
The Knuth-Yao Quadrangle-Inequality Speedup is a Consequence

of Total-Monotonicity

Wolfgang W. Bein ∗ Mordecai J. Golin † Lawrence L. Larmore ‡ Yan Zhang §

Abstract

There exist several general techniques in the litera-
ture for speeding up naive implementations of dy-
namic programming. Two of the best known are
the Knuth-Yao quadrangle inequality speedup and
the SMAWK algorithm for finding the row-minima
of totally monotone matrices. Although both of these
techniques use a quadrangle inequality and seem sim-
ilar they are actually quite different and have been
used differently in the literature.

In this paper we show that the Knuth-Yao tech-
nique is actually a direct consequence of total mono-
tonicity. As well as providing new derivations of
the Knuth-Yao result, this also permits showing how
to solve the Knuth-Yao problem directly using the
SMAWK algorithm. Another consequence of this
approach is a method for solving online versions of
problems with the Knuth-Yao property. The online
algorithms given here are asymptotically as fast as
the best previously known static ones. For example
the Knuth-Yao technique speeds up the standard dy-
namic program for finding the optimal binary search
tree of n elements from Θ(n3) down to O(n2), and
the results in this paper allow construction of an op-
timal binary search tree in an online fashion (adding
a node to the left or right of the current nodes at
each step) in O(n) time per step.

We conclude by discussing how the general tech-
nique described here is also applicable to later exten-
sions of the Knuth-Yao result, such as those devel-

∗Department of Computer Science, University of Nevada,
Las Vegas, NV 89154. Email: bein@cs.unlv.edu. Research
supported by NSF grant CCR-0312093.

†Dept. of Computer Science, Hong Kong UST, Clear
Water Bay, Kowloon, Hong Kong. Email golin@cs.ust.hk

Research partially supported by Hong Kong RGC CERG grant
HKUST6312/04E.

‡Department of Computer Science, University of Nevada,
Las Vegas, NV 89154. Email: larmore@cs.unlv.edu. Re-
search supported by NSF grant CCR-0312093.

§Dept. of Computer Science, Hong Kong UST, Clear
Water Bay, Kowloon, Hong Kong. Email: cszy@cs.ust.hk

Research partially supported by Hong Kong RGC CERG grant
HKUST6312/04E.

oped by Borchers and Gupta.

1 Introduction

1.1 History The construction of optimal binary
search trees is a classic optimization problem. The
input is 2n + 1 weights (probabilities) p1, . . . , pn,
q0, q1, . . . , qn; pl is the weight that a search is for
Keyl; such a search is called successful. The value ql

is the weight that the search argument is unsuccessful
and is for an argument between Keyl and Keyl+1

(where we set Key0 = −∞ and Keyn+1 = ∞).
Our problem is to find an optimal binary search

tree (OBST) with n internal nodes – corresponding
to successful searches – and n + 1 leaves – corre-
sponding to unsuccessful searches – that minimizes
the average search time. Let d(pl) be the depth of
internal node corresponding to pl and d(ql) the depth
of leaf corresponding to ql. Then we want to find a
tree that minimizes

∑

1≤l≤n

pl(1 + d(pl)) +
∑

0≤l≤n

ql d(ql).

It is not hard to see that this problem reduces to
solving the following recurrence:

Bi,j =

0 if i = j
j∑

l=i+1

pl +
j∑

l=i

ql + min
i<t≤j

{Bi,t−1 + Bt,j}

if i < j
(1.1)
where the cost of the optimal OBST is B0,n. The
naive way of calculating Bi,j requires Θ(j − i) time,
so calculating all of the Bi,j would seem to require
Θ(n3) time. In fact, this is what was done in by
Gilbert and Moore in 1956 [8]. More than a decade
later, in 1971, it was noticed by Knuth [9] that, using
a complicated amortization argument, the Bi,j can
all be computed using only Θ(n2) time. Around
another decade later, in the early 1980s, Yao [15, 16]
simplified Knuth’s proof and, in the process, showed
that this dynamic programming speedup worked for
a large class of problems satisfying a quadrangle
inequality property.

31

SODA ’06, January 22-26, Miami, FL
©2006 SIAM ISBN 0-89871-605-5/06/01

Many other authors then used the Knuth-Yao
technique, either implicitly or explicitly, to speed up
different dynamic programming problems. See e.g.,
[13, 3, 4].

In the 1980s a variety of researchers developed
various related techniques for exploiting properties,
such as convexity and concavity, to yield dynamic
programming speedups; a good early survey is [7].
A high point of this strand of research was the
development in the late 1980s of the linear time
SMAWK algorithm [1] for finding the row-minima of
totally monotone matrices. The work in [6] provides
a good survey of the techniques mentioned as well
as applications and later extensions. One particular
extension we mention (since we will use it later) is
the LARSCH algorithm of Larmore and Schieber [10]
which, in some cases, permits finding row-minima
even when entries of the matrix can implicitly depend
upon other entries in the matrix (a case SMAWK
cannot handle).

