0-7803-5417-6/99/$10.00 ©1999 |EEE.

On the Optimal Placement of Web Proxies in the Internet

Bo Li, Mordecai J. Golin and Giuseppe F. Italiano*and Xin Deng
Department of Computer Science
Hong Kong University of Science and Technology, Hong Kong

Kazem Sohraby
Bell Laboratories
Lucent Technologies, Holmmdel, New Jersey, USA

Abstract

Web caching or web proxy has been considered as
the prime vehicle of coping with the ever-increasing
demand for information retrieval over the Internet,
WWW being a typical example. Existing work on
web proxy has primarily focused on content based
caching; relatively less attention has been given to the
development of proper placement strategies for the
potential web proxies in the Internet. In this paper,
we argue that the placement of wen proxies is crit-
ical to the performance and further investigates the
optimal placement policy of web proxies for a target
web server in the Internet. The objective is to opti-
mize a given performance measure for the target web
server subject to system resources and traffic pattern.
Specifically, we are interested in finding the optimal
placement of multiple web proxies (M) among poten-
tial sites (V) under a given traffic pattern. We show
this can be modeled a Dynamic Programming prob-
lem. We further obtain the optimal solution for the
tree topology using O(N3M?) time.

1 Introduction

We have witnessed an explosive growth in the use of
the World Wide Web (or web) in the past few years;
there are many reasons behind this success, in par-
ticular, ease of use, the availability of standard tools
for creating web documents and for navigating the
web, timely dissemination of information, and the in-
creased popularity of the Internet [1]. At the same
time, this quick adoption also leads to its poor per-
formance, as web clients often have to tolerate long

*The work was done when Dr. Italiano was a visiting pro-
fessor at HKUST. He is with Dipartimento di Matematica Ap-
plicata ed Informatica, Universitd “Ca’ Foscari” di Venezia,
Italy.

response times. There are a number of factors con-
tributing to this inefficiency such as server or net-
work congestion during peak time, links with limited
or inadequate bandwidth, and long propagation de-
lay. Caching has been considered as one of the prime
vehicles of coping with this inefficiency.

The basic principle behind caching is that it allows
the retrieved documents to be kept close to clients; in
web environment, this can reduce the response time
of web services and alleviate the network congestion
if any. There are several ways that documents can
be cached for a web server including: web browser
(client), web server itself and web proxy [17]. Caching
at the clients’ side has been implemented by most ex-
isting web browsers [2]. This can prevent a client from
generating traffic to the same location repeatedly; for
example both NCSA Mosaic and Netscape can save
images and documents. Caching can also be deployed
at the server side when a web server contains pointers
to other web servers [17], this allows the web server to
use a local copy fetching in advance to serve clients’
requests, instead of having to forward the requests
to remote server(s) each time. Unfortunately, both
do little towards improving overall network perfor-
mance [13]. Client side caching only saves one sin-
gle client from consecutively fetching the same web
documents. This, however, can not even restrict mul-
tiple clients of the same area from downloading the
the same web files from the same web server during
a short time interval. Server side caching only miti-
gates the problem of not forwarding requests further,
but does nothing to alleviate potentially long access
delay experienced by clients, nor able to resolve the
possible congestion.

The most effective way of reducing the overall la-
tency is the use of a web proxy, or proxy server (or

1282

simply proxy) !. A web proxy is an intermediate
server acting as an caching agent between clients and
server. If properly designed, proxy can significantly
reduce the web access delay and alleviate the poten-
tial network congestion. Additionally, it also can re-
duce the server load, which may be critical during
peak time. The effectiveness of the proxy is primar-
ily determined by the locality, universally true for any
cache. This locality depends a number of factors such
as users’ access patterns and cache configurations.
The unique characteristics of web caching, different
from conventional caching used in memory and dis-
tributed systems, is that the locality is also largely
influenced by the location of the web proxy. Simply
put, putting a web proxy in the “wrong” place is not
only costly, but also does little to improve the system
performance.

