The Convex Hull for Random Lines in the Plane.
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Abstract. An arrangement of n lines chosen at random from R? has a
vertex set whose convex hull has constant (expected) size.

1 Introduction and Summary.

Let L = {¢1,...,4,} be a set of lines in general position in R?. The vertex set
V = {¢; N¥¢;,i < j} of this arrangement has size O(n?) and we are interested
in |Conv(V)|, the number of extreme points of its convex hull. As observed by
Atallah [1],

|conv(V)| < 2n,

a fact that sparked algorithmic interest in the hull of line arrangements [2], [3],
[4].

Suppose the lines are chosen uniformly at random. The specific model we use
is that the lines in L are the duals of n points chosen uniformly and independently
from [0,1]2, under the familiar duality that maps a point P = (z,y) to the line
TP = {(u,v) : v = zu + y} and maps the non-vertical line ¢ = {(z,y) : y =
mx~+b} to the point T¢ = (—m, b). To get n randomly chosen lines ¢4, ..., ¢, we
start with points P; = (z;,¥;), ¢ = 1,...,n chosen uniformly and independently
from [0, 1]? and then take

b ={(u,v):v=zu+y},i=1,...,n.
We give a simple proof of the following statement.

Theorem 1 Let L be a set of n lines chosen uniformly at random. There is a

constant ¢ > 0 so that
E(|Conv(V)|) < ¢; (1)

A similar statement holds when the lines are dual to points chosen uniformly
from other convex polygons. We have not tried to estimate ¢ carefully, but we
believe it is smaller than 10.

Devroye and Toussaint [4] proved the same result when the lines are polar
duals to points chosen at random from a wide range of radially symmetric dis-
tributions. The two models for random lines are quite different, and both are
natural. Our proof is simple and elementary. Much more is needed to establish
the statement in [4].
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2 The Proof

Choose Py = (21,41),- .., Pn, = (n,yn) uniformly and independently from the
unit square and numbered so z; < x;+1. We may assume that the points chosen
are in general position in the sense that no three points lie on a common line and
no two points have the same x coordinate, because these degeneracies occur with
zero probability. The random lines are ¢; = {(u,v) :v =x;u+y;}, i =1,...,n,
and the vertex set is V. = {¢; N ¢;,i < j}. It is better to consider Conv(V)
in the primal. A vertex ¢; N ¢; € V is an extreme point of Conv(V) only if
j = (imod n) + 1, so we seek the convex hull of the n vertices formed by the
lines in L with successive slopes (in the radial ordering of the lines by slope).
In the primal we seek lines through successive points P;, P;;1 which are part of
the upper or lower envelope of these lines. Specifically let r; be the line joining
P,and Piyq1,i=1,...,n—1, and r;(t) the y-coordinate of the point on r; with
x-coordinate t. Write U (¢) = max; r;(¢) and L(¢) = min; r;(¢) for the upper and
lower envelopes of the r;. Then

|Conv(V)| = [UP| + |DN]|

where we write UP for the set {¢ : r; has a segment in U(¢)} and DN for the
set {7 : r; has a segment in L(¢) but not in U(t)}. We only show how to bound
the expected size of UP, the argument for DN being similar.

Let A; be the event that r; meets U(t) and Z;, its indicator. We will show
that E(Z;) < ¢/n for an appropriate constant ¢ > 0.

We cover A; by simpler events whose probability is easier to estimate. Let A
be the 7;,i > 3n/4, of minimum slope, let p be the r;,7 < n/4, of max slope, and

o = min [|slope(N)|, |slope(p)]]

Let L be the line through (23,/4,0) of slope —o, R the line through (z,,/4,0) of
slope o, and U*(t) = max; [L(t), R(t)]. Clearly U*(t) < U(t). Write Q = (x,y) =
L N R for the intersection of L and R (see figure).
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Let Fy, ..., Epy1 beii.d. standard exponential random variables with partial
sums

Si=FE1+---+ Ei

and let y1,...,y, be iid. uniforms on [0,1]. It is familiar that the joint dis-
tribution of S1/Sny1,...,Sn/Sny1 is the same as that of 2(yy,...,2(,), the or-
der statistics of a sample xy,...,x, of i.i.d. uniforms. We think of the points
Py,..., P, ordered by x-coordinate, with P; = (S;,v;), ¢ = 1,...,n. In this way
the unit square is replaced by the random rectangle with corners at (0,0) and
(Sn+1,1). The law of large numbers implies that as 7 — oo

Prob[|S; — j| < ] =1~ 1/

for any € > 0, and that the point @ = (z,y) where L and R meet satisfies
|x —n/2| < en and |y — on/4] < en with probability at least 1 — 1/n. We
therefore assume that x and y, the coordinates of @, satisfy those inequalities.

For i <mn/4, A; C B; UC;, where B; is the event that r; has slope less than
—o and Cj; the event that r; is above Q; if neither B; nor C; occur, r; does not
meet U*(t), so it can’t meet U(t). To estimate the probabilities of B; and C;,
note that the line r; joining P; and P;;1 has slope s; = (yi+1 — ¥i)/Fit1. The
numerator has density f(t) =1 — |¢|, t € [-1, 1]. Therefore for ¢t > 0
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Denote this function by g(t).
Write M = max (2,54, ...,5,/4) and note that p = max;<, /4 8; > M. Also,
because the random variables soj,j = 1,...,n/8 are independent, we have

P[M < 1] = Plsy; < /% = (1 — Psos > )"/* = [1 - g()]"/*.

Similarly, writing m = min (83,/442,53n /4445 - 5n); A = MiNjs3,/4 85 < m,
and because the even slopes are independent,

Plm > —t] = P[sa; > —t]"/® = (1 — P[sa; < —t])™® = [1 — g(t)]"/®.
These combine to show
Plo < t] < Plmin(M, |m|) < 1] = 2[1 — g(t)]"/* = [1 — g(t)]"/*. (3)

The intuition from (2) and (3) is that M has median ©(n) and s; exceeds this
with probability O(1/n).



More formally, C; = {r; above Q} C {s; > 0/2 — €} for some small € > 0, an
event with probability at most

Plo < K]+ /OO Plt/2 — € < s; < t]h(t)dt,
K

for any positive K, where we write h(t) for the density of min(M,|m|) obtained
by differentiating the right hand side of (3). Therefore

P[Cy] < Plo < K] + /Oo Pls: > t/2)h(t)dt.
K—2e

Note that for large ¢, 1/(7t) < g(t) < 1/(5t) and for K = an/logn, Plo <
K] < 2em9(K)/8 < 1/n. Applying these estimates,

PICI < 2+ [ gla2me O (6
n o Jk
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an expression bounded by ¢/n.

We also have P[B;] = P[s; < —o] = P[s; > o] < P[C;], and so P[4;] <
2P[C;] < 2¢/n, for i = 1,...,n/4. The same is true for i = 3n/4+1,...,n by
symmetry. Finally, when [i — n/2| < n/4, r; meets U(¢) only if s; > 0 — € or
s; < —o + ¢, and both these events have probability less than P[C;] < ¢/n. O
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