
Counting Spanning Trees and Other Structures
in Non-constant-jump Circulant Graphs�

(Extended Abstract)

Mordecai J. Golin, Yiu Cho Leung, and Yajun Wang

Department of Computer Science, HKUST, Clear Water Bay,
Kowloon, Hong Kong

{golin, cho, yalding}@cs.ust.hk

Abstract. Circulant graphs are an extremely well-studied subclass of
regular graphs, partially because they model many practical computer
network topologies. It has long been known that the number of spanning
trees in n-node circulant graphs with constant jumps satisfies a recur-
rence relation in n. For the non-constant-jump case, i.e., where some
jump sizes can be functions of the graph size, only a few special cases
such as the Möbius ladder had been studied but no general results were
known.

In this note we show how that the number of spanning trees for all
classes of n node circulant graphs satisfies a recurrence relation in n
even when the jumps are non-constant (but linear) in the graph size.
The technique developed is very general and can be used to show that
many other structures of these circulant graphs, e.g., number of Hamil-
tonian Cycles, Eulerian Cycles, Eulerian Orientations, etc., also satisfy
recurrence relations.

The technique presented for deriving the recurrence relations is very
mechanical and, for circulant graphs with small jump parameters, can
easily be quickly implemented on a computer. We illustrate this by de-
riving recurrence relations counting all of the structures listed above for
various circulant graphs.

1 Introduction

The purpose of this note is to develop techniques for counting structures, e.g.,
Spanning Trees, Hamiltonian Cycles, Eulerian Cycles, Eulerian Orientations,
Matchings, etc., in circulant graphs with non-constant jumps. We start off by
defining circulant graphs and reviewing the large literature on counting spanning
trees in constant-jump circulant graphs and then the much lesser literature on
counting spanning trees in non-constant-jump ones.
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Definition 1. The n-node undirected circulant graph with jumps s1, s2, . . . sk,
is denoted by Cs1,s2,···,sk

n . This is the regular graph with n vertices labelled
{0, 1, 2, · · · , n − 1}, such that each vertex i (0 ≤ i ≤ n − 1) is adjacent to the
vertices i± s1, i± s2, · · · , i± sk mod n. Formally, Cs1,s2,...,sk

n = (V (n), EC(n))
where

V (n) = {0, 1, . . . , n − 1} and EC(n) =
{

{i, j} : i − j mod n ∈ {s1, s2, . . . , sk}
}

.

The simplest circulant graph is the n vertex cycle C1
n. The next simplest

is the square of the cycle C1,2
n in which every vertex is connected to its two

neighbors and neighbor’s neighbors. The lefthand sides of figures 1, 2 and 3
illustrate various circulant graphs. Circulant graphs (sometimes known as “loop
networks”) are very well studied structures, in part because they model practical
data connection networks [12, 3].

One frequently studied parameter of circulant graphs is the number of span-
ning trees they have. For connected graph G, T (G) denotes the number of span-
ning trees in G. T (G) is a examined both for its own sake and because it has
practical implications for network reliability, e.g., [8, 9]. For any fixed graph G,
Kirchhoff’s Matrix-Tree Theorem [13] efficiently permits calculating T (G) by
evaluating a co-factor of the Kirchoff matrix of G (this essentially calculates the
determinant of a matrix related to the adjacency matrix of G.) The interesting
problem, then, is not in calculating the number of spanning trees in a partic-
ular graph, but in calculating the number of spanning trees as a function of a
parameter, in graphs chosen from classes defined by a parameter.

The first result in this area for circulant graphs was the fact that T (C1,2
n ) =

nF 2
n , Fn the Fibonacci numbers, i.e., Fn = Fn−1 + Fn−2 with F1 = F2 = 1.

This result, originally conjectured by Bedrosian [2] was subsequently proven by
Kleitman and Golden [14]. (The same formula was also conjectured by Boesch
and Wang [5] without knowledge of [14].)

Later proofs of T (C1,2
n ) = nF 2

n , and analyses of T (Cs1,s2,···,sk
n ) as a function

of n for special fixed values of s1, s2, · · · , sk can be found in [1, 21, 6, 24, 19, 23]. A
general result due to [21] and later [25] is that, for any fixed, constant 1 ≤ s1 <
s2 < · · · < sk, T (Cs1,s2,···,sk

n ) satisfies a constant coefficient linear recurrence
relation of order 22sk−2 − 1.

