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Abstract. In this paper we discuss the problem of constructing minimum-cost, prefix-free codes for
equiprobable words under the assumption that all codewords are restricted to belonging to an arbitrary
language L and extend the classes of languages to which L can belong.
Note: This extended abstract is essentially the version which appears in The proceedings of WADS’05,
but with extra diagrams added.

Varn Codes are minimum-cost prefix-free codes for equiprobable words when the encoding alphabet has
unequal-cost letters. They can be modelled by the leaf-set of minimum external-path length lopsided trees,
which are trees in which different edges have different lengths, corresponding to the costs of the different
letters of the encoding alphabet. There is a very large literature in the information theory and algorithmic
literature devoted to analyzing the cost [26] [20] [12] [13] [3] [18] [23] [1] [7] [24] [7] [24] of such codes/trees
and designing efficient algorithms for building them [18] [8] [28] [10] [22] [17] [7].

It was recently shown [15] that the Varn coding problem can be rewritten as the problem of constructing a
minimum-cost prefix-free code for equiprobable words, under the assumption that all codewords are restricted
to belonging to an arbitrary language L where L is a special type of language, specifically a regular language
accepted by a DFA with only one accepting state. Furthermore, [15] showed that the techniques developed
for constructing Varn Codes could then be used to construct optimal codes restricted to any regular L that
is accepted by a DFA with only one accepting state. Examples of such languages are where “L is all words
in Σ∗ ending with a particular given string P ∈ Σ∗,” i.e., L = Σ∗P (the simplest case of such a language
are the 1-ended codes, L = (0 + 1)∗1 [4, 5]). A major question left open was how to construct minimum-cost
prefix-free codes for equiprobable words restricted to L when L does not fit this criterion.

In this paper we solve this open problem for all regular L, i.e., languages accepted by Deterministic
Finite Automaton, as long as the language satisfies a very general non-degeneracy criterion. Examples of
such languages are L of the type, L is all words in Σ∗ ending with one of the given strings P1, P2, . . . , Pn ∈ Σ∗.
More generally our technique will work when L is a language accepted by any Deterministic Automaton,
even automaton with a countably infinite number of states, as long as the number of accepting states in the
automaton is finite.

Our major result is a combinatorial theorem that, given language L accepted by a Deterministic Au-
tomaton, exactly describes the general structure of all optimal prefix-free codes restricted to L. This theorem
immediately leads to a simple algorithm for constructing such codes given the restriction language L and
the number of leaves n.

0.1 Formal Statement of the Problem

We start with a quick review of basic definitions. Let Σ be a finite alphabet, e.g., Σ = {0, 1}, or Σ = {a, b, c}.
A code is a set of words C = {w1, w2, . . . , wn} ⊂ Σ∗. A word w = σ1σ2 . . . σl is a prefix of another word
w′ = σ′

1σ
′
2 . . . σ′

l′ if w is the start of w′. For example 01 is a prefix of 010011. Finally, a code is said to be
prefix-free if for all pairs w,w′ ∈ C, w is not a prefix of w′.

Let P = {p1, p2, p3, . . . , pn} be a discrete probability distribution, that is, ∀i, 0 ≤ pi ≤ 1 and
∑

i pi = 1.
The cost of code C with distribution P is cost(C,P ) =

∑

i |wi|·pi where |w| is the length of word w; cost(C,P )
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A1 = {aabca, babca, cabca, dabca}, A2 = {01, 0011, 1100, 1010, 1001}
B1 = {aabca, babca, cabca, aaabca}, B2 = {01, 10, 0011, 101010, 000111}

Fig. 1. Examples of optimal (A1, A2) and non-optimal (B1, B2) codes in L1 and L2. cost(A1) = 20; cost(B1) = 21;
cost(A2) = 18; cost(B2) = 20.

is therefore the average length of a word under probability distribution P. The prefix-coding problem is, given
P, to find a prefix-free code C that minimizes cost(C,P ). This problem is well-studied and can easily and
efficiently be solved by the well-known Huffman-coding algorithm, see e.g., [11]. When the codewords are
equiprobable, i.e., ∀i, pi = 1/n, then cost(C,P ) = 1

n

∑

i |wi| = 1
n
cost(C) where cost(C) =

∑

i |wi|. cost(C,P )
is then minimized when cost(C) is minimized. We will call such a code an optimal uniform-cost code.

