Online Maintenance of k-Medians and k-Covers
on a Line*

Rudolf FLEISCHER, Mordecai J. GOLIN, and ZHANG Yan

Dept. of Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay Road, Kowloon, Hong Kong.
rudolf,golin,cszy@cs.ust.hk

Abstract. The standard dynamic programming solution to finding k-
medians on a line with n nodes requires O(kn?) time. Dynamic pro-
gramming speed-up techniques, e.g., use of the quadrangle inequality or
properties of totally monotone matrices, can reduce this to O(kn) time
but these techniques are inherently static. The major result of this paper
is to show that we can maintain the dynamic programming speedup in
an online setting where points are added from left to right on a line.
Computing the new k-medians after adding a new point takes only O(k)
amortized time and O(klogn) worst case time (simultaneously). Using
similar techniques, we can also solve the online k-coverage with uniform
coverage on a line problem with the same time bounds.

1 Introduction

In the k-median problem we are given a graph G = (V, E') with nonnegative edge
costs. We want to choose k nodes (the medians) from V' so as to minimize the
sum of the distances between each node and its closest median. As motivation,
the nodes can be thought of as customers, the medians as service centers, and
the distance between a customer and a service center as the cost of servicing the
customer from that center. In this view, the k-median problem is about choosing
a set of k service centers that minimizes the total cost of servicing all customers.

The k-median problem is often extended so that each customer (node) has a
weight, corresponding to the amount of service requested. The distance between
a customer and its closest service center (median) then becomes the cost of
providing one unit of service, i.e., the cost of servicing a customer will then
be the weight of the customer node times its distance from the closest service
center. Another extension of the problem is to assign a start-up cost to each node
representing the cost of building a service center at that node. The total cost
we wish to minimize is then the sum of the start-up costs of the chosen medians
plus the cost of servicing each of the customer requests. This is known as the
facility location problem.

* This work partially supported by Hong Kong RGC grants HKUST6010/01E,
HKUST6162/00E, HKUST6082/01E and HKUST6206/02. The authors would like
to thank Gerhard Trippen for his help in proofreading and latexing the figures.

The k-Median on a Line Problem (kML)

Let £ > 0. Let 1 < 2 < --- < x, be points on the real line. With each
point x; there are associated a weight w; > 0 and a start-up cost ¢; > 0. A
k-placement is a subset S C Vi, = {z1,...,xm} of size |S| at most k. We
define the distance of point z; to S by d;(S) = minyes |z; — y|. The cost of
Sis (i) the cost of creating the service centers in S plus (ii) the cost of
servicing all of the requests from S:

cost(S) = Z ci + ijdj(S) .
z, €S j=1

The k-median on a line problem (kML) is to find a k-placement S minimizing
cost(S). In online kML, the points are given to us in the order x1, 2, ..., and
we have to compute optimal solutions for the known points at any time.

Fig. 1. The k-median on a line problem.

Lin and Vitter [7] proved that, in general, even finding an approximate solu-
tion to the k-median problem is NP-hard. They were able to show, though, that
it is possible in polynomial time to achieve a cost within O(1 + €) of optimal if
one is allowed to use (14 1/¢)(Inn + 1)k medians. The problem remains hard if
restricted to metric spaces. Guha and Khuller [5] proved that this problem is still
MAX-SNP hard. Charikar, Guha, Tardos and Shmoys [4] showed that constant-
factor approximations can be computed for any metric space. In the specific case
of points in Euclidean space, Arora, Raghavan, and Rao [2] developed a PTAS.

There are some special graph topologies for which fast polynomial time al-
gorithms exist, though. In particular, this is true for trees [8,10] and lines [6]. In
this paper we will concentrate on the line case, in which all of the nodes lie on
the real line and the distance between any two nodes is the Euclidean distance.
See Fig. 1 for the exact definition of the k-median on a line problem (kML).

