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Abstract

This paper studies two functions arising separately in the
analysis of algorithms. The first function is the solution to
the Multidimensional Divide-And-Conquer (MDC) Recur-
rence that arises when solving problems involving points in
d-dimensional space. The second function concerns weighted
digital sums. Let n = (bibi−1 · · · b1b0)2 and SM (n) =
∑i

t=0
t(t + 1)(t + 2) · · · (t + M − 1)bt2

t, and set TM (n) =
1

n

∑

j<n
SM (j) be its average.

We show that both the MDC function and TM (n) (with
d = M − 1) have solutions of the form

Td(n) = αn lgd−1
n +

d−2
∑

m=0

n lgm
nAm(lg n) + cd.

The α, cd are explicitly calculated constants and the Am(x)

are periodic functions of period one given by explicitly stated

Fourier series.

1 Introduction

In this paper we analyze two problems that, although
they arise separately in the analysis of algorithms, have
very similar solutions. The first problem, multidimen-
sional divide-and-conquer, initially arose in the con-
text of calculating maximal points in multidimensional
space [1, 2]. Previous analyses [3] gave only first or-
der asymptotics, showing that the running time for the
d-dimensional version of the problem is (lg n ≡ log2 n)

Td(n) = αn lgd−1 n + o(n lgd−1 n)

for some explicitly calculated constant α. We will
extend Mellin transform techniques for solving divide-
and-conquer problems originally developed in [4] (see [5]
for a review of more recent innovations) to derive exact
solutions, which will be in the form
(1.1)

Td(n) = αn lgd−1 n +

d−2
∑

m=0

n lgm nAm(lg n) + cd,

∗Second author is at INRIA, Rocquencourt; all others are

at Hong Kong University of Science and Technology. HKUST

authors’ work was partially supported by HK RGC CRG 613105.

where α, cd are explicitly calculated constants and the
Am(x) are periodic functions of period 1 given by
absolutely convergent Fourier series.

The second problem studied will be certain
weighted types of digital sums. Start by expressing in-
teger n in binary as n = (bibi−1 · · · b1b0)2, i.e., n =
∑i

t=0 bt2
t. Define

(1.2) S1(n) =

i
∑

t=0

tbt2
t.

This sum arises naturally in the analysis of binomial
queues where Brown [6] gave upper and lower bounds

⌈n lg n − 2n⌉ ≤ S1(n) ≤ ⌊n lg n⌋.

We will be interested here in analyzing the more
generalized version of this function, allowing weights to
be polynomial in t:

(1.3) SM (n) =
i
∑

t=0

t(t + 1)(t + 2) · · · (t + M − 1)bt2
t.

It turns out that SM (n) itself is not “smooth” but
its average TM (n) = 1

n

∑

j<n SM (j) is and allows a
closed formula. This formula will be precisely in the
same form (1.1) seen above with M = d + 1.

Note: In this extended abstract, proofs of some Theo-

rems and lemmas have been omitted.

2 Background and Tools

The main tools used in this paper are Dirichlet generat-
ing functions, Mellin transforms and the Mellin-Perron
Formula. For detailed discussion of these tools see, e.g.,
[7] and [8, pp.762-767]. We first state the key needed
results:

Theorem 2.1. (The Mellin-Perron formula)
Let {λj}, j = 1, 2, . . . be a sequence and c > 0 lie in



the half-plane of absolute convergence of
∑∞

j=1 λjj
−s.

Then for any m ≥ 1,

1

m!

∑

j<n

λj

(

1 −
j

n

)m

(2.4)

=
1

2πi

∫ c+i∞

c−i∞





∞
∑

j=1

λj

js



ns ds

s(s + 1)(s + 2) · · · (s + m)
.

In particular, when m = 1,

1

n

∑

j<n

λj(n − j)(2.5)

=
1

2πi

∫ c+i∞

c−i∞





∞
∑

j=1

λj

js



ns ds

s(s + 1)
.

2.1 Solving Divide and Conquer Recurrences

Our main technique will be a generalization of one
developed in [4] to solve divide-and-conquer recurrences
of the form

(2.6) fn = f⌊n/2⌋ + f⌈n/2⌉ + en

with initial condition f1 = 0 and given “conquer” cost
sequence {en} where e0 = e1 = 0. Since we will have to
generalize/modify the technique, we first quickly review
how it worked.

Distinguishing between odd and even cases of (2.6),
we find that for j ≥ 1,

(2.7) f2j = 2fj + e2j , f2j+1 = fj + fj+1 + e2j+1.

Let ∇gn = gn − gn−1 be the backward difference
operator. Then, for j ≥ 1,

(2.8) ∇f2j = ∇fj+∇e2j , ∇f2j+1 = ∇fj+1+∇e2j+1.

Let ∆gn = gn+1 − gn, be the forward difference
operator, i.e.,
(2.9)
{

∆∇fn = ∇fn+1 −∇fn = fn+1 − 2fn + fn−1

∆∇en = ∇en+1 −∇en = en+1 − 2en + en−1.

Then, from (2.8),

∆∇f2j = ∆∇fj + ∆∇e2j , ∆∇f2j+1 = ∆∇e2j+1

for j ≥ 1, with ∆∇f1 = f2 − 2f1 = e2 = ∆∇e1.
Now, some basic calculation shows that, for any

sequence fn,

(2.10) fn − nf1 =
∑

j<n

(n − j)∆∇fj .

Therefore, (2.5) gives that

fn − nf1 =
n

2πi

∫ c+i∞

c−i∞

Df (s)ns ds

s(s + 1)
,

where Df (s) =
∑∞

j=1
∆∇fj

js is the Dirichlet Generating

Function (DGF) of ∆∇fj .
Calculation yields

Df (s)

= ∆∇f1 +

∞
∑

j=1

∆∇f2j

(2j)s
+

∞
∑

j=1

∆∇f2j+1

(2j + 1)s

= ∆∇e1 +





∞
∑

j=1

∆∇fj

(2j)s
+

∞
∑

j=1

∆∇e2j

(2j)s



+

∞
∑

j=1

∆∇e2j+1

(2j + 1)s

=
1

2s

∞
∑

j=1

∆∇fj

js
+ ∆∇e1 +

∞
∑

j=1

∆∇e2j

(2j)s
+

∞
∑

j=1

∆∇e2j+1

(2j + 1)s

=
Df (s)

2s
+

∞
∑

j=1

∆∇ej

js
.

Solving for Df (s) gives

(2.11) Df (s) =
1

1 − 2−s

∞
∑

j=1

∆∇ej

js
.

Combining (2.5), (2.10) and (2.11) proves the fol-
lowing lemma from [4]:

Lemma 2.1. The recurrence (2.6) with boundary con-
ditions e0 = e1 = 0 and f1 = 0 is solved by

fn =
n

2πi

∫ c+i∞

c−i∞

1

1 − 2−s





∞
∑

j=1

∆∇ej

js



ns ds

s(s + 1)
,

where c lies in the half-plane of absolute convergence of
∑∞

j=1
∆∇ej

js .

3 Multidimensional Divide-and-Conquer

3.1 Background Multidimensional divide and con-
quer (MDC) was first introduced by Bentley and
Shamos [1, 2] in the context of solving multidimensional
computational geometry problems. The generic idea is
to solve a problem on n d-dimensional points by (i) first
splitting the points into two almost equal subsets and
solving the problem on each of them, then (ii) taking
all n points, projecting them down to (d − 1) dimen-
sional space and solving the problem on the projected
set, and finally (iii) constructing a solution to the com-
plete problem by intelligently combining the solutions
to the 3 previously solved ones. The recursion bottoms



out when the dimension d = 2, in which case a straight-
forward solution is given, or when n = 1, which has a
trivial solution.

The methodology can be applied to give good
solutions for many problems, including the Empirical
Cumulative Distribution Function (ECDF) problem,
maxima, range searching, closest pair, and the all
nearest neighbour problem.

Of particular interest to us is the all-points ECDF
problem in R

k (ECDF-k). For two points x =
(x1, x2, · · · , xk), y = (y1, y2, · · · , yk) ∈ R

k, we say x
dominates y if xi ≥ yi for all 1 ≤ i ≤ k. Given a set S
of n points in R

k, the rank of a point x is the number
of points in S dominated by x. The ECDF-k problem
is to compute the rank of each point in S.

When k = 2, a slight modification of bottom-up
mergesort will solve ECDF-2 in O(n log n) time. Monier
[3] proposed a MDC algorithm for solving ECDF-k for
larger k, which was based on the description of Bentley
[2]. Monier analyzed the worst-case running time of this
algorithm, T (n, k), with the following recurrence:

(3.12)

T (n, k) =































T
(

⌊n
2 ⌋, k

)

+ T
(

⌈n
2 ⌉, k

)

+T (n, k − 1) + n
if n > 1, k > 2,

1 if n = 1, k > 2,

n lg n if n ≥ 1, k = 2.

By translation into a combinatorial path-counting
problem he derived the first order aymptotics of T (n, k).
More specifically, he showed that, for fixed k,

T (n, k) =
1

(k − 1)!
n lgk−1 n + Θ(n lgk−2 n)

We will derive exact solutions for the ECDF-k
running time using Lemma 2.1. To do so, we will have
to slightly modify the case k = 2 to have a more precise
initial condition. In what follows we will denote T (n, k)
by fk

n . The recurrences corresponding to 3.12 will be:

(3.13) fk
n =

{

fk
⌊n/2⌋ + fk

⌈n/2⌉ + ek
n, n ≥ 2

0, n = 1

where

(3.14) ek
n =

{

fk−1
n + n − 1, k ≥ 3

n − 1, k = 2.

3.2 The Dirchlet Generating Function for Mul-

tidimensional Divide-and-Conquer We can now
solve recurrence (3.13) and (3.14) via Lemma 2.1. To

do so, we need to calculate the DGF of the ∆∇en
k , where

the en
k are given by (3.13). One can work out directly

that ∆∇e2
1 = 1 while, for j ≥ 2, ∆∇e2

j = 0.
Thus,

Df2
(s) =

1

1 − 2−s

∞
∑

j=1

∆∇e2
j

js
(3.15)

=
1

1 − 2−s
.

For k ≥ 3, we have

∆∇ek
j =

{

∆∇fk−1
j , for j ≥ 2

ek
2 = fk−1

2 + 1 = ∆∇fk−1
1 + 1, for j = 1.

Hence

Dfk
(s) =

1

1 − 2−s

∞
∑

j=1

∆∇ek
j

js

=
1

1 − 2−s



∆∇fk−1
1 + 1 +

∞
∑

j=2

∆∇fk−1
j

js





=
1

1 − 2−s
+

Dfk−1
(s)

1 − 2−s
.

Iterating the above recurrence, and applying (3.15)
gives
(3.16)

Dfk
(s) =

1

1 − 2−s
+

1

(1 − 2−s)2
+ · · · +

1

(1 − 2−s)k−1
.

By Lemma 2.1, we obtain a formula for fk
n in terms

of fk−1
n and a complex integral:

fk
n(3.17)

=
n

2πi

∫ 3+i∞

3−i∞

(

k−1
∑

d=1

1

(1 − 2−s)d

)

ns ds

s(s + 1)

= fk−1
n +

n

2πi

∫ 3+i∞

3−i∞

1

(1 − 2−s)k−1
ns ds

s(s + 1)
.

We note that [4] explicitly solved this for the case
k = 2 to derive

(3.18) f2
n = n lg n + nA2

0(lg n) + 1

where, setting χj = 2πij
ln 2 ,

(3.19)

A2
0(u) =

(

1

2
−

1

ln 2

)

+
∑

j∈Z\{0}

1

(ln 2)χj(χj + 1)
e2πiju.



3.3 Evaluation of the Integral We now see how to
evaluate the integral on the right-hand-side of (3.17):

(3.20) If,k(s) =
1

2πi

∫ 3+i∞

3−i∞

1

(1 − 2−s)k−1
ns ds

s(s + 1)

Fix some real R > 0 and consider the counter-
clockwise rectangular contour Υ = Υ1

⋃

Υ2

⋃

Υ3

⋃

Υ4,
where (see Figure 1)

(3.21)

Υ1 = {3 + iy : −R ≤ y ≤ R}

Υ2 = {x + iR : −R ≤ x ≤ 3}

Υ3 = {−R + iy : −R ≤ y ≤ R}

Υ4 = {x − iR : −R ≤ x ≤ 3}

Denote the kernel of the integral in (3.20) by
Kf,k(s):

(3.22) Kf,k(s) =
ns

s(s + 1)(1 − 2−s)k−1
.

Im(z)

Re(z)

Υ1

Υ2

Υ3

Υ4

0−1

2π

ln 2
i

4π

ln 2
i

6π

ln 2
i

8π

ln 2
i

10π

ln 2
i

−

2π

ln 2
i

−

4π

ln 2
i

−

6π

ln 2
i

−

8π

ln 2
i

−

10π

ln 2
i

3−R

R

−R

Figure 1: The figure is contour Υ defined in (3.21). The
dots represent the poles of Kf,k(s) inside Υ.

Note that (3.20) is just limR→∞
1

2πi

∫

Υ1
Kf,k(s)ds.

The idea will essentially be to show that, for q =
2, 3, 4, limR→∞

∫

Υq
Kf,k(s)ds = 0. Thus, (3.20) is the

limit, as R → ∞, of the integral around the closed curve
Υ. But, by the Cauchy residue theorem, this will be
equal to the sum of the residues inside Υ as R → ∞,
which can be easily calculated.

We now provide details. Consider the horizontal

paths q = 2, 4 and the sequence R = Rj = (2j+0.5)π
ln 2 .

Then
∣

∣

∣

∣

∣

∫

Υq

Kf,k(s)ds

∣

∣

∣

∣

∣

≤

∫ 3±iRj

−Rj±iRj

|Kf,k(s)| ds

≤ max
−Rj≤σ≤3

∣

∣

∣

∣

nσ

(1 ± 2−σi)k−1

∣

∣

∣

∣

1

Rj(Rj + 1)

∫ 3

−Rj

dσ

= O(j−1).

For the leftmost path we also see
∣

∣

∣

∣

∫

Υ3

Kf,k(s)ds

∣

∣

∣

∣

= O

(

1

Rj(2k−1n)Rj

)

.

Hence, by the Cauchy residue theorem, If,k(s) is
the sum of the residues at the poles of Kf,k(s) inside Υ
as j → ∞. The poles of Kf,k(s) inside Υ are:

1. A simple pole at s = −1.

2. A pole of order k at s = 0.

3. Poles of order (k − 1) at s = χj , where j ∈ Z \ {0}

Standard techniques for finding residues, e.g., mul-
tiplying the respective Laurent series, give

(3.23) Res (Kf,k(s), s = −1) =
(−1)k

n
,

Res (Kf,k(s), s = 0)(3.24)

=
lgk−1 n

(k − 1)!
+

(

k − 1

2
−

1

ln 2

)

lgk−2 n

(k − 2)!

+

k−3
∑

m=0

ck
0,m lgm n

and
(3.25)

Res (Kf,k(s), s = χj) =
e2πij(lg n)

χj(χj + 1)

k−2
∑

m=0

ck
j,m lgm n

where the ck
j,m are explicitly calculable constants.

We point out (omitting the proof in this extended
abstract) that it is not difficult to show that, for fixed
k and m, the |ck

j,m| are uniformly bounded as j → ∞.



Theorem 3.1. For k ≥ 2, the recurrence fk
n , defined

by (3.13) and (3.14), satisfies
(3.26)

fk
n =

1

(k − 1)!
n lgk−1 n +

k−2
∑

m=0

n lgm nAk
m(lg n) + ck,

where Ak
m(u), m = 0, 1, · · · , k − 2, are periodic with pe-

riod 1. Furthermore, the Ak
m(u) are given by absolutely

convergent Fourier series

Ak
m(u) =

∞
∑

j=−∞

am,k,je
2πiju

whose coefficients am,k,j can be determined explicitly.
ck = 1 if k is even, 0 if odd.

Proof. (Sketch) As previously mentioned, for k = 2 this
theorem was already proved by Flajolet and Golin [4].
For k ≥ 3 the proof follows from equation (3.17) and
the residue calculations in (3.23), (3.24) and (3.25).

8 9 10 11 12 13 14 15
0.50

0.52

0.54

0.56

0.58

0.60

Figure 2: As an example, the graph shows 1
n lg n (f3

n −
1
2n lg2 n) plotted against lg n. The graph illustrates the
periodicity behaviour in the second order asymptotic
terms of f3

n.

4 Weighted Digital Sums

We now return to analyze TM (n) = 1
n

∑

j<n SM (j),
where SM (j) is the weighted digital sum function as
defined in (1.3).

Set WM (n) =
∑

j<n SM (j). Note that
∆∇WM (n) = ∆SM (n− 1) = ∇SM (n) and WM (1) = 0.

Then from (2.10) and (2.5),

TM (n) =
1

n
WM (n)(4.27)

=
1

2πi

∫ c+i∞

c−i∞





∞
∑

j=1

∇SM (j)

js



ns ds

s(s + 1)
.

We now proceed, as in Section 3.2 to first derive a usable

expression for the DGF
∑∞

j=1
∇SM (j)

js and then, as in
Section 3.3, use the Cauchy residue theorem to evaluate
the integral in (4.27).

4.1 Deriving the DGF First note that ∀M,
SM (1) = 0. Next, observe that if n = (bibi−1 · · · b1b0)2,
then

2n = (bibi−1 · · · b1b0, 0)2

and
2n + 1 = (bibi−1 · · · b1b0, 1)2.

This shows that ∀M,

(4.28) SM (2n + 1) = SM (2n),

(4.29)

S1(2n) =

k
∑

i=0

(i + 1)bi2
i+1

= 2

k
∑

i=0

ibi2
i + 2

k
∑

i=0

bi2
i

= 2S1(n) + 2n

and

(4.30) SM (2n) = 2SM (n) + MSM−1(2n).

Combining these in a similar calculation as performed
in Section 3.2 yields

Lemma 4.1.

AM (s) =
∞
∑

j=1

∇SM (j)

js
= M !

2(M−1)(s−1)

(2s−1 − 1)M
ζ(s)

where ζ(s) =
∑

n>0 n−s is the Riemann Zeta function.

4.2 Evaluation of the Integral By (4.27) and
Lemma 4.1, we have
(4.31)

TM (n) =
M !

2πi

∫ 3+i∞

3−i∞

2(M−1)(s−1)

(2s−1 − 1)M
ζ(s)ns ds

s(s + 1)

Similarly as in the analysis of fk
n in Section 3.3,

the integral in (4.31) can be evaluated by integrating



(in the limit) over a counterclockwise contour. Fix
some real R > 0. The contour for this case will be
Γ = Γ1

⋃

Γ2

⋃

Γ3

⋃

Γ4, where (see Figure 3)

(4.32)

Γ1 = {3 + iy : −R ≤ y ≤ R}

Γ2 = {x + iR : −1/4 ≤ x ≤ 3}

Γ3 = {−1/4 + iy : −R ≤ y ≤ R}

Γ4 = {x − iR : −1/4 ≤ x ≤ 3}

Re(z)

Im(z)

Γ1

Γ2

Γ3

Γ4

1 − 10π

ln 2
i

1 − 8π

ln 2
i

1 − 6π

ln 2
i

1 − 4π

ln 2
i

1 − 2π

ln 2
i

1 + 2π

ln 2
i

1 + 4π

ln 2
i

1 + 6π

ln 2
i

1 + 8π

ln 2
i

1 + 10π

ln 2
i

10

R

−R

3
−

1

4

Figure 3: The figure is contour Γ defined in (4.32). The
dots represent the poles of KTM

(s) inside Γ.

Denote the kernel of the integral in (4.31) by
KTM

(s):

(4.33) KTM
(s) =

2(M−1)(s−1)

(2s−1 − 1)M
ζ(s)ns 1

s(s + 1)

Note that the RHS of (4.31) is just
limR→∞

M !
2πi

∫

Γ1
KTM

(s)ds. As before, we will start by

showing that the integrals along Γ2, Γ3, Γ4, go to 0
as R → ∞. Therefore, the value of TM (n) will be M !
times the sum of the residues inside Γ, as R → ∞. We
therefore conclude by evaluating those residues.

To show that limR→∞

∫

Γj
KTM

(s)ds = 0 is tending

to 0 for j = 2, 3, 4, we need the following two lemmas
that follow easily from general properties of the Zeta
function (proofs omitted in this extended abstract):

Lemma 4.2. Consider integral

(4.34) I(R) =

∫ 3+iR

−a+iR

f(s)ζ(s)nsds

where 0 < a ≤ 5
4 . Furthermore, suppose that for

s = α + iB with −a ≤ α ≤ 3, |f(s)| = O(|B|−2). Then,
both as R → ∞ and R → −∞, we have I(R) → 0.