In this paper we are interested in what happens to the uniform-cost code problem when it is restricted
so that all of the words in C must be contained in some language L ⊆ Σ∗,. As examples consider L = L1,
the set of all words in {a, b, c}∗ that end with the pattern abca and L = L2, the set of all words in {0, 1}∗ in
which the number of ‘0’s is equal to the number of ‘1’s.

In Figure 1, the codes Ai are optimal prefix-free codes (for 4/5) words in Li (i=1,2). That is, no codes
with the same number of words in Li have smaller cost than the Ai. The Bi are non-optimal codes in the
same languages.

Let language L be fixed. We would like to answer the questions:

– What is the optimal (min-cost) prefix-free code Cn containing n words in L?
– How does Cn change with n?

We call this the L-restricted prefix-coding problem. Our major tools for attacking this problem are generalized
lopsided trees.

Note: In this extended abstract we only state our main results and provide intuition as to why they are
correct. The full proofs are omitted.

1 Generalized Lopsided Trees

Definition 1. See Figures 2 and 3.
We are given a finite set T = {t1, t2, ..., tk} and two functions

cost(·, ·) : T × N+ → N+ and type(·, ·) : T × N+ → T

where N+ is the set of nonnegative integers; T , cost() and type() are the tree parameters.

– A generalized lopsided tree for T, cost(·, ·) and type(·, ·) is a tree (of possibly unbounded node-degree)
in which every node is labelled with one element T .

– The label of a node is its type; equivalently, a node of type ti is a ti-node.
– By convention, unless otherwise explicitly stated, the root of a generalized lopsided tree must be a t1-node.
– The jth child of a ti node, if it exists, will have type type(ti, j). The length (weight) of the edge from a

ti-node to its jth child, will be cost(ti, j). By convention, we will assume that if j ≤ j′, then cost(ti, j) ≤
cost(ti, j

′) .

Note that it is possible that a type ti ∈ T node could be restricted to have at most a finite number k of
possible defined children. In this case, cost(ti, j) and type(ti, j) are undefined for j > k.

Note too that it is possible for a node to be “missing” its middle children, e.g, the 1st and 3rd child of a
node might be in the tree, but the 2nd child might not.

When designing an algorithm for constructing optimal trees we will assume that the values cost(ti, j),
type(ti, j) and Num(i,m, h) = |{j : cost(ti, j) = h and type(ti, j) = tm}|, can all be returned in O(1) time
by some oracle.

2



Finally, we point out that our definition restricts cost(·, ·) to be nonnegative integers. If cost(·, ·) were
arbitrary nonnegative rationals they could be scaled to be integers and the problem would not change. Allowing
cost(·, ·) to be nonnegative irrationals would change the problem and require modifying many of the lemmas
and theorems in this paper. In this extended abstract we restrict ourselves to the simpler integer case since,
as we will soon see, restricted languages can be modelled using integer costs.

Definition 2. See Figures 2 and 3. Let u be a node and Tr be a generalized lopsided tree.

– depth(u) is the sum of the lengths of the edges on the path connecting the root to u.
– The height of Tr is H(Tr) = maxu∈Tr depth(u).
– The leaf set of Tr is leaf(Tr), the set of leaves of Tr.
– The cost of Tr is its external path length or C(Tr) =

∑

v∈leaf(Tr) depth(v)

Tree Tr is optimal if it has minimum external path length over all trees with |leaf(Tr)| leaves, i.e.,

cost(Tr) = min{cost(Tr′) : Tr′ a tree with |leaf(Tr′)| = |leaf(Tr)|}

Definition 3. opt(n) denotes an arbitrary generalized lopsided tree that has minimum cost among all gen-
eralized lopsided trees with n leaves.

