
actually converges to a constant in both expecta- 

tion and in probability. An immediate consequence is the 
development of an O(n2) time algorithm that finds a tri- 
angulation whose competive ratio with the MWT is, in a 
probabilistic sense, exactly one. 

The techniques developed to prove the above results 
are quite general and can also prove the convergence of 
certd;n typis of probabilistic recugrence equations a;d other 
Euclidean Functionak. This is illustrated bv usine them to 
prove the convergence of the weight of MWTs Gf random 
points in higher dimensions and a sketch of how to use 
them to prove the convergence of the degree probabilities 
for Delaunay triangulations in 9?‘. 

Keywords: Euclidean Linear Functionals, Minimum 
Weight Triangulations, Limit Theorems 

1 Some background 

Let S be a finite set of points in 8’. A triangulation of S 
is a maximum collection of noncrossing edges connecting 
points in S. This collection of edges partitions the 
interior of the convex hull of S into a set of triangles 
1. The weight of triangulation T is the sum of the 
lengths of the edges contained in 7. A Minimum- 
Weight Triangulation of S is one that has has minumum 
weight among all triangulations of S (Figure 1). We 
will use MWT(S) to denote both the minimum-weight 
triangulation and its associated weight; the precise 
meaning of the notation will be obvious from context. 

Finding MWT(S) is a difficult problem for which 
an efficient solution is still unknown. The best triangu- 
lations that can currently be found are at best approx- 
imations to the minimal one. For this reason there is 
interest in knowing exactly what is being approximated, 
leading in turn to an interest in calculating the average 
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Figure 1: A Minimum Weight Triangulation 

cost of the MWT of random points. 
It has previously [ll] been shown that if ~i,z2,. . . 

are chosen independently and uniformly from the 
unit square [0, 11’ and S, = (21, . , x~} then 
E (MWT(S,)) = 0(,/Z). 

This paper was motivated by a desire to prove 
stronger convergence theorems for MWT(S,). Doing 
so required developing new general tools for proving 
the convergence of linear functionals that might be of 
independent interest in themselves. More specifically 
this paper contains the following results: 

1. A demonstration of the existence of a constant c 
such that v --f c in both expectation and 

probability. (Section 2) 

2. An algorithm that runs in 0 (n2) worst-case time 
on S, 

that E 

toPpr:o; a triangulation PART(&) such 

( 
( R 

fi 
‘> -+ c where c is the MWT 

constant. (Section 2.1) 

3. New conditions for proving the convergence of 
Euclidean Functionals (Section 3.2) 

4. Illustration of the use of these new condi- 
tions in proving convergence theorems for higher- 
dimensional “triangulations” of random points in 
[0, lid. (Section 3.3) 5points in [0, 112. 

252 
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5. An examination of the convergence of the solutions 
of certain types of probabilistic recurrence relations 
that arise quite often in geometric probability. 
(Section 3.1) 

Historically, there is a large literature in the applied- 
probability community extending back at least to 
Beardwood, Halton, and Hammersley [l] on how to 
prove convergence of the type of geometric random vari- 
ables known as Euclidean Fuctionals. These techniques 
have been used to examine the asymptotic behavior of 
a variety of geometric functionals ranging from Travel- 
ling Salesmen Tours, to Minimum Spanning Trees, to 
Matchings and beyond. Surveys of the current state of 
the art in this type of analysis can be found in [14], 
[17], and [13]. The existing techniques require that 
the functionals obey certain growth conditions such as 
mono-tonicity or conlin~iSy. For example, the Steiner- 
Triangulation (ST) problem obeys a monotonicity con- 

straint and -9 can therefore be shown to converge 
to a constant [15] where ST(S) is the weight of the 
minimum-weight Steiner triangulation of S. Similarly 
the minimum-spanning tree can be shown to satisfy a 

continuity type requirement and 9 can therefore 

be shown to converge to a constant [17] where MST(S) 
is the weight of the minimum-spanning tree of S. The 
Minimum-Weight triangulation, though, does not sat- 
isfy the known conditions and therefore did not fit into 
the known frameworks leaving the question of its con- 
vergence as an open problem. 

In this paper we describe a new technique that per- 
mits loosening the continuity conditions enough to allow 
proving convergence for MWTs. We should note that 
our technique loosens the conditions substantially, al- 
lowing proofs of convergence for other problems that 
were previously unanalyzed. Nothing is free, though 
and we end up paying for this loosening; our techniques 
only permit proving convergence in the mean and prob- 
ability while the older, more restrictive techniques also 
permitted proving almost-sure convergence. 