Knowing the existence and order of the recurrence relation permits explicitly
constructing it by using Kirchoff’s theorem to evaluate T (Cs1,s2,···,sk

n ) for enough
values of n to solve for the coefficients of the recurrence relation.

With the exception of [14], which was a combinatorial proof using techniques
very specific to the C1,2

n case, all of the results above were algebraic. That is
they all worked by evaluating the co-factor of the Kirchoff matrix of the graphs.
These co-factors could be expressed in terms of the eigenvalues of the adjacency
matrices of the circulant graphs and the eigenvalues of these adjacency matrices
(also known as circulant matrices) are well known [4]. All of the results men-
tioned took advantage of these facts and essentially consisted of clever algebraic
manipulations of these known terms. The recurrence relations for T (Cs1,s2,···,sk

n )
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Fig. 1. The Möbius ladder C1,n
2n for n = 3, 4 drawn in both circulant form and lattice

form. The solid edges in the figures on the right are L1,2
n . The dashed edges are EC(n)−

EL(n). The bold edges are EL(n) − EL(n − 1). The diamond vertices are L(n) while
the square vertices are R(n)

popped out of these manipulations but did not possess any explicit combinatorial
meaning.

In a recent paper [11] two of the authors of this note introduced a new
technique, unhooking, for counting spanning trees in circulant graphs with con-
stant jumps. This technique was purely combinatorial and therefore permitted
a combinatorial derivation of the recurrence relations on T (Cs1,s2,···,sk

n ). It also
permitted deriving recurrence relations for the number of Hamiltonian Cycles,
Eulerian Cycles, Eulerian Orientations and other structures in circulant graphs
with constant jumps.

An open question in [11] was whether there was any general technique, com-
binatorial or otherwise, for counting structures in circulant graphs with non-
constant jumps, i.e., graphs in which the jumps are a function of the graph size.
The canonical example of such graphs is the Möbius ladder C1,n

2n . (See Figure 1;
Two other non-constant-jump circulant graphs, C1,n

3n and C1,n
3n+1, are illustrated

in Figures 2 and 3.) It is well known that

T
(
C1,n

2n

)
=

n

2

[(
2 +

√
3
)n

+
(
2 −

√
3
)n

+ 2
]

(1)

According to [6] this result is due to [18]. Other proofs can be found in [15, 17]
(combinatorial) and [6] (algebraic). The combinatorial proofs are very specially
crafted for the Möbius ladder and do not seem generalizable to other circulant
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Fig. 2. C1,n
3n and L1,n

3n for n = 3, 4

graphs. The technique of [6] again consisted of using algebraic techniques, this
time clever manipulation of Chebyshev polynomials, to evaluate a co-factor of the
Kirchoff-Matrix. [10] showed how to push this Chebyshev polynomial technique
slightly further to count the number of spanning trees in a small number of very
special non-constant-jump circulant graphs.

The major result of this paper is a general technique for counting structures
in circulant graphs with non-constant linear jumps. More specifically,

Theorem 1. Let

A ∈ {Spanning Trees, Hamiltonian Cycles, Eulerian Cycles, Eulerian Orientations}
For graph G let A(G) be the set of A structures in G. Now let p, s, p1, p2, . . . , pk

and s1, s2, . . . , sk be fixed nonnegative integral constants such that ∀i, pi < p. Set

Cn = Cp1n+s1,p2n+s2,···,pkn+sk
pn+s

to be the circulant graph with pn + s vertices and the given jumps. Set TA(n) =
|A(Cn)| to be the number of A structures in Cn. Then

TA(n) satisfies a linear recurrence relation with constant coefficients in n.

Note that if A is Spanning Trees, p = 1, s = 0 and ∀i, pi = 0 then this
collapses to the known fact [21, 25] that the number of spanning trees in circulant
graphs with constant jumps satisfies a recurrence relation.
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All circulant graphs are shown in circulant form and lattice form. The solid edges in
the figures on the right are the corresponding lattice graphs. The dashed edges are
EC(n) − EL(n). The bold edges are EL(n) − EL(n − 1). The diamond vertices are
L(n) while the square vertices are R(n). Note that all edges in EC(n) − EL(n) are in
R(n)× L(n). Also note that all edges in EL(n+1)− EL(n) are in (R(n+1)− R(n))×
(R(n) ∪ R(n + 1)).