As an example, the trees in the second row in Figure 4 illustrate opt(3), opt(4), and opt(5) given the cost(·, ·)
and type(·, ·) function in the first row.

For given T , cost, and type the problem in which we are interested is: Given n, characterize the

combinatorial structure of opt(n) and propose an algorithm for the construction of opt(n).
Figure 2 illustrates a case in which |T | = 1 and Figure 3 a case in which |T | = 2.
The |T | = 1 case has been extensively studied in the literature under the name lopsided trees (hence,

generalized lopsided trees for the extension studied here). The name lopsided trees was introduced in 1989 by
Kapoor and Reingold [18] but the trees themselves have been implicitly present in the literature at least since
1961 when Karp [19] used them to model minimum-cost prefix-free (Huffman) codes in which the length of

the edge of the letters in the encoding alphabet were unequal; ci represented the length of the ith letter in
the encoding alphabet (the idea of such codes was already present in Shannon [26]).

A major motivation for analyzing lopsided trees was the study of Varn-codes [28] [23]. Suppose that we
wish to construct a prefix-free encoding of n symbols using an encoding alphabet of r letters, Σ = {α1, . . . , αr}
in which the length of character αi is ci, where the cis may all be different.

If a symbol is encoded using string ω = αi1αi2 . . . αil
, then cost(ω) =

∑

j≤l cij
is the length of the string.

For example if r = 2, Σ = {0, 1} and c1 = c2 = 1 then the cost of the string is just the number of bits it
contains. This last case is the basic one encountered in regular Huffman encoding e.g., [11].

Now suppose that the n symbols to be encoded are known to occur with equal frequency. The cost of the
code is then defined to be

∑

i≤n cost(ωi) (which divided by n is the average cost of transmitting or length
of a symbol). Given c1 ≤ c2 ≤ · · · ≤ cr, a Varn-code for n symbols is a minimum-cost code. Varn codes have
been extensively studied in the compression and coding literature([23] [2] both contain large bibliographies).

Such codes can be naturally modelled by lopsided trees in which the length of the edge from a node to its

ith child is ci. See Figure 2. Suppose that v is a leaf in a lopsided tree and the unique path from the tree’s
root to v first traverses an ist1 edge then an ind

2 edge and so on up to an ithl edge. We can then associate with
this leaf the codeword ω = αi1αi2 . . . αil

. The cost of this codeword is exactly the same as the depth of v in
the tree, i.e.,

∑

j≤l cij
. Using this correspondence, every tree with n leaves corresponds to a prefix-free set

of n codewords and vice-versa; the cost of the code is exactly equal to the external path length of the tree
which we will henceforth call the cost of the tree. This correspondence is extensively used, for example, in
the analysis of Huffman codes.

A lopsided tree with minimal cost for n leaves will be called an optimal (lopsided) tree.
With this correspondence and notation we see that the problems of constructing a Varn code and cal-

culating its cost are equivalent to those of constructing an optimal (lopsided) tree and calculating its cost.
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Fig. 2. Example: Using a lopsided tree (with only one type of node) to model a Varn code with letter costs
c1 = 1, c2 = c3 = 2. Edge costs are represented by vertical distances in the diagram. Let T = {t}. Then
cost(t, 1) = 1, and cost(t, 2) = cost(t, 3) = 2. The code represented by the tree is the set of all external paths,
which is α1α2, α1α3, α2, α3α1, α3α3. The cost of the tree is 2 + 3 + 3 + 3 + 4 = 15; its height is 4.
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type(sq, 1) = circ cost(sq, 1) = 1
type(sq, 2) = sq cost(sq, 1) = 2
type(sq, 3) = sq cost(sq, 1) = 3

type(circ, 1) = sq cost(circ, 1) = 1
type(circ, 2) = circ cost(circ, 2) = 2
type(circ, 3) = sq cost(circ, 2) = 2
type(circ, 4) = circ cost(circ, 3) = 4