In the computer science community the literature 
alluded to above is best known through its use by Karp 
[7] [8] in the development of a heuristic for finding the 
Travelling Salesman tour of S, that, in a probabilistic 
sense, had an approximation ratio of 1. In a similar 
fashion we are able to use our proof of the existence 

of c > 0 such that of 
w 

-+ c to develop a 
polynomial time algorithm for finding a triangulation 

PART(&) such that E 
( pART(sn > J;s 1 ---f c where c is 

the same constant. (It will even be possible to prove 

the stronger result that, kw ---) 1 in expectation 

and probability but that would b”e beyond the scope of 

this extended abstract.) In a probabilistic sense, then, 
this heuristic has an approximation ratio of I improving 
upon the previously best known heuristics [lo] [3] which 
had only constant approximation ratios greater than 1. 

The paper is structured as follows: Section 2 proves 
some structural properties of Minimum Weight Trian- 
gulations (MWTs) and then states (without proof) a 
convergence theorem for MWTs. It then describes how 
the convergence theorem implies a triangulation heuris- 
tic that, in a probabilistic sense, has an approximation 
ratio of of one with the MWT. Section 3 proves conver- 
gence theorems for certain general types of probabilistic 
recurrence relations and then describes applications, in- 
cluding the proof of the MWT convergence theorem of 
Section 2. 

To conclude we point out that the techniques devel- 
oped in this paper, at their core, reduce to the analysis 
of the solutions to probablistic recurrence relations of a 
certain type that occur quite naturally in the analysis of 
many geometric problems. Analyzing these recurrence 
relations goes part of the way towards resolving an open 
problem posed by Karp in [9]. 

Note: In this extended abstract we omit the tech- 
nical details of the proofs of many of the theorems and 
lemmas, contenting ourselves with only providing intu- 
ition as to why they are correct. 

2 The Minimum-Weight Triangulation 

Let 21,22, ~3, , . . be points chosen independently from 
the uniform distribution over the unit square [0, 11’ and 
set S, = (21, ~2, . . . , I~}. In this section we derive 
some basic facts about MWT(S,) that, taken together 
with a general theorem about Euclidean Functionals 
stated in the next section will imply 

THEOREM 1. There exists a constant c > 0 such 
that MWT(sn) 

J;; 
converges to c in both expectation and 

probability, i.e., 

E(Mw-)) -+c, 

and 

‘de> 0, Pr 
(I 

MwT(Sn) - c > 6 --f 0. 
fi I > 

Furthermore 

VAR ( Mw$sn)) + 0. 

The actual proof of Theorem 1 is deferred until the end 
of section 3.2. We devote the rest of this section to 
studying the MWT. 
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LEMMA 2.1. Let 5’ c [0, 112 be any finite subset 
with ISJ = n and let S, be a random subset as described 
above. Then 

1. MWT(0) = 0 and MWT(S,) < n2. 

2. For every a > 0, MWT(aS) = aMWT(S) where 
as = {crx : 2 E S}. 

3. For every z E Rd we have MWT(S+z) = MWT(S) 
where S + x = {y + x : y E S}. 

4. For m = 2 and m = 3 consider the partition 
(Qi)ism2 of [O, 112 into m2 eqlaa;l sized squares. 
Then 

MWT(S) 5 c MWT(S II Qa) + F(S). 
i<ma 

where 

Pr (F(&) > In2 n) = n-n(‘“ta). 

5. E (MWT(Sn+l)) 

5 E (MWT(Sn)) + 0 (9). 

Proof The proofs of items 1, 2, and 3 are straight- 
forward. To prove items 4 and 5 we will need to use 
the fact that the “outside” of any triangulation of a set 
S consists of exactly the edges on CH(S), the convex 
hull of S (Figure 1). For this reason we will need some 
well known facts concerning the convex hull of random 
points: 

LEMMA 2.2. The number of points on the convex 
hull of S,, satisfies E (]CH(Sn)]) = O(ln n) and for any 
fixed k > 0, Pr (]CH(&)] > k ln’n) = r~-~(‘~“). 
Proof The expectation result comes from [12]. The 
high probability bound does not seem to be written 
down but can be proven using standard Chernoff-bound 
texhniques. cl 