As we shall soon see, both the Knuth-Yao (KY)
and SMAWK techniques rely on an underlying quad-
rangle inequality in their structure and have a similar
“feel”. In spite of this, they have until usually been
thought of as being different approaches. See, e.g.,
[12] which uses both KY and SMAWK to speed up
different problems. In [2] Aggarwal and Park demon-
strated a relationship between the KY problem and
totally-monotone matrices by building a 3-D mono-
tone matrix based on the KY problem and then using
an algorithm due to Wilber [14] to find tube minima
in that 3-D matrix. They left as an open question
the possibility of using SMAWK directly to solve the
KY problem.

The main theoretical contribution of this paper
is to show that the KY technique is really just a
special case of the use of totally monotone matri-
ces. We first show a direct solution to the KY prob-
lem by decomposing it into O(n) totally-monotone
O(n)×O(n) matrices, permitting direct application
of the SMAWK algorithm to yield another O(n2) so-
lution. After that we describe how the Knuth-Yao
technique itself is actually a direct consequence of
total-monotonicity of certain related matrices. Fi-
nally, we show that problems which can be solved by
the KY technique statically in O(n2) time can actu-
ally be solved in an online manner using only O(n)
worst case time per step. This is done by using a new
formulation of the problem in terms of monotone-
matrices, along with the LARSCH algorithm. 1

1We should point out that, as discussed in more detail at
the end of Section 3, an alternative online algorithm to the
one presented here could be derived by careful deconstruction

1.2 Definitions
Definition 1.1. A two dimensional upper triangu-
lar array ai,j, 1 ≤ i ≤ j ≤ n satisfies a quadrangle
inequality (QI) if, for i ≤ i′ ≤ j ≤ j′,

ai,j + ai′,j′ ≤ ai′,j + ai,j′ .

Definition 1.2. A 2× 2 matrix is monotone if the
minimum of the upper row is not to the right of the

minimum of the lower row. More formally,
[

a b
c d

]

is monotone if b < a implies that d < c and b = a
implies that d ≤ c.

A 2-dimensional matrix M is totally monotone
if every 2× 2 submatrix of M is monotone.
Note: In this paper, the rows and columns of a submatrix

are not necessarily adjacent in the original matrix.

Definition 1.3. A 2×2 matrix
[

a b
c d

]
is Monge

if a + d ≤ b + c.
A 2-dimensional matrix M is Monge if every

2× 2 submatrix of M is Monge.
The important observations (all of which can be

found in [6]) are
Observation 1. An m × n matrix M is Monge if,
for all 1 ≤ i < m and 1 ≤ j < n,

Mi,j + Mi+1,j+1 ≤ Mi+1,j + Mi,j+1.(1.2)

Observation 2. Every Monge matrix is totally
monotone.
Combining the above leads to the test that we will
often use:
Observation 3. Let M be an m × n matrix. M is
totally monotone, if for all 1 ≤ i < m and 1 ≤ j < n,

Mi,j + Mi+1,j+1 ≤ Mi+1,j + Mi,j+1.(1.3)

1.3 Mathematical Framework Even though
both the SMAWK algorithm [1] and the Knuth-Yao
(KY) speedup [9, 15, 16] use an implicit quadrangle
inequality in their associated matrices, on second
glance, they seem quite different from each other.

In the SMAWK technique, the quadrangle in-
equality is on the entries of a given m× n input ma-
trix, which can be any totally monotone matrix. 2

of the static Aggarwal-Park [2] method; somehow, this never
seems to have been remarked before in the literature.

2Note that Monge Matrices satisfy a quadrangle inequality,
but in general, a totally monotone matrix may not. However,
in practice, most applications of the SMAWK algorithm make
use of Monge matrices. If the input matrix is triangular, the
missing entries are assigned the default value ∞, preserving
total monotonicity.

32

It is not necessary for the input matrix to actually
be given. All that the SMAWK algorithm requires
is that, when needed, individual entries can be cal-
culated in O(1) (amortized) time. The output of the
SMAWK algorithm is a vector containing the row-
minima of the input matrix. If m ≤ n, the SMAWK
algorithm outputs this vector in O(n) time, an order
of magnitude speedup of the naive algorithm that
scans all mn matrix entries.

The KY technique, by contrast, uses a quadran-
gle inequality in the upper-triangular n × n matrix
Bi,j . That is, it uses the QI property of its result
matrix to speed up the evaluation, via dynamic pro-
gramming, of the entries in the same result matrix.