Fig. 3. A Generalized Lopsided tree (on the top) with T = {circle(circ), square(sq)}. Cost of the tree is 3 · 3 + 5 ·
4 + 4 · 5 + 6 = 51; height is 6. The two trees on the bottom describe the functions cost and type on the two types of
nodes, (sq) and (circ). For comparison’s sake, the functions are also explicitly written out. Note that the second

child of the root is missing.
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Fig. 4. T = {circ, sq} with cost and type being defined by the two trees in the top row. The optimal generalized
lopsided trees for n = 3, 4, 5 leaves are given in the bottom row. Note that as n increases, β alternates between being
an internal node and a leaf. This phenomenon did not occur in regular lopsided trees where, once anode became
internal, it remained internal.

This is what was studied by most of the papers listed in the first paragraph of this note and this problem is
now essentially fully understood.

[15] noted that if Σ = {α1, . . . , αr} and the ci are all integral then the Varn coding problem can be mod-
elled by introducing new alphabet Σ′ = {x1, x2, . . . , xr} and Varn language L = (xc1

1 + xc2
2 + . . . + xcr

r )
∗
⊆

Σ′∗. A 1-1 correspondence between character αi and string xci

i shows that there is a 1-1 correspondence
between Varn codes and prefix-codes restricted to L and, similarly, between lopsided trees and prefix-codes
restricted to L. Thus, the problem of finding the smallest cost prefix-code restricted to L is equivalent to
finding a min-cost lopsided tree. [15] then noted that this was true not just for codes restricted to Varn-
languages but that codes restricted to any regular L accepted by a DFA with one accepting state (like Varn
Languages) could also (almost) be modelled by lopsided trees, thus permitting using the same techniques to
find the cost of such codes. For example let L = Σ∗P for some fixed P ∈ Σ∗, i.e., L is all words that end in
P. Such a L is always accepted by some DFA with one accepting state, so the results in [15] permit finding
optimal codes of n words restricted to such L.

A problem that was left open in [15] was how to solve this problem if L is not in this restricted form. For
example, let Σ = {0, 1}. The simple regular language L = Σ∗(000 + 111)Σ∗ of all words containing at least
one occurance of 000 or 111 is not accepted by any DFA with only one accepting state. Another example
of a regular language not accepted by any DFA with only one accepting state is L = 0∗1(0000∗1)∗0∗ the
language containing all words in which every two consecutive ones are separated by at least 3 zeros.

We now see that the L-restricted prefix-coding problem can be modelled using generalized lopsided trees
for regular languages L. Let L be accepted by some Deterministic Automaton M with accepting states
A = {a1, a2, ..., an}. Without loss of generality we may assume that the empty string ǫ ∈ L so the start state
of M is in A. Now define the parameters of the lopsided tree as follows: T = {t1, ..., tk} where ti corresponds
to state ai. For any fixed i enumerate, by increasing length (breaking ties arbitrarily) all paths in M that
start at ai and end at some node aj ∈ A without passing through any other node in A in the interior of

the path. Let these paths be p
(1)
i , p

(2)
i , .... Set end(p) = j, where aj terminates path p. We complete the
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remaining parameters of the generalized trees by defining the functions

type(ti, j) = t
end

(

p
(j)
i

), cost(ti, j) = length
(

p
(j)
i

)

. (1)

There is then a simple one-one correspondence between prefix-free codes restricted to L and the leaves of
the defined generalized lopsided tree with the cost of the code being equal to the cost (external path length)
of the tree. Thus, finding the min-cost prefix free code with n words restricted to L is exactly equivalent to
finding the min-cost generalized lopsided tree with n leaves. The remainder of this paper will therefore be
devoted to analyzing generalized lopsided trees and how they change as n grows.