We now prove item 4 restricted to the case that 
m = 2; the proof for the case m = 3 is almost exactly 
the same. Note that one way of triangulating S is to 
first construct MWT(S n Qi), for i = 1,2,3,4, and 
then add edges connecting points on the convex hulls of 
the four sets until a full triangulation is found (Figure 
2). The number of such edges added is bounded by 
2 Cf=, jCH(sn Qi)] while the length of each such edge 
is at most a. Since the weight of this triangulation 
upperbounds the weight of MWT(S) we have shown 
that 

MWT(S) 5 C MWT(S II Qi) + F(S). 
i<m= 

where F(S) 5 2&C:=i JCH(S n Qi)]. The proof 
of item 4 follows by using Lemma 2.2 to show that 
Pr fICH(S n Q;)l > ln2 n/(&/5)) = n-n(‘n.n). 

MORDECAI J. GOLIN 

Figure 2: Illustration for the proof of item 4. 

Figure 3: Illustrations for the proof of item 5. The point 
p is added to a previously existing triangulation 7. 

To prove item 5 assume for the moment that S,, 
along with an arbitrary triangulation 7 of S,, are 
known (as with the MWT we will let context dictate 
whether 7 is the actual triangulation or its weight). Let 
z, Tz, .**, T, be the triangles comprising 7 and set 
Cl, c2, “‘, C,,, to be the length of their corresponding 
perimeters. Finally let X*+X be some point chosen 
randomly from [0, 112 and construct a triangulation 7’ 
of sn+r = s, u {xn+i} as follows: 

l If xn+i is outside CH(S,) add all edges not in- 
tersecting CH(S,,) that connect zn+i to points on 
CH(&). The total length of all edges added is at 
most filCH(Sn)] (left diagram in Figure 2). 

l If x,+1 is inside CH(S,) let Ti be the unique 
triangle containing x,+1 and draw the three edges 
connecting x,+1 to the vertices of Ti.2 The total 
length of all edges added is at most 3Ci (right 
diagram in Figure 2). 

Now define the indicator random variables 

10 = 
1 z,+r outside CH($) 
0 otherwise 

and 

L We do not consider the zero-probability event of z,+l falling 
uDon some edae of 1. 
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Then 2.1 A Heuristic Triangulation Algorithm 

Notice that E (Ii) = Ai where Ai = Area(z). so 

(2.1)E(7’)-7+/5E(Ie+X(SJ)+3~A&‘~. 

Recall, now that S,, and S,,+r are random point 
sets so Lemma 2.2 implies that, with probability I - 
n-n(1nn), we may assume that both ICH(Sn)l < ln’n 
and ICH(S,,+r)l < h-r2 n. We now use a standard trick 
from the analysis of randomized algorithms and notice 
that I0 = 1 if and only if ~,+r is on CH(S,,+r) 
which, because x,+1 has the same distribution as a 
random point from Sn+r, occurs only with probability 

Ic*(sn+l)L Thus, from Lemma 2.2, n. 

E (10 . jCH(Sn)j) = O(ln4 n/n). 

To analyze the second summand on the right hand 
side of (2.1) we need the following lemma: 

LEMMA 2.3. Let S, be as defined above and let T 
be any triangulation of S,,. then 

Pr 
( 

3 triangle T E 7, Area(T) > 
ln2 71 
72 

> 
= ,-n(lnn) 

Proof For i < j < k < n let Ti,j,k be the triangle with 
vertices xi, Xj, tk and Ai,j,k = Area(Ti,j,k). If Ti,j,k is 
in any triangulation it may not contain any points of 
S, in its interior. The probability of z:,j,k having an 

empty interior is (1 - Ai,j,k)“-3. Rut, if Ai,j,k > e, 
then (I-Ai,j,k)n-3 = 12 -n(‘n n). Summing over all i, j, k 
completes the proof. cl 

Now note that every edge in the triangulation 
can appear in at most two triangles so xi Ci 5 27. 
Plugging this fact, along with the previous lemma, back 
into (2.1) we find that, for any triangulation 7, 

E(7’)-7 _< 0 +!!!h~Ci 
n a 

5 
61n2 rt 
-7 

n 

Now let 7 = MWT(S,). From [ll] we know that 
E(MWT(&)) = O(fi). Plugging this into the above 
equation and taking expectations yields 

