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Lopsided Trees, |: Analyses
V. Cho#? and M. J. Golid

Abstract.  Lopsided trees are rooted, ordered trees in which the length of an edge from a nodtchiis!

depends upon the value of These trees model a variety of problems and have therefore been extensively
studied. In this paper we combine analytic and combinatorial techniques to address three open problems on
such trees:

e Givenn, characterize the combinatorial structure of a lopsided treemighves that has minimal external
path length.

e Express the cost of the minimal external path length tree as a function of

e Calculate exactly how many nodes of depthx exist in the infinite lopsided tree.

Lopsided trees mod&larn codesprefix free codes in which the letters of the encoding alphabet can have
different lengths. The solutions to the first and second problems above solve corresponding open problems on
Varn codes. The solution to the third problem can be used to model the performance of broadcasting algorithms
in the postal model of communication. Finding these solutions requires generalizing the definition of Fibonacci
numbers and then using Mellin-transform techniques.

Key Words. Varn codes, Fibonacci recurrences, Mellin transforms, Postal model.

1. Introduction. Inthis paper we discuss some properties of lopsided trees. A tree is
said to bdopsidedif it is a rooted, ordered (i.e., the children of each node are ordered)
tree with maximum arityr, in which the length of an edge from a parent toiitis
child is ¢ wherec; < ¢ < --- < ¢ arer fixed positive reals. Figure 2 illustrates
two finite lopsided trees, Figure 3 illustrates an infinite one. The Napwded trees
was only coined in 1989 by Kapoor and Reingold [19] but the trees themselves have
been implicitly present in the literature at least since 1961 when Karp [20] used them
to model minimum-cost prefix-free (Huffman) codes in which the length of the edge of
the letters in the encoding alphabet were unequalepresented the length of thth
letter in the encoding alphabet (tliraof such codes was already present in Shannon’s
seminal paper on communication theory [30]). Such trees were later used in [16] and [4]
to design more efficient algorithms for the same problem.

For fixedc; < ¢, < --- < ¢ we study three problems on these trees:

e Givenn, characterize the combinatorial structure of a lopsided treemiizghves that
has minimal cost, where the cost of a tree is its external path length, i.e., the sum of
the lengths of the paths from the root to all of the leaves.
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e Calculate exactly how many nodes of depthx exist in the infinite tree.
e Express the cost of the minimal cost tree as a functiomarid thec;.

To motivate these problems we first introduce the concept of a Varn code [32], [28].
Suppose that we wish to construct a prefix-free encodimggmbols using an encoding
alphabet of letters,z = {«a4, ..., a; } inwhich the length of character isc;, where the
¢i’s may all be different. As an example consider the Morse code alphabet., —}
in which the length of a “dash” may be longer than that of a “dot.” By a prefix-free
encoding we mean a set ofstrings{w;, ..., wp} € X* in which now; is a prefix of
anyw;.

If a symbol is encoded using string= ai,ai, - - - iy, thencos(w) = 3 ¢, is the
length of the string. For examplefif= 2, > = {0, 1}, andc; = ¢, = 1, then the cost of
the string is just the number of bits it contains. This last case is the basic one encountered
in regular Huffman encoding [29], [12].

Now suppose that the symbols to be encoded are known to occur with equal fre-
quency. Thecostof the code is then defined to Be; _,, cos{wi) (which divided byn
is the average cost of transmitting lengthof a symbol). Giverc; < ¢, < --- < ¢
aVarn codefor n symbols is a minimum-cost code. Varn codes have been extensively
studied in the compression and coding literature; [28] contains a large bibliography and
up-to-date description of what is currently known about them.

Such codes can be naturally modeled by lopsided trees in which the length of the
edge from a node to itigh child is¢c;; we call such an edge ath edge Suppose that
v is a leaf in a lopsided tree and the unique path from the tree’s raofitst traverses
ani;' edge then amgd edge and so on up to aﬁ“ edge. We can then associate with
this leaf the codeword = o, «i, - - - o, . The cost of this codeword is exactly the same
as the depth ob in the tree, i.e.} ", c;. Using this correspondence, every tree with
n leaves corresponds to a prefix-free seh@odewords and vice versa; the cost of the
code is exactly equal to the external path length of the tree which we henceforth call the
costof the tree. This correspondence is extensively used, for example, in the analysis of
Huffman codes. See Figure 1. A lopsided tree with minimal coshfleraves is called
anoptimal tree See Figure 2.

With this correspondence and notation we see that the problems of constructing a
Varn code and calculating its cost are equivalent to those of constructing an optimal
tree and calculating its cost. Under these two different guises these problems have been
extensively studied in both the codifmpmpression and computer science communities.
Algorithms for finding such trees appear in [19], [7], [32], [9], [26], and [18]. The first
two citations are special cases; in [19] Kapoor and Reingold discuss the binary case
(r = 2) and in [7] Choy and Wong address what they eals trees, trees in which
r is fixed, anavi, ¢, = o + (i — 1)8. Both special case algorithms run @(n) time.

The remaining citations provide algorithms for the general case; the fastest one is [18]
which runs inO(nlog?r) time. The bottleneck in these general algorithms is that there
are many possible trees withleaves and all of the algorithms work by constructing
restricted (but large) sets of such trees and somehow finding the minimal-cost one in the
set; this tree will be the optimal one. (When= 2 this restricted set will collapse to

only one candidate tree; it is when> 2 that problems arise.) Analyses of the costs of
Varn codes or, equivalently, of the costs of optimal lopsided trees appear in [30], [23],
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Fig. 1. Two trees with six leaves (labeled a, b, c, d, e, f). The tree on the lefthas) = (1, 1). It corresponds
to the prefix-free code

a=000 b=001L c=011 d=011 e=10 f=11

for alphabets = {0, 1} when 0 and 1 have the same length. The cost of the code and corresponding tree is
3+ 343+ 2+ 2= 13. The tree on the right hds;, c;) = (1, 2). It corresponds to the prefix-free code

=

a=.., b=._, c=. d=._, e=_, f=

whenX = {., _} andlength.) = 1,length(_) = 2. The cost of the code and corresponding treeis54+ 4 +
3+3+4=23.

[10], [11], [2], [19], [28], and [1]. As the authors of these papers mention, their various
analyses are only tight for some special cases but in most cases provide only loose
upper and lower bounds. Many of the analyses use information theoretic techniques and
therefore cannot be tight (since they do not fully model the tree). The most complete
analysis is in [19] which derives a closed asymptotic expression but restricts itself to the
binary-tree case for rationad/c;, leaving both the binary irrational and the generaty

cases open problems. Lopsided trees have also been used to model searching procedures
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Fig. 2. The two trees pictured both hawe= 3, (c1, ¢z, c3) = (2, 2, 5), and ten leaves each. The leftmost one

has five internal nodes and cost 60; the rightmost one has six internal nodes and cost 59. We will see later that
the rightmost one is optimal.
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with r -ary branching in which the cost of discovering that itttebranch must be taken
is ¢ [31].

This paper has two main results, one combinatorial, the other analytic. Combining
them yields a full analysis of the cost of Varn codes.

The first main result of this paper is a new combinatorial way of looking at optimal,
i.e., mimimum-cost, lopsided trees. We assume that ¢, < --- < ¢ are fixed and
examine how the structure of optimal lopsided trees evolveiasreases. We prove that
the trees evolve in a very regular and understandable fashion. This permits us to know
what an optimal tree fon nodes looks like without having to search through a large
collection of lopsided trees.

The second main result of this paper is an analysis of exactly how many nodes in
the infinite tree have depth at mostThis problem reduces to analyzing Fibonacci-type
recurrences of the form

(1) LX) =L(x—c)+Lx—c)+---+LKX-0C).

This problem is easy if the are integers or rational multiples of each other, see, e.g.,
[33]. It gets complicated when thee are irrational. While the solution to the case- 2

is implicit in the work of Fredman and Knuth [15] and, later, Pippenger [27], the general
r-ary case does not seem to have been previously addressed. We show how to use Mellin
transform and singularity analysis techniques to solve these equations. The solution to
(1) will have a qualitatively different behavior depending upon whethet;thge rational
multiples of each other or not. This difference in behavior will be reflected in the ways

in which the trees evolve as the number of leaves increase.

The analysis oL (x) is of independent interest. We illustrate this by describing an
application in the derivation of exact bounds on the time needed for broadcasting in the
postal model of message passing in distributed computation, improving the bounds given
in [3].

A more important application arises when we combine the analydi$)fwith the
first result describing the structure of trees. This will yield the major result of this paper,
an exact analysis of the cost of optimal trees or Varn codes. Because we know exactly
how the structure of the optimal tree evolvesnagrows we are able to calculate how
the cost of the optimal tree increases withThis provides, once and for all, a unified
analysis that gives asymptotically exact bounds for Varn code costs in all cases.

The remainder of this paper is structured as follows. Section 2 motivates the problem
and introduces the definitions that are used. Section 3 presents (mostly without proof)
the three major results of this paper: (i) a description of the combinatorial structure
of optimal trees; (ii) an asymptotic analysis of the solution to generalized Fibonacci
recurrences and the subsequent analysis of the distribution of nodes in the infinite tree
that it implies as well as the analysis of broadcasting protocols in the postal model that
follows; (iii) an asymptotic analysis of optimal Varn lopsided trees or, equivalently, Varn
codes.

Sections 4-6 prove the respective results of parts (i)—(iii).

We point out that our first result, the derivation of how the combinatorial structure
of the trees evolves, can be used to design a new algorithm for constructing optimal
lopsided trees i© (n logr) time, beating the ol® (n log? r) bound. This algorithm and
its analysis are presented in a companion paper [6].
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2. Definitions. Inthis section we motivate and introduce the definitions used in the rest
ofthe paper. In what followg<} = x—| x| is thefractional partof x, e.g.,{7.32} = 0.32.
Nowlet0O< c; < ¢, <--- < ¢ ber fixed reals.

DerFINITION 1.  Theinfinite r-ary tree is the infinite, rootedr -ary tree such that the
length of the edge connecting a node td itschild isc;. See Figure 3.

A lopsided treeis a subtreel of the infiniter-ary tree containing the root. See
Figure 4.

If uis a node in the infinite tree, thexild; (u) is theith child of u, e.g., in Figure 3
child,(4) = 8, childy(4) = 12, andchildz(4) = 18.

In standard trees theéepthof a nodev is defined to be the number of edges on the
unique path from the root to. The external path lengtlof the tree is the sum of the
depth of all external nodes. This definition can easily be extended to lopsided trees if we

redefine the depth af to be the sum of the lengths of the edges on the path connecting
the root tov.

DEFINITION 2. Letu be a node and €k be a lopsided tree.
depth(u) is the sum of the lengths of the edges on the path connecting the noot to
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Fig. 3. The labeled infinite 3-ary tree wittt,, ¢z, c3) = (3, 5, 7). Nodes are drawn so that the depth of nodes
on the page corresponds to their depths in the tree. This convention is followed throughout this paper.
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Fig. 4. A lopsided tree withr = 3 and(cy, C2, C3) = (3,5, 7).

Theexternal path length or costof T isC(T) = Y, , ear ot d€Pthv), the sum of
the depths of all external nodes.
Theheightof T is H(T) = max,t depthu).

For example, in the tre€ in Figure 4,depth4) = ¢; + ¢; = 3+ 3 = 6, depth(6) =
ct+¢=3+5=8,andC(T) =6+8+10+8+10+7 =49.H(T) = 10 =
depth9) = depth(10).