There has been considerable work on various as-
pect of web proxy, for example, traffic characteriza-
tion [1, 6], the cache replacement algorithms [13, 15,
16], and server design (7, 10]. A number of recent
publications have studied some new aspects of web
caching. In [4], Bhattacharjee et al. proposes a self-
organizing cache scheme in an active network [14].
It suggests associating small caches with switching
nodes throughout the network, and considers the use
of various self-organizing or active caching manage-
ment strategies for organizing cache content. The
issue of proper caches placement, however, is not ad-
dressed. Bestavros considers the problem of caching
multiple web servers at a given location {3]. The ob-
jective is to maximize the fraction of the requests
subject to the fixed storage space. The paper models
the problem as a constrained-maximization problem,
and obtains the solution using the Lagrange multi-
plier theorem. Sayal et al. consider the selection
algorithms for replicated web servers [12], in which it
concerns how a client chooses the “closest” replicated
server based on either the hop count, ping round trip
time or the HTTP request latency. The replicated
servers’ locations is assumed to be given, no proper
placement is considered.

Finding the optimal placement of web proxies in
a network like the Internet is a challenging task.
Most existing proxies are placed in fairly “obvious”
spots, e.g., the router for a LAN, the Internet service
providers (ISP)’ gateway, or some “strategic” loca-
tions [11] 2. In addition, it has been shown that mul-

1We treat the replicated server or mirror site as a special
case of web proxy, in which all documents of the original web
server/site is cached.

2Noticeably, the ISP installed proxies are primarily for al-

tiple web proxies are often needed in order to increase
the locality, e.g., the hierarchical caching proposed
in [5, 7]. Furthermore, this is also evident that many
popular web sites have already employed a replication
(mirroring) of the sites. For example, users can select
among 101 different servers to access the Netscape
browser, 15 different servers to access Yahoo within
the US, 12 servers to access Lycos, 8 servers to access
American Online, 7 servers to access Alta Vista and
3 servers to access Infoseek [12].

In this paper, we focus on two major factors: the
overall traffic and access latency as described in [17].
The objective is to minimize the overall latency of
searching a target web server subject to the system re-
sources and traffic pattern. The algorithms proposed
in this paper, however, also work for any objective
function not just latency. For example it can be the
number of hops between client and proxy, or an over-
all cost function if each link is associated with a cost.
Specifically, we are interested in finding the optimal
placement of multiple web proxies (M) among poten-
tial sites (V) under a given traffic pattern. The main
complication is caused by the dependencies among
the potential sites. Consider a potential site, say i,
it can be in place between another potential site (5)
and the web server. We define site ¢ to be upstream
of site j and j to be downstream of site i. Caching at
any downstream site (j) modifies the traffic pattern of
the upstream site (z). Unless the paths from all sites
to the server are disjoint, in which the finding the
optimal location becomes trivial, these dependencies
significantly complicate the problem.

In {8], we show that the optimal placement of M
proxies among N potential sites under a linear topol-
ogy can be modeled as dynamic programming prob-
lem and its optimal solution can be obtained within
O(N?M). In [9], we further studied a distributed
caching placement algorithm in the content of active
network [14]. We show the placement algorithm (non-
optimal) can obtain suboptimal solution with signifi-
cant less complexity (NlogN) for a tree topology. In
this paper, we consider a tree topology with the tar-
get web server being the root of the tree. We show
that the optimal placement problem can also be mod-
eled as a Dynamic Programming problem, we obtain
optimal solution using O(N3M?) time;

The rest of the paper is organized as follows. We
present the dynamic programming problem formula-
tion in Section 2, and its numerical example in the

leviating congestion, rather than reducing the latency.

1283

next Section. We conclude the paper in Section 4
with discussions of on-going and future work.

2 The Problem Formulation

We start by describing the formulation of the prob-
lem that we will use in devising the dynamic pro-
gramming algorithm for the tree topology. Let T be
a rooted tree containing n nodes. We will always use
7 to specify the root of T. A node can have arbitrar-
ily many children; we assume that these children are
ordered from left to right, and that, given any two
siblings u, v, we are able to say that u is to the left
of v or that v to is the right of u.