There is a straightforward O(kn?) dynamic programming (DP) algorithm
for solving kML. It fills in ©(kn) entries in a dynamic programming table! where
calculating each entry requires minimizing over O(n) values, so the entire algo-
rithm needs O(kn?) time. Hassin and Tamir [6] showed that this DP formulation
possesses a quadrangle or concavity property. Thus, the time to calculate the
table entries can be reduced by an order of magnitude to O(kn) using known
DP speed-up techniques, such as those found in [9].

In this paper we study online kML. Since static kML can be solved in O(kn)
time our hope would be to be able to add new points in O(k) time. The difficulty
here is that Hassin and Tamir’s approach cannot be made online because most
DP speed-up techniques such as in [9] are inherently static. The best that can

1 'We do not give the details here because the DP formulation is very similar to the
one shown in Lemma 1.

The k-Coverage on a Line Problem (kCL)

In addition to the requirements of kML, each node z; is also given a coverage
radius r;. It is covered by a k-placement S if d;(S) < r;. In that case, the
service cost for z; is zero. Otherwise, the service cost is w;. The cost of S is

then .
cost(S) = Z ci + ZWjIj(S) ,
;€S j=1
where I;(S) = 0 if d;(S) < r; and I;(S) = 1 if d;(S) > r;. The k-coverage
on a line problem (kCL) is to find a k-placement S minimizing cost(S). Online
kCL is defined similarly to online kML.

Fig. 2. The k-coverage on a line problem.

be done using their approach is to totally recompute the dynamic programming
matrix entries from scratch at each step using O(kn) time per step?.

Later, Auletta, Parente and Persiano [3] studied kML in the special case of
unit lengths, i.e., x;11 = x; + 1 for all ¢, and no start up costs, i.e., ¢; = 0 for
all 7. Being unaware of Hassin and Tamir’s results they developed a new online
technique for solving the problem which enabled them to add a new point in
amortized O(k) time, leading to an O(kn) time algorithm for the static problem.

The major contribution of this paper is to bootstrap off of Auletta, Parente
and Persiano’s result to solve online kML when (i) the points can have arbitrary
distances between them and (ii) start up costs are allowed. In Section 2 we prove
the following theorem.

Theorem 1. We can solve the online k-median on a line problem in O(k) amor-
tized and O(klogn) worst case time per update. These time bounds hold simul-
taneously. O

A variant of kML is the k-coverage problem (kCL) where the cost of servicing
customer x; is zero if it is closer than r; to a service center, or w; otherwise. See
Fig. 2 for the exact definition of kCL.

Hassin and Tamir [6] showed how to solve static kCL in O(n?) time (indepen-
dent of k), again using the quadrangle inequality /concavity property. In Section
3 we restrict ourselves to the special case of uniform coverage, i.e., there is some
r > 0 such that r; = r for all j. In this situation we can use a similar (albeit
much simpler) approach as in Section 2 to maintain optimal partial solutions
S as points are added to the right of the line. In Section 3 we will develop the
following theorem.

2 Although not stated in [6] it is also possible to reformulate their DP formulation in
terms of finding row-minima in k n X n totally monotone matrices and then use the
SMAWK algorithm [1] — which finds the row-minima of an n X n totally monotone
matrix in O(n) time — to find another O(kn) solution. This was done explicitly in
[11]. Unfortunately, the SMAWK algorithm is also inherently static, so this approach
also can not be extended to solve the online problem.

