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Abstract. An arrangement of n lines chosen at random from R2 has a
vertex set whose convex hull has constant (expected) size.

1 Introduction and Summary.

Let L = {`1, . . . , `n} be a set of lines in general position in R2. The vertex set
V = {`i ∩ `j, i < j} of this arrangement has size O(n2) and we are interested
in |Conv(V)|, the number of extreme points of its convex hull. As observed by
Atallah [1],

|conv(V)| ≤ 2n,

a fact that sparked algorithmic interest in the hull of line arrangements [2], [3],
[4].

Suppose the lines are chosen uniformly at random. The specific model we use
is that the lines in L are the duals of n points chosen uniformly and independently
from [0, 1]2, under the familiar duality that maps a point P = (x, y) to the line
TP = {(u, v) : v = xu + y} and maps the non-vertical line ` = {(x, y) : y =
mx+b} to the point T` = (−m, b). To get n randomly chosen lines `1, . . . , `n, we
start with points Pi = (xi, yi), i = 1, . . . , n chosen uniformly and independently
from [0, 1]2 and then take

`i = {(u, v) : v = xiu + yi}, i = 1, . . . , n.

We give a simple proof of the following statement.

Theorem 1 Let L be a set of n lines chosen uniformly at random. There is a
constant c > 0 so that

E(|Conv(V)|) < c; (1)

A similar statement holds when the lines are dual to points chosen uniformly
from other convex polygons. We have not tried to estimate c carefully, but we
believe it is smaller than 10.

Devroye and Toussaint [4] proved the same result when the lines are polar
duals to points chosen at random from a wide range of radially symmetric dis-
tributions. The two models for random lines are quite different, and both are
natural. Our proof is simple and elementary. Much more is needed to establish
the statement in [4].
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2 The Proof

Choose P1 = (x1, y1), . . . , Pn = (xn, yn) uniformly and independently from the
unit square and numbered so xi < xi+1. We may assume that the points chosen
are in general position in the sense that no three points lie on a common line and
no two points have the same x coordinate, because these degeneracies occur with
zero probability. The random lines are `i = {(u, v) : v = xiu + yi}, i = 1, . . . , n,
and the vertex set is V = {`i ∩ `j , i < j}. It is better to consider Conv(V)
in the primal. A vertex `i ∩ `j ∈ V is an extreme point of Conv(V) only if
j = (i mod n) + 1, so we seek the convex hull of the n vertices formed by the
lines in L with successive slopes (in the radial ordering of the lines by slope).
In the primal we seek lines through successive points Pi, Pi+1 which are part of
the upper or lower envelope of these lines. Specifically let ri be the line joining
Pi and Pi+1, i = 1, . . . , n− 1, and ri(t) the y-coordinate of the point on ri with
x-coordinate t. Write U(t) = maxi ri(t) and L(t) = mini ri(t) for the upper and
lower envelopes of the ri. Then

|Conv(V)| = |UP|+ |DN|
where we write UP for the set {i : ri has a segment in U(t)} and DN for the
set {i : ri has a segment in L(t) but not in U(t)}. We only show how to bound
the expected size of UP, the argument for DN being similar.

Let Ai be the event that ri meets U(t) and Zi, its indicator. We will show
that E(Zi) ≤ c/n for an appropriate constant c > 0.

We cover Ai by simpler events whose probability is easier to estimate. Let λ
be the ri, i > 3n/4, of minimum slope, let ρ be the ri, i ≤ n/4, of max slope, and

σ = min [|slope(λ)|, |slope(ρ)|]
Let L be the line through (x3n/4, 0) of slope −σ, R the line through (xn/4, 0) of
slope σ, and U∗(t) = maxt [L(t), R(t)]. Clearly U∗(t) ≤ U(t). Write Q = (x, y) =
L ∩R for the intersection of L and R (see figure).
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Let E1, . . . , En+1 be i.i.d. standard exponential random variables with partial
sums