Suppose now that we are given some k-triangulation 
‘7, of S. This can be extended to a (Ic - l)-triangulation 
of S as follows: for each i 5 4k-1 construct a triangu- 
lation of QF-’ by starting with the edges in u’=~T,~~~ 

and adding arbitrary non-intersecting edges conne&g 
vertices in U;,,CH (S Cl Qf,il) until a triangulation is 
formed. The total number of such edges added will be 
at most 2 x;,r ICH (S n Q,“,jr) ( . Using standard tech- 
niques one can show that the total number of opera- 
tions required to extend a k triangulation to a (k - l)- 
triangulation is 

E (MWT(Sn+l)) - E (MWT(S,,)) 

Let S C [0, 112, S = n, and S,, as described above. 
In this section we describe an O(n2) worst case time 
algorithm for finding a triangulation, PART(S), that, 
in a probablistic sense, closely approximates MWT(S). 
In fact, using the results of the previous subsection we 
will sketch a proof that, if S, is a set of n points chosen 

randomly from the unit square, then E (T) --) 

.c where c is exactly the constant in Theorem 1 (In reality 

one can go further and show that $$&$$$ + I in 

both expectation and probability but the &of of that 
statement is beyond the scope of this paper). 

To proceed we will need two basic facts. The first, 
which follows from Theorem 1, is that for every c > 0 
there exists N such that Vn > N, E(MWT(S,)) 5 
(c+e)fi. The second is the existence of a basic dynamic 
programming algorithm for finding the MWT of n 
points in 0 (nn+‘) worst case time (see e.g., [4]). Thus, 
the MWT of & points can be found in O(n) worst 
case time. 

Before defining PART(S) we introduce the idea of 
a k-partition and a k-triangulation. 

Given integer k 1 0 the k-partition of [0, 112 is the 
partition of the unit-square into 4” smaller squares Q,“, 
i 5 4k, each of which has area 1/4k. We denote by Qf,j 
j = 1,2,3,4 the four squares in the (k + 1)-partition 
that combine to form 0:. 

Now, given S c [0, 11’ and 7 C S x S, let ITQk be 

the set of edges in 7 that fall totally within 0:. We say 
that 7 is a k-triangulation of S if (a) for all i 5 4k, 
7& is a triangulation of QF n S, and (b) 7 = Ui I&. 
A k-triangulation thus can be thought of as the union 
of triangulations of the points in each of the 4k small 
squares. 

I E ((MWT(Sn))‘) - E (MWT(Sn)) 
<o ln4n 

(-)++o(Ji;)=o($) - n 

O(log n) c /CH (S n Qf) ( = O(n log n). 
i<4’L 

completing the proof of Lemma 2.1 cl The total length of all edges added in this extension will 
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be at most < (c+4fi 

(2.2) Ck = 2-(k-‘)JZ c ICH (s l-l 6%) 1 . Thus, for large enough n, the total expected cost of the 
i54L I-triangulation built will be at most 

If S = S, is a random point set as described above 
then IS fl Qfj is binomially distributed with parameters 2’(c + e>fi = (c + f>fi 

n, p = 4-’ so if np > & Lemma 2.2 tells us that 
E (ICH (Sfl @)I) = 0 (ln (4-kn)) and thus E (Ck) = completing the analysis* 
0 (2k In (4-kn)) 

We can now describe our algorithm. Let 1 = 
3 Convergence Theorems 

[log, n - $ Iog, log, nj. Construct an I-triangulation 7 I In this section we prove a theorem implying the con- 

of S by triangulating each set S n Qi separately as vergence of many Euclidean functionals including the 

follows: if ]SnQfj 5 & use a dynamic programming MWT. Before doing so, though, we will have to prove 

(or some brute force) algorithm to find MWT(SnQf) in convergence theorems for a form of probabilistic recur- 

O(n) time. Otherwise find the Delaunay triangulation rence relation that arises quite often (in a hidden form) 

of SnQj in O(lSnQ# log n time. The total time needed in the analyses of the functionals. 

to construct this I-triangulation is O(n’). 
Next iteratively construct a sequence ‘Tk, k = 3.1 Basic Lemmas 

1 - 1,l - 2,. . . ,O of k-triangulations where 7k is DEFINITION 3.1. A sequence of positive reals &, 

the k-triangulation created by extending the (k + l)- n = ‘3 2l 3y . . . is binomially bounded with parameter a 

triangulation 7’+i using the procedure described pre- if there exists some CI E Y?+ such that & = O(nCI) and 

viously. Set PART(S) = 7’ By definition PART(S) is 
a triangulation of S. (3.3) dn I E (4x) I+ 0 