Associated with every node v € T is a non-negative
weight w(v) representing the traffic traversing this
node; associated with every edge (u, v) a non-negative
distance d(u,v), which can be interpreted as either
latency, link cost, hop count and etc. We extend
the distance function as follows. Denote the unique
path from u to v in the tree by 7, ,. Then d(u,v) =
Z(z,y)E‘lr..,., d(z,y) is the sum of the edge distances
along the path.

Suppose now that we are a given a set of vertices
P C T containing the root, i.e, r € P. Define c(v, P)
to be the lowest ancestor of v which is contained in
P, i.e., the first node in P that is seen while going
up from v to r. Note that this node could be v itself.
Now set,

cost(T,P) = Z w(v) - d(v, (v, P)). (1)

veT

This cost will be the cost associated with the selection
of the set P as proxies. It is the total weighted cost
of servicing requests using the proxies located at P.
The problem that needs to be solved is the construc-
tion of P with |P| = m and r € P that minimizes this
cost. The practical implication of this, assuming that
the edge distance d(u,v) represents the latency, is to
minimize the overall searching latency for the target
web server given that M proxies are allowed. In the
following, we will describe an O(n®*m?) dynamic pro-
gramming algorithm for doing so. Before describing
the algorithm, we need to introduce some preliminary
definitions.

Let v € T. We denote by T, to the subtree of T
rooted at v. We generalize the notion of being left of
to non-sibling nodes. Given z and y in T, z is said

to be to the left of y if there exist u and v such that
z €Ty, y €T, and u and v are siblings with u being
to the left of v. Note that if z and y are siblings then
this reduces to the original definition, as ¢ € T, and
y € T,. For example, in Figure 2 every node in the
set Ly, is to the left of every node in the tree T),.

e A

Figure 1: T, is the subtree rooted at v.

Now suppose u € T),. Let 7, be the unique path
connecting u and v in T. We define

Ly, = {z€T,
Ty {z €T,

: £ is to the left of u}
1z €Ty ULy}

Intuitively, T, is partitioned into Ly ,, T, and Ty »:
L, , consists of all the nodes of T, which are to the
left of u, T, contains the node below u (u included),
and T, , contains the remaining nodes: i.e., nodes in
Tu,y — {u} plus all the nodes z such that u is to the
left of z.

For z € T, , we further set

Lyve ={y € Tup : y is to the left of z}.

‘We now define

Cv,t) = in HT,,P
(v.2) PgT.,,I;g|=z,yePcos(v P)
C ,'U,t = mi t(T:)
(u,0,2) PCT o [Pl=t, veP 0 (T, P)

Put in other words, C(v,t) is the optimal cost of
placing ¢ proxies in T, and C(u,v,t) is the optimal

1284

Figure 2: The heavy line is 7y,. The set L, , and
the trees T, and T, , are labelled.

Figure 3: The heavy line is m,,. The Tree T}, is
shown in the left hand figure. Its decomposition into
Lyyz, T and T, ; is illustrated in the right hand
figure.

cost of placing ¢ proxies in Ty, . Our original problem
can then be restated as finding C(r, m) along with the
set of proxies P that achieves it.

We are now almost ready to write out our dynamic
programming equation. Before doing so we need one
last pair of definitions

W(u,v) = Z w(z)d(z,v)
TELu,»

W(u,v,z) = z w(y)d(s,v)
YE€Lu,v,2

Let P’ be any set of proxies such that v € P’ no
proxies of P’ are in L, , and no proxies of P’ are
in my,y — {u,v}. Then for such a set of proxies v is
the proxy that services L, ,, i.e., for z € L,,, we
have ¢(z,P’) = v. This means that W(u,v) is the
total contribution to cost(T,,P’') given by the nodes
in L,,,. Similarly if P’ is any set of proxies such that
v € P’ no proxies of P’ are in L., and no proxies
of P’ are in 7, , — {z,v} then W(u,v,z) is the total
contribution to cost(T,,P') given by the nodes in

Lu,u,x-

Assume then we wish to find the optimal cost of
placing ¢ proxies in the tree 7,,. If ¢t = 1 this is
trivial, since we are forced to place the only proxy
available at v, and the total cost will clearly be
C(v,t) = 3 ep, w(z)d(z,v). If t > 1, computing
C(v,t) is much more difficult. However, assume that
in this case we have the extra knowledge that (a) one
proxy must be u € T,; (b) t' < t proxies are over-
all placed in Ty; (c)no proxies are in my , — {u,v};
and (c) no proxies are in L, ,. Then this extra infor-
mation can make the problem much easier for us, as

C(v,t) = (W(u,v) + C(u,t') + C(u,v,t — t')).