Fig. 3. C1,n
3n+1 and L1,n

3n+1 for n = 4, 5

The proof of Theorem 1 is “constructive”. That is, it shows how to build
such a recurrence relation. The construction is also mechanical; that is, it is
quite easy to program a computer to derive the recurrences. As examples, we
have calculated the recurrence relations for various graphs which are presented in
Table 1. We point out, though, that the main contribution of Theorem 1 is the
existence of such recurrence relations. The recurrence relations (and therefore
the construction) can grow exponentially in p, s and the si and can therefore
quickly become infeasible to implement.

Technically, the major contribution of this paper is a new representation of
non-constant-jump circulant graphs in terms of lattice graphs. This new repre-
sentation will permit using the machinery developed in [11] to derive recurrence
relations.

In the next section we introduce lattice graphs and describe how to represent
circulant graphs in terms of them. We also prove properties of lattice graphs
that will enable us to use them to derive recurrence relations on the number of
structures. In Section 3 we then use these properties to prove Theorem 1 when
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Table 1. Some sample results derived using Theorem 1. Note that for C1,n
2n , the Möbius

ladder, T (n) is equivalent to (1) and was already derived in [18, 15, 17, 6] while H(n)
was given in [15]. The other results in the table all new. Note that the number of
Eulerian Orientations and Cycles of the Möbius ladder was not calculated. This is
because, as a 3-regular graph, it does not have any Eulerian Orientations or Cycles

Cn Number of structures in Cn as function of n

Spanning trees

C1,n
2n

T(n) = 10T(n − 1) − 35T(n − 2) + 52T(n − 3) − 35T(n − 4)
+10T(n − 5) − T(n − 6)

with initial values 16, 81, 392, 1815, 8112, 35301 for n = 2, 3, 4, 5, 6, 7

C1,n
2n+1

T(n) = 16T(n − 1) − 80T(n − 2) + 130T(n − 3) − 80T(n − 4)
+16T(n − 5) − T(n − 6)

with initial values 125, 1183, 10404, 87131, 705757, 5581500
for n = 2, 3, 4, 5, 6, 7

C1,n
3n

T(n) = 58T(n − 1) − 1131T(n − 2) + 8700T(n − 3) − 29493T(n − 4)
+43734T(n − 5) − 29493T(n − 6) + 8700T(n − 7)
−1131T(n − 8) + 58T(n − 9) − T(n − 10)

with initial values 384, 12321, 371712, 10634460, 292771602,
7840133364, 205687578624, 5312055930723, 135495271297920,
3421537009450692 for n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Hamiltonian cycles

C1,n
2n

H(n) = H(n − 1) + H(n − 2) − H(n − 3) with initial values 3, 6, 5 for
n = 2, 3, 4

=
{

n + 1 n even
n + 3 n odd

C1,n
2n+1

H(n) = 3H(n − 1) − H(n − 2) − 2H(n − 3) + H(n − 5)
with initial values 12, 23, 41, 79, 158 for n = 2, 3, 4, 5, 6

Eulerian cycles

C1,n
3n

EC(n) = 47EC(n − 1) − 742EC(n − 2) + 4796EC(n − 3)
−13144EC(n − 4) + 12320EC(n − 5)

with initial values 372, 8924, 209228, 4798236, 108376972
for n = 2, 3, 4, 5, 6

Eulerian orientations

C1,n
3n

EO(n) = 7EO(n − 1) − 14EO(n − 2) + 8EO(n − 3)
with initial values 38, 142, 542 for n = 2, 3, 4

A is “Spanning Trees”. The proof is actually constructive; in the Appendix we
walk through this construction to rederive the number of spanning trees in C1,n

2n

as a function of n.