Since each extension step requires O(nlogn) time [ (Lk>l+“(Gk> 

the construction of all of the extensions uses O(n log2 n) 
time and thus the complete construction of PART(S) 

where X is a binomial random variable with parameters 

requires O(n’) time. 
n p = l,o 

We claim that VE > 0, if n is large enough, then 
We emphasize here that the actual items in the se- 

E (PART(&)) < (c + c)fi. Because the definition of c quence’ the &a’ 
are deterministic; the recurrence rela- 

requires that VE > 0, E (PART(&)) 2 (c - c)fi for all 
tion that they obey though, is probabilistic. 

large enough n this will imply E (v) -+ c. 
The first thing to notice about these sequences 

is that they are bounded (the proof of the lemma is 
First note that the expected cost of all edges added omitted in this abstract): 

in the extension stage of the algorithm is LEMMA 3.1. Let a&, n = 1,2,3,. . . be a binomi- 

&E(ck) = 0 (k2iln (a*,)) = o(h) 

ally bounded sequence with parameter a > 1. Then 
the sequence is bounded, i.e., there exists c such that 

k=O kc0 
Qn, q!~n < c. Furthermore, for all n, 

and thus we only need to bound the expected weight of 
the first stage of the algorithm. 

Let Xi = S,, n 9:. This is a binomial random 
variable with parameters n and p = 4-l and thus 

E(X) - $i. Chernoff-bound techniques prove 
thatlnlnn<Xi<* with probability 1 - O(nm3). 
We may therefore assume that Xi is within this range 
(because its expected contribution to the weight of the 
l-triangulation when it is out of the range is o(e)). 
Thus, in our analysis we may assume that the algorithm 
will construct MWT(S,, n Qi). If n is large enough (so 
that lnlnn is large enough) we have that 

E (MWT(s, n 9:)) < (C f i)E (a) 

(3.4) 

where v, = max ~+q<filnn h. 
If the sequence obeys a slightly more stringent 

condition it can be shown that it is not only bounded 
but that it also converges. It is this fact which forms 
the basis for all of the other results in this paper. 

THEOREM 2. Let Q),,, n = 1,2,3,. . . be a binomi- 
ally bounded sequence for both parameter a > 1 and 
parameter b > 1 where log, b is irrational. Furthermore 
suppose that & satisfies at least one of the following 
two conditions: 

= (c+$)~(l+o(~)) (A) Qn, &+I L 4n + 0 
(fia2n) ’ 
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(B) Vn dh I &+I + 0 (&>. 
Then there exists c > 0 such that lim,,, & = c. 

Pick Nr large enough so that for N 2 Ni in 
equation (3.5) the 0 (A) term is less than c/3. Then 
Lemma 3.3 implies that for the chosen N > Ni, 

Proof 
The proof has two parts. Let E > 0. In the first 

Vi,j>O, VnE(a”bi)Iv, I#+<c+c. 

part of the proof we use conditions (A) or (B) to Lemma 3.2 then implies the existence of an integer N’ 
prove the existence of an interval I such that Vn E 1 such that, for all n 2 N, & < c + E. Thus 
I& - cl < f/2. We th en use the definition of binomially 
bounded sequences to bootstrap this fact to show the lim sup& <c+t=,1~~mfra&+c. 

existence of N such that I& - c] < E for all n > N. 
m-m n>m 

The actual proof will follow from two combinatorial Since this is true for every c > 0 it implies that 
lemmas whose proofs will be omitted in this extended 
abstract. These are: lim sup & = J@m AI& fjn = c = lim & 

m-rx n>m n-03 
LEMMA 3.2. Let I = [x,y] C 8, 0 < x < y, be 

some closed interval a, 6 such that 1 < a < b with log, b completing the proof of the theorem. 

irrational. Then there exists N’ such that 0 

[N’, co) c 5 5 (aibj) I 3.2 Convergence of Euclidean Functionals 

j=oi=o Let L be a functional mapping finite subsets of !Rd 
to positive reals. Also, let ~1,2z, 23, . . . be a sequence of 

where aI = [ax, cxy]. points chosen independently from the uniform distribu- 

LEMMA 3.3. Let c#J,, n = 1,2,3,. . . be a binomially tion over [0, lid and set S, = (~1, . . . , 2,). We define 

bounded sequence with both parameter a > 1 and certain conditions On L. 
parameter b > 1. Set a = .&x + *. Then there (AO) L(0) = 0. Furth ermore, there exist constants or, 

exists N’ > 0 such that the following statement is true 
cy2, such that for every finite subset S C [0, lld, 

for all N > N’: Let 
IS( = n, we have L(S) 5 olnaz. 

(Al) There is some constant d’ such that for every 

dN = max{& : N<n_<N+c&?lnN}. 
o > 0, and every finite subset S C slid, L(ctS) = 
CY~‘L(S) where aS = {ox : x E S}. The constant 

and d’ is the scaling factor of L. 

IN = [N+ %filnN,N+ $filnN]. 
(A2) For every x E ?Rd and every finite subset S c sd 

we have L(S + x) = L(S) where S + z = {y + 2 : 

Then 
YES). 

4, < djv + 0 & . 
( > 

(A3) For some integer 713 consider the partition 
vi,j 10, b’n E (aiti) IN, (Qi)i<md of [O, 11 d into md equal sized cubes. Let 

(3.5) 
S C PI lid be any finite subset. Then there exists 
a functional F(S) such that 

We now proceed with the proof of the theorem: 
Lemma 3.1 tells us that (3.6) L(S) 5 c L(S n Qi) + F(S) 

where 

For every Ni > 0 and E > 0 we can therefore find 
Ns > Nr such that dN, < c + 612. If &, satisfies Pr 

n(d-d’)ld 
F(S) > ln2 n = n+ln n). 

condition (A) set N = N2; if it satisfies condition (B) 
set N = Ns - amln Nz. In both cases the respective 
conditions guarantee that if Ni is chosen large enough (A4) L satisfies one of the two following conditions 
then 

div = max{& : N<nsN+cralnN} Vn E(L(Sn)) I E(L(Sn+l)) -t-o 
< c+26/3. 

\ I 
(3.7) 
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Vn E (L(G+l>> 5 E (L(L)) + 0 
(3.8) 

We call any L that satsifies conditions (AO), (Al), 
and (A2) a Euclidean Functional. Condition (A3) is 
a subadditivity-like condition and (A4) a continuity 
one. (Note that if L is monotonically increasing then 
L trivially satisfies the first condition of (A4).)For an 
understanding of how these conditions compare to the 
ones existing in the literature in both their definitions 
and their consequences we refer the interested reader to 
the complete version of this paper or to [17]. The main 
result of this paper is 

THEOREM 3. Let L be a Euclidean Functional that 

satisfies condition (A4) for two diaerent values m = 
ml, m = m2 such that gcd(ml, mz) = 1, and that 
also satisfies condition (AS). Then 3c 2 0 such that 

$%+d -+ c in both expectation and probability, i.e., 

and 

V-T> 0, Pr 
(I 

----f 0. 

Furthermore 

Proof In what follows we set 

H(n) = n;!$;d, ElCln = E (-Wn)) , 

q& = +n 
n(d-d’)/ d = E (H(n)) , 7;, = E ((L(Sn))2) , 

and 
rn 

$%a = n2(d-d’)/d 
= E (H’(n)) . 

We first prove convergence in expectation by 
showing that & is a binomially bounded sequence 
satisfying the conditions of Theorem 2. We then 
prove convergence in probability by demonstrating that 
VAR(H(n)) = (cp,, -4;) ----) 0 and applying Chebyshev’s 
inequaIity. 

Let m = ml. To prove that 6, is a binomially 
bounded sequence with parameter a = md let S = S,, in 
(A3) and divide equation (3.6) by n(d-d’)ld. Then take 
expectations to find that 

tin md-d’ 

n(d-d/)/d = n(d-d’)/d 

where X is a binomially distributed random variable 
with parameters n and p = mmd; to derive this equa- 
tion we used conditions (Al) and (A2) to show that 
E (L(Sn n Qi)) = &E (L(Sx)) . Standard Chernoff 

bounding techniques [6] show that y = 1 + 0 (&) 

with probability 1 - n-n@‘n). Therefore 

‘h = ‘(X(zf),d) [‘+‘(&)] 

so & is a binomially bounded sequence with parameter 
a = mt. A similar argument shows that it is also 
a binomially bounded sequence with parameter b = 
m$. Because gcd(ml, mz) = 1 we also have log, b is 
irrational. Finally, dividing equations (3.7) and (3.8) 
by n(d-d’)ld & ows that at least one of condition (A) or 
(B) in the statement of Theorem 2 is satisfied. Theorem 
2 therefore implies the existence of c 2 0 such that 

lim,,, dn = c, i.e., E (g%&) -c. 
To prove that VAR(H(n)) --f 0 refer back to 

condition (A3) setting m = ml and S = S,. Taking 
expectations and using symmetry gives 