As mentioned, the case of regular lopsided trees, i.e., when |T | = 1, is well-understood. The difficulty
in extending the results on the growth of lopsided trees to that of generalized lopsided trees is that there
is a fundamental difference between |T | = 1 and |T | > 1. Let opt(n) be the optimal lopsided tree with n
nodes and In the set of internal (non-leaf) nodes in opt(n). In [7] it was shown that, even though it is not
necessarily true that opt(n) ⊂ opt(n + 1), i.e., the trees can not be grown greedily, it is always true that
In ⊆ In+1. So, with a little more analysis, one can “incrementally” construct the trees by greedily growing
the set of internal nodes. As Figure 4 illustrates, though, because of the interactions between the various
types of nodes, this last property is not true for generalized lopsided trees. We therefore have to develop a
new set of tools to analyze these trees, which is the purpose of this paper.

Note: our correspondence only required that L be accepted by a Deterministic Automaton with a finite
set of accepting states. Since all regular languages are accepted by Deterministic Finite Automatons our
technique will suffice to analyze all restrictions to regular languages.

We point out that there are many non-regular languages accepted by Non-finite Deterministic Automata
(automaton that can have countable infinite states) with a finite set of accepting states. For example, the
language L2, the set of all words in {0, 1}∗ in which the number of “0”s is equal to the number of “1”s,
has this property. Since these can also be modelled by generalized lopsided trees, our technique will work for
restrictions to those languages as well.

2 Definitions

In this section, we introduce definitions that will be used in the sequel. In what follows T, cost and type will
be assumed fixed and given.

Definition 4. Let Tr be a generalized lopsided tree and v a node in Tr.

– internal(Tr) is the set of internal nodes of Tr.
– type(v) is the type of v
– parent(v) is the parent of v;note that the parent of the root is undefined

In the rightmost tree in Figure 4, type(β) = circle. parent(β) = α, and internal(TreeC) = {α, β, γ}.
Our main technique will involve building a larger tree Tr′ out of smaller tree Tr by replacing some leaf

v ∈ leaf(Tr) with some new tree T2 rooted at a type(v)-node. The increase in the number of leaves from Tr
to Tr′ is |leaf(T2)| − 1. The average cost cost(T2)/(|leaf(T2)| − 1) of the new leaves will be crucial to our
analysis and we therefore define

Definition 5. The average replacement cost of tree Tr is

ravg(Tr) = cost(Tr)/(|leaf(Tr) − 1).

Intuitively, we prefer to use the subtree with smallest ravg to expand the existing lopsided tree. This
motivates us to study the trees with minimum ravg. Recall that the set T represents the collection of types.

Definition 6. Let tk ∈ T . Set

MinS(tk) = min{ravg(Tr), : type(root(Tr)) = tk}. (2)

The corresponding tree attaining MinS(tk) is denoted by MinS(tk).
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p1

p2
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p3

Fig. 5. An example of an improper lopsided tree (left hand side) and a proper tree (right hand side) with better cost
that results from collapsing the repeated path.

Note that this definition does not depend upon n, but only upon T , cost(), and type(). There might be more
than one tree that attains1 the minimum cost. In such a case, we select an arbitrary tree attaining the
minimum that contains the least number of nodes.

We can now define certain essential quantities regulating the growth of lopsided trees.

Definition 7. Let l be an integer. Set bottom(l) = l + mini{⌊MinS(ti)⌋} and

levtk
(l) =

{

bottom(l) − MinS(tk) if MinS(tk) is an integer;
⌊bottom(l) + 1 − MinS(tk)⌋ if MinS(tk) is not an integer.

(3)

In our analysis we often manipulate unused or free nodes. In order to do so, we must first introduce a
reference tree containing all nodes.