Si = E1 + · · ·+ Ei,

and let y1, . . . , yn be i.i.d. uniforms on [0, 1]. It is familiar that the joint dis-
tribution of S1/Sn+1, . . . , Sn/Sn+1 is the same as that of x(1), . . . , x(n), the or-
der statistics of a sample x1, . . . , xn of i.i.d. uniforms. We think of the points
P1, . . . , Pn ordered by x-coordinate, with Pi = (Si, yi), i = 1, . . . , n. In this way
the unit square is replaced by the random rectangle with corners at (0, 0) and
(Sn+1, 1). The law of large numbers implies that as j →∞

Prob[|Sj − j| < εj] ≥ 1− 1/j

for any ε > 0, and that the point Q = (x, y) where L and R meet satisfies
|x − n/2| < εn and |y − σn/4| < εn with probability at least 1 − 1/n. We
therefore assume that x and y, the coordinates of Q, satisfy those inequalities.

For i ≤ n/4, Ai ⊆ Bi ∪ Ci, where Bi is the event that ri has slope less than
−σ and Ci the event that ri is above Q; if neither Bi nor Ci occur, ri does not
meet U∗(t), so it can’t meet U(t). To estimate the probabilities of Bi and Ci,
note that the line ri joining Pi and Pi+1 has slope si = (yi+1 − yi)/Ei+1. The
numerator has density f(t) = 1− |t|, t ∈ [−1, 1]. Therefore for t > 0

P [si ≤ −t] = P [si ≥ t] =
∫ 1/t

0

P [yi+1 − yi ≥ ts]e−sds

=
∫ 1/t

0

(1− ts)2

2
e−sds = t2(1− e−1/t) +

1
2
− t (2)

=
1
6t
− 1

24t2
+

1
120t3

+ · · ·

Denote this function by g(t).
Write M = max (s2, s4, . . . , sn/4) and note that ρ = maxi≤n/4 si ≥ M . Also,

because the random variables s2j , j = 1, . . . , n/8 are independent, we have

P [M ≤ t] = P [s2i ≤ t]n/8 = (1 − P [s2i ≥ t])n/8 = [1− g(t)]n/8.

Similarly, writing m = min (s3n/4+2, s3n/4+4, . . . , sn), λ = mini>3n/4 si ≤ m,
and because the even slopes are independent,

P [m ≥ −t] = P [s2i ≥ −t]n/8 = (1 − P [s2i ≤ −t])n/8 = [1− g(t)]n/8.

These combine to show

P [σ ≤ t] ≤ P [min(M, |m|) ≤ t] = 2[1− g(t)]n/8 − [1− g(t)]n/4. (3)

The intuition from (2) and (3) is that M has median Θ(n) and si exceeds this
with probability O(1/n).



More formally, Ci = {ri above Q} ⊂ {si ≥ σ/2− ε} for some small ε > 0, an
event with probability at most

P [σ ≤ K] +
∫ ∞

K

P [t/2− ε ≤ si ≤ t]h(t)dt,

for any positive K, where we write h(t) for the density of min(M, |m|) obtained
by differentiating the right hand side of (3). Therefore

P [Ci] ≤ P [σ ≤ K] +
∫ ∞

K−2ε

P [si ≥ t/2]h(t)dt.

Note that for large t, 1/(7t) < g(t) < 1/(5t) and for K = an/ logn, P [σ ≤
K] ≤ 2e−ng(K)/8 ≤ 1/n. Applying these estimates,

P [Ci] ≤ 1
n

+
∫ ∞

K

g(t/2)ne−ng(t)/8/(6t2)dt

≤ 1
n

+
∫ ∞

K

n

120t3en/(40t)
dt,

an expression bounded by c/n.
We also have P [Bi] = P [si < −σ] = P [si > σ] < P [Ci], and so P [Ai] <

2P [Ci] < 2c/n, for i = 1, . . . , n/4. The same is true for i = 3n/4 + 1, . . . , n by
symmetry. Finally, when |i − n/2| ≤ n/4, ri meets U(t) only if si > σ − ε or
si < −σ + ε, and both these events have probability less than P [Ci] < c/n. ut
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