DerINITION 3. A treeT with n leaves isoptimal if it has the minimal cost among alll
lopsided trees witm leaves. We denote such an optimal treeThy(note that it might
not be unique). See Figure 5.

In our analysis of the structure of the trees we are interested in knowing at what depths
nodes can appear in the infinite tree. It is obvious that nodes will appear at exactly the set
of depths{}"{_, aci} where theg; range over all nonnegative integers. For example, if
(¢1, o) = (15, 25), then nodes can only have depths that are multiplesoffed(15, 25)
and, deep enough in the tree, nodes will appeavanylevel with depth a multiple of 5.

If, though, (¢, ¢2) = (3, ), then nodes appear on all depths that can be written in the
form a;c; + axCp, a1, @ > 0 integers, and general theorems about irrational numbers
[25] imply that the depth difference between (neighboring) successive levels upon which
nodes appear tends to zero. This is discussed in more detail in Section 3.2. To formalize
this distinction we introduce the following definitions:

DEFINITION 4. Let(cy, ..., ¢) be atuple of positive reals:
1. Thetuple isationally relatedif there existsl > 0 and positive integer&;’, ..., ¢')
such that

!/

€, ...,c)=d-(c/, ..., &) and gedey, ..., ) =1.
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Fig. 5.Forr = 3,(cy, C2, C3) = (2, 2, 5). The cost of the trees are, respectively, 60, 59, 60, 62. It can be shown
that (b) is an optimal tree far = 10 leaves.

2. If(cy, ..., ¢)isrationally related we define the gcd of the tuple by@ed. . ., ¢.) = d.
3. If (¢, ..., &) is not rationally related it is said to beationally related.

For example, triplg2r, 47, 677) is rationally related becaus@r, 4, 67) = 2w
(1, 2, 3) but the triple(d, 4, ) is not rationally related. Note that if they, ..., ¢;) are
all integers, then the gcd defined above is the stangerdtest common divispe.g.,
(10, 20, 35 = 5(2, 4, 7) so gcd 10, 20, 35) = 5.
There is one more definition that we need. It turns out that optimal trees of a certain
size have a bottom “fringe” of size whereh is defined in the following lemma (which
is proved in Section 4):

LEMMA 1. Let %, = (Zim:lci)/(m — 1) form = 2,...,r. There exists k> 2 such
that

2) X2 = X3 =0 2 X1 = X < X1 < -+ < X

(If Xxo < x3,8etk=2.1f X, > X3 > --- > X%_1 > X, set k=r.) Letting k be this value
and setting ! Xk we havefurther that, if k < r,then g < h < ¢ys1.

3. The Results. In this section we present the major results of this paper. Proofs of
most of the results are deferred until later.

Before starting the discussion tdpsidedtrees we try to give some intuition by
quickly reviewing what is known about the standandnlopsidedtree, i.e.y = 2 and
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G

Fig. 6. The functionB(log, n) = 2 — {log, n} — 21~ {log2n},

c1 = ¢ = 1. Itis well known, e.g., [22, 5.3.1], that such a tree with minimal external
path length fon leaves must have the following property: all leaves must appear on level
| = [log, n] or levell 4 1. This means that there will bé*2 — n leaves on level and

2n — 2*1 leaves on level + 1. The external path length is then

12+ —n)y+ (1 +D@n—2% =In+2n— 2"+

The question now is how to rewrite this as a functiomof he standard way of doing
S0 is to note that

| =log, n — {log, n}, 2+l — ppl-flog;n}
The external path length can therefore be rewritten as

In+2n— 2" = nlog,n —n[2 - {log, n} — 2'~1°%"]
= nlog, n + nB(log, n),

whereB(9) = 2 — {x} — 21~ is periodic with period 1, i.e.B(1 + x) = B(x). See
Figure 6.

Two important observations to keep in mind about this example are: (i) the optimal
tree was one that tried to keep the leaves as “balanced” as possible; (ii) the fact that
the leaves can occur on two distinct levels a unit distance apart introduced the periodic
B(0) term into the expression for path length. This periodic term “corrects” for the fact
that there is a discrete jump between successive levels. Both of these observations prove
helpful in understanding the results in the remainder of this section.

3.1. The Structure of Optimal Trees In this subsection we describe trégsthat have
minimal external path length among all trees witleaves. More particularly we examine
how the structure of the optimal trees changes geows.

We start by labeling the nodes of the infinite tree as 1, 2,.3,in order of increasing
depth, breakingties arbitrarily. Thatisuifindv are two nodes witdepthu) < depthv),
thenu < v; if deptiu) = depthv), break ties arbitrarily. Figures 3 and 7 provide
examples of such labelings.

DEFINITION 5. LetV be any set of nodes. Set

LEAF(V) = {u: pareniu) € V,u ¢ V}.
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Fig. 7. The top of the infinite tree withcy, C, C3,Ca,C5) = (3,5,5,8.7510). (r = 5). Note that
lo,l1,12,13,14,...=10,3,5,6,8...andmg, my, mp, mz,mg = 1,2,4,5,9.

Forn < [LEAFR(V)], let
LEAF,(V) = then smallest labeled nodes HEAF(V).

LEAF, (V) is the set oh smallest labeled nodes that are children of nodesé ut
are not inV themselvesLEAF, (V) containsn highest (smallest depth) ItEAF(V).

For example, in Figure LEAFs;({1, 2, 3}) = {4, 5, 6, 7, 8}.

It is obvious that an optimal tree must peoper (each of its internal nodes must
have at least two children) otherwise some internal node can be replaced by its child,
decreasing the cost. This property of beprgperwill be useful later.

For any givem, let m be the number of internal nodes of some proper tree having
leaves. The total number of edges in the trae4sm — 1. Since every internal node has
between two and children, I <n+m—-1<rm,or[(n—-1)/r -] <m<n-1.
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Fig. 8. In the first case of Theorem 1 when= a;, the optimal tre€l, = T;j. In this exampleg; = 11,
ag = 14. Thereforelyy = To? and Ty = To°.

DEFINITION 6. Let[(n —1)/(r — D] <m < n-—1,andV, = {1,2,..., m}. Set
T = Vi U LEAR, (V).

By definition, ifu € T"isnotaroot, theparentu) € T."soT,"is atree. These trees
are callecshallow treed$n [18] which uses the simple observation that there must be some
shallow tree that is also optimal as the basis of an algorithm for constructing optimal trees.
Figure 5 illustrates the shallow tre&§, T5, T,0, andT& when(c, ¢z, c3) = (2, 2, 5).
Return now to the infinite tree and ligt 14, I, ..., be the consecutive levels upon
which nodes appear, i.¢g,= 0 and

Vi > 0, li = min{depthv): v a node withdepth(v) > I;_1}.

Thus, for exampld; = ¢4, I, = min(2¢y, ¢;), etc.
Also letm; be the number of nodes higher than or on deéptRigure 7):

m; = |{v a node:depth(v) < I;}|.
With these definitions, we can now state our main combinatorial result. Figures 8—

11 illustrate the various cases of the theoremrfoe= 5 and(cq, Cp, C3, C4, C5) =
(3,5,5,8.75, 10). The proof of the theorem is given in Section 4.

i Ty
[U» ) IM
em

le+h . fetht

Fig. 9. In the second case of Theorem 1 whgn< n < bj, the optimal tre€l, = Tnm'. In this example,
ag = 14,bg = 17. SoTis = T,° (not pictured) Tyg = T, andTy7 = T,7°.
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me 1
Tlf)

iy+h

lowh —

Fig. 10.In the third case of Theoremld < n < aj;1. If n = bj + p(k — 1), the optimal tree fon leaves is

Ta =Ty " In this exampleps = 17, 19= 17+ 1. (3 — 1), and 21= 17+ 2. (3— 1). SoTo = ;"
andT21 = T2T3+2.

THEOREM1. Giveng < C;--- < ¢ let k and h be as defined in Lemrhand let |
and m be as defined abov8et

Aj = {v € LEAR(Vy,): depthv) <Ij + h}
and g = |Aj|, the number of nodes in;Aset
Bj = Aj U {v € LEAF(Vm): |j + h < depthv) <lj41 +h}

and i = |B;[, the number of nodes in; B

1. If n = g;, then the tree jln" =V, U A is optimal
2. Ifaj < n < by, then the tree " is optimal furthermore T," = Vi, U B;.
3. Ifbj < n < aj44, then
(@) n=1b; + p(k — 1), then 1" " is optimal
(b) n=b; + p(k—1)+q with q < k—1,then one of F*? and 7" " is optimal

Intuitively this theorem reverses the problem. Instead of asking “how many internal

Liwit e

Fig. 11.In the second part of the third case of Theorerhj1< n < aj;3 andn = by + p(k = 1) + ¢
with 0 < q < k — 1, the optimal tree fon leaves is eitheﬂ'nmj+p or Tnmi+p+l. In this exampleps = 17,
22=17+2-(3— 1) + 1. The cost off;2**? is 246.75 while the cost o, ** is 247.25. Saz, = Ty 2.
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nodes are in an optimal tree withleaves?” it instead asks, and answers, the question
“if T is an optimal tree witim internal nodes, how many leaveg canT have?”

We now briefly sketch the theorem’s implications. Figures 8—11 illustrate the discus-
sion. To build treeT," draw a horizontal line across the infinite tree at ddpttthe
nodes on or above thls line are time nodes inVyy, , the internal nodes i, .. Next draw
a second horizontal line at ded{h+ h. The nodes invy, have exactlyg; children on
or above this line. These nodes, thg will be the leaves offy . The treeTy " will be
optimal.

Now draw a third horizontal line at depth, 1 + h. There ardo; — & children of the
Vi, between the second and third lines (actually, below the second and on or above the
third). If n satisfiess; < n < b;, then construct, " by takmg then — g h|ghest nodes
between the second and third lines and adding theTa toas leaves. The treB" will
be optimal. The largest such tree constructed this wa’y Jis

If bj < n < a4, the theorem says that optimg|" can 'be constructed as follows. If
nis of the formn = b; 4+ p(k — 1) take thep highest leaves |Frb ™ make them internal,
and add theik highest children to the tree.

If b; < n < aj;41butn = b; + ptk—1)+qwith0 < q < k—1, then we do not know
a priori what the optimal tree must be. By looking at the definitions we do know, though,
that it must be either the tree that results from starting Vi +pfk 1, and adding they
smallest unused leaves\y, , , to the tree or starting witf, ﬂ,fﬁ)(k 1, and erasing the
k — 1 — q deepest leaves in that tree.

3.2. Growth of the Infinite Tree We need to understand how the infinite tree evolves
as its depth grows. Seét, = {v a node :depthiv) < x} to be the tree containing all
nodes of depth at mostin the infinite tree. Then set

F(X) = number of nodes i\, L (x) = number of leaves ik\.

Tree A, has aroot and subtrees falling off of each of ithildren. The subtree falling
off of theith child has the same structure Ag_, so (Figure 12) the equations satisfy

T T, T oo T

Fig. 12. TreeT,; is the subtree rooted at thith child of the root ofT. If T has height, thenT; has height
X — ¢ and containg-(x — ¢;j) nodes.
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the Fibonacci-type recurrences

1+ FX—c)+F(XX—0cp)

_ +--+F(Xx—0c), it x=cy
(3) FOO = 1, if 0<X<cyg
0, if x<0
and
Lx—c)+LX—c)+---+LX—-0c), if  XxX>cp
4) Lx)=11, if 0<xX<cy;
0, if x<0O.