Definition 8. The Infinite Generalized Lopsided Tree (ILT) is the rooted infinite tree such that for
each node v in the tree, the ith child’s type is type(v, i); the length of the edge connecting v and its ith child
is cost(v, i), i.e., every node contains all of its legally defined children.

We can now define

Definition 9. A leaf v in the infinite lopsided tree is free with respect to tree Tr if v /∈ Tr and parent(v) ∈
Tr; the free set of Tr is

free(Tr) = {v : v is free with respect to Tr}.

In our study of lopsided trees we need to somehow avoid repeated paths that do not contribute any
benefit to the tree. We therefore define:

Definition 10. Figure 5. An improper lopsided tree is a tree containing a path p1p2....pk, where k > |T | in
which each pi has only one child (that is, p1 has only child p2, p2 has only child p3, ...). A proper lopsided
tree is a tree which is not improper.

It is not difficult to see that improper trees can not be optimal. We may therefore restrict ourselves to
studying proper trees. Note that a proper tree with n leaves can only contain O(n) nodes in total (where
the constant in the O() depends upon the tree parameters); we will need this fact in the sequel.

We need one more definition:

Definition 11. Lopsided Tree parameters T , cost(), and type() are non-degenerate if they satisfy the fol-
lowing condition:
There exists N > 0 such that, ∀l ≥ N ; if the number of nodes on level l in ILT is 6= 0 then the number of
nodes on level (bottom(l) + 1) in ILT is ≥ maxi{|leaf(MinS(ti))|}.

1 It is easy to prove that the minimum is attained but we do not do so in this extended abstract
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Essentially, the parameters are non-degenerate if deep enough into the infinite tree, the number of nodes
per level can’t get too small. A technicality occurs because it is quite easy to construct languages in which
many levels of the infinite tree have no nodes, e.g., the language of all words in w ∈ {0, 1}∗ in which # of
0’s in w equals # of 1’s in w. In this language all words have even length, so all odd levels are empty. The
condition is stated to handle such cases as well. While the non-degeneracy definition is quite technical, it is
usually quite easy to show that most interesting classes of languages satisfy it. For example, L of the type,
L is “all words in Σ∗ containing at least one of the specified patterns P1, P2, . . . , Pk ∈ Σ∗” always satisfy
this condition.

3 The Structure of Optimal Generalized Trees

Theorem 1. Let Tr be any optimal tree, v1, v2 two nodes in in Tr with type(v1) = type(v2). Then if v1 is
internal in Tr and v2 is a leaf then depth(v1) ≤ depth(v2). Furthermore, there exists a constant N , dependent
only upon the tree parameters, such that if Tr has n ≥ N leaves then

1. if v is a leaf in Tr, then H(Tr) − depth(v) ≤ ⌈MinS(type(v))⌉ and
2. if v is internal in Tr, then H(Tr) − depth(v) ≥ ⌈MinS(type(v))⌉ − 1

This lemma can be read as saying that opt(n) always has a layered structure, i.e., there exists integers
l1, ...l|T |, such that (i) all ti nodes on or above level li are internal (ii) all ti nodes below level li+1 are leaves and
(ii) ti nodes on level li +1 could be either internal or leaves. Furthermore, H(Tr)−(li +⌈MinS(ti)⌉) ∈ {0, 1}
so (up to an additive factor of 1), it is independent of n. See Figure 8.

The proof of this theorem is a quite technical case-by-case one and is omitted from this extended abstract.
The basic intuition behind it is quite simple, though. First, it is easy to see that, for fixed type ti, there
must be some level li above which all ti-nodes are internal and below which all ti-nodes are leaves; otherwise,
we can swap a higher leaf with a lower internal to get a cheaper tree with the same number of leaves. The
actual location of li is derived by (i) calculations noting that if a leaf v is higher than the given level, then
the tree can be improved by turning v into an internal node by rooting a MinST(ti) tree at it and removing
|leaf(MinST(ti))| leaves from the bottom level of the tree; and (ii) calculations noting that if an internal
node v is lower than the specified level then it and all of its descendents can be removed and replaced by
new free leaves located at the bottom level or one level below the bottom. The existence of the nodes in (i)
to remove and nodes in (ii) to add follows from the non-degeneracy condition.

Definition 12. Set
V (l) = {v ∈ ILT |depth(v) ≤ levtype(v)(l)},

that is, for each i, V (l) contains exactly all of the ti nodes with depth ≤ levti
(l). Now set

TreeA(l) = V (l) ∪ {v|v ∈ ILT and parent(v) ∈ V (l) and depth(v) ≤ bottom(l)}

and

TreeB(l) = V (l) ∪ {v|v ∈ ILT and parent(v) ∈ V (l) and depth(v) ≤ bottom(l) + 1}

= TreeA(l) ∪ {v|v ∈ ILT and parent(v) ∈ V (l) and depth(v) = bottom(l) + 1}

Note that V (l) is the set of internal nodes of TreeA(l) and also the set of internal nodes of TreeB(l).

Lemma 1. Let l be an integer, then

|leaf(TreeA(l))| ≤ |leaf(TreeB(l))| ≤ |leaf(TreeA(l + 1))|.

Even though it is possible that, for some l, |leaf(TreeA(l))| = |leaf(TreeA(l + 1))| it is not difficult to
see that, if the non-degeneracy condition is satisfied, liml→∞ |leaf(TreeA(l))| = ∞ so, for every n we can
find an l such that |leaf(TreeA(l))| ≤ n < |leaf(TreeA(l + 1))|.

We can now state our main theorem:
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Theorem 2. Suppose parameters T , cost(), and type() are non-degenerate.
For a given integer l, set A(l) = leaf(TreeA(l)) and B(l) = leaf(TreeB(l)) Then

1. If n = |A(l)|, then the tree TreeA(l) is optimal.
2. If |A(l)| < n ≤ |B(l)|, then the tree obtained by appending the n − |A(l)| highest free (with respect to

TreeA(l)) leaves to TreeA(l) is optimal.
3. If |B(l)| < n < |A(l + 1)|,

– All nodes in V (l) are internal in opt(n).
– No ti-node whose depth is greater than levti

(l) + 1 is internal in opt(n).

Figure 6 illustrates an example of this theorem. Figure 6A is TreeA(3); since it contains 81 leaves, it is
optimal for n = 81. bottom(3) = 7 and there are m = 13 children of V (3) on level (bottom(3) + 1) = 8.
Optimal trees for 81 < n ≤ 81+m are constructed by adding any n− 81 level-8 children of nodes in V (3) to
TreeA(3). If all m leaves are added then we get TreeB(3) in Figure 6B, which is optimal for n = 81+m = 94
leaves.

Figure 7 is TreeA(4) which has 168 leaves (and is therefore optimal for n = 168). Part 3 of the theorem
then states that optimal(n) for 94 < n ≤ 168 is constructed by starting with TreeB(3) and making internal
some t1-nodes on level six and t2-nodes on level four. Note that some of the t1-nodes to be made internal on
level six are actually first created by first making some t2-nodes on level four internal.

This suggests how to find opt(n) given n. First, find l such that A(l) ≤ n < A(l + 1). Then, calculate
B(l). If A(l) ≤ n ≤ B(l) then opt(n) is just TreeA(l) with the highest n−A(l) free leaves in TreeA(l) added
to it. The complicated part is when B(l) < n < A(l + 1). In this case Theorem 2 tells us that the set of
ti internal nodes in opt(n) is all of the ti nodes on or above depth levti

(l) + 1 plus some ti nodes at depth
levti

(l) + 1. If we exactly knew the set of all internal nodes we can easily construct the tree by appending
the n highest leaves. So, our problem reduces down to finding exactly how many ti internal nodes there are
on levti

(l) + 1. We therefore define a vector that represents these numbers:

Definition 13. Let n and l be such that B(l) < n < A(l + 1) and Let opt(n) be an optimal tree for n
leaves and vi be the number of ti-internal nodes exactly at depth levti

(l) + 1. The feature vector for opt(n)
is v = (v1, v2, ..., v|T |).