Theorem 2. We can solve the online k-coverage on a line problem with uniform
coverage in O(k) amortized and O(klogn) worst case time per update. These
time bounds hold simultaneously. O

2 The k-Median Problem

2.1 Notations and Preliminary Facts

In the online k-median problem, we start with an empty line and, at each step,
append a new node to the right of all of the previous nodes. So, at step m we
will have m points z1 < z2 < -+ < z,,, and when adding the (m + 1)st point
we have z,, < Zm41. Each node z; will have a weight w;, and a start-up cost
¢; associated with it. At step m, the task is to pick a set S of at most k nodes

from @1, 2, ..., 2, that minimizes cost(S) =3, g+ D52, wid;(S).
Our algorithm actually keeps track of 2k median placements for every step.
The first k& placements will be optimal placements for ezvactly i = 1,...,k re-

sources, i.e., let

OPTi(m)= _ min > i+t Emjwjdj(S)

SCVm, |S|=t
CVim, |S|=t z,€8 j=1

The remaining k placements are pseudo-optimal placements with the additional

constraint that x,, must be one of the chosen resources. That is, fori =1,...,k
m
POPT;(m) = min ¢ + widi(S
i(m) SCVin, |S|=1,2m€S Igs ¢ ; 3 (S)

In particular, if i = 1, then S = {z,} and POPT;(m) = cm—|—Z;n:_11 wj(zm—1x;).
Optimal and pseudo-optimal placements are related by the following straight-
forward equations.

Lemma 1.

OPT;(m) = gjngnm POPT;(j) + lZH wy - d(g,1) and (1)
=j

m—1
POPT;(m) = i OPT;_1(j) +lz+1 wi-d(l,m) | +cm, (2)
=j

where d(j,1) = x; — x; is the distance between x; and x;. O

Denote by MIN;(m) the index j at which the “min” operation in Eq. (1)
achieves its minimum value and by PMIN;(m) the index j at which the “min”
operation in Eq. (2) achieves its minimum value. When computing the OPT;(m)

and POPT;(m) values the algorithm will also compute and keep the MIN;(m)
and PMIN,(m) indices.

The optimum cost we want to find is OPT = mini<;<x(OPT;(n)). It is not
difficult to see that, knowing all values of OPT;(m), MIN;(m), POPT;(m) and
PMIN;(m) for 1 <i <k, 1 <m <mn, we can unroll the equations in Lemma 1
in O(k) time to find the optimal set S of at most k& medians that yields OPT.
So, maintaining these 4nk variables suffices to solve the problem.

A straightforward calculation of the minimizations in Lemma 1 permits cal-
culating the value of POPT;(m) from those of OPT;_;(j) in O(m) time and the
value of OPT;(m) from those of POPT;(j) in O(m) time. This permits a dynamic
programming algorithm that calculates all of the OPT;(m) and POPT;(m) val-
ues in O (kY. _, m) = O(kn?) time, solving the problem.

As discussed in the previous section, this is very slow. The rest of this section
is devoted to improving this by an order of magnitude; developing an algorithm
that, at step m for each i, will calculate the value of POPT;(m) from those
of OPT;_1(m) and the value of OPT;(m) from those of POPT;(m) in O(1)
amortized time and O(logn) worst case time.

2.2 The Functions V;(j,m,x) and V/(j, m,x)

As mentioned, our algorithm is actually an extension of the algorithm in [3]. In
that paper, the authors defined two sets of functions which played important
roles. We start by rewriting those functions using a slightly different notation
which makes it easier to generalize their use. For all 1 <i<kand 1 <j<m
define

Vi(j,m,x) = POPT;(j) + > w;-d(j,1) +z - d(j,m) . (3)
I=j+1
Foralll1<i<kand1l<j<m—1 define

m—1 m—1
Vi(j,m,z) = OPT;_1(j) + Z wy - d(l,m) + x - Z wy . (4)
l=j+1 I=j+1

Then Lemma 1 can be written as OPT;(m) = mini<;<m Vi(j,m,0) and POPT;(m) =
minlgjgm_l ‘/i/(j7 m, O) +Cm-

The major first point of departure between this section and [3] is the following
lemma, which basically says that V;(j, m,z) and V/(j,m,z) can be computed in
constant time when needed.

Lemma 2. Suppose we are given W(m) = > ;" w; and M(m) =3 " w -
d(1,1). Then, given the values of POPT;(j), the function Vi(j,m,x) can be eval-
uated at any x in constant time. Similarly, given the values of OPT;_1(j), the
function V! (j,m,x) can be evaluated at any x in constant time.