Both of these equations are defined for all neal

Now notice that if a noda € Ay hasdepthiu) > x — ¢z, then any child ofi will have
depth greater thax; u therefore can have no children and is a leafldptiiu) > x — ¢,
then at least the first child afis in A, andu is not a leaf. We have just shown thats
a leaf if and only ifdepthiu) > x — ¢; and thus

(5) LX) =FX) — F(X—cy).

We will now see that the behavior of the solutionfofx), and thud_ (x) as well, will
depend very strongly upon whether tteare rationally related or not. This qualitative
difference will strongly influence the analysis of optimum lopsided trees.

Suppose that thécy, ..., ¢) are given. A node can exist on levelof the infinite
tree if and only if there is a path of lengthin the tree; this in turn only happens if there
exist nonnegative integess, ..., a > 0suchthad ; ac; = x. The existence of such
integers corresponds to the existence of a path containing exadthgt edges from a
nodesa, second edges, etc. The number of nodes on leveéll be the number of paths
that can be built using; first edgesa, second edges, etc., which is

Z atat+---+a
a, a, ..., & ’

a1Cq+---+ar Cr =X

a,....a,>0
where the summation is over all tuplés, a,, . . ., &) satisfying the conditions. Thus
atat+---t+a
6 F(x) = .
() () Z < a11 a27"‘7af )
a)Cq++ar or <x
ag,....a >0

Suppose now that;,, ¢;) = (3, 5). ThenF(x) can only change at integer values of
X that can be written in the forma3 + 5ap, i.e.,x = 1,3,5, 6, 8,9, 10... and every
integerx > 10. The fact that fox > 8 the difference between successive depths upon
which nodes appear is a constaat) is not unique to this pair af ; for all ¢;, ¢, with
gcd(cy, ¢) = 1 there exists some integéf such that for every integar > N, there
existay, ay > O witha;c; +a,C, = n. In this casd- (x) changes exactly at integer values
and remains unchanged between them.
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On the other hand ifci, ¢;) = (3, ), then successive levels of the foat; + a>c,
tend to be closer and closer together with the difference between successive levels tending
to zero.

More generally if(ci, ..., ) are rationally related, then the infinite tree can only
have nodes on levels that are integer multiplesl e gcd(cy, ..., ¢); furthermore,
there is someX such that ifx > X is an integral multiple ofl, then the tree contains
nodes on levek. By contrast, if(c;, ..., ¢ ) areirrationally related we will now see that
the distance between successive levels upon which nodes appear will decrease to zero.
This is a consequence of the Kronecker—Weyl theorem on the uniform distribution of the
multiples of irrational numbers [25]. (Pippenger [27] gives a more sophisticated applica-
tion of the Kronecker—Weyl theorem to Diophantine combinations of irrationally related
pairs.) We actually do not need the full power of the Kronecker-Weyl theorem; we only
use the fact that # is an irrational number, then the sequefite {20}, {360}, {49}, ...
is densdn [0, 1].

Supposethat, ..., ¢)isirrationally related. Thisimplies that there are same;
suchthat; /c; isirrational. We will now show thateven the leveldac +a; ¢, : &, 8 >
0}, the set that can be reached using omlandc; edges, have the property that the
distance between successive levels upon which nodes appear will decrease to zero.
Without loss of generality we may scale by dividing tiyand assume that = 1 and
¢; = 6 is irrational (scaling maintains the property that the differences go to zero). Let
U = {a+ bf: a,b > 0} be the set of level depths. Fir and,vn > 0,V0 <t < m,
define

t t+1
Un.tz[n+—, n+—7L }mu.
' m m

We will show that for alln large enough and atl, U,; # . Since this will be true
for everym it will prove that the distance between successive levels upon which nodes
appear will decrease to zero.

Note that ifx = a4+ bo € U, thenx +1 = (a+ 1) + b6 € U. Thus, if for
somen’ and specifict, Uy # @, then,vn > n’, U,; # @. From the fact that
{6}, {20}, {30}, {46}, ... is dense in [01] we know that there is soml such that,
V0 <t < m, there is some element ¢}, {20}, {30}, {40}, ..., {NO} in each of the
subintervalsf/m, (t + 1)/m)]. This, then, immediately implies thatn > [N67 and
VO <t <m,U,; # @ and we are done.

We encapsulate the above comments in a lemma for later use:

LEMMA 2. Let(cy, ..., ) be an r-tuple of nonnegative reals

e If (cy, ..., &) is rationally related with d= gcd(cy, ..., ¢), then3J such that
Vj>J, |j+1_|j =d.

e If (Ci, ..., &) is irrationally related thenlim;_, . (lj+1 —1;) = 0.

We now state the exact asymptoticsFofx).* Note that they reflect the qualitative
difference described above. The proof of this theorem is given in Section 5.

4 The asymptotics oF (x) for r = 2 can be derived from [15] and [27] which, in different ways, both study
the functionh(x) = F(Inx).
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THEOREM2. Let(cy, ..., ¢) be an r-tuple of nonnegative reals and define

1+ FX—c)+ F(XX—cp)

_ +---+FXxX—-0¢), if x>cyg;
() FOO=11, if 0<x<cy
0, if x <O.
Leta be the smallest real positive root of the equatio®Q=1—z% — 2% — ... — Z%

andg = 1/a. Letc= Y _; Cip~%). Then
1. If (cg, ..., &) isrationally related
F(x) = D(X)¢* 4+ O(p"),

where Dx) = (d/c(1 — ¢~ 9))p~9>/d is a periodic function with period d and
O<p<o.
2. If (¢, ..., ¢) isirrationally related

1
F(X) = ——¢" + 0(¢").

clng
Ifthe (cy, ..., ) arerationally related, thela(x) only changes at integral multiples
of d; if the (cy, ..., ¢) are irrationally related, then, asincreases, the difference

between values at whidh(x) changes gets smaller and smalleifsex) behaves more
and more as a continuous function.

We can plug the results of the theorem into (5) to find the behavidr(&f. We
summarize the results in the next theorem.

THEOREM3. Let(cy, ..., ¢) be an r-tuple of nonnegative reals and define
Lx—c)+LxX—c)+---+LXxX—-0c), if X >cyg;

(8) L(x) =11, if 0<X<c;
0, if x<0O.

Leta be the smallest real positive root of the equatio®d=1— 2% — 2% — ... — z%

andg = 1/a.Letc=Y_,Cip~%). Then
1. If (cg, ..., &) is rationally related
L) = E()¢* + O(p"),

where Ex) = (d/c(1 — ¢~ 9))p9/d11 — =) is a periodic function with period
dandp < ¢.
2. If (¢y, ..., &) isirrationally related

l—p™@
L(x) = X 1+ 0(p¥).
(x) Cln(p<p+(<p)

Note: In the rational case we use the fact ttyais an integral multiple ofl to find
thatD(x — ¢1) = D(X).
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Theorems 2 and 3 look rather strange; they seem to imply that the rational and
irrational cases have totally different behaviors. This is actually not so. The different
behaviors of the rational and irrational case actually reflect the fact that they have the
same instantaneous rate of growth. Since this is tangential to the focus of this paper we
have removed this explanation to the Appendix.

3.2.1. The Minimum Height of a Tree In this subsection we derive the the minimum
height of a tree witn leaves and discuss basic applications in the theory of distributed
broadcasting protocols.

Denote the minimum height of a tree withleaves asH (n); it is given by the
recurrence
9) H(m) = min [maX(H (i) + q)} ,

ny+np+-+nr=n | N;£0

ny,No,...,n >0
whereH (1) = H(0) = 0. Instead of attempting to solve this equation directly we
examine the structure of the minimum-height trees by using the results of the previous
subsection.

First notice thatH (n) is certainly a nondecreasing function becausi {h) = m,
then there is a tre€ of heightm containingn leaves. Peeling away leaves from the tree
until there aren — 1 leaves yields a tree with height at mastsoH (n — 1) < m (note
that we might have to peel away many leaves because some might be the only child of
their parent and discarding them does not decrease the number of leaves).

The tree containing all nodes of depth at medtasL (x) leaves sdH (L (X)) < x.
Suppos« is a depth at which some nodes exist. It would be convenient if we could say
thatH (L (x)) = x. Unfortunately this is not always true. Consider, for example, the case
in whichr = 2,¢; = 1, andc, = 2. Letx = n for some large integer and examine
the treeA, containing all nodes of depth at mast There is only one node at depth
n; the node reached by traversindeft (c;) edges. The sibling of this node is at depth
X +m — 1> 7 and so is not in the tree. Removing the node at deptierefore leaves
a tree withL (x) leaves and depth slightly less thaiso H (L (X)) < X.

We use the following observation instead. Returning to the recurrence relation (4)
defining L(x) we see that the same recurrence relation also describarakienum
number of leaves that a tree of heightan have. This implies that if > L(x), then
H(n) > x. Using this fact we can derive the asymptotic behaviorgh):

THEOREM4. Let (cy, ..., &) be an R-tuple of nonnegative reals and le{rbl be
defined as abové.eta be the smallest real positive root of the equatiofzQ= 1 —
ZCl _ ZCZ e — Zcr7 ¢ = 1/0( and c= Zir:lci(p—Ci)_

1. If (¢, ..., ¢) isrationally related with d= gcd(cy, ..., ¢), then

1 d(1—¢™)
Hn)=d {a (Iog¢ n—log, (m))—‘ + 0().

5 These applications are gone into in more detail in a companion paper [17] which applies some of the
techniques developed in parts of this article to analyze generalizations of lopsided trees that model various
broadcasting protocols. This section is the jumping off point for [17].
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Furthermore there is some N> 0 such that if n> N, then the 1) term is of the
form+d, 0, or —d.

2. If (¢, ..., ) isirrationally related
1—p@
H(n) =log, n—lo o(1).
PrOOF We first deal with the case théty, ..., ¢) are rationally related. Recall that

nodes can only appear at levels of the tree that are integral multiptesSafbstituting
X = mdinto Theorem 3 yields

d(1_¢_Cl) md md
A ? +0(p™).

(10) L(md) =
This implies that there is some integdrsuch that, foralin > M, L(md—d) < L(md).
Therefore ifn is large enough there must be an integesuch thal.(md — 1) < n <

L (md) implying H (n) = md. Inverting (10) completes the proof of part 1.

In the irrational case, for fixed > 0, Theorem 3 implies that there is soXesuch
thatL (x —e) < L(x) forall x > X. This in turn implies that if is large enough we can
find x such thatL(x — ¢) < n < L(x) and therefore that — ¢ < H(n) < x. Inverting
LX) = (A — ¢ ) /(clng))e* + o(p*) yields part 2 of the theorem. O

3.2.2. Applications In[3] Bar-Noy and Kipnis introduce thgostal modebf message
passing for distributed systems. In this model, counting time from when a sender first
starts sending a message, the sender requires one unit of time before completing the work
of sending and being able to do something else but the recipient regquiréts of time

to receive and process it:is a parameter representing tlagencyof the system. Bar-

Noy and Kipnis demonstrated that, tirime units, the maximum number of recipients

that can receive a broadcast message in a one-to-many broadcast scheme in this model
satisfies

1 if 0<t<a,
(11) Fu) = {Fx(t —D+Ft—2 if t>4.

The minimum time that it takes to broadcasht@cipients in the model therefore satisfies
f,(n) = min{t: F, (t) > n}.