If we do not have this extra knowledge, then we
have to minimize over all possible choices of u and
t'. Doing this leads to the following dynamic pro-
gramming equations (whose correctness will be shown
later):

C(u,v,t) = {

The second is Vv € T

ZzETU w(z)d(z,v)
C(v,t) =

Y oeer, , wl@)d(z,v) ife=1

minzeTy,, MiNgc,! <o
(W(u,v,z)+C(1,t’)+C(v,:z,t—t')) ift>1.
(2)

ift=1
min..grr" mino<¢: <t
(W(u,v)+C(u,t')+C(u,u,t—t’)) ift>1
(3)

1285

To aid construction of the actual proxy sets we also,
in equation (2) set P(u,v,t) = (z,t’) where x € T »
0 < t' < t are the values that minimize the expression
and in (3) set P(v,t) = (u,t') whereu € T,,, 0 < t' <
t are the values that minimize the expression.

We now state the major dynamic programming re-
sults:

Theorem 1 Equation (8) is correct. Furthermore, a
best way of placing t > 1 progzies in T, is to place t'
prozies the best way in T, and t —t' prozies the best
way in Ty, where P(v,t) = (u,t').

Theorem 2 Equation (2) is correct. Furthermore, a
best way of placing t > 1 prozies in Ty, 4 is to place t/
prozies the best way in T, and t —t' prozies the best
way in T, , where P(u,v,t) = (z,t).

For the moment we will assume the correctness of
the theorems (they will be proven at the end of this
section) and concentrate on their implications.

The first implication is that, given the P() table we
can construct the best way of placing ¢ proxies in T,.
To do this, we basically have to backtrack through the
tables: for a given (v,t) pair if t = 1 just choose v as
the proxy. Otherwise let (u,t') = P(v,t) and build
the best set P of ¢ proxies for T, by building the best
set Py of t' proxies for T, and building the best set
Py_y of t — t' proxies for Ty, and then combining
P = Py U Py_yp. Similarly for a given (u,v,t) triple
we can construct the best way of placing t proxies in
Ty, :if t = 1 just choose v as the proxy. Otherwise let
(z,t') = P(u,v,t) and build the best set P of t proxies
for T, , by building the best set Py of t' proxies for
Ty,» and building the best set P;_y of t — ¢’ proxies
for T, and then combining P = Py UP;_p. Working
through the above we find that, given pre-computed
P(), we can compute the optimal set of z proxies for
T =T, in O(m) time.

The second implication is that all the entries
C(v,t), C(u,v,t) and the associated P() entries can
be calculated in a total of O(n®m?) time. We now
see this in further detail 3.

First of all, we have to compute in a preprocessing

3This section only describes the important details of the
algorithm. We leave some of the implementation particulars,
such as how to order nodes and edges, to the reader.

phase the O(n®) values W(u,v) and W (u,v,z). All
these values can be calculated in a total of O(n®) time
recursively. Once they are computed, they are stored
in a matrix.

After this preprocessing, we can calculate the en-
tries C(v,t) and C(u,v,t) along with their associated
P() values according to the dynamic programming
equations (2) and (3). To do so, we first need to find
a proper ordering in which to process these entries,
so that at the time an entry C(v,t) or C(u,uv,t) is
calculated all of the entries that are used in its min-
imization equation (2) or (3) have already been cal-
culated. There are many such orderings. One trivial
one is to simply to sort the entries by increasing ¢
value t = 1,2,3,.... Note that this is a proper or-
dering because entries with ¢ > 1 only access entries
with smaller t values in their minimization in (2) and

(3)-

We now calculate all of the entries using this order-
ing. Since there are at most O(n?m) different entries
to compute and each one of them requires at most
O(nm) time to evaluate, this immediately leads to an
O(n®m?) algorithm for calculating the entries. Com-
bining this with the O(m) time algorithm for building
an optimal proxy set using the pre-calculated P() ta-
bles, this leads to a O(n3m?) algorithm for building
an optimal proxy set.

It remains to prove the correctness of the theorems.
We will actually only prove Theorem 1 since the proof
of Theorem 2 is almost the same. To prove Theorem
1 first note that if ¢ = 1 the proxy must be placed at
v so the theorem is trivially true.

So now suppose that ¢t > 1. Set

X(v,t) = min min

(W) +Clu,t') + Clu, vt ~ t)) ()
w€Ty 0<t! <t

Let P be a set of ¢t proxies such that cost(T,,P) =
C(v,t). Now let & € P be such that PN Lz, = and
PNrg, = {v}.

Set = P N Tk to be the number of proxies in Tk.
Since there are no proxies in Lz, and ng, — {v, T}
this means that

C(v,t) = W(u,v) + Cost(Ts, PN Ty) + Cost(Tx ,, PNTs,) (5)

We claim that Cost(Ty, P N T,) = C(w,t) since
otherwise we could replace the t proxies in P N T,
by an optimal set of # proxies for Ty and achieve a
lower cost for T,. Similarly Cost(Tg,,,P N Tge) =

1286

C(uw,v,t—1) since otherwise we could replace the t —%
proxies in P N Tx , by an optimal set of t — ¢ proxies
for T, and find a lower cost for T;,. We note that this
latter replacement might actually contain proxies on
Ta,» Whereas before we assumed the path was proxy-
free. This is not a problem since such a placement
could only reduce the cost (by reducing the distance
from some elements in Ly, to a proxy) which is not
possible.

By plugging in u = 7 and t = ¥ we have therefore
just seen that

C(v,t) > X(v,t). (6)
But now suppose u € T, and t' < t are arbitrary.
Let P’ be an optimal set of ' proxies for T,, and P”

an optimal set of ¢t —#' an optimal set of ¢’ proxies for
Tu,»- Then

C(v,t) < Cost(T,,P'UP")
< W(u,v)+ Cost(Ty,P') + Cost(Ty,,P")
= W(u,v)+C(u,t') + C(u,v,t — t')

s0

C(v,t) < X(v,t). (7)
Combining (6) and (7) yields
C(v,t) = X(v,t). (8)

To complete the proof of Theorem 1 it remains to
show that a best way of placing t > 1 prozies in T, is
to place t' prozies the best way in T, and t—t' prozies
the best way in T, , where P(v,t) = (u,t').

We start by noting that

C(v,t) = W(u,v) + C(u,t') + Clu,v,t —t'). (9)

Now let P’ be any best way of placing t' proxies in
T., P" any best way of placing ¢t — t’ proxies in Ty, ,.
Set P = P’ UP". By definition

cost(Ty, P) = cost(Ty,P') = C(u,t) (10)

and

cost(Ty,v, P) = cost(Ty,», P") = Clu,v,t). (11)

Also note that for all z € T, the furthest node away
(above) z is v so d(z, c(z, P)) < d(z,v). In particular,

summing over all x € L, ,, this means that

Y. w@dz,cz,P) < Y wiz)dzv) =W(u,v).

TELy,v ZELu,»
Combining this with (10), (11) and (9) yields

cost(Ty, P) < W(u,v)+C(u,t")+C(u,v,t—t') = C(v,t).

But, by definition, C(v,t) is the minimum possible
cost achievable by ¢ = |P| proxies so cost(Ty,P) =
C(v,t), P is an optimal proxy set and we are done.

3 Numerical Examples

We consider an example given in Figure 4, there are
n = 11 nodes (including the root being the server)
and we'’re interested in finding m = 4 (the root is
a default proxy). The node weight and edge weight
are given as (w(v), d(u,v)) and node u is the parent of
node v. For instance, the node 11 has weight w(11) =
0.1 and edge d(6,11) = 9.0. The algorithm basically
needs to find the leftmost node in the optimal solution
v, and C(v,t) is the optimal cost of placing ¢ proxies
in T, and C(u,v,t) is the optimal cost of placing ¢
proxies in Ty . This is done by tracing all v and
then recursively finding the optimal cost within the
two subtrees, i.e., T, and T ,, respectively.

There are many ways to implement the proposed
dynamic programming algorithm. Our implementa-
tion allows us to be able to obtain the solution for
2000 nodes and 100 proxies case within reasonable
amount of time and space. A straightforward imple-
mentation can simply sort all subtrees by the size,
and then proceeds by solving the proxy allocation
problem in the smallest subtree, and moves up to the
bigger subtrees.

The Table 1 shows the optimal solutions for m =
1,2,3,4. The algorithm assumes that the root of the
tree is a default proxy, therefore the algorithm tries
to find out m — 1 proxies in the rest of the tree. A
row in the Table 1 corresponds to either T, or T, ,.
For example, v = 9 refers to the subtree Ty (node
9 itself is the only node in the subtree Ty). The
row v = 1l,u = 2 refers to the subtree T5;. The
column in the Table 1 corresponds to the number
of proxy (or proxies) needed, with the first column
being the default proxy at the root. The entries in
the Table are given as (u,t,C(v,m)) for the row of

1287

Figure 4: A tree topology example. Node and edge
weights are given as (w(u), d(u,v))

T,, and (z,t,C(u,v,m)) for the row of T}, ,. For ex-
ample, the entry of the row v = 6 (the subtree T§)
and the column m = 2 is (11, 1,0.5) ((u,t,C(v,m))).
This means that within the subtree Tg, 2 (m) prox-
ies need to be chosen, one is the root, i.e., node
6, the other is node u = 11, and the cost is 0.5
(w(10) * d(10,6) = 0.5 since node 10 is not a proxy
node). Take another example, consider the entry of
the row v = 1 u = 2 (T%,,) and the column m = 3,
which shows (3,2,0.1) ((z,t,C(u,v,m))). This im-
plies that within the subtree T3, m = 3 proxies need
to be chosen, and node z = 3 is one of the proxies
in the optimal solution (root node 1 being another).
It also shows that under the subtree T3, ¢ = 2 nodes
will be chosen as proxies (including node z = 3) in
the optimal solution. Now let’s look at the T3 subtree
(row v = 3) with m = 2 (column m = 2), the entry
shows (7,1,0.1), meaning node 7 is the other proxy
in the optimal solution. The cost 0.1 is obtained from
w(8) * d(8, 3) since node 8 is not chosen as a proxy.

Now let’s focus on the solution shown in the Ta-
ble 1 for finding m = 4 proxies including the root
in the tree topology given in Figure 4. The entry of
v = 1 and m = 4 in the Table 1 is (9,1, 3.2), which
means that the leftmost proxy in the optimal solu-
tion is node 9, and in the subtree Ty, only one proxy
will be chosen in the optimal solution, i.e., the node
9. We next proceed to consider the subtree Ty 1, now

(v,m) (u,v,m m=1 m = 2 m =3 m= 4
v=1 =, 5,75 [(9,1,69 | (9,1,45) | (9,1,3.2)
v=2 =, 5, 38) | (9,1,26) | (9,1,15) | (9,1, 0.8)
v=3 -, - 1.1) T (7,1,01) [(7,1, 0.0)

v=4a =, =, 0.6) | (9,1,0.0)

v=>5 -, —, 0.0

v=6 ==, 1.4) | (11,1, 0.5) | (i, 1, 0.0)

v=T -, — 0.0

v=8 =, =, 00

v=9 -, =, 0.0)

v=10 (=, =,0.0)

v=11 (=, =, 0.0) |

v=1 u=2 - - 23) [(7,1,09) | ((3,2,0.1) | (3,3,0.0)
v=1 u=3 ~, —, 0.0)

v=1 u=4 =, =, 52) | (7,1,38) | (i1, 1,2.5) [(10, I, 1.6)
v=1 u=% =, =, 458) | (7,1,3.1) | (11,1,1.8) | (10,1,0.9)
v=1 u=6 =, = 23) | (7,1,09) | (3, 32,01 | (3,3,00)
v=1 u=7 ~, —, 0.5) (8,1,0.0

v=1 u=8 -, -, 0.0)

v=1 u=9 -, - 52) | (7,1,38) | (11,1, 25

v=1 u=10 ,—36) [(7,1,22) | (11,1,0.9

v=1 u=11 (<, -, 23) | (7,1,0.9) | (3,2,01

v=2 u=4 — = 2.3 (11, 1, 1.2) (10, 1, 0.5) (5,1, 0.0)
v=2 u=5 (5, =, 1.8) | (11,1,0.9) [(10,1, 0.0) | (8,3, 0.0)
v=2 u=6 -, — 0.0

V=2 u=9 (5,5, 23) 1 (11, 1, 1.2) [(16, 1, 0.5) | (5, 1, 0.0
v=2 u=10 (-, -, 1.1) | (11,1, 0.0)

v=2 u=11 (-, =, 0.0)

v=3 u=7 (-, -, 0.1) (8,1,0.0)

v=38 u=8 (-, -, 0.0)

v=4 u=9 (=, -, 0.0)

v=6 u=10 (=, =, 0.9) | (11, 1,0.0)

v=6 u=11 -, —, 0.0)

Table 1: The optimal solution for the example tree
topology

the m = 3. The correspondent entry in the Table 1 is
(11,1,2.5). This implies that in the subtree of Ty,
node 11 is the leftmost proxy in the optimal solu-
tion, and it is the only node of the optimal solution
in the subtree 71;. Now it moves the subtree T13,1,
and m = 2, the entry shows node 7 is the node in the
optimal solution. We don’t need to proceed further,
since the last node of the optimal solution is the root,
i.e., node 1. Therefore, the m = 4 solution is nodes
1,7,9 and 11 shown as “shaded” nodes in Figure 4.
The Figure 5 re-captures the above described process.

Notice the process illustrated above is a top-down
approach, but the actual implementation of the al-
gorithm, as pointed out earlier, can be done bottom-
up by calculating all the smaller subtrees first before
moving up to the bigger subtrees.

4 Conclusions

In this paper, we investigate the optimal placement
policy of web proxies for a target web server in the

1288

ET I YA I R B

v e
Wl /
B[/
w0

(4 /
\

1ol N
4

v=lu=]

//

A

vl

pe=

Figure 5: The optimal solution for the example tree
topology

Internet. The objective is to minimize the overall la-
tency of searching the target web server subject to the
network resources and traffic pattern. Our contribu-
tions are 1) formulating the optimal proxy placement
problem into a Dynamic Programming problem; 2)
obtaining an optimal solution for the tree topology
using O(N3M?);

The model proposed here can be easily extended
to handle the following two cases:

e Hierarchical caching, in which the down-stream
proxies only hold a subnet of the documents of
the up-stream proxies. In such cases each down-
stream proxy can only block a portion of the
traffic. This can be handled by re-defining the
notation w(z) (or w(u)) to be only the percentage
of the traffic that the i** node’s cache can serve.

e Different link bandwidth. This can be dealt with
by incorporating the link bandwidth into the
distance L(i) (or d(u,v)), e.g., assigning larger
value to slower links.

We are currently working on two extensions: one
is to reduce the algorithm complexity for the tree
topology. Preliminary result indicates that this can
be easily brought down to O(N?M?). The second
extension is to consider multiple web servers to be

cached at multiple locations. We have done some ini-
tial assessment which reveals that the proposed dy-
namic programming formulations in this paper are
not suitable for the multiple target web servers case.
Clearly the single target web server proxies placement,
problem adressed in this paper is a special case of the
multiple target web servers case, in which each tar-
get web server forms its own spanning-tree topology.
The interesting aspect is that these multiple span-
ning trees share the same set of nodes except the
root (target web servers), i.e., the potential proxy lo-
cations (or the set of routers where the proxies can
be potentially associated with [4, 9]). The edges of
each spanning-trees, however, are not necessarily the
same. Most importantly, The optimal solution for
one tree in general is not the optimal solution for any
other tree.

We will consider a number of issues in the future
work, including more realistic web traffic distribution,
for example capturing the actual workload character-
ization [1], or considering the Zipf distribution used
by Bestarov [3]. How to incorporate the dynamic
nature of the traffic into the proxy placement mech-
anism remains a challenge.

References

(1] M. F. Arlitt and C. L. Williamson, “Internet
Web Servers: Wordload Characterization and
Performance Implications,” IEEE Transactions
on Networking, Vol. 5, No. 5, October 1997.

[2] M. Baentsch, L. Baum, G. Molters. S. Rothkugel
and P. Sturm, “World Wide Web Caching: The
Application-Level View of the Internet,” IEEE
Commaunications Magazine, Vol. 35, No. 6, June
1997.

[3] A. Bestavros, “WWW Traffic Reduc-
tion and Load Balancing Through Server-based
Caching,” IEEE Concurrency, January 1997.

[4] S. Bhattacharjee, K. L. Calvert and E. W.

Zegura, “Self-Organized Wide-Area Network
Caches,” IEEE Infocom’98, San Francisco,
March 1998.

[5) C. Bowman, P. Danzig, D. Hardy, U. Manber
and M. Schwartz, “The Harvest Information Dis-
covery and Access System,” Computer Networks
and ISDN Systems, Vol. 28, No. 1-2, December
1995.

1289

[6] H-W. Braun and K. C. Claffy, “Web Traffic

(7]

(8]

[9)

[10]

[11]

(12]

[13]

(14]

(15]

(16]

Characterization: An Assessment of the Im-
pact of Caching Documents from NCSA’s Web
Server,” Computer Networks and ISDN Systems,
Vol. 28, No. 1-2, December 1995.

S. Glassman, “A Caching Relay for World Wide
Web,” Computer Networks and ISDN Systems,
Vol. 27, No. 2, November 1994.

B. Li, X. Deng, M. Golin and K. Sohraby,
“On The Optimal Placement of Web Proxies in
the Internet: Linear Topology,” the 8th IFIP
Conference on High Performance Networking
(HPN’98), Vienna, Austria, September 1998.

B. Li, X. Deng, M. Golin and K. Sohraby,
“Dynamic and Distributed Web Caching in Ac-
tive Networks,” Asia Pacific Web Conference’98
(APWeb’98), Beijing, China, September 1998.

A. Luotonen and K. Altis, “World Wide Web
Proxies,” Computer Networks and ISDN Sys-
tems, Vol. 27, No. 2, November 1994.

M. Nabeshima, “The Japan Cache Project: An
Experiment on Domain Cache,” Computer Net-
works and ISDN Systems, Vol. 29, No. 8-13,
September 1997.

M. Sayal, Y, Breitbart, P. Scheuermann and
R. Vingralek, “Selection Algorithms for Repli-
cated Web Servers,” Internet Server Perfor-
mance Workshop in conjunection with ACM Sig-
metrics’98/Performance’98, Madison, WI, June
1998

P. Scheuermann, J. Shim and R. Vingralek, “A
Case for Delay-Conscious Caching of Web Docu-
ments”, Computer Networks and ISDN Systems,
Vol. 29, No. 8-13, September 1997.

D. Tennenhouse, J. Smith, W. Sinncoskie, D.
Wetheral and G. Minden, “A Survey of Ac-
tive Network Research,” IEEE Communications
Magazine, Vol. 35, No. 1, January 1997.

S. William, M. Abrams, C. Standridge, G. Ab-
dulla and E. Fox, “Removal Policies in Network
Caches for World-Wide Web Documents,” ACM
Sigmetrics’96, Stanford University, Palo Alto,
CA, 1996.

R. Wooster and M. Abrams, “Proxy Caching
That Estimates Page Load Delay,” The 6th
World Wide Web Conference, Santa Clara, CA,
1997.

[17] N. Yeager and R. McGrath, Web Server Tech-
nology, Morgan Kaufman, 1996.

1290