Proof. We first examine V;(j,m,x). We already know POPT;(j) so we only
need to compute the terms Z;’;jﬂ wy - d(j,1) + x - d(j,m). We can compute

E?;jﬂ wy - d(j,1) = [M(m) — M(5)] — [W(m) —W(j)] -d(1, j) in constant time.
For V//(j,m, z), we also only need to compute E?Z}H wy-d(l,m) +x2}1§i1 wy.
But we can compute Z?Z}H wi-d(l,m) = [W(m—1)—-W(j)]-d(1,m)—[M(m—
1) — M(5)] and Z;i;l_l w; = W(m —1) — W(j) in constant time. 0

In the next two subsections we will see how to use this lemma to efficiently
calculate POPT;(j) and OPT;(j).

2.3 Computing OPT;(m)

We start by explaining how to maintain the values of OPT;(m). Our algorithm
uses k similar data structures to keep track of the k sets of OPT;(m) values, for
1 < i < k. Since these k structures are essentially the same we will fix ¢ and
consider how the it data structure permits the computation of the values of
OPT;(m) as m increases.

The Data Structures Recall Eq. (3). Consider the m functions V;(j, m,x) for
1 < j < m. They are all linear functions in x so the lower envelope of these
functions is a piecewise linear function to which each V;(j, m,z) contributes at
most one segment.

We are only interested in OPT;(m) = mini<;<m V;i(j,m,0) which is equiv-
alent to evaluating this lower envelope at = 0. In order to update the data
structure efficiently, though, we will see that we will need to store the entire lower
envelope for z > 0. We store the envelope by storing the changes in the enve-
lope. More specifically, our data structures for computing the values of OPT;(m)
consist of two arrays

Al(m) = (50,51,...,55) and Zz(m) = (21,...,25), (5)
such that
if 0p—1 < x+ W(m) < 6y, then V;(z,, m,z) = minj<,, Vi (4, m, x) . (6)

The reasons for the shift term W(m) = Y, w; will become clear later. Since
we only keep the lower envelope for > 0, we have dp < W(m) < ;.

An important observation is that the slope of V' (j,m,z) is d(j,m) which
decreases as j increases, so we have z; < -+ < zs and z; = m at step m.
In particular, note that V(m,m,z), which is the rightmost part of the lower
envelope, has slope 0 = d(m,m) and is a horizontal line.

Given such a data structure, computing the value of OPT;(m) becomes triv-
ial. We simply have M IN;(m) = z; and OPT;(m) = V;(z1,m,0).

Updating the Data Structures Assume that the data structure given by
Eq. (5) and (6) is storing the lower envelope after step m and, in step m+1, point

We now need to recompute the lower envelope of V;(j,m+1,z), for 1 < j <m+1
and z > 0. Note that in step m we have m functions

Vi(g,m,x) : 1< j <mj}
but we now have m + 1 functions
{Vi(gym+1,z) : 1<j<m+1}.

If we only consider the lower envelope of the first m functions V;(j,m + 1, x)
for 1 < j <'m, then the following lemma guarantees that the two arrays A;(m)
and Z;(m) do not change.

Lemma 3. Assume V;(zp,m,x) minimizes V;(j,m,z) for 1 < j < m when
O0p—1 < x4+ W(m) < 6p. Then Vi(zn,m + 1,z) minimizes V;(j,m + 1,z) for
1<j<mwhen dp_1 <x+W(m+1)<dy.

Proof. 1t is easy to verify that for 1 < j <m
m(]am"i_ 1,.73) = ‘/i(.jvm7x+wm+1) =+ (m +wm+1) ! d(m7m+ 1) :

Since 05,1 < z+W(m+1) < §p, iff p—1 < (x 4+ wWmt1) + W(m) < 6y, the above
formula is minimized when j = zj,. O

This lemma is the reason for defining Eq. (5)and (6) as we did with the shift
term instead of simply keeping the breakpoints of the lower envelope in A;(m).