Notice, though, thaf; (t) is exactly the function that we have labeledt) with
parameters; = 1, ¢, = A. The recurrence relations are exactly the same; to check that
the initial conditions match it is enough to note that, fort < A, L(t) = L(t — 1) so
L(t) =1for0<t < A. Thereforef, (x) = H(x). Applying Theorem 4 yields

wherep = 1/a, wherex is the smallest positive root of 4 z — z*.
This improves the upper bound of

2xlogn

f,(n) <21 + 4|Og(|'ﬂ D
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given in [3]. The amount of improvement depends upon the particular valubuat, as
noted in [17], the ratio of the old bound over the new one goes to

2\ logn 1 2\ 5
= —
log([A]1 + 1) log,n  log,([A]+ 1)

asi — oo.

3.3. The Cost of Varn codes Combining Theorems 2 and 1 we can derive the exact
asymptotics ofC(T,), the cost of the optimal lopsided tree witHeaves, asn — oc.

As described previously this is equivalent to analyzing the costs of Varn codes exactly,
solving an open question posed in [19]. The proof of this theorem is given in Section 6.

THEOREM5. LetO <c; < < --- < ¢ and let T, be a tree with minimal external
path length for those parametetseta be the smallest real positive root of the equation
Q@) =1-24—2%—...— 7% andg = 1/a.Letc= )Y ;_, Cip 5. Letk and h= X,

be as defined in Lemnia

1. If (¢, ..., &) isrationally related withgcd(cy, ..., ¢) = 1 define

1 k
K = th] _ thi-c k-1,
cl—¢ (“’ ;‘”

= C(l('iﬁ, R=log,((1— A)p + A).
Then
C(Tn) =nlog,n+ B ({Iog¢ %}) n+ D ({Iogw %}) n+ o(n),
where

B©) = h+1—Iog¢,K —0 — <i +{hy(1— A)) (0170,
p—1

0, h<c and 6 >R,

{hi(eR"?-1, h<cg and 6<R,
DY) =
0, h>c.

If (C,...,C) =d(cy, ..., &) withgedcy, ..., ¢) =1,then QT,) =d - C(Ty)
where QT,) is the cost function defined I§gr, . . ., ;).

2. If (cy, ..., &) isirrationally related define K= (1/(cIng)) (¢" — Zik:l "G+
(k—=1)). Then

1
C(Tn) =nlog, n + <h —log, K — W) n 4+ o(n).
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See Figures 13 and 14 for examples of how this asymptotic result compares with the
real value ofC(T,). These figures also rather nicely illustrate a surprising aspect of the
analysis; in the rational case there are sometimes not one but two periodic functions (in
log, n), B(x) andD(x), that arise.

Sometimes, but not always. There are at least two cases in vilhigh = 0. The
first is whenh > c.. This always occurs, for example in the binary case-(2) when
k = 2soh = ¢; + ¢ > c,. The second case is whé¢h} = 0, e.g., wherh is an
integer. Examples of both of these cases are given in Figures 13 and 14. Figure 14 also
illustrates how a small change in one of thecan cause a switch fro@(x) = 0 to
D(x) # 0.

4. Derivation of the Structure of Optimal Trees. In this section we derive the proof
of Theorem 1.

4.1. Background We start by reviewing what happens in the binary case and describing
the difficulty that occurs when trying to extend this analysis tortaey tree case.

Recall that optimal trees must be proper. Thirgary (r = 2) optimal trees fon
leaves have — 1 leaves and the procedure described by Theorem 1 creates a sequence
of treesT"1, n = 2 3,4,.... This sequence has the property thdt, is created
from T"-1 by taking the smallest labeled leaf Ti{"~1, making it internal, and adding
its two children. Another way of expressing this is that optifjal, can be created by
incrementallybranching—taking the highest leaf ili"~1, making it internal, and adding
its two children. This is exactly the procedure described in [19]. See Figure 15 for an
example. Note that then2— 1 nodesin the optimal tree are not necessarily the2 1
highest nodes in the infinite tree. By contrast, as we shall soon see tHeinternal
nodesin the optimal tree are the — 1 highest nodes in the infinite tree.

In ther-ary case there are two ways to add a leaf to a tree. The first is again by a
branchingoperation which transforms the minimum external node into an internal node,
and adds its first two (smallest) children to the tree; the second is &gidingoperation
which adds a previously nonexistinth child (2 < i < r) of some internal node to the
tree. A natural extension of the above incremental algorithm is therefore to consider, at
each step, the cost of bdbnanchingand the minimum costddingoperations. Iadding
is cheaper, we perform thredding otherwise we perform thbranching (This is the
“extension algorithm”presented in [26].)

For example, ifr = 5, (¢, ¢y, C3,C4,C5) = (3,3, 3,8, 8), the “extension algo-
rithm” constructs the sequence of trees for 2—6 leaves shown in (a)—(e) of Figure 16,
respectively.

However, it is not difficult to see that the tree constructed by the above algorithm is
not always optimal. In the above example, the tree for six leaves with cost 34 in (e) is not
optimal. The optimal tre&g should be (f) of Figure 16 which has cost 32. As pointed out
in [26], the algorithm fails because it ignores the fact that it may be worth performing a
new branchingwhich is more expensive, if it enables a cheapaédinglater. As in the
above example, adding the fifth child of node 1 is cheaper than branching at node 2 but
the branching of node 2 enables the cheaper adding of another child (the third child of
node 2) later.
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Fig. 13.The predicted cost iB({Iogw(n/K)}) + D({Iogw(n/K)}) as defined in Theorem 5, while the actual

cost plots function1/n)(C(T,) — n Iogw

(€1, C2, C3)

n). (@r = 2and(cy,c2) = (1,2); k=2,h = 3; (b)r = 3and
0

(8,5,7); k=3,h =75. In both cases, sinde> ¢, D
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Fig. 14.The predicted cost iE({Iogw(n/K)}) + D({Iogw(n/K)}) as defined in Theorem 5, while the actual
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(2,3,4,7,11); k = 3,

5 and(cy, €2, C3, C4, C5) =

0,D=0.

h =45; (b)r =5 and(cy, ¢, 3, Cs, C5) = (2,3, 5,7, 11); k = 3,h = 5. In this case, sincgh}
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Fig. 15.Forr = 2, (cy, ¢2) = (1, 3), Th+1 is constructed fronT, by making the highest leaf in the tree an
internal node with two children.

More precisely, the incremental algorithm fails because inrtlaey case it is not
always true thaf,, € T,,1, €.9., in the above example Z Tg because the fifth child
of node 1 is inTs but not inTe. Perl et al. [26] use &nending algorithm”to change
the tree constructed by tlextension algorithm”into an optimal one in case it is not
already optimal. This algorithm requir€(nr?) time.

Another approach to constructing optimal trees uses the fact thattlie number
of internal nodes in the optimal tree, is known, then theseodes can be shown to be
the m shallowest (i.e., least-depth) nodes of the infinite tree, while the leaves are the
n shallowest available children of these nodes in the infinite tree. This type of tree is
called ashallow treein [18]. The treesT" introduced in Definition 6 are, by definition,
shallow trees. In the binary case there is a one—one correspondence between the number
of external nodea and the number of internal nodes namelym = n — 1. Therefore,
in the binary case, an optimal trégfor n leaves is exactly the tree containing the highest
(n—1) nodes in the infinite tree as internal nodes, each of which has both of its children
in Ty.

However, for the -ary trees, this kind of one—one correspondence between the number
of internal nodes and the number of external nodes does not exist; trees with the same
number of external nodes may have different numbers of internal nodes. We do know,
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Fig. 16.Forr = 5, (cy, 2, C3, C4, C5) = (3, 3, 3, 8, 8), the extension algorithm constructs the sequence of
trees for 2—6 leaves shown in (a)—(e), respectively. The tree in (@} igptimal for six leaves. The tree in (f)
is. Notice thafTs in (d) is not a subtree dfs in (f). Dotted lines are infinite tree edges not in the tree.

though, that

LEmMMA 3[18]. Fixnandsetmin=[T(n—1)/ —1)] <m<n-1.LetT"beas
defined in Definitior6. Then

1. If T is any tree with n leaves and m internal nogien G(T,") < C(T).
2. Let Mpax = min{m: Tnm+l is not propeg. Then for all M > Mpyay, T, is not proper
3. There exists @) Mmin < My < Mmax, Such that T is optimal

This lemma implies that one of th&" must be optimal. To find an optimal tree, it
therefore suffices to construct all tR&", Myin < M < Mpax and return the one with the
lowest cost. This, in fact, was the basis for thénlog?r) time algorithm presented in
[18]. See Figure 5 for an example.
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In [18] the following observation due to R. Fleischer was reported:

LEMMA 4. The sequence of tree COSt§ "), Mmin < M < Mnay, IS CONvexi.e., for
Mmin < M < Mmax,

(C(TM = C(TM) = (CTM — C(TM ).
In particular, this implies the existence ofyrauch that
C(TMminy > ... > C(TM~Y) > C(T™) < C(T™ ) < ... < C(T,Mmax),

This lemma, while quite beautiful, did not help at all with the analysis of the algorithm
of [18]. In our paper here it will be of tremendous use, though, because it proviotes a
test of the optimality of any particular prop&f. Simply compard " to its predecessor
(if the predecessor exists, i.e, > mpiy) and its successor (if the successor is proper,
i.e.,m < Mmay. We encapsulate this fact in a lemma:

LEMMA 5. T." is optimal for n leaves if and only if )T is proper and both of the
following are true

e M = Mpyjn OF M > Mpyip and C(TM1) > C(TM).
® M= MpaOF M < Mmaxand C(T,™1) > C(T™M).

4.2. Evolution of Shallow Trees We now try to understand how the cosfldf changes
asm increases.

Let n be fixed and lef" and T™ be any two successive proper trees. (Figure 17
shows two successive proper trees.) Recall it = Vi, U LEAR, (V). Rewrite
LEAFR,(Vm) = {ug, Uy, ..., U} whereu; < u; < --- < u, (where we are now us-
ing the label of a node as its name).

By definition uy, the smallest node ihEAFR,(Vy,) is the node labeledh + 1 so
Vi1 = Vm U {u1}. Now let child; (w) denote theth child of w. Then the set of
smallest children il.EAF(Vp, 1) is the set oh smallest children in

{us, ...,uppU{childi(uy) :i=1,...,r}

o)
LEAF,(Vmi1) = {Ug, ..., Uny1q} U {childi(uy): i =1,...,d},

where

d = maxi: childj(u;) < Upio_j,i =1,...,r}
= degree ofn+ 1 in TM™.

By assumptionT, ™ is proper, sal > 2. Then
T™L = Viya U {Ug, ..., Unpaa} U {childi (up): i =1, ..., d}.

The (long) remainder of this section is devoted to findilngror later use we define

DEFINITION 7. LetT." be any proper tree. Then d&j") %" the number of children
of internal nodemin T,".
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Fig. 17.Two successive tree‘§8 andeB. uy is node 6 andl = 3. The dotted edges are not in the tree.

Note that whemm, n are fixed, therd = deg T™?). Now introduce

DEFINITION 8.
t

st =y d+c)—!
i=1
= cost change in making an external node of dépttiernal witht children

Ld,t) St
= the cost oft nodes of depth.