Note: In this extended abstract we only derive recurrence relations for the number
of Spanning Trees. Derivation of the number of Hamiltonian Cycles, Eulerian
Orientations and Eulerian Cycles is very similar but each derivation requires its
own set of parallel definitions, lemmas and proofs, tailored to the specific problem
being addressed. Due to lack of space in this extended abstract we therefore do
not address them here and leave them for the full paper.
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We finish this section by pointing out that counting the number of Hamil-
tonian Cycles, Eulerian Orientations and Eulerian Cycles in general undirected
graphs is, in a qualitative way, very different from counting the number of span-
ning trees. While the Kirchoff matrix technique provides a polynomial time al-
gorithm for counting the number of spanning trees, it is known that counting
Hamiltonian Cycles [20], Eulerian Orientations [16] and Eulerian Cycles [7] in
a general undirected graph is #P -complete. When the problem is restricted to
circulant graphs, with the exception of [15] which counts the number of Hamil-
tonian Cycles in the Möbius ladder and [22], which analyzes Hamiltonian cycles
in constant jump circulant digraphs with k = 2 we know of no results (other
than the previously mentioned [11]) counting these values.

2 Lattice Graphs

The major impediment to deriving recurrence relations relating the number of
structures in circulant graphs to the number of structures in smaller circulant
graphs is that it is difficult to see how to decompose Cn in terms of Cm where
m < n, i.e., big cycles can not be built from small cycles.

The main result for this section is a way of visualizing a circulant graph
Cn = Cp1n+s1,p2n+s2,···,pkn+sk

pn+s as a lattice graph Ln plus a constant number of
extra edges where the constant does not depend upon n.

The reason for taking this approach is that, unlike the circulant graph, the
lattice graphs are built recursively with Ln+1 being Ln with the addition of a
constant (independent of n) set of edges.

Before starting we will first have to rethink the way that we define circulant
graphs.

Definition 2. Let p, s, p1, p2, . . . , pk and s1, s2, . . . , sk be given nonnegative in-
tegral constants. For u, v and integer n, set f(n; u, v) = un + v. Define

Ĉn =
(
V̂C(n), ÊC(n)

)

where

V̂ (n) = { (u, v) : 0 ≤ u ≤ p − 1, 0 ≤ v ≤ n − 1} ∪ { (p − 1, v) | n ≤ v ≤ n + s − 1}

ÊC(n) =
k⋃

i=1

{ {(u1, v1), (u2, v2)} : (u1, v1), (u2, v2) ∈ V̂ (n) and
f(n; u2, v2)−f(n; u1, v1)≡pin + si (mod pn + s)

}

Directly from the definition we see Ĉn is isomorphic to Cn =
Cp1n+s1,p2n+s2,···,pkn+sk

pn+s . Figures 1 2 and 3 illustrate this isomorphism; the graphs
on the left are the circulant graphs drawn in the normal way; the graphs on the
right, the new way, with node labelling showing the isomorphism.

Since the graphs are isomorphic, counting structures in Cn is equivalent to
counting structures in Ĉn. Therefore, for the rest of this paper we will replace Cn

by Ĉn. That is Cn will refer to Ĉn, V (n) to V̂ (n) and EC(n) to ÊC(n). Given
this new representation we can now define
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Definition 3 (Lattice Graphs). Let p, s, p1, p2, . . . , pk and s1, s2, . . . , sk be
given nonnegative integral constants. Define the Lattice Graph

Ln = Lp1n+s1,p2n+s2,···,pkn+sk
pn+s

to be the graph Ln = (V (n), EL(n)) where V (n) is the vertex set defined in
Definition 2 and

EL(n) =
k⋃

i=1

⎧⎨
⎩

{(u1, v1), (u2, v2)} : (u1, v1), (u2, v2) ∈ V̂ (n),
f(n; u2, v2)−f(n; u1, v1)≡pin + si (mod pn + s),
and u2 − u1 ≡ pi (mod p)

⎫⎬
⎭

In Figures 1, 2 and 3 the solid edges in the graphs on the right form the
Lattice Graphs. By comparing the definition of EL(n) in this definition to that of
EC(n) = ÊC(n) given in Definition 2 we immediately have that EL(n) ⊆ EC(n).
Referring back to the examples in Figures 1, 2 and 3 again we see that the edges
in EC(n)−EL(n), the dashed edges, always seem to connect vertices on the left
(diamonds) with vertices on the right (squares). This simple observation will be
at the core of our analysis. We first need the following definition:

Definition 4. Set smax = max{s, s1, s2, · · · , sk}. Then

L(n) =
{

(u, v) : 0 ≤ u ≤ (p − 1), 0 ≤ v ≤ s + smax − 1
}

, Left Vertices

R(n) =
{

(u, v) : 0 ≤ u ≤ (p − 1), v ≥ n − smax

}
, Right Vertices

In order to make our analysis work we will require that L(n) ∩ R(n) = ∅. To
ensure this we will, from now on, require that n > s + 2smax − 1.