Note that the lemma does not say that the lower envelope of the functions
remains the same (this could not be true since all of the functions have been
changed). What the lemma does say is that the structure of the breakpoints of
the lower envelope is the same after the given shift.

Now, we consider V;(m+1,m+1,z). As discussed in the previous subsection,
Viim 4+ 1,m + 1,z) is the rightmost segment of the lower envelope and is a
horizontal line. So, we only need to find the intersection point between the lower
envelope of V;(j,m+1, z) for 1 < j < m and the horizontal line y = V;(m+1, m+
1,z). Assume they intersect at the segment V;(zmaz, m + 1,). Then, Z;(m + 1)
becomes (21, .., Zmaz, m + 1), and A;(m + 1) changes correspondingly.

We can find this point of intersection either by using a binary search or a
sequential search. The binary search would require O(log m) worst case compar-
isons between y = V;(m 4+ 1,m + 1,z) and the lower envelope. The sequential
search would scan the array Z;(m) from right to left, i.e. from z; to 21, dis-
carding segments from the lower envelope until we find the intersection point of
y = Vi(m+1,m+1,z) with points on the lower envelope. The sequential search
might take ©(m) time in the worst case but only uses O(1) in the amortized
case since lines thrown off the lower envelope will never be considered again in
a later step.

In both methods a comparison operation requires being able to compare the
constant V;(m+1,m+1,x) to V;(j, m+1, x) for some j and some arbitrary value
m. Recall from Lemma 2 that we can evaluate V;(j,m + 1,x) at any particular

x in constant time. Thus, the total time required to update the lower envelope
is O(logm) worst case and O(1) amortized.

To combine the two bounds we perform the sequential and binary search
alternately, i.e. , we use sequential search in odd numbered comparisons and
binary search in even numbered comparisons. The combined search finishes when
the intersection value is first found. Thus, the running time is proportional to
the one that finishes first and we achieve both the O(1) amortized time and the
O(logm) worst case time.

Since we only keep the lower envelope for > 0, we also need to remove
from Z;(m+1) and A;(m+ 1) the segments corresponding to negative x values.
Set zmin = max{zp : dh1 < W(m + 1) < dp}. Then Z;(m + 1) should be
(Zmin, - - - » Zmaz, m + 1), and A;(m + 1) should change correspondingly.

To find z,in, we also use the technique of combining sequential search and
binary search. In the sequential search, we scan from left to right, i.e., from z; to
zs. The combined search also requires O(1) amortized time and O(logm) worst
case time.

2.4 Computing POPT;(m)

In the previous section we showed how to update the values of OPT;(m) by
maintaining a data structure that stores the lower envelope of V;(j, m,z) and
evaluating the lower envelope at « = 0, i.e., OPT;(m) = mini<;j<m Vi(j,m,0). In
this section we will show how, in a very similar fashion, we can update the values
of POPT;(m) by maintaining a data structure that stores the lower envelope of
V! (j,m,x). Note that

POPT;(m) = ¢y + min V!(3,m,0),

<j<m—

i.e., evaluating the lower envelope at * = 0 and adding c¢,,.

As before we will be able to maintain the lower envelope of V/(j,m,z), 1 <
j < m—1,in O(1) amortized time and O(logm) worst case time. The data
structure is almost the same as the one for maintaining V;(j, m,) in the previous
section so we only quickly sketch the ideas.

As before the algorithm uses k similar data structures to keep track of the
k lower envelopes; for our analysis we fix 7 and consider the data structures
for maintaining the lower envelope of V/(j,m,z) (and thus POPT;(m)) as m
increases.

The Data Structures By their definitions the m — 1 functions V/ (4, m, z), for
1 < j < m—1, are all linear functions, so their lower envelope is a piecewise
linear function to which each V;(j, m, x) contributes at most one segment.