In this notation,

d
(12) C(Th —C(TM = > depthchild; (uy))
i=1
d-1
— depthiuy) — ) depthun.1-i)
i=1
d-1

= S(deptttuy). d) — ) depthiun.1-i).
i=1

Note that sincey; is the highest leaf ifT" and is also the deepest internal node in
Tnm+1v

min depthe) = depthu;) = max depthv);
)

ecEX(T™) vel N (Tt
sinced > 2 andup_g4» € T,

max depthe) = depthu,) > deptiun_q12) > min  depthu).
ecEX(TM ueU N(T™1

Therefore, plugging back into (12),
(13)  ca@™hH-cam

< S( max depthv), d) —L ( min  depthu),d — 1)
)

vel N(Tm ueU N(T™1)
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and
(14) C(T™H - C(TM

> S( min depthe), d) —L <ee|rznx%m) depthe), d — l) ,

ecE X(T,M

whered = deg T™+1).
The following lemma, previously stated without proof, is crucial in allowing us to
take advantage of the previous two equations.

LEMMA 1. Let %, = ", c)/(m—1) form = 2,...,r. There exists k> 2 such
that

(15) X2 2 X3 =2 oo 2 X1 = X < X1 < -0+ < X
(If X2 < xgsetk=2.1fx; > X3 > --- > X _1 > X set k=r.) Letting k be this value

and setting peef Xk we havefurther, that if k < r, then ¢ < h < ¢ 3.

PROOF  Starting withXm_1 < Xm,

Y X6
m-—2 m-—1

m-1 m m—1
= M-D) a<mM-2) ¢=Mm-2) 6+ (m-20cy
i=1 i=1 i=1

m—1
— 2:(:i<(m—2)cm
i=1
Im
— D ¢ < (M-1cn < (M= Dcmya
i=1
m

m4-1

= m) c<M-DY ¢g+M-Dena=m-1>» g
i=1 i=1 i=1

YiliG _ MG
m-1 m

— (i.e., Xm < Xmy1)-

Therefore, there exists> 2 such that
X2 2 X3 = o0 2 Xk—1 = Xk < X1 < - < X,

proving (2).
Now leth &' Xk. To prove the second part of the lemma we first use the fact that
Xk = Xk-1 SO

YiaG _ Y
k—1 = k-2

k k-1
= k-2 a=k-1D> g
i=1 i=1
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7\_
=

== (k- 2)cks

g

G

= |
N

=  k-Da=<) G
i=1

ZI 1CI
=h.
— k—1

Similarly, sincexx < Xki1,

Z‘k:]_ G Zk+:lll. G k+1
kl—l < Ik = ch.<(k 1)20.

— _Zci < (K= DCs1

Thus,cx < h < ¢qg. O

For example, when = 5 and(cy, ¢y, C3, C4, C5) = (3,5, 5, 8.75, 10) (these are the
parameters used in many of our examples), then

(X2, X3, X4, Xs) = (8, 6.5, 7.25, 7.9375

sok = 3 andh = 6.5. Notice that 5= c3 < 6.5 < 8.75= 4.

This last lemma permits bounding the change in the cost of shallow trees as their
number of internal nodes grow. We first note that repla¢thg 1) leaves of depth+ h
by making a leaf of depthinto an internal node witld children will not decrease the
cost of the tree.

LEmMmA 6. S(I,d) > L({ + h,d — 1) for any real |, any integer d> 2.

PrROOF

d

Sl.d)—Ld+hd-1 =3 (+c)~1—@d-1d+h
i=1
d

> G —(d-Dh

i=1

(d—-1) |:Z' SR h] >0  (sinceh < xg),

where the last inequality follows from Lemma 1. O
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We also note that if an internal node of deptias exactlk children, then modifying
the tree by removing ak children of this node (so that the node itself becomes an
external node) and addir(§ — 1) new leaves with depth larger thas- h, will increase
the cost of the tree.

LEMMA 7. Foranyreals > 0,S(1,k) < L(I +h + 4§,k —1). In particular, if | =1,
ands =1j;1 —1; > 0,we have §;,k) < L(lj;1+h, k—1).

Proor Recall that

hzh.
k-1
Now, for anys > 0,
k k
G=k-Dh<(k-1h+6 — G+ k- <k—-2Dd+h+9),
i=1 i=1

ie., S,k <Ll +h+68,k—-1). O

We now prove Theorem 1.
PrOOF OFTHEOREM1. We prove the theorem case by case. For each case, we prove
the optimality of T." by showing both

(@) ifm < Mmax (i.e., T™ is proper), ther€(T™) < C(T,™?) and
(b) if M > Mg (i.e., M1 exists), therC(T,"1) > C(T™M).

The optimality of T\" will follow from Lemma 4.
First recall that ifT"1 is proper, then, by (13),

(16) C(T™h —Cc(T™™ > S( min_ depthe), dl>
ecEX(TM)
—L (eerEnXa(lTxnm) depthe), d; — 1) ,

whered; = deg T™1) > 2.
If TM-1 exists, then, by (14),

wel N(T™

a7) CT™hH —Cc(m™m > L ( min )deptr(w), dy, — 1)

- S( max_ depthv), d2) ,
vel N(T™

whered; = degT").

1. n=aj, T’ = Vi, U A. (See Figure 8.) Clearlyly" is proper and

min_ depthe) = lj1, max depthe) <I; +h,
ecEX(Ty") ecEX(Ty")

max depthv) = Ij,
veIN(Tai’)

and degT;."i) =k sinceck < h < ¢cy1 (Lemma 1).
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Hence, ifTarjnj is proper, then, by (16),

C(Ta"™) = C(Tg") = Slj41.0p) — L(Ij +h.dy — 1)
> S(j,dp) —L(; +h,dy— 1)
>0 (by Lemma 6)
proving (a).
If T4 exists, then
min  depthw) =1; +h +3, forsome § >0,
welU N(Taj’)

and, by (17),

CT ™ H—C™ = Ldj +h+68,k—1)— S}, k)

>0 (by Lemma 7)

proving (b).
Therefore,T,, = TaTj is optimal forn leaves.
2.8 <n<bj,Ty" = Vy ULEAF,(Vy,). (See Figure 9.) Clearlyn" is proper and

min depthe) = lj1, max depthe) <lj11+h,
ecEX(T, ) ecEX(Ty )

max depthiv) = Ij.
vel N(T, )

Hence, ifT" " is proper, then, by (16),

mj +1

C(Ta" ™) = C(M") = Sljs1,c) — Lljya+h,di — 1)
>0 (by Lemma 6)
proving (a).
If T exists, then
min_ depthw) =1j +h +34, forsome §>0

m
weUN(T, )

andd = degT,") > k sinceh > ¢ (Lemma 1). By (17),

CamM™ —cm™ > Ldj+h+6,d—1) — S, d)
= Llj+h+8k-1D+ -k +h+9)
= S(lj. k) = (j + C2) — -+ = (lj + Ca).
Sincel; + ¢ < minweUN(ij)deptr(w) =lj+h+4,fori <d,

-1

CT ™ —CM™) > Ldj+h+68,k—1) — S(;, k)

>0 (by Lemma 7)

proving (b).
ThereforeT, = To" is optimal forn leaves.
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3. by < n < aj;1. We writen = bj + p(k — 1) + g, wherep = [(n — bj)/(k — 1)]
andg = (n — by) mod(k — 1). Before starting, let; be the set of nodes on level
From the definitions o&; andb; it is not hard to see that ,; = b; + (kK — D)|Lj 4]
Thus, forn in the range that we are examining < |L;| with p = L; if and only
if n = a;;1 (inwhich casey = 0). Note that iln = &1, then the tree constructed by
this part of the theorem is exact ';”jf (see the comments following the statement
of Theorem 1 for a more detailed explanation) which, by the first part of the theorem,
is already known to be optimal. For this reason we restrict the remainder of the proof
ton < aj4+1 which in turn implies thap < |Lj44].
There are two cases:
(A) p>0andg=0 T = VpipULEAF(Vinp)- (See Figure 10.)
Clearly, To" " is proper. Sincep < |L;.1| at least one node ib; 1 remains in
E X(Ta" P implying that

min  depthe) = lj41.
ecEXT P

As in the previous parts of the proof,

max depthe) <lj;1+ h, max depthv) = Ij;1,
ecEX(T" ) vel N(T 1P

and degTy" ") = k sincecy < h < Cxs1.
Hence, ifT" P! is proper, then, by (16),
CA ™™ —cM"™) = Slj;1.d) — Ljpa+hdi = D)

0 (by Lemma 6)

=
=

proving (a).
If TPt exists, then

min  depthw) =lj1 +h+34, forsome §>0
weUN(T, 1)

and, by (17),

CO"™™™H—Cm"™ = Ll +h+56.k—1) - Slj41.K)

>0 (by Lemma 7)

proving (b).
ThereforeT, = Ta" P is optimal forn leaves.
(B) p=0andk—1>qg> 0. Notethatifm; + p > Mynn=[("—1)/ — DT,
thenT," P exists. (See Figure 11.)
Case(i): Both 7" P existsand €T TP > C(Te *P).  Inthis case we prove
T, = T\" " is optimal. To do so we must show thatT" ** ™) > c(T" P
if TP exists.
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Suppose thaty" P! exists. Then

min  depthw) =lj;1 +h+34, for some § > 0.
weUN(T P

If p=0,then
max depthv) =I;

4P,

vel N(T,
andd = degT,") > k sinceh > ¢, (Lemma 1). By (17),

v

CAOMPh —cM™) > Ldja+h+6.d—1) —S(;,d)
= L{jj1+h+86,k=1D+Wd-K(j11+h+3)

—S(j, k) = (j + &q1) — - = (lj +cq).

Sincelj + ¢ < minweUN(Tnmj+p) depthw) =lj11 +h+46, fori <d,

CT P —c(mth

v

Ldjza+h+6,k=1) — S(j, k)
Ldj +h+6,k—1) —S(j, k)
0 (by Lemma 7)

\

\

proving (b).
Otherwisep > 0,

max depthv) =lj 41
and degT," *P) = k. By (17),

CaAM P —cm™®) > Ldj;a+h+68,k—1) — S(j11.k
>0 (by Lemma 7)

proving (b).
ThereforeT,, = Ta" P is optimal forn leaves.
Caseii): Either T *P does notexistor CTi" Pt < C(T*P).  Inthis case
we prove thaff” "™ is optimal. To do so we must show thatT," "% >
C(T" Py if TP s proper.
min  depthe) > Ij;1, max  depthe) <lj;1+ h.
ecEX(TN TP ecEX(TI TP
Hence, ifTq" *P*? is proper, then, by (16),

C(Tnmj+p+2) _ C(Tnmj+p+l)

> S(lj;1,d1) — Ldj41+h,dy = 1)
>0 (by Lemma 6)
proving (a).
ThereforeT, = Ta" "P* is optimal forn leaves. O
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5. Analysis of F(x). In this section we prove Theorem 2. Recall its statemket:
(C1, ..., &) be an r-tuple of nonnegative reals and define

1+ FX—c)+F(X—10¢p)

B +. +FXx—-0), if X >cg;
(18) FOO=11 if 0<x<cp
0, if x<0O.
Leta be the smallest real positive root of the equatiotgQ=1— z — 2% — ... — z%

andg = 1/a. Letc= (}_;_; c¢~%). Then

1. If (¢, ..., ¢&) isrationally related
F(X) = D(X)¢* + 0(p"),

where Dx) = (d/c(1 — ¢~ 9))p 9%/ is a periodic function with period d and
0<p<o.
2. If (¢, ..., &) isirrationally related

1
F(xX) = ——¢* 4+ 0(¢").
x) C|n¢<p+(<p)

PrROOE  Our proof proceeds in stages. We first restrict the analysis to the case in which
the(cy, ..., ¢) areintegers suchthatgad, ..., ¢.) = 1 and prove the correctness of

the theorem using generating functions. We then show how to scale this result to prove
the theorem for all rationally related cases. We conclude by analyzing the irrationally

related case via Mellin transform-like techniques. To start we need the following simple

lemma®

LEMMA 8. Let Q(z) = 1— 2% — z®2 — ... — Z% where either thgcy, ..., ¢) are
positive integers such thafcd(c, ..., ¢) = 1 or the(cy, ..., ¢ ) are irrationally
related Leta be the smallest positive root of(@. Then

1. @ is a simple root witl) < o < 1.
2. If Q(2 = 0and z+# «, then|z| > «a.