Suppose e = {(u1, v1), (u2, v2)} ∈ EC(n) is a jump pin + si from (u1, v1).
There are two cases:

1. The jump does not “cross” vertex (p − 1, n + s − 1):

u2n + v2 − (u1n + v1) = pin + si. (2)

If e ∈ EL(n), we have u2 − u1 = pi and v2 − v1 = si. If e ∈ EC(n) − EL(n),
because n > s + 2smax − 1, we will have v2 − v1 − si = (pi − u2 + u1)n, so
u2 − u1 = pi ± 1.

2. The jump crosses vertex (p − 1, n + s − 1):

u2n + v2 − (u1n + v1) + pn + s = pin + si. (3)

If e ∈ EL(n), we have v2 − v1 + s = si and u2 − u1 + p = pi. If e ∈
EC(n) − EL(n), we have v2 − v1 + s − si = (pi − u2 + u1 − p)n, where
pi − u2 + u1 − p = ±1.

We can now prove a simple structural lemma on the relationship between
circulant graphs and lattice graphs:1

1 For sets A, B we use the notation A × B to denote {{a, b} : a ∈ A, b ∈ B}.



516 M.J. Golin, Y.C. Leung, and Y. Wang

Lemma 1. Given the above definitions

EC(n) − EL(n) ⊆ R(n) × L(n)

Furthermore, as functions of n, EC(n) − EL(n) is constant.

As examples of this lemma note that, for C1,n
2n (Figure 1)

EC(n) − EL(n) =
{

{(0, 0), (1, n − 1)}, {(1, 0), (0, n − 1)}
}

while for C1,n
3n+1 (Figure 3)

EC(n)−EL(n)=
{

{(0, 0), (2, n)}, {(1, 0), (0, n−1)}, {(2, 0), (2, n)}, {(2, 0), (1, n−1)}
}

Proof. Suppose edge e = {(u1, v1), (u2, v2)} ∈ EC(n) − EL(n). The analysis
above gives us |v2 − v1| ≥ n − smax. But on the other hand , from Definition 4,
if e /∈ L(n) × R(n), |v2 − v1| ≤ n − smax − 1. Thus e ∈ R(n) × L(n).

For the constant property, we show that the condition that an edge e =
{(u1, v1), (u2, n − v2)} ∈ EC(n) − EL(n) does not depend on n, where (u1, v1) ∈
L(n) and (u2, n− v2) ∈ R(n). Note that v2 can be negative and v1 ≤ s+ smax −
1, |v2| ≤ smax.

There are four cases:

1. e is a jump from (u1, v1) by pin+si and does not cross vertex (p−1, n+s−1):
We will have n ± n − v1 − v2 = si. Because v1 ≤ s + smax − 1, |v2| ≤ smax,
the ±n term must be −n, si + v1 + v2 = 0 and u2 − u1 = pi − 1. The fact
that e ∈ EC(n) − EL(n), is therefore independent of n.

2. e is a jump from (u1, v1) by pin + si and crosses vertex (p − 1, n + s − 1):
We will have n±n+s−v1−v2 = si. The ±n term must be −n, s−v1−v2 = si,
and pi − u2 + u1 − p = 1. The fact that e ∈ EC(n) − EL(n), is therefore
independent of n.

3. e is a jump from (u2, n − v2) and does not cross vertex (p − 1, n + s − 1):
We have n ± n + v1 + v2 = si. The ±n term must be −n, v1 + v2 = si, and
u1 − u2 = pi + 1. The fact that e ∈ EC(n) − EL(n), is therefore independent
of n.