As before, in order to compute the values of POPT;(m), we only need to
know the value of the lower envelope at x = 0 but, in order to update the
structure efficiently, we will need to store the entire lower envelope.

Our data structures for computing the values of POPT;(m) consist of two
arrays
Aj(m) = (80,01, --.,0;) and Zi(m) = (21,...,2), (7)

such that
if 8, _, <a+d(1,m) < 4y, then V/(z,,m,z) = minj<pm_1 V/(j,m,z) . (8)

Since we only keep the lower envelope for x > 0, we have 6, < d(1,m) < 4}.
Since the slopes (Zﬁ;}rl wl) of V/(j,m,z) decrease when j increases, we have
2] < --- < zLand 2z, = m—1 at step m. In particular, note that V'(m —1,m, x),
the rightmost part of the lower envelope, has slope 0 and is a horizontal line.

Given such data structures, computing the value of POPT;(m) becomes triv-
ial. We simply have PMIN;(m) = 2} and POPT;(m) = ¢y, + V/ (21, m,0).

Updating the Data Structures Given the lower envelope of V/(j, m,z), for
1 <j<m-—1 at step m we need to be able to recompute the lower envelope of
VI(j,m+1,z), for 1 < j < m after ,,41 is added.

As before, we will first deal with the functions V/ (j, m+1,z) for 1 < j < m-—1,
and then later add the function V/(m,m + 1,).

If we only consider the functions V/(j,m + 1,z) for 1 < j < m — 1, we have
an analogue of Lemma 3 for this case that guarantees that the two arrays Al(m)
and Z!(m) do not change.

Lemma 4. Assume V/(z}, m,x) minimizes V] (j,m,z) for 1 < j <m—1 when
0,4 <z +dl,m) < 6;,. Then V! (z,,m+ 1,z) minimizes V/(j,m + 1,z) for
1<j<m-—1whend), ; <z+dl,m+1)<0,.

Since the proof is almost exactly the same as that of Lemma 3 we do not, in this
extended abstract, provide further details.

We note that, using ezactly the same techniques as in the comments following
Lemma 3, we can update the lower envelope of V/(j,m,z) for 1 < j < m —
1 to the lower envelope of V/(j,m + 1,z) for 1 < j < m using a combined
binary/sequential search that takes both O(1) amortized and O(logm) worst
case time per step (simultaneously).

2.5 The Algorithm

Given the data structures developed in the previous section the algorithm is very
straightforward. After nodes 1 < z2 < -+ < x,;, have been processed in step m
the algorithm maintains

— W(m)=>3" w and M(m) =>"", w; - d(1,1).

— For 1 < ¢ < k , the data structures described in Sections 2.3 and 2.4 for
storing the lower envelopes min;<,, Vi(j, m,z) and min;<,,—1 V/(j, m, x).
—For1 <i<kandl<j<m,all of the values OPT;(j), POPT;(j) and

corresponding indices MIN,(j), PMIN;(j).

After adding x,,+1 with associated values w,,+1 and ¢,,41 the algorithm updates
its data structures by

— Calculating W (m+1) = W(m)+wm41 and M (m+1) = M(m)+w,+1d(1, m+
1) in O(1) time.

— Updating the 2k lower envelopes as described in Sections 2.3 and 2.4 in
O(log m) worst case and O(1) amortized time (simultaneously) per envelope.

— For 1 < i < k, calculating OPT;(m + 1) = minj<m,41 Vi(j,m + 1,0) and
POPT;(m+1) = ¢y + minj<,, V/(4,m + 1,0) in O(1) time each.

Thus, in each step, the algorithm uses, as claimed, only a total of O(klogn)
worst case and O(k) amortized time (simultaneously).