ProOF Notice first thate € (0,1) because 1= Q0) > 0 > Q1) = 1—rr.
FurthermoreQ’(«) # 0, sox must be a simple root.

To prove part 2 suppose that= g€ is another root with 6< 8 < o, 0 < 6 < 2r.
If B <a,then

R(Q©2) = 1— ARED) — BoRE@) — ... — BER(ES?)

>1-a%—a®?— ... —a% =0,

wheref(z) is the real part oz. Equality holds in the equation if and onlyff= « and
N(€%¥) = 1forall1< j <r.Inother words there must exist positive integgrsuch

6 The authors thank Xavier Gourdon for suggesting this approach.
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thatcj6 = 2rkj, 1 < j <r.Thisinturnimpliesc; = (27/0)k; contradicting either the

factthatgcdc,, ..., ¢.) = lintherational case orthattlie, ..., ¢) areirrationally
related. Therefor€®(z) = 0 and|z| < « imply z = «. O

We can now prove the theorem for the case that(the. .., ¢) are integers with
gedcy, ..., &) = 1through the use of straightforward generating-function techniques.
Referring back to (3) we see that

G(2) = ZF(n)z“
n=0

c—1 o9}
=Y 2"+ > [L+Fh-c)+Fn-c)+- -+ F(n-c))"
n=0

n=Cy
c—1 [e9) [e9) o)
= Zz”+ZZ“+ZF(n—cl)z”+~-~+ZF(n—cr)z“
n=0 n=cC; n=0 n=0
1 o0 o0
= —1_Z+z°12_:F(n)z”+m+zqZF(n)z”
n=0 n=0
1 C1 Cr
= — G
1_Z+(z +---+27)G(2)
o)
1 1
l-21—z—...—2%) (1A-2Q(12

Now, F(n) is the coefficient oz" in G(z) so, by Lemma 8 and standard generating-
function techniques [14]- (n) = k" 4+ O(p"), wherex is the smallest root 0Q(z),

QY = 1/0[1
. 1 B 1 1 . 1
C al-o)dQ/da)@  (LI-¢HYice e cl—eY
and O< p < ¢ (actuallyp can be taken to be any valugol — ¢ whereo’ is the modulus

of the second smallest modulus root@fz) ande > 0 is any arbitrary value). Since
F (x) only changes at integral valuesxfthis requires

c

Fo) =F(lx)) = — o Mo+ 0(p%)

1-¢1
proving the theorem in the rational case when(ged. .., ¢) = 1.
To prove the theorem for the rational case in whitk= gcd(cy, ..., &) # 1 let

¢/, ..., )= (/d)cy, ..., ¢). Thengedey/, ..., ¢’) = 1. Define

1+ F(x—c)+ F(x—c)

S +---+FXx-¢), if x>c;

(19) F o) = 1, if 0<x<cy;

0, it x<O0;
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setQ(z) = 1—2% — 2% — ... — Z%, let o’ be its smallest positive root and
¢ =1/

From (6) it is easy to see that, for all> 0, F (x) = F’(x/d). FurthermoreQ(x) =
Q'(x9) so¢’ = ¢. Finally

¢=) a')" = gzqw’q = g-
I I

Combining all of these facts yields

4 X 1/ I— / /
Foo = F'(5) = g mge ™ + 0t
d —d{x/d} x
= — O(p"),
A h? "+ 0(p")

wherep’ < ¢’ andp = (p")¥9 < (¢')9 = ¢. This proves the theorem for all rational
cases. To prove it for the irrational case we calculate the Mellin transfoffdlofx) and

find the asymptotics of (In x) by taking the inverse Mellin transform. To perform this
last step we use the following lemma due to Fredman and Knuth [15] which is in turn a
modification of an earlier result due to Landau. In this lemfiig) ~ g(x) denotes that

f(xX) = g(x) + o(g(x)):

LEMMA 9 [15, Lemma 4.3] . Let f(t) be a nondecreasing function of the real variable
t, with f(t) > 0. Assume that G) = ffo f (t)dt/t+1 is an analytic function of the
complex variable s whefi(s) > y > 0, except for a first-order pole at s= y with
positive residue CThen f(t) ~ Ct”.

Note: If, as will occur in the function$ (t) that we examinef (t) = Ofort < 1, then
G(—s) is the Mellin transform off (t) and the lemma is revealed to be a special case of
the inversion theorem for Mellin transforms.

Define the functionf (t) by f(t) = 0fort < 1andf (t) = F(Int) fort > 1. Setting
d; = € we find that, fort > 1,

1+F(nt—c)+F(dnt—cy)+ --- + Fdnt —¢)
t t t
i (g) () (g)

We now show thatG(s) = fl°° f (t) dt/t5+! satisfies the conditions of the lemma;
we can therefore apply it to find the asymptoticsf@f) and ultimatelyF (x).

f(t)

7 We are indebted to one of the anonymous referees for pointing out an improvement to our proof. With
the exception of the pole & = y, the functionG(s) can be analytically continued into the halfplane

{s: M(s) > y — 3} for somes > 0. It is therefore possible to derive the proof of the theorem in the irrational
case directly by using the Mellin transform inversion formula as described in [13] instead of employing
Lemma 5. This alternative proof would then improve our result to showRigat = (1/(cln¢))p* + O(p*)

for some 0< p < ¢ instead of jusF (x) = (1/(cIn ))e* + 0(¢*).
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Seta andg as in the theorem statement and define- Ing. Let (C1,C,, ..., T)
be any tuple such that < ¢ forall1 < i < r, and letF(x) be the “number of
nodes” function associated witlo;, , . . ., G). The characterization d¥ (x) given by
(6) shows thaF (x) < F(x).

Now suppose thaty, T, . . ., ) are rationally related and letbe the reciprocal of
the smallest positive root of &+ 2t — 7% — ... — 7%, ThenF(x) < F(x) = 6(¢¥).
As (C1, G2, ..., ) approaches closer and closer(ty, ..., ¢) continuity implies that
@ — ¢, implying thatF(x) = O((¢ + ¢)*) for everye > 0. Thus, for every fixed
g >0,

f(t) = F(nt) = O((¢g + &)™) = Ot" ™)

(where the constant in th® () might depend upor’). This in turn proves thaG(s)
converges uniformly and is analytic in the halfpldepi(s) > y +¢’}. We can therefore
solve forG(s) in that halfplane as follows:

o dt
G(s) :/1 FO o

o dt 00 t dt © t dt

:/1 t—s+1+/l g tm+“'+/l o) ea
1

= 3 + 0% +d%+ - +d7°]G(9)

from which we derive

1
SL—dS+dy5+ - +d75)

(20) G(s) =

This equation is valid in the halfplar{g|%i(s) > y}. Now notice that
1-d°+d,°+ - +d°=1-e" -+ ...+ =Q(e™).
Thereforey = Ingp = —In« is a pole ofG(s) and from Lemma 8 all poles d&(s)

must be on or to the left of the ling|%(s) = y}. Furthermore, lp is the only pole on
that line. This is because fer= ¢ + iy, y # 0, we have

RL—e @ — ... —e %) = 1—a%9REe ™)~ ... —a%REe Y
>1-a%"—...—a% =0
with equality if and only ifSi(e"%Y") = 1 for all j, i.e., there exist positive integers

k; such thatc;y = 2xk; or ¢; = 27k;/y contradicting the fact thaicy, ..., ¢) are
irrationally related.

We can therefore analytically contin@®s) over and to the left of the lings|9i(s) =
y} and the analytic continuation has a first-order pols &ty but no other singularity
on that line. The residue @(s) ats = y is

1 B 1
y Y indid”  IngY e
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Applying Lemma 9 we find

— Xy — 1 VX VXY — L X X
FO) = f(e) = VZiwquie +o(e”) = ngc’ +0(¢™)
proving the theorem.

Note: We mention here that it is actually possible to use Mellin transform techniques
to analyze the rational case as well. The reason we do not do so is that in the rational case
the line{s|MN(s) = y} will contain an infinite number of poles, all of whose residues must
be added together (yielding a Fourier series representation of the periodic function); the
generating function technique yields a simpler representation of the answer. O

6. The Cost of Optimal Trees. In this section we combine our knowledge of the
combinatorial structure of optimal tredg (Theorem 1) with our analysis df (x)
(Theorem 2) to derive the proof of Theorem 5 describing how the costs of Varn codes
grow asn increases.

We divide the proof into three parts, each of which has its own subsection. In the first
part we derive some general lemmas, truedtrchoices of(cy, ..., ¢ ), describing
the growth of costs of optimal trees. In the second part we specialize this lemma to
the irrational(cy, ..., ¢ ). We conclude in the third part by specializing the lemmas to
rational(cy, ..., ¢). The analyses of the rational and irrational parts, taken together,
prove the theorem.

As we will soon see, the analysis of the rational case is much more technically
complicated than that of the irrational one, The intuitive reason for the difference in
difficulties is that our approach is to calcula@&T,) by first finding j such thaty <
N < aj1, calculatingC(T,) andC(Ty) —C(Ty ), and then combining them to gét T).

In the irrational case, asincreases, the optimal trees grow smoothly (this is the content

of Lemma 12), i.e., the difference between successive depths in the tree tend to zero and
the number of nodes per amydividual level will be relatively small (since the nodes

are distributed among many levels). This relative paucity of nodes on the bottom level
implies thatC(Ty) — C(Ty) = o(C(Ty)), and we will therefore be able to approximate
C(Tn) by C(Ty), which is much easier to calculate. In the rational case the levels in
the tree are equally spaced and, more importantly, the number of nodes on successive
levels grow geometrically. This implies that the number of nodes on the bottom level
will always be a constant fraction of the total nodes in the tree. This fact requires that
our analysis of the contribution of nodes on the bottom level must be delicate since
C(Tn) — C(Ty) could be a substantial fraction Gf(Ty). It is this which leads to much

of the complications.

6.1. General Cost Lemmas Recall thatT;, is the optimal tree which has as internal
nodes the séfn, consisting of all nodes in the infinite tree at delptbr above. In Section
3.1 we also defined

Aj = {v € LEAR(Vy,): depthv) < Ij +h},

Bj = Aj U {v € LEAF(Vp): |j + h < depthv) <111+ h},
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a; = |Aj|, andb; = |Bj|. A is the set of leaves iify . The highest nodes iA; are
them; 1, — m; nodes at depth,; in the tree. Since node labeling is consistent with the
depth ordering, the nodes on depth are labeled

m; + 1, mj+2, mj—|—3, e, mj+lj+1.

Finally let
Up < Uz < Uz <--- < Upy_g
be the labels of the nodes B)\ A;.
With these definitions we can now prove:
LEMMA 10. Givenn let j be such thatja< n < aj;1. There are three possible cases

e Ifa; <n<b,then

(21) C(Th) = C(Ty) + nff depthu;).