4. e is a jump from (u − 2, n − v2) and crosses vertex (p − 1, n + s − 1):
We have n±n+v1 +v2 +s = si. The ±n term must be −n, v1 +v2 +s = si,
and u1 − u2 + p = pi + 1. The fact that e ∈ EC(n) − EL(n), is therefore
independent of n.

All conditions above are independent of n. So the edge set EC(n) − EL(n) is
constant (independent of n).

We have just seen that Cn can be built from Ln using a constant set of edges.
We will now see that Ln+1 can also be built from Ln using a constant set of
edges.
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Lemma 2.

EL(n + 1) − EL(n) ⊆ (R(n + 1) − R(n)) × (R(n) ∪ R(n + 1)).

Furthermore, as functions of n, the edge set EL(n + 1) − EL(n) is constant.

As examples of this lemma note that, for C1,n
2n (Figure 1)

EL(n + 1) − EL(n) =
{

{(0, n − 1), (0, n)}, {(1, n − 1), (1, n)}, {(0, n), (1, n)}
}

while for C1,n
3n+1 (Figure 3)

EL(n + 1) − EL(n) =
{

{(0, n), (1, n)}, {(0, n − 1), (0, n)}, {(0, n), (2, n + 1)}

, {(1, n − 1), (1, n)}, {(2, n), (2, n + 1)}, {(1, n), (2, n)}
}

Proof. Equations (2),(3) do not depend on n when e = {(u1, v1), (u2, v2)} ∈
EL(n). Thus if e ∈ EL(n + 1) and both vertices of e are in VL(n), e ∈ EL(n).
So if e ∈ EL(n + 1) − E(n), e must contain one vertex in VL(n + 1) − VL(n) =
R(n + 1) − R(n). Furthermore we have |v2 − v1| ≤ smax from the equations,
which means the other node is in R(n) ∪ R(n + 1).

For the constant property, from Equations (2) and Equation (3), e(n) =
{(u1, n − v1), (u2, n − v2)} ∈ EL(n) does not depend on n. If e(n) ∈ EL(n) −
EL(n − 1), e(n) contains at least one vertex in R(n) − R(n − 1) which directly
implies that e(n + 1) contains one vertex in R(n + 1) − R(n). Thus e(n) ∈
EL(n)−EL(n− 1) does not depend on n. So EL(n+1)−EL(n) is constant. 
�

3 Spanning Trees

In this section A objects are spanning trees and our problem is to count the num-
ber of spanning trees in Cn. Recall that, given a graph G = (V, E), a spanning
tree T ⊆ E is a subset of the edges that forms a connected acyclic graph.

Let p, s, p1, p2, . . . , pk and s1, s2, . . . , sk be given nonnegative integral con-
stants with ∀i, pi ≤ p. Set Cn = Cp1n+s1,p2n+s2,···,pkn+sk

pn+s to be the circular
graph, Ln = Lp1n+s1,p2n+s2,···,pkn+sk

pn+s to be the lattice graph, and T (n) = T (Cn)
to be the number of spanning trees in Cn.

In [11] tools were developed for constructing recurrence relations on struc-
tures of constant-jump circulant graphs. The difficulty in extending that result
to non-constant-jump circulants was the lack of some type of recursive decompo-
sition of non-constant-jump circulants. Given the Lattice graph representation
of circulant graphs of Lemma 1 and the recursive construction of Lattice graphs
implied by Lemma 2 we can now plug these facts into the tools developed in [11]
and develop recurrence formulas for T (n). Since the proofs are rather straightfor-
ward and follow those of [11] we do not give them here. In the appendix we will
show how to use these techniques to rederive the exact solution for T

(
C1,n

2n

)
.
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Let T be a spanning tree of circulant graph Cn. Removing all edges of EC(n)−
EL(n) from T leaves a forest T ∩EL in Lattice graph Ln. Lemma 1 tells us that
all endpoints of edges in EC(n)−EL(n) are in L(n)∪R(n), so every component
of the forest T ∩ EL must contain at least one node from L(n) ∪ R(n). This
motivates the following definition of legal forests:

Definition 5. Let n > s + 2smax − 1. Set W (n) = L(n) ∪ R(n). Let Par(W ) be
the collection of all set partitions of set W, e.g.,
Par({1, 2, 3}) = { {{1, 2}{3}}, {{1, 3}{2}}, {{2, 3}{1}}, {{1}{2}{3}}, {{1, 2, 3}} } .