$E(m) + 
m2d - md 

r, = 
m2d’ E (7x1 =a 1 

where X, XI = ISn&II, X2 = jSn&zj are all binomial 
random variables with parameters n and p = rnmd. 
Using Chernoff bounding techniques to show that Xl 
and X2 are strongly concentrated around their mean 
along with the previously 
O(1) we find that 

proven fact that E($,) = 

EM) [1+ 0 (&J] 

Jensen’s inequality [5, p. 1611 tells us that $i 5 (P,, 
for all n, so 

p,, is a binomially bounded sequence and Lemma 3.1 
therefore says that it is a bounded sequence. This 
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in turn implies the existence of c’ < 03 such that 
lim, --rot) SUP~,~ (P,, = c’ while Jensen’s inequality tells 
us that c2 5 c’. We will now see that c’ 5 c2, proving 
that lim,,, (Pi = c2. 

Suppose, by contradiction, that c’ = ~~$6 for some 
6 > 0. Fix E > 0. For all large enough n, E ($i) < c2 +E 
and E(m) < c2 + 15 + E. Plugging back into equation 
(3.9) this implies that for all large enough n 

Pn 5 -$(c2 + 6 + e) + (1 - -$) (c2 + E) 

+o J- 
( > ln2 n 

1 
_< e2+d+e+0 - 

md ( > ln2 n 

contradicting the definition of 6. Thus c’ = c2 and 

,&“, VAR(H(n)) = iiir(cp, - &) = 0 

For any fixed E > 0 and large enough n, Idn - cl 5 
~12. Thus, for large enough n Chebshev’s inequality 
yields 

Pr ((H(n) - 4 > 6) 5 Pr (W(n) - 4nl 1 c/2) 

< 4 VAR(H(n)) 
- 62 

Since liw,, VAR(H(n)) = 0 th is implies convergence 
in probability. IJ 

To conclude this subsection note that Lemma 2.1 

shows that the MWT functional satisfies all of the 
conditions of Theorem 3, thus proving Theorem 1 as 
promised. 

3.3 Other ApplicationsTheorem 3 is quite general 
and permits the analysis of a variety of other problems. 
To illustrate its use we describe how it proves conver- 
gence for a generalization of the MWT. Let S c xd. 
We define a “triangulation” of S to be a simplicial com- 
plex in !I?’ whose vertices are exactly the points in S. 
Suppose 7 is some triangulation of S. Define Wd’(7), 
the d/-dimensional weight of 7, to be the sum of the d’- 
dimensional volumes of all d/-dimensional flats in 7. For 
exanple, if d = 3 then 7 partitions the convex hull of S 
into tetrahedrons, url(7) is the sum of the lengths of the 
edges of 7 and wz(7) is the sum of the areas of all of 
the triangles that are faces in 7. Finally set MWT’(S) 
to be the triangulation of S with minimal w& () weight. 
For example MWT; is exactly the MWT(S) we have 
previously analyzed. 

By definition dg) =E(@!+ The functional can be 

shown to satisfy Theorem 3 with scaling factor d’ = 0 
and thus there exists a constant d(“) such that 

lim dt) = lim E 
n-C=2 n-CC 

( D(izsn)) = d(i). 

We note that a similar theorem has previously been 
proven analyzing the degrees of points in the minimal 
spanning trees of random point sets [16] but the tech- 
niques used there do not seem applicable here. 

Acknowledgement: The author would like to thank Siu- 
Wing Cheng, Xu Yin-Feng and Herbert Edelsbrunner 
for introducing him to the intricacies of minimum- 
weight triangulations. He would also like to thank Jeff 
Tsang for kindly providing him with Figure 1. 

It is now quite straightforward to use Theorem 3 to 
generalize Theorem 1 as follows (proof omitted in this 
extended abstract): 
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