In particular, -

(22) C(Th,) =C(Ty) + b_f depthu;).
o Ifn=0Db; + p(k—1),then -

(23) C(Tn) = C(Ty) + p(k — D(lj+1+ h).

o Ifn="Db; + pk—1) +qwith0 < g <k, then

(24) C(Th) = C(Tp) + (pk = 1) + ) (lj 42+ h) + O(D).

PrOOF The first part follows directly from Theorem 1, part 2.
To prove the second part note thati&= b; + p(k — 1), then from Theorem 1, part 3,
Tn is created by starting witfy, , taking p of its leaves from depth,; and making each
of them internal withk leaves. The change in cost resulting from making one such leaf
internal is

[
—l1+ Y (a4 6) = (k=D +h),
i=1
where we are using the definitidn= (Zik=l ¢i)/(k — 1). The proof of the second part
follows.
To prove the third part we recall from the discussion following the statement of

Theorem 1 thally, , pk-1)+q iS Created either by starting wi Tﬂ)?k—l) and adding the
q smallest unused leaves iy, . , to the tree or starting Wity p17,._;, and erasing

thek — 1 — g deepest leaves in that tree. In both cases the nodes added or subtracted
must have depth at ledst; and at moslj;; + ¢ (since all of their parents have depth
mostl;1). Thus, in both cases the third part follows from (23). O
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We now observe thdt (x) is a step function which jumps= (i) — F(lj_1)) atl;. For
8 > 0, we may thus expreds(l; + 8) — F(l;) by the Riemann-Stieltjes integral,

lj+8
F(|j+5)—|:(|j)=/ dF(x).

I
This notation makes our analysis somewhat easier.

We start by deriving an expression fGos{(T, ) that we afterwards combine with
Lemma 10 to yield an expression for general

LEMMA 11.

lj+h k li+h—c
25 ;o= dF — dF(x),
(25) 8 /I -3 /| x)

lisa+h K lis1+h—c
(26) bj =/ dF(x)—Z/ dF(x),
I i=1"l;
lj+h Kk li+h—c
27) C(Ty) = (j +ha —f F(x)dx+2f F(x) dx.
li i=1Yli

PROOF By definition,
A = {v € LEAR(Vy,): depthv) < Ij + h}

;
= U{childi (U): u € Vi, andlj < depthchild; (u)) <1j + h}

i=1
r

= {v: Ij < depthv) <1j + h}\ | J{child; (u): I} < depthiu) <1; +h — ¢}

i=1

k
= {v: |j < depthv) <Ij + h}\ | J{child (): I} < depthiu) <1j +h —c}.

i=1

Therefore,

k
a = |{v: |; <depthv) <I; + h}| —Z|{chi|di(u): lj < depthu) <I; +h —c}|

i=1

k
{v: I} < depthv) <lj +h}| = > " |{u: Ij < depthtu) <I; +h—c}|
i=1

|j+h k |j+h—Ci
/ dF(x)—Z/ dF(x).
i=1 Yl

lj

Similarly,

lisa+h k lisa+h—g
by =/| dF(x)—Z/I dF(x)
i=1"]j

i
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and

C(Ty) = Y _ depthiv)

UEAJ'

=~

= > depthw)- Y Y. depthchild; ()

lj <depthv)<lj+h i=1  |j<depthu)<l;+h—c
k
= Z depthv) — Z Z depthu)

lj <depthv)<l;+h i=1 lj+¢ <depthu)<lj+h

|j+h k |j+h—ci
/ xdF(x)—Z/ (X + ¢) dF(x).
i=1 vl

| .
]

Integrating the last equation by parts gives

k
C(Ty) = (j+MFd; +h) —Fd) = d; +hFdj+h—c)
i=1
lj+h—c;

k lj+h k
+ +ci)F(I,-)—/ F(x)dx+2/ F(x) dx.
i=1 I i=1"l;

J

Therefore,

k
(28) C(Ty) = (| +h)[F(lj +h) = F(; +h—ci):|

i=1
+k-=Dd; +Fd)

|j+h k |j+h_ci
+[ F(x)dx—i—Z/ F(x)dx
lj i=1 Yl
|j+h k |j+h7Ci
= (j + hya —f F(x)dx—i—Z/ F(x) dx. O
lj i=1 7l

6.2. The Irrational Case We now prove Theorem 5 under the assumption that (. ,
¢ ) is irrationally related. Recall from Theorem 2 that in this case

1 X X
(29) F(X) = W‘P +0(¢™)

and from Lemma 2
(30) |j+1—|j =0(1).
Now setK = (1/(cln¢))(p" — Z!;l "% + (k —1)). Then

LEMMA 12. If (Cy, ..., C) is irrationally related and j is such thatja< n < aj4,
then

(31) a = ¢"K +o(ph),
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(32) a1—a = o(gh),
(33) lj = log, n—log, K + 0(),
(34) n = 0(@)=0(@41),

(35) C(Ty) = (j +hya — = —ogh).
Ing
PrROOF From (29)

|j+h k |J+h—Ci
a =/ dF(x)—Z/I dEx)
i=1"]j

| .
]

i lj h_q_ ‘ h—c _ lj
cing? <<p 1 ;«o 1) + o(¢")

= ¢"K +o(gh).

Combining this with the fact thdf,1 —I; = o(1) yields
a1 —a = K@ — 1) + 0" (1+ @)
= o(gh).
Sincea; < n < aj11 we have that
(36) @K +0(ph) < n < @ik 4+ 0.
Taking log, and again using the fact thigt 1 — I = o(1) yields
lj = log, n —log, K + o(1).

From (31) and (32) we know th&(aj) = ©(a;4+1). Sincea; < n < aj1 this implies
that

n=0@&)=0@&+1)-
Finally notice that

li+h k lj+h—cg
F(x)dx — F(x)dx
/Ij X ;fl (X)
= Ly <ph—1—Zk:(<ph*° —1) +o(")

Ing —~

_ 8 lj

= ne +0(¢")

S0

I,+h kK plj+h—g
C(Ty) = (I +h)ay _f| F(x)dx+2/| F(x) dx
i i=1 "

a; )
= (Ij +hyg — W — o(gh). O
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The last lemma we need before proving the result is

LEMMA 13. Let(cy, ..., G) be irrationally related and let j be such thaf & n <
& 1. Then

C(Tw) = (; + )N — I 4 om).
Ing

PrROOF The proof proceeds by splitting into the three cases treated by Theorem 1.

e & < n < b. Inthiscase the optimal treg, is formed by starting withT, and
adding then — a; new leavesiy, Uy, Us, ..., Un_q . By definition,l; +h < depth(u;)
<lj4+1 + hso, from Lemma 10,

C(Th = C(TaJ) +(n— aj)(lj +h)+O(n - a,-)(IHl — |J)
a ,
(j +hyaj — m —o(¢") + (n—a){; +h) + 0 —a)(lj+1—1j)
a.
= (I + hyn — m + o(n).

In particular,
a.
C(Ty) = (Ij + b — —= + o(n).
Ing
e n=D; + p(k—1) <a;1. Inthiscase, using the second part of Lemma 10,

C(T) = C(Ty) + pk = D(lj41+h)
g

= (lj + b — ne + oM + pk = Ddj1+h)
— _ 4
= (Ij+h)n ng + o(n).

e n=>bj+pk—-1+9g <a;1,q9#0. Fromthe third part of Lemma 10,
C(T) = C(Ty) + (p(k — 1) + @) (lj+2 + h) +0(D)
a.
(Ij + by — m +o(n + (pk — 1) + D(lj11+h)

a.
U +h)n—|—'+0(n). O
ne

We have just seen that
a_
C(To) = (I + hyn — = + o(n).
Ing

To transform this into the form given in the statement of Theorem 5 we note from
Lemma12thaf = log, n—log, K. From the same lemmawe also have thai —a =
o(¢") so if & <n<aj, thenn—a = o(¢") = o(n). Combining these facts proves
that, for alln,

1
C(Tn) =nlog, n + (h —log, K — m) n 4+ o(n)

and we have completed the proof for the irrational case.
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6.3. The Rational Case We now analyze the rational case. We assume that;the
are all positive integers with géct, . . ., ¢;) = 1. At the end of this section we quickly
discuss what happens when this is not the case.

We note that, by Lemma 2, the assumption of@ed.. ., ¢;) = 1 implies that3J
such thatyj > J, lj11 —Ij = 1. We start the analysis by using this fact to specialize
Lemma 10 for the rational case:

LEMMA 14. Fora <n < aj4,
C(Th) =C(Ty) + (n—ay)(j + 1+ [h]) + X(n— by {h} + O(D),

where

0, if 0>0;
X0) = {O, otherwise

PrROOR We assume that is large enough so thit,, = I; + 1. Otherwise, theD (1)
term in the expression will absorb the cost of the tree. There are three cases:

1. g <n<b. From(21)of Lemma 10,
n—a
C(Th) = C(Ty) + Y _ depthiuy),
i=1
where theu; are in the set

Bi\A = {v € LEAF(V): |} + h < depth(v) < Ij;1 + h}.

Using the fact thalj 1 = I; + 1 we have thatyi, depthi(u;) =1 + 1+ [h]. Thus

(37) C(Tn) = C(Ty) + (n—a)(j + 1+ [h]).
In particular,
(38) C(Ty) = C(Ty) + (b — @) (lj + 1+ [h)).

2. b <n<agpwithn=b +pk—-1)+9,0<q < (k—1). From (23)and (24)
of Lemma 10,

C(Th) = C(Tp) + (pk = 1) + ) (lj11 + h) + O(D).

Combining this with (38),

C(Th) = C(Ty) + (pk— D +aq)(lj+1+h) + OD)
C(Ty) + (bj —a)j + 1+ [h]) + (pk — 1) + Plj+1 + h) + O)
C(Ty) +(n—a)(j + 14 |h])) + (n—by)h] + O()

C(Ty) + (n—a)(lj + 1+ Lh]) + X (n —by){h} + O(D).
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Recall from Theorem 1 thdt, , is obtained fronTy, by making all leaves

of depthl; , 1 into internal nodes withk children. Sincéh = (1/(k — 1)) YX_, &, we

have

k—1

. h k
C(Ty,,) = C(Ty) + 4= (Z G+ (k- 1)I,-+1>
i=1

(39)
(40)

= C(Ty) + (b —a)(j + 1+ |h]) + (@41 — b)(j11 +h)
C(Ty) + @41 —a)(j + 1+ [h]) + (@11 — b {h}
= C(Ty) + (@11 — &) (j + 1+ Lh]) + X (41 — by {h}. O

To employ the previous lemma successfully we need better expressi@nstgrand

C(Ty).

LEMMA 15. Let j > 0be an integerThen

8

b, =

C (Ta,- )

Ke'i + 0(p"),
K@i ™R+ 0(o"),

1
(;+1+ [hDay — mK¢|j+l+ {h}C (plj + O(ph),

_ k=1
1-—9™

wherep < ¢ and K, R, and A are as defined in Theoreésn

1 k
K = Lh] _ Lh]—ci + k-1 ,
Ao D (so izzl @ ( )

k-1

= d—oHK  RT0g - AetA.