Lemma 4.3. Consider integral

I =

∫ − 1
4+i∞

− 1
4−i∞

g(s)ζ(s)ns ds

s(s + 1)
.

If g(s) can be expressed as a series which is uniformly
convergent on − 1

4 + (−∞,∞)i and is of the form

∞
∑

j=0

gj(Kj)
s

for some real sequence {gj} and integer sequence {Kj},
then I = 0.

To evaluate the integrals along Γ2 and Γ4, consider

the sequence Rj = (2j+0.5)π
ln 2 . Note that

∣

∣

∣

2(M−1)(s−1)

(2s−1−1)M

∣

∣

∣ is

bounded as j → ∞ and
∣

∣

∣

1
s(s+1)

∣

∣

∣
= O(j−2). Thus, by

Lemma 4.2, as Rj → ∞,

∫

Γ2

KTM
(s)ds → 0,

∫

Γ4

KTM
(s)ds → 0.

To evaluate
∫

Γ3
KTM

(s)ds, note that along Γ3,

Re(s) < 0, so it is legitimate to write

1

2s−1 − 1
= −1 −

(

1

2

)

2s −

(

1

4

)

4s −

(

1

8

)

8s · · · .

The series is both absolutely convergent and uni-
formly convergent on − 1

4 + (−∞,∞)i, so we can safely
write

2(M−1)(s−1)

(2s−1 − 1)M
=

∞
∑

j=0

aj(2
M+j−1)s

for some {aj}. This series is again uniformly convergent
on − 1

4 + (−∞,∞)i, so by Lemma 4.3, we have



∫

Γ3

KTM
(s)ds → 0

as Rj → ∞.
Hence by the Cauchy residue theorem, TM (n) is just

M ! times the sum of the residues at the poles of KTM
(s)

inside Γ after taking j → ∞. It is well known that ζ(s)
has a simple pole at s = 1 and it is analytic elsewhere.
Hence, the poles of KTM

(s) inside Γ are:

1. A simple pole at s = 0.

2. A pole of order (M + 1) at s = 1.

3. Poles of order M at s = αj := 1 + 2πij
ln 2 , where

j ∈ Z \ {0}

The residues are listed below:

(4.35) Res (KTM
(s), s = 0) = (−1)M+1

Res (KTM
(s), s = 1)(4.36)

=
n lgM n

2M !
+

(

2γ0 − 3 + (M − 2) ln 2

4(M − 1)! ln 2

)

n lgM−1 n

+

M−2
∑

m=0

bM
0,mn lgm n

and
(4.37)

Res (Kf,k(s), s = αj) = e2πij(lg n)
M−1
∑

m=0

bM
j,mn lgm n,

where the bM
j,m are explicitly calculable constants.

As in the MDC case, we can now derive a general
closed formula:

Theorem 4.1.
(4.38)

TM (n) =
1

2
n lgM n+

M−1
∑

d=0

FM,d(lg n)n lgd n+(−1)M+1M !

where

(4.39) FM,d(u) =
∑

j∈Z

aM,d,je
2πiju

is a function with period one. The Fourier coefficients
aM,d,j can be determined explicitly and the Fourier
series (4.39) are all absolutely convergent.

In particular, we can derive the following closed
form for T1(n).

8 9 10 11 12 13 14 15

K0.98

K0.96

K0.94

K0.92

K0.90

K0.88

Figure 4: The graph shows 1
n (T1(n) − 1

2n lg n) plotted
against lg n. The graph illustrate the periodicity be-
haviour in the second order asymptotic terms of T1(n).

Corollary 4.1.

(4.40) T1(n) =
1

2
n lg n + nF1,0(lg n) + 1

where
(4.41)

F1,0(u) =
2γ0 − 3 − ln 2

4 ln 2
+
∑

j∈Z\{0}

ζ(αj)

(ln 2)αj(αj + 1)
e2πiju

which is a Fourier series with period one. αj = 1+ 2πij
ln 2 .

We conclude by noting that, using known properties
of the Zeta function ζ(s), it is not difficult to prove that
all of the Fourier series defined in (4.39) are absolutely
convergent.
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