More specifically, Yao’s result [15] was formu-
lated as follows: For 1 ≤ i ≤ j ≤ n let w(i, j) be a
given value and

Bi,j =

{
0 if i = j
w(i, j) + min

i<t≤j
{Bi,t−1 + Bt,j} if i < j

(1.4)
Definition 1.4. w(i, j) is monotone in the lattice
of intervals if [i, j] ⊆ [i′, j] implies w(i, j) ≤ w(i′, j′).
As an example, it is not difficult to see that the
w(i, j) =

∑j
l=i+1 pl +

∑j
l=i ql of the BST recurrence

(1.1) satisfies the quadrangle inequality and is mono-
tone in the lattice of intervals.
Definition 1.5. Let

KB(i, j) = max{t : w(i, j) + Bi,t−1 + Bt,j = Bi,j},

i.e., the largest index which achieves the minimum in
(1.4).

Yao then proves two Lemmas (see Figure 2 for
an example):
Lemma 1.1. (Lemma 2.1 in [15])
If w(i, j) satisfies the quadrangle inequality as defined
in Definition 1.1, and is also monotone on the
lattice of intervals, then the Bi,j defined in (1.4) also
satisfies the quadrangle inequality.
Lemma 1.2. (Lemma 2.2 in [15])
If the function Bi,j defined in (1.4) satisfies the
quadrangle inequality then for i < j,

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i + 1, j + 1).

Lemma 1.1 proves that a QI in the w(i, j) implies
a QI in the Bi,j . Suppose then that we evaluate
the values of the Bi,j in the order d = 1, 2, . . . , n,
where, for each fixed d, we evaluate all of Bi,i+d, i =
0, 1, n− d. Then Lemma 1.2 says that Bi,i+d can be
evaluated in time O(KB(i+1, i+d)−KB(i, i+d−1)).

Note that

n−d∑

i=0

(KB(i + 1, i + d)−KB(i, i + d− 1))

≤ KB(n− d + 1, n) ≤ n

and thus all entries for fixed d can be calculated in
O(n) time. Summing over all d, we see that all Bi,j

can be obtained in O(n2) time.
As mentioned, Lemma 1.2 and the resultant

O(n2) running time have usually been viewed as
unrelated to the SMAWK algorithm. While they
seem somewhat similar (a QI leading to an order of
magnitude speedup) they appeared not to be directly
connected.

The main theoretical result of this paper is the
observation that if the w(i, j) satisfy the QI and are
monotone in the lattice of intervals, then the Bi,j

defined by (1.4) can be derived as the row-minima
of a sequence of O(n) different totally monotone
matrices, each of size O(n)×O(n), where the entries
in a matrix depend upon the row-minima of previous
matrices in the sequence. In fact, we will show three
totally different decomposition of the Bi,j into O(n)
totally monotone matrices. In particular, our first
decomposition will permit the direct use of SMAWK.

1.4 Online Algorithms Generally, an online
problem is defined to be a problem where a stream of
outputs must be generated in response to a stream
of inputs, and where those responses must be given
under a protocol which requires some outputs be
given before all inputs are known.

The online versions of the problems in which
we are interested are given in Figure 1. Our goal
is to achieve the optimal result, while maintaining
the same asymptotic time complexity as the offline
versions.

These online problems restricted to the optimal
binary search tree would be to construct the OBST
for items KeyL, . . . , KeyR, and, at each step, add ei-
ther KeyR+1, a new key to the right, or KeyL−1, a
new key to the left. Every time a new element is
added, we want to update the Bi,j (dynamic pro-
gramming) table and thereby construct the optimal
binary search tree of the new full set of elements.
(See Figure 2.) To achieve this, it is certainly possi-
ble to recompute the entire table; however this comes
at the price of O(n2) time, where n = R − L is the
number of keys currently in the table. What we are
interested in here is the question of how one can han-
dle a new key where the extra computational work
is neutral to the overall complexity of the problem,

33

Let L ≤ R be given along with values w(i, j) for all L ≤ i ≤ j ≤ R that satisfy the QI and the
“monotone on lattice of intervals” property. Let

Bi,j =
{

0 if i = j
w(i, j) + mini<t≤j {Bi,t−1 + Bt,j} if i < j

and assume all Bij for L ≤ i ≤ j ≤ R have already been calculated and stored.
The Right-online problem is:
Given new values w(i, R + 1) for L ≤ i ≤ R + 1, such that w(i, j) still satisfy the QI and lattice
property, calculate all of the values Bi,R+1 for L ≤ i ≤ R + 1.
The Left-online problem is:
Given new values w(L− 1, j) for L− 1 ≤ j ≤ R, such that w(i, j) still satisfy the QI and lattice
property, calculate all of the values BL−1,j for L− 1 ≤ j ≤ R.

Figure 1: The definition of online problems.

i.e., a new key can be added in linear time. Our goal
is an algorithm in which a sequence of n online key
insertions will result in a worst case O(n) per step
to maintain an optimal tree, yielding an overall run
time of O(n2).

Unfortunately, the KY speedup cannot be used
to do this. The reason that the speedup fails is that
the KY speedup is actually an amortization over the
evaluation of all entries when done in a particular
order. In the online case, adding a new item n to
previously existing items 1, 2, . . . , n−1 requires using
(1.4) to compute the n new entries Bi,n, in the fixed
order i = n, n − 1, . . . , 1, 0, and it is not difficult to
construct an example in which calculating these new
entries in this order using (1.4) requires Θ(n2) work.