Proor Recall from Theorem 2 that

(41)

Rl =2 ¢ +0(p")

1
1-9™

for somep < ¢. Plugging this into (25) in Lemma 11 we find that

lj+h k lj+h—g
a /| dF(x) —Z/l dF(x)
i=1Y]j

J

k
Fdj+h) —Fdp) =Y (Flj+h—c) - F())
i=1

k
Flj+h) +k-DF()—> Fdj+h—c)
i=1

= K¢l +0(ph).
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Again from Theorem 2

liz1+h k ljt1+h—ci
/ dF(x)—Z/ dF(x)
i=17l]
k

by

1
J

Flj+14+h —Fd) =Y (Flj+1+h—c) - F())
i=1

k
Flj+1+h)+Kk-DF() - Flj+1+h-qc)
i=1

1 . _
m(wﬁrl -+ O(Plj)

] k-1 c(k — 1) j
Ke <<1 c(l—w1>K)"’+c<1—go1>K>+O(p)
= Kg!"™R 4+ 0(p)).

— K§0|j+l _

Finally, returning yet again to Theorem 2, recall that

lj+h k l;+h—c
(42) C(Ty) = (j + g —/ F(x)dx+2/ F(x)dx.
' i=1 Y]

i

To proceed we need the fact thagx) only changes at integral valugs= |;. Thus,
vx, F(X) = F([x]) and, for anys > 1, we have

lj+18]-1

lj+8
/ Foodx= Y F(t)+{8}F(; +9).
I

t=l;

Continuing yields that

li+h k_ pli+h—c
—/ F(x)dx+Z/ F(x)dx

lj i—

lj+Lh)—1 k li+lhj—c-1 k
=— Y Fo+)y Y F(t)—{h}|:F(Ij+h)—ZF(Ij+h—ci)]
'[:|j i=1 t:|j i=1
lj+LhJ k lj+Llh]—c
= A—(hha — Y FO+> > FM®+{hik-DF().
t=lj+1 i=1 t=lj+1

Substituting this back into (42) gives

lj+Lh]
(43) C(Ty) = (j+1+Lhha — Y F()

t=lj+1
k_lj+Lhl-c

+Y > FM+{hik—DF().

i=1 t=lj+1
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Now, using the expansion fd¥(x) in (41),

lj+Lh] k lj+Lh]—c;
C(Ty) = (j+1+Lhpa— Y FO+> Y F®+{hik-DF()
t=ljj+1 i=1 t=ljj+1
lj+Lh]
= (j+1+hDay — ———— I
CEER Y
1 k li+Lhl—c . K—1
+ + (M} ————¢" + 0(p")
cl—¢ 1 ; t;j;l v O
li4+h]+1 li+1
(pl —(pJ
= (I +1+ |hDha —
Gtrs ==y
1 k (p|j+LhJ_Ci+l_¢|j+l
+
0(1—9071) i=1 (0—1
-1
h}———— ¢l + O(p"
+1{ }C(l—(p_l)(p + O(p")
=+ 1+ gy — — K L ool
: ' -1 cL—¢Y ’
proving the lemma. O

The last piece we need is a crude bound on the difference in costs between trees.
Essentially it says that adding a node atliftie level will contribute a cost 0D(l;).

LEMMA 16. Let j be such thatja< n, < &1 and supposen< ny. Then

C(Tn,) — C(Tny) = Odlj (N2 — Na)).

ProoFr We first assume tha; = n,n; = n+ 1. Thisimpliesthagy <n<n+1<
& +1 SO, by Lemma 14, we have

C(Thy) —C(M) =(j +1+ h) + X(n+1—-Db) — X(n—b)) + O().
SinceX(n+1-Dbj) —X(n—-by) <1,
C(Tnt1) — C(Ta) = O(l).
Therefore, forg; < Ny < aj41 andny < ny,
na—1

C(To,) = C(Ta) = Y (C(Toy1) — C(Tw))

n=np

(n2 —nyO())
O(lj(nz — ny)). O
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Combining the previous facts permits us to prove the correctness of the theorem for ra-
tionallyrelatedc;,, ..., ¢/)suchthatthe;’s are all positive integers with gcdl, .o, C)
= 1. To do this recall that, from Lemma 15, we know that= K¢l + O(pl). Set

(44) a = K.
Then|a; — &/| = O(p). Now suppos& <n <& ,. Then

_ i _ i — N —flog,(n/K))
(45) lj =log, < = Llogw EJ, o = o og, (n/K)}

Again, from Lemma 15, recall thé = K¢'i*R 4+ O(p)). Set

(46) b = Kgi*R.
Then
(47) bl = npR-0. /1) by b = O(p).

We are assuming thaf < n < aj/H. To prove the theorem we need to treat the three
cases

4 =N<=<aj, n<gq, d+1 <N

separately.
Casel:g <n<a4;. FromLemma 14 we have that

C(Th) = C(Ta) + (N —&)(lj + 1+ [h]) + X(n —by){h} + O(D)
C(Ty) + (n—a)(j + 1+ Lh]) + X(n — b)) {h} + o(¢"),

where we are using the fact that
n—by=n—b + (0 —b)=n—b +O(").

Case2:n < &. Inthis caseaj’ < n < g, implying thatn —aj’ < aj/— >a = O(p").
Thus, using Lemma 16,

C(Ty) = C(Ta) + (C(Th) — C(Ta))
C(Ty) + O(lj(n — &)
C(Ty) + Odjp")

C(Ta) + (N —a)(Ij + 1+ [h]) + X(n = b)) (h} + o(¢h).

Case3:aj11 < n. Inthiscas@j; <n <&, implyingthan—aj,1 <& ;—aj11 =

O(p"). We attack this in two steps. The first one is quite similar to the previous case:
C(Tn) = C(Tajﬂ) + C(Tn) - C(Tajﬂ)

C(Ta,,) + Odj41(n —aj11))

C(Ta.,) + O ).
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Now note that, from Lemma 14,

C(Ty,,) =C(Ty) + (@41 —a)(j + 1+ [h]) + X (@11 — by){h} + O(D).

Since
qi1—a =n—a + (@1 —N =n—a +0(g")
and
841 —bj =n—bj + @1 — N + (b — b)) =n — b +o(y")
we have

C(To) = C(Ta) + (N —a)(lj + 1+ Lh]) + X(n — b)) {h} + o).

Combining cases 1-3 above we find that we have prdeerall n, satisfyinga; <

n<a,,that

C(Ty) = C(Ta) + (N —a)(lj + 1+ [h]) + X(n — b)) {h} + o).

To complete the theorem we substitute the valuesiory, ), &, andb; found in
Lemma 15 and use (16) to find

k—1 !
cl-¢D?
+ (n—a)(Ij + 1+ [h]) + X(n — b)) {h} + o(¢")

1
C(Mw) = (j +1+ [hDag — ngﬂlﬁ_l—l— th)

1
(j + 1+ [h)n — ——— 1 {og,(/Kip
o—1
+ {h}AK g + {h}X (n — b)) + o(¢").
To simplify this equation note that'(9) = X (—0) + 6 and thatX'(nd) = nX'(0).

Thus
: bf
{h} (n— b +nx (1— F))

{h} (n = bj 4+ nx (1 — Rl /N

(h)X(n —b)

Also

AK(pIi _ K¢|j+R

Kl (A—¢R)

= K@'[A— ((1— A + A)]
= K¢t 1 — A

AKg'l —bf

Finally,

|log, (n/K) |
n
log, n —log, K — [Iogw R} .
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Combining everything we find that

= n 1 1—{log, (n/K)}
C(Tn) = nlog,n+ [h +1—log, K {Iog(p < } Y
+ (N} K @1 — A] + {h}X (L — pR10%M/ Kl
n 1 1 fog,m/K)
= nlog,n+ [h+1_|09w K- [IogwR} - G {log, (/K))
+{hya- A)(plf{logy(n/K)} +{h}x@1 - (pR—{Iogw(n/K)})n'
Thus

C(Tn) =nlog,n+ B ({Iog¢ %}) n+ D ({Iogw %}) n + o(n),

whereB(#) and D(#) are periodic functions with period 1 as defined in the theorem
statement.

Recall that we have been assuming that(ged . ., ¢;) = 1. We now quickly discuss
what happens if this is not the case. Suppose@at..,T) = d(cy, ..., ¢) where
gcdcy, ..., &) =1, andd # 1. Then for every tre@ with n leaves for(cy, ..., ¢)
there is a corresponding tr@efor (C7, . . ., ¢;) with dC(T) = C(T) and vice versa. The
correspondence is the natural one that mdp®dges tath edges. In particular, if,
andT, are respective optimal trees, théiiT,) = d C(T,). This is the statement of the
theorem so we are done.
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Appendix. Rational versus Irrational Formulas. Theorems 2 and 3 look rather
strange and seem to raise more questions than they answer. For example, to what does
the difference between rational and nonrational cases combinatorially correspond? Also,
why is the expression fdr(x) in the rational case so different from that in the irrational
one? In the paragraphs that follow we attempt to answer these questions and provide the
reader with some intuition as to what is occurring.
First we deal with the combinatorial meaning. Recall that we have previously defined
lo, 11,12, ... to be the sequence of values at whi€fx) changes. Combinatorially, if the
(C1, ..., C) are rationally related with gce: d, then for all j large enough, we find
thatlj1 — Ij = d. For example, if = 3 with (c1, ¢z, C3) = (L 3. 3) = £(6,8,9) so
d = ¢ andlo, Iy, 12, ...is
14 3 12 14 15 16 17 18 20 21 22 23 24 25
3> 2° 6’ 6 6”6”6’ 6° 6’ 6”66”66 """
The periodic ternE (x) in the equation fok (x) is actually a corrective term that permits
us to write an equation valid for all that still reflects the fact that(x) only changes at
values of the fornx = md.
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If, though, the(cy, ..., ¢) are not rationally related, then the spacing between suc-
cessivel; are not regular. For example, iif = 2 and(cy, ¢2) = (1, V2), then the
sequence is

1,72, 2 142, 272, 3,242, 14242, 4,342, 3++2,24+2V2, ...

with lim(l; 41 —I;) = 0. Thus for anys > 0 no matter how small, there exis¥ssuch
that,v¥x > X, Ly(Xx — &) < Ly (X); asx increasesl (x) behaves more and more like
a smoothly growing function of and less and less like a jump function so there is no
periodic corrective term.

We can now discuss why the expressionsligr) (and similarly forF (x)) are so
different. In order to simplify our statements we throw away the error terms and work
with

E(X)p* if (c1, ..., ¢) isrationally related
[(x)=31—¢™© .
L&) 4¢¢)X otherwise.
clng

We examine thénstantaneous rate of growtsf L(x), i.e., how the growth rate df (x)
changes withx. If the two types of expressions are really the “same” we expect this
value to be the same, irrespective of whettar ..., ¢ ) is rationally related or not.
Note first thatif(cy, ..., ¢ ) is not rationally related, then, sint&x) is a differentiable
function, the instantaneous rate of growth is simply

_ (p*C

/ 1 ! 1- §0701
L'(x) = Ci(ln P = ————¢~.

Ing c

Suppose, though, that,, ..., ¢) is rationally related. As discussed abolgx)
will only change at valueg = md for integrald, i.e., for(m — 1)d < x < md we
find L(x) = L((m — 1)d) andL (x) has a jump of sizé (¢p*) at valuesx = md. Thus
the derivative oiL (x) will not exist at these values ofand is zero everywhere else. To
capture the instantaneous rate of growth at md we must calculate thaveragerate
of growth over the interval(m — 1)d, md] which will be
—e

(m—l)d) — 1- 4 X

1d(1—¢™@)
2dd=e - o,

(Lmd) — L(M = D)) = G 27— =5 ( m— g

Q|

We therefore see that the two different expressiond_fon, one for the rational case

and the other for the nonrational one, are the same in the very strong sense that they
grow at the same rate. It is actually the requirement that they grow similarly that makes
their equations appear different.
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