Theorem 2, our combinatorial structure theorem, now immediately yields a straightforward algorithm for
constructing opt(n). The first stage of the algorithm is to find l such that A(l) ≤ n < A(l+1). Note that this
can be done in O(|T |2l2) time by iteratively building A(1), A(2), . . . , A(l + 1) (l is the first integer such that
n < A(l + 1)). This is done not by building the actual tree but by constructing an encoding of the tree that,
on each level, keeps track of how many ti-leaves and ti internals there are on each level. So, an encoding of
a height i tree uses O(|T |i) space. From the definition of TreeA(i) it is easy to see that its encoding can be
built from the encoding of TreeA(i− 1) in O(|T |2i) time so l can be found in

∑

i≤l+1 O(|T |2i) = O(|T |2l2).
Now note that, because the tree is proper, the total number of nodes in opt(n) is O(n) (where the

constants in the O() depend upon the parameters of the lopsided tree) so all of the vi = O(n). In particular,
this means that there are at most O(n|T |) possible feature vectors.

Given n, l and some vector v it is easy to check, in O(|T |2l) time, whether a tree with feature vector v

actually exists. This can be done by starting with the encoding of TreeA(l) and then, working from level l|T |

down, using the given v to decide whether there are enough type-ti leaves available on level li to transform
into internals and, if there are, then transforming them. While doing this, we always remember how many
leaves L exist above the current level. After finishing processing level l1, we then add the highest available
n−L leaves below l1 if they exist, or find that no such tree exists. If such a tree can be built, then, in O(|T |l)
time, its cost can be calculated from the encoding.

Combining the above then gives an O
(

|T |2l2n|T |
)

algorithm for constructing opt(n). Simply try every
possible feature vector and return the one that gives the minimal cost. The fact that the tree is proper implies
that l = O(n) so, in the worst case, this is an O

(

|T |2 n|T |+2
)

algorithm. In many interesting cases, e.g., when

all nodes have a bounded number of defined children, l = O(log n) so this beomes an O
(

log2 n |T |2 n|T |
)

algorithm.
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(a) TreeA(3)
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(b) TreeB(3)

type(circ, 1) = circ cost(circ, 1) = 1
type(circ, 2) = circ cost(circ, 2) = 2
type(circ, 3) = sq cost(circ, 3) = 2
type(circ, 4) = sq cost(circ, 4) = 3

type(sq, 1) = circ cost(sq, 1) = 1
type(sq, 2) = sq cost(sq, 2) = 2
type(sq, 3) = circ cost(sq, 3) = 3

Fig. 6. The trees TreeA(l) and TreeB(l) for l = 3. Note that the internal sets of these two trees are identical. The
leaves with depth 8 in TreeB(l) are the new leaves.
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Fig. 7. TreeA(4). Compare to TreeA(3) and TreeB(3) in the previous figure.

MinS(t1)

MinS(t2)

...MinS(t|T |−1)

MinS(t|T |)

H(Tr) − 1
H(Tr)

Internal = {t1}

...
...

Internal = {t1, t2, . . . , t|T |−1}

Internal = {t1, t2, . . . t|T |}

l|T |

l|T |−1

l2

l1

H(Tr)

Fig. 8. The structure of an optimal tree. The solid lines are the li; all ti nodes on or above level li are internal. The
dotted lines are li + 1; all ti nodes on or below li + 1 are leaves. The ti nodes on li can be either leaves or internal
nodes. Note that, for all types ti, H(Tr)− 1 ≤ li + MinST (ti) ≤ H(Tr) (note that li + MinST (ti) is not necessarily
integral).
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