We will see later that the decomposition given
in section 3 permits a fully online algorithm with
no penalty in performance, i.e., after adding the n-
th new key, the new Bi,j can be calculated in O(n)
worst case time. Furthermore, this will be true for
both the left-online and right-online case.

2 The First Decomposition

Definition 2.1. For 1 ≤ d < n define the (n− d +
1)× (n + 1) matrix Dd by

Dd
i,j =

w(i, i + d) + Bi,j−1 + Bj,i+d

if 0 ≤ i < j ≤ i + d ≤ n,
∞ otherwise.

(2.5)
Figure 3 illustrates the first decomposition. Note

that (1.4) immediately implies

Bi,i+d = min
0≤j≤n

Dd
i,j(2.6)

so finding the row-minima of Dd yields Bi,i+d, i =

0, . . . , n − d. Put another way, the Bi,j entries on
diagonal j − i = d are exactly the row-minima of
matrix Dd.
Lemma 2.1. If the function Bi,j defined in (1.4)
satisfies the QI then, for each d ≤ n, Dd is a totally
monotone matrix.
Proof. From Observation 1.3 it suffices to prove that

Dd
i,j + Dd

i+1,j+1 ≤ Dd
i+1,j + Dd

i,j+1(2.7)

Note that if i + 1 < j < i + d, then from Lemma 1.1,

Bi,j−1 + Bi+1,j ≤ Bi+1,j−1 + Bi,j(2.8)

and

Bj,i+d + Bj+1,i+1+d ≤ Bj,i+1+d + Bj+1,i+d.(2.9)

Thus,

Dd
i,j + Dd

i+1,j+1

= [w(i, i + d) + Bi,j−1 + Bj,i+d]
+ [w(i + 1, i + d + 1) + Bi+1,j + Bj+1,i+1+d]

= w(i, i + d) + w(i + 1, i + d + 1)
+ [Bi,j−1 + Bi+1,j] + [Bj,i+d + Bj+1,i+1+d]

≤ w(i, i + d) + w(i + 1, i + d + 1)
+ [Bi+1,j−1 + Bi,j] + [Bj,i+d+1 + Bj+1,i+d]

= [w(i + 1, i + d + 1) + Bi+1,j−1 + Bj,i+1+d]
+ [w(i, i + d) + Bi,j + Bj+1,i+d]

= Dd
i+1,j + Dd

i,j+1

and (2.7) is correct (where we note that the right-
hand side is ∞ if i + 1 6< j or j 6< i + d).
Lemma 2.2. Assuming that all of the row-minima
of D1, D2, . . . , Dd−1 have already been calculated, all
of the row-minima of Dd can be calculated using the
SMAWK algorithm in O(n) time.

34

3 4 5 6 7
3 0 91 282 499 821
4 0 169 386 686
5 0 124 348
6 0 155
7 0

3 4 5 6 7
3 3 4 5 5 6
4 4 5 5 6
5 5 6 7
6 6 7
7 7

84

5531

20 69

2

69

38

16

84

5531

69

38

1669

69

69 38

31 55

p

p

p

pq

q q q q

p

q q

p

p

p q q

q q

p

q

4

5 6 4 5 6 7

3 4

5 6 74

5

6

7

5

6 5

6

7

Figure 2: An example of the online case for optimal binary search trees where (p4, p5, p6, p7) = (2, 69, 38, 84)
and (q3, q4, q5, q6, q7) = (20, 69, 31, 55, 16). The leftmost table contains the Bi,j values; the rightmost one,
the KB(i, j) values. The unshaded entries in the table are for the problem restricted to only keys (p5, p6).
The dark gray cells are the entries added to the table when key p7 is added to the right. The light gray
cells are the entries added when key p4 is added to the left. The corresponding optimal binary search trees
are also given, where circles correspond to successful searches and squares to unsuccessful ones. The values
in the nodes are the weights of the nodes (not their keys).

� � �
� � �
� � �
� � �

� � �
� � �

� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
	 	
	 	

� �
� �

� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

! ! !
! ! !

" "
" "
#
#

$ $
$ $
% %
% %

& &
& &
' '
' '

((
((
))
))

* *
* *
+ +
+ +

, ,
, ,
- -
- -

. .

. .
/ /
/ /

0 0 0
0 0 0
1 1 1
1 1 1

2 2
2 2
3 3
3 3

4 4
4 4
5 5
5 5

6 6
6 6
7 7
7 7

8 8
8 8
9 9
9 9

: :
: :
; ;
; ;

< < <
< < <
= = =
= = =

> >
> >
? ?
? ?

@ @
@ @
A A
A A

B B
B B
C C
C C

D D
D D
E E
E E

F F
F F
G G
G G

H H
H H
I I
I I

J J
J J
K K
K K

L L
L L
M M
M M

N N
N N
O O
O O

P P
P P
Q Q
Q QR R

R R
S S
S S

2

1

0

3

4

5

6

7

8

9

10

11

12

i

j

0 1 2 3 4 5 6 7 8 9 10 11 12

D11

D12

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �12111096 87543210

∞

∞

0

1

3

4

2

j

i

B3,11

B4,12

B2,10

B1,9

B0,8

Row-Min

Figure 3: The left-hand figure shows the Bi,j matrix for n = 12. Each diagonal, d = i − j, in the matrix
will correspond to a totally monotone matrix Dd. The minimal item of row i in Dd will be the value Bi,i+d.
The righthand figure shows D8.

35

Proof. From the previous lemma, Dd is a totally
monotone matrix. Also, by definition, its entries
can be calculated in O(1) time, using the previously
calculated row-minima of Dd′ where d′ < d. Thus
SMAWK can be applied.
Combined with (2.6) this immediately gives a new
O(n2) algorithm for solving the KY problem; just run
SMAWK on the Dd in the order d = 1, 2, . . . , n − 1
and report all of the row-minima.

We point out that this technique cannot help
us solve the online problem as defined in Figure 1,
though. To see why, suppose that items 1, . . . , n have
previously been given, new item n + 1 has just been
added, and we need to calculate the values Bi,n+1

for i = 0, . . . , n. In our formulation this would
correspond to adding a new bottom row to every
matrix Dd and creating a new matrix Dn+1. In our
formulation, we would need to find the row-minima
of all of the n new bottom rows. Unfortunately,
the SMAWK algorithm only works on the rows of
matrices all at once and cannot help to find the row-
minima of a single new row.

3 The Second & Third Decompositions

So far we have seen that it is possible to derive the
KY running time via repeated calls to the SMAWK
algorithm. We now see two more decompositions into
totally-monotone matrices. These decompositions
will trivially imply Lemma 1.2 (Lemma 2.1 in [15]),
which is the basis of the KY speedup. Thus, the KY
speedup is just a consequence of total-monotonicity.
These new decompositions will also permit us to
efficiently solve the online problem given in Figure
1.

The second decomposition is indexed by the
rightmost element seen so far. See Figure 4.
Definition 3.1. For 1 ≤ m ≤ n define the (m +
1)× (m + 1) matrix Rm by

Rm
i,j =

w(i,m) + Bi,j−1 + Bj,m

if 0 ≤ i < j ≤ m,
∞ otherwise.

(3.10)
Note that (1.4) immediately implies

Bi,m = min
0≤j≤m

Rm
i,j(3.11)

so finding the row-minima of Rm yields Bi,m for
i = 0, . . . , m. Put another way, the Bi,j entries in
column m are exactly the row minima of Rm.

The third decomposition is similar to the second
except that it is indexed by the leftmost element seen
so far. See Figure 5.

Definition 3.2. For 0 ≤ m < n define the (n −
m)× (n−m) matrix Lm by

Lm
j,i =

w(m, j) + Bm,i−1 + Bi,j

if m < i ≤ j ≤ n,
∞ otherwise.

(3.12)
(For convenience, we set the row and column indices
to run from (m+1) . . . n, not 0 . . . (n−m−1)). Note
that (1.4) immediately implies

Bm,j = min
m<i≤j≤n

Lm
j,i(3.13)

so finding the row-minima of Lm yields Bm,j for
j = m + 1, . . . , n. Put another way, the Bi,j entries
in row m are exactly the row minima of matrix Lm.
Lemma 3.1. If the function defined in (1.4) satisfies
the QI then Rm and Lm are totally monotone matri-
ces.
Proof. The proofs are very similar to that of Lemma
2.1. Note that if i + 1 < j ≤ m, we can again use
(2.8); writing the entries from (2.8) in boldface gives

Rm
i,j + Rm

i+1,j+1

= [w(i,m) + Bi,j−1 + Bj,m]
+ [w(i + 1,m) + Bi+1,j + Bj+1,m]

≤ [w(i + 1,m) + Bi+1,j−1 + Bj,m]
+ [w(i,m) + Bi,j + Bj+1,m]

= Rm
i+1,j + Rm

i,j+1

and thus Rm is Monge (where we note that the right-
hand side is∞ if i+1 6< j) and thus totally monotone.
If m < i < j then we again use (2.8) (with j replaced
by j + 1) to get

Lm
j,i + Lm

j+1,i+1

= [w(m, j) + Bm,i−1 + Bi,j]
+ [w(m, j + 1) + Bm,i + Bi+1,j+1]

≤ [w(m, j + 1) + Bm,i−1 + Bi,j+1]
+ [w(m, j) + Bm,i + Bi+1,j]

= Lm
j+1,i + Lm

j,i+1

and thus Lm is Monge (where we note that the right-
hand side is ∞ if i 6< j) and thus totally monotone.

We point out these two decompositions immedi-
ately imply a new proof of Lemma 1.2 (Lemma 2.1
in [15]) which states that

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i + 1, j + 1).(3.14)

To see this note that KB(i, j + 1) is the location of
the rightmost row-minimum of row i in matrix Rj+1,

36

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

� � �
� � �
� � �

	 	
	 	
	 	

� �
� � � �

� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

! ! !
! ! !
! ! !

" " "
" " "
#
#

$ $ $
$ $ $
% % %
% % %

& & &
& & &
& & &

' ' '
' ' '
' ' '

(((
(((
(((

)))
)))
)))

* * *
* * *
+ + +
+ + +

, , ,
, , ,
- - -
- - -

. . .

. . .

. . .

/ / /
/ / /
/ / /

0 0 0
0 0 0
0 0 0

1 1
1 1
1 1

2 2 2
2 2 2

3 3
3 3

4 4 4
4 4 4

5 5
5 5

6 6 6
6 6 6
6 6 6

7 7
7 7
7 7

8 8 8
8 8 8
8 8 8

9 9
9 9
9 9

: : :
: : :

; ;
; ;

< < <
< < <

= =
= =

> > >
> > >
> > >

? ?
? ?
? ?

@ @ @
@ @ @

A A
A A

B B B
B B B

C C
C C

D D D
D D D
D D D

E E
E E
E E

F F F
F F F

G G
G G

H H H
H H H

I I
I I

J J J
J J J
J J J

K K
K K
K K

L L L
L L L
L L L

M M
M M
M M

N N N
N N N

O O
O O

P P P
P P P

Q Q
Q Q

R R R
R R R
R R R

S S
S S
S S

T T T
T T T

U U
U U

V V V
V V V

W W
W W

X X X
X X X

Y Y
Y Y

Z Z Z
Z Z Z
Z Z Z

[[
[[
[[

\
\
\
\

]
]
]

0
j

1 2 3 4 5 6 7 8 9 10 11 12

i
1

0

2

3

4

5

6

7

8

9

10

12

11

R1

R3

R2

R4

R5

R6

R7

R8

R9

R10

R11

R12

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

j

0 1 2 3 4 5 7 86

∞

B0,8

Row-Min

B1,8

B2,8

B3,8

B4,8

B5,8

B6,8

B7,8

i
1

0

2

3

4

5

6

7

8

Figure 4: The left-hand figure shows the Bi,j matrix for n = 12. Each column in the Bi,j matrix will
correspond to a totally monotone matrix Rm. The minimal element of row i in Rm will be the value Bi,m.
The righthand figure shows R8.

� � �� � �
� � �� � � � � �� � �

� �� �

� � �� � �
� �
� �

� �� �
� �� �

� �� �
	 	
	 	

� �� �
� �

� � �� � �

� � �� � �
� � �
� � �

� � �
� � �� � �
� � �� � �
� � �

� � �� � �
� � �
� � �

� � �� � �
� � �� � �

� � �� � �
� � �
� � �

� � �
� � �� � �
� � �� � �
� � �

� � �� � �
� � �
� � �

� � �� � �
� � �
� � �

� � �� � �
� � �� � �

! ! !
! ! !

" " "
" " "" " "
#
#

$ $ $$ $ $
% % %
% % %

& & && & &
' ' '
' ' '

((((((
))))))* * ** * *

+ ++ +
, ,, ,
- -
- -

/ /
/ /

0 00 0
1 1
1 1 2 22 2

3 3
3 3 4 4 44 4 4

5 5
5 5

6 6
6 66 6
7 77 7
7 7

8 8
8 88 8
9 99 9
9 9

: :
: :: :
; ;; ;
; ;

< < <
< < << < <

= == =
= => >> >

? ?
? ? @ @@ @

A A
A A B BB B

C C
C C D DD D

E E
E E F F FF F F

G G
G G

H HH H
I II I J JJ J

K KK K L LL L
M MM M N NN N

O OO O P PP P
Q QQ Q R R RR R R

S SS ST T T T T TU U U U U

V V V V V V
W W W W W WX X X X XY Y Y Y Y YZ Z Z Z Z
[[[[[[\ \ \ \ \
]]]]]]^ ^ ^ ^ ^
_ _ _ _ _ _` ` ` ` ` `a a a a a

i

j

0

1

2

3

4

5

6

8

7

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10 11 12

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

j

i

9 10 11 12

10

9

11

12

∞
Row-Min

B8,9

B8,10

B8,11

B8,12

Figure 5: The left-hand figure shows the Bi,j matrix for n = 12. Each row in the Bi,j matrix will correspond
to a totally monotone matrix Lm. The minimal element of row j in Lm will be the value Bm,j . The righthand
figure shows L8.

37

while KB(i+1, j +1) is the location of the rightmost
row-minimum of row i + 1 in matrix Rj+1. Thus,
the definition of total monotonicity (Definition 1.2)
immediately gives

KB(i, j + 1) ≤ KB(i + 1, j + 1).(3.15)

Similarly, KB(i, j) is the rightmost row-minimum of
row j in Li while KB(i, j + 1) is the location of the
rightmost row-minimum of row j + 1 in Li. Thus

KB(i, j) ≤ KB(i, j + 1).(3.16)

Combining (3.15) and (3.16) yields (3.14), which is
what we want. Since the actual speedup in the
KY technique comes from an amortization argument
based on (3.14), we have just seen that the original
KY-speedup itself is also a consequence of total
monotonicity.

We have still not seen how to actually calculate
the Bi,j using the Rm and Lm. Before continuing,
we point out that even though the Rm are totally
monotone, their row minima cannot be calculated
using the SMAWK algorithm. This is because, for
0 < i < j ≤ m, the value of entry Rm

i,j = w(i,m) +
Bi,j−1 + Bj,m is dependent upon Bj,m which is itself
the row-minimum of row j in the same matrix Rm.
Thus, the values of the entries of Rm depend upon
the other entries in Rm which is something that
SMAWK does not allow. The same problem occurs
with the Lm.

We will now see that, despite this dependence,
we can still use the LARSCH algorithm to find the
row-minima of the Rm. This will have the added
advantage of solving the online problem as well.

At this point we should note that our decompo-
sitions Lm could also be derived by careful cutting
of the 3-D monotone matrices of Aggarwal and Park
[2] along particular planes. Aggarwal and Park used
an algorithm of Wilber [14] (derived for finding the
maxima of certain concave-sequences) to find various
tube maxima of their matrices, leading to another
O(n2) algorithm for solving the KY-problem. In
fact, even though their algorithm was presented as a
static algorithm, careful decomposition of what they
did permits using it to solve what we call the left-
online KY-problem. A symmetry argument could
then yield a right-online algorithm. This never seems
to have been noted in the literature, though. In the
next section, we present a different online algorithm,
based on our decompositions and the LARSCH algo-
rithm.

4 Online Algorithms Without Losing the
KY Speedup

To execute the LARSCH algorithm, as defined in
Section 3 of [10] we need only that X satisfy the
following conditions:

1. X is a totally monotone n×m monotone matrix.

2. For each row index i of X, there is a column
index Ci such that for j > Ci, Xi,j = ∞.
Furthermore, Ci ≤ Ci+1.

3. If j ≤ Ci, then Xi,j can be evaluated in O(1)
time provided that the row minima of the first
i− 1 rows are already known.

If these conditions are satisfied, the LARSCH algo-
rithm then calculates all of the row minima of X in
O(n + m) time. We can now use this algorithm to
derive
Lemma 4.1.

• Given that all values Bi,j , m < i ≤ j ≤ n have
already been calculated, all of the row-minima of
Lm can be calculated in O(n−m) time.

• Given that all values Bi,j , 0 ≤ i ≤ j < m have
already been calculated, all of the row-minima of
Rm can be calculated in O(m) time.

Proof. For the first part, it is easy to see that Lm

satisfies the first two conditions required by the
LARSCH algorithm with Cj = j. For the third
condition, note that, for m < i ≤ j, Lm

j,i = w(m, j)+
Bm,i−1 + Bi,j . The values w(m, j) and Bi,j are
already known and can be retrieved in O(1) time.
Bm,i−1 is the row minima of row i − 1 of Lm but,
since we are assuming i ≤ j this means that Bm,i−1

is the row minima of an earlier row in Lm and the
third LARSCH condition is satisfied. Thus, all of the
row-minima of the (n−m)× (n−m) matrix Lm can
be calculated in O(n−m) time.

For the second part set X to be the (m + 1) ×
(m + 1) matrix defined by Xi,j = Rm

m−i,m−j . Then
X satisfies the first two LARSCH conditions with
Ci = i− 1. For the third condition note that Xi,j =
Rm

m−i,m−j = w(m − i,m) + Bm−i,m−j−1 + Bm−j,m.
The values w(m− i, m) and Bm−i,m−j−1 are already
known and can be calculated in O(1) time. Bm−j

is the row minima of row j of X; but, since we are
assuming j ≤ Ci = i − 1 this means that Bm−j,m is
the row minima of an earlier row in X so the third
Larsch condition is satisfied. Thus, all of the row-
minima of X and equivalently Rm can be calculated
in O(m) time.

38

Note that Lemma 4.1 immediately solves the
“right-online” and “left-online” problems described
in subsection 1.4: Given the new values w(i, R + 1)
for L ≤ i ≤ R + 1, simply find the row minima
of RR+1 in time O(R − L). Given the new values
w(L − 1, j) for L − 1 ≤ j ≤ R, simply find the row
minima of LL−1.

We have therefore just shown that any dynamic
programming problem for which the KY speedup can
statically improve run time from Θ(n3) to O(n2) time
can be solved in an online fashion in O(n) time per
step. That is, online processing incurs no penalty
compared to static processing. In particular, the
optimum binary search tree (as illustrated in 1.4),
can be maintained in O(n) time per step as nodes
are added to both its left and right.

5 A further application

In [5], Borchers and Gupta extend the Knuth-Yao
quadrangle inequality. One of their major applica-
tions is finding an optimal Rectilinear Steiner Min-
imal Arborescence (RSMA) of a slide. A slide is a
set of points (xi, yi) such that, if i < j, then xi < xj

and yi > yj . A Rectilinear Steiner Arborescence is
a directed tree in which each edge either goes up or
to the right. In [11] it was shown that the mini-
mum cost Rectilinear Steiner Arborescence connect-
ing slide-points (xi, yi), (xi+1, yi+1), . . . (xj , yj) satis-
fies

L(i, j) = min
i≤s<j

(Li,s + Ls+1,j + xs+1 − xi + ys − yj) .

(5.17)
[11] solved this recurrence in O(n3) time. Even
though (5.17) is not in the KY form (1.4) Borchers
and Gupta [5] were still able to show that Li,j sat-
isfies a quadrangle inequality. This sufficed to show
that Lemma 1.2 still holds for Li,j and thus permit-
ted deriving an O(n2) algorithm for calculating all of
the Li,j . In fact, they showed that if L(i, j) is given
by a DP recurrence of the form

L(i, j) = min
i≤s<j

(w(i, s, j) + Li,s + Ls+1,j) .(5.18)

where w(i, s, j) satisfies generalized versions of the
quadrangle inequality and monotonicity on integer
lattices property, then Yao’s result could alsways be
generalized to apply. Note that the major difference
between (1.4) and (5.18) is that (5.18) allows w(·)
to depend upon the splitting index s and be brought
inside the “min”.

We point out that even though we derived our
results for problems that satisfy the KY form (1.4) it
is quite straightforward to show all of the results in

this paper can be extended to work for all Li,j that
satisfy (5.18) with the Borchers and Gupta speedup
conditions. In particular, this yields an O(n) per-
step worst-case online algorithm for constructing the
new RSMA when adding points to the left and right
of a slide.

References

[1] Alok Aggarwal, Maria M. Klawe, Shlomo Moran,
Peter W. Shor, and Robert E. Wilber. Geometric
applications of a matrix-searching algorithm. Algo-
rithmica, 2:195–208, 1987.

[2] Alok Aggarwal and James Park. Notes on searching
in multidimensional monotone arrays. In Proceed-
ings of the 29th Annual Symposium on Foundations
of Computer Science, pages 497–512, 1988.

[3] M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L.
Miller, and S.-H. Teng. Constructing trees in paral-
lel. In Proceedings of the First Annual ACM Sym-
posium on Parallel Algorithms and Architectures,
pages 421–431, 1989.

[4] Amotz Bar-Noy and Richard E. Ladner. Effi-
cient algorithms for optimal stream merging for
media-on-demand. SIAM Journal on Computing,
33(5):1011–1034, 2004.

[5] Al Borchers and Prosenjit Gupta. Extending
the quadrangle inequality to speed-up dynamic
programming. Information Processing Letters,
49(6):287–290, 1994.

[6] Rainer E. Burkard, Bettina Klinz, and Rudiger
Rudolf. Perspectives of Monge properties in opti-
mization. Discrete Applied Mathematics, 70(2):95–
161, 1996.

[7] Zvi Galil and Kunsoo Park. Dynamic programming
with convexity, concavity and sparsity. Theoretical
Computer Science, 92(1):49–76, 1992.

[8] E. N. Gilbert and E. F. Moore. Variable length
encodings. Bell System Technical Journal, 38:933–
967, 1959.

[9] Donald E. Knuth. Optimum binary search trees.
Acta Informatica, 1:14–25, 1971.

[10] Lawrence L. Larmore and Baruch Schieber. On-
line dynamic programming with applications to the
prediction of RNA secondary structure. Journal of
Algorithms, 12(3):490–515, 1991.

[11] Sailesh K. Rao, P. Sadayappan, Frank K. Hwang,
and Peter W. Shor. The rectilinear steiner arbores-
cence problem. Algorithmica, 7(2-3):277–288, 1992.

[12] Amir Said. Efficient alphabet partitioning algo-
rithms for low-complexity entropy coding. In Pro-
ceedings of the 2005 Data Compression Conference,
pages 183–192, 2005.

[13] Russell L. Wessner. Optimal alphabetic search
trees with restricted maximal height. Information
Processing Letters, 4(4):90–94, 1976.

[14] Robert Wilber. The concave least-weight subse-

39

quence problem revisited. Journal of Algorithms,
9(3):418–425, 1988.

[15] F. Frances Yao. Efficient dynamic programming
using quadrangle inequalities. In Proceedings of
the Twelfth Annual ACM Symposium on Theory of
Computing, pages 429–435, 1980.

[16] F. Frances Yao. Speed-up in dynamic program-
ming. SIAM Journal on Matrix Analysis and Ap-
plications (formerly SIAM Journal on Algebraic and
Discrete Methods), 3(4):532–540, 1982.

40