Then

1. A legal forest F in Ln is one in which every connected component of F
contains at least one node in W (n).

2. P = Par(W (n)) is the collection of all set partitions of W (n).
3. Let F be a legal forest of Ln. Then C(F ), the classification of F is X ∈ P

such that ∀u, v ∈ W (n), u, v are in the same connected component of F iff
u, v are in the same set in X.

4. For X ∈ P set TX(n) = |{F : F is a legal forest of Ln with C(F ) = X}}|
Note: The reason for requiring n > s+2smax −1 is to guarantee that L(n)∩R(n) = ∅.

We are now interested in how to reconstruct spanning trees from legal forests.
Define

Definition 6. S = {S : S ⊆ (EC − EL)}.

Note that, given a legal forest F , it may not always possible to find S ∈ S
such that F ∪S is a spanning tree of Cn. We make the following straightforward
observation

Lemma 3. Let F, F ′ be two legal forests of Ln such that C(F ) = C(F ′) and
S ∈ S. Then F ∪ S is a spanning tree of Cn if and only if F ′ ∪ S is a spanning
tree of Cn.

This permits the following definition

Definition 7. For X ∈ P and S ∈ S set

αS,X =
{

1: if adding S to forest F with C(F )=X yields a spanning tree of Cn.
0:otherwise

βX =
∑
S∈S

αS,X and β = (βX)X∈P ,

where vector β is ordered using some fixed arbitrary ordering of the elements P.

The crucial observation in the above definitions is that Lemma 3 implies that
αS,X is independent of n and can be easily evaluated just by looking at S and X.

As an example, suppose we are given C1,n
2n and its L1,n

2n and, for some n, F
is a legal forest of L1,n

2n with C(F ) = X = {(0, 0), (0, n − 1), (1, 0)}, {(1, n − 1)}.
That is, F has exactly two connected components partitioning the nodes in
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W (n) = L(n)∪R(n); one of the components contains (0, 0), (0, n− 1), (1, 0) and
the other contains (1, n − 1). Now, if S = {{(0, 0), (1, n − 1)}} then αS,X = 1
since the single edge in S connects the two components to form a spanning tree
while if S = {{(0, n−1), (1, 0)}} then αS,X = 0 since the single edge in S creates
a cycle in the component containing (0, 0), (0, n − 1), (1, 0).

Since, by definition, every spanning tree of Cn is uniquely decomposable into
a legal forest F of Ln plus some S ∈ S we immediately find

Lemma 4

T (Cn) =
∑
X∈P

(∑
S∈S

αS,X

)
TX(n) =

∑
X∈P

βXTX(n). (4)

Letting T (Ln) be the column vector (TX(n))X∈P , this can also be written as
T (Cn) = β · T (Ln) .

So far we have only shown that the number of spanning trees of a circulant
graph is a linear combination of the number of different legal forests of the asso-
ciated lattice graph. We will now show the the number of different legal forests
can be written as a system of linear recurrences in n. The main observation is
the following lemma:

Lemma 5. Let F be a legal forest in Ln+1 and U = F ∩ (EL(n + 1) − EL(n)
)
.

Then F − U is a legal forest in Ln.

Note that this lemma implies that every legal forest of Ln+1 can be built
from a legal forest of Ln. To continue we will need the following observation:

Lemma 6. Let F, F ′ be legal forests in Ln such that C(F ) = C(F ′).
Let U ⊆ EL(n + 1) − EL(n). Then

– F ∪ U is a legal forest of Ln+1 if and only if F ′ ∪ U is a legal forest of Ln

and
– if both F ∪U and F ′∪U are legal forests of Ln+1 then C(F ∪U) = C(F ′∪U).

Before continuing we should emphasize a subtle point concerning the clas-
sification of a legal forest in Ln, which is that it strongly depends upon n. For
example, in lattice graph L1.n

2n , when n = 3, a legal forest D with classifica-
tion C(D) = {(0, 0), (0, n − 1)}, {(1, 0), (1, n − 1)} implies that D has two com-
ponents with one containing nodes (0, 0) and (0, 2) and the other containing
nodes (1, 0) and (1, 2). Now suppose n = 4 with no edges added to D, in the
new lattice graph, the new forest D′ contains four components, which means
C(D′) = {(0, 0)}, {(0, n−1)}, {(1, 0)}, {(1, n−1)}. When calculating how adding
vertices and edges to legal forests in Ln changes them into different legal forests
in Ln+1 we must take account of this fact.

Lemma 6 permits the next definition

Definition 8. For X, X ′ ∈ P and U ⊆ EL(n + 1) − EL(n) set

γX′,X,U =

⎧
⎨
⎩

1 : if adding U to forest F with C(F ) = X ′ yields a forest F ′

with C(F ′) = X ′

0 : otherwise

.
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αX′,X =
∑

U⊆EL(n+1)−EL(n)

γX′,X,U and A = (aX′,X)X′,X∈P

where, in the last equation, A is a square matrix whose columns/rows are ordered
using the same ordering as in the definition of β in Definition 7.

Note: As in the observation following Lemma 7 we point out that the values of γX′,X,U

and thus αX′,X and A are independent of n. It is therefore possible to mechanically
calculate all of the βX and αX′,X .

Combining Lemmas 5 and 6 then yield

Lemma 7. ∀X ′ ∈ P,

TX′(n + 1) =
∑
X∈P

aX′,XTX(n) or, equivalently, T (Ln+1) = AT (Ln)

Combining everything in this section gives our main theorem on spanning
trees of circulant graphs, proving Theorem 1 for the case A = Spanning Trees.

Theorem 2. Let T (n) denote the number of spanning trees in Cn. Let P =
Par(L(n) ∪ R(n)), TX(n) denote the number of legal forests with classification
X and T (L(n)) be the column vector (TX(n))X∈P Then, for n ≥ s + 2smax − 1,

T (C(n)) = β · T (L(n))
T (L(n + 1)) = A T (L(n))

where β is the constant vector defined in Definition 7 and A is the constant
square matrix defined in Definition 8.

This theorem implies that T (C(n)) satisfies a linear recurrence recurrence
relation with constant coefficients of order rank of the matrix A.

Since the size of matrix A is |P| = B(p(s+2smax)+s) where B(m) is the Bell
number2 of order m the order of the recurrence is at most B(p(s + 2smax) + s).
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matics 184 (1998), 137-164 .

16. M. Mihail and P. Winkler. “On the number of Eulerian orientations of a graph,”
Algorithmica, 16 (1996) 402-414.

17. Martin Rubey. Counting Spanning Trees, Diplomarbeit, Universitat Wein, Mai
2000.

18. J. Sedlacek. “On the skeletons of a Graph or Digraph,” in R.K. Guy et al., (Eds.),
Combinatorial Structures and their Applications, (387-391.) 1970.

19. J. A. Sjogren. “Note on a formula of Kleitman and Golden on spanning trees in
circulant graphs,” Proceedings of the Twenty-second Southeastern Conference on
Combinatorics, Graph Theory, and Computing, Congr. Numer. 83 (1991), 65–73.

20. L.G. Valiant. “The complexity of enumeration and reliability problems,” SIAM J.
Comput, 8 (1979) 410-421.

21. R. Vohra and L. Washington. “Counting spanning trees in the graphs of Kleitman
and Golden and a generalization,” J. Franklin Inst., 318 (1984), no. 5, 349–355

22. Q.F. Yang, R.E. Burkard, E. Cela and G. Woeginger. “Hamiltonian cycles in cir-
culant digraphs with two stripes,” Discrete Math., 176 (1997) 233-254.

23. X. Yong, Talip, Acenjian. “The Numbers of Spanning Trees of the Cubic Cycle C3
N

and the Quadruple Cycle C4
N ,” Discrete Math., 169 (1997), 293-298.

24. X. Yong, F. J. Zhang. “A simple proof for the complexity of square cycle C2
p ,” J.

Xinjiang Univ., 11 (1994), 12-16.
25. Y. P. Zhang, X. Yong, M. J. Golin. “The number of spanning trees in circulant

graphs,” Discrete Math., 223 (2000) 337-350.


	Introduction
	Lattice Graphs
	Spanning Trees