The algorithm above only fills in the dynamic programming table. But,
given the values OPT;(j), POPT;(j) and the corresponding indices MIN;(j),
PMIN;(j) one can construct the optimal set of medians in O(k) time so this
fully solves the problem and finishes the proof of Theorem 1.

2.6 An Example

In this example, let n = 9 be the total number of nodes, and k£ = 3 the maximum
number of resources. The nodes have x-coordinates 0, 5, 7, 10, 12, 13, 55, 72, 90,
start-up costs ¢; 5400, 2100, 3100, 100, 0, 9900, 8100, 7700, 13000, and weights
w; 14, 62, 47, 51, 35, 8, 26, 53, 14. Table 1 shows the values of OPT, MIN,
POPT and PMIN, respectively. From these tables, we can see that for m =9
the optimal placement is to have two resources at x4 and x5.

Figure 3 shows the functions V2 (4,8, z) and V5(j, 9,). The two arrays for the
lower envelope when m = 8 are Z»(8) = (5,8) and As(8) = (296, 361.5, +00).
The two arrays for the lower envelope when m = 9 are Z3(9) = (5,8,9) and
As(9) = (310,361.5,669.4, +00). As we can see, the intersection point of line 5
and line 8 in the left part of Figure 3 shifts to the left by wg when we add xg
in the next step (right half of the figure), i.e., from 65.6 to 51.5. Actually, all
intersection points will shift the same amount when a new node is added. That is
why the partitioning value 361.5 does not change in the arrays As(8) and A2 (9)
(361.5 = 65.5 4+ W (8) = 51.5 4+ W (9)).

3 The k-Coverage Problem

In this section we sketch how to solve online £CL with uniform coverage, i.e., to
maintain a k-placement S minimizing

cost(S) = Z ¢i + ijlj(s))
j=1

x,ES

as m grows, where r is some fixed constant and I;(S) = 0 if d;(S) < r; and
I;(S) = 1if d;(S) > r;. This problem has a simpler DP solution than the
k-median problem, albeit one with a similar flavor.

m
1 2 3 4 5 6 7 8 9
5400/1[2170,/2| 2264/2 | 691/4 | 761/4 | 785/4 |1955/4 | 5241/4 | 6337/5
5400/-(2170/-| 3322/- | 691/- | 939/- |11048/-(18362/-{22093/-|32721/-
[/~ [7500/2| 5270/3 [2364/4] 691/5 | 699/5 |1817/5|4997/5 | 6089/5
2 /=[7500/1] 5270/2 [2364/3| 691 /4 [10626/4] 8885/6 | 8927 /6 [15649/6
“/~ | -/~ [10600/3|5370/4]2364/5] 2372/5 [3490/5 | 6670/5 | 7762/5
3/~ | -/~ [10600/2[5370/3(2364 /410591 /5] 8799/6 | 8341/6 [15563/6
Table 1. The values of OPT;(m)/MIN;(m) in the wupper rows and

POPT;(m)/PMIN;(m) in the lower rows.

<1t x10°

]%____ﬂ,—————""
I 51.5

o 100

Fig. 3. Functions V2(4,8, z), for j = 2,...,8, and V2(j,9, x), for j = 2,...,9. The lines
are labelled by j. The thick lines are the lower envelopes.

We say that x; is covered by a point in S if d;(S) < r. For a point x;, let
cov; denote the index of the smallest of the points z1,...,x; covered by x;, and
unc; the index of largest of the points x1,...,x; not covered by x;:
cov; =min{i : ¢ < jand r+x; > x;}, unc; =max{i : i < jand r+x; < x;}.
Note that zync, is the point to the left of w.o;, ie., unc; = cov; — 1 if this
point exists. The points that can cover z; are exactly the points in [Tcoy;, ;]
Similar to the k-median problem, let OPT;(m) denote the minimum cost of an
i-cover for the first m points x1,..., &, for i = 1,..., k and POPT;(m) be the

minimum cost of covering 1, ..., xy, if ,, is one of the resources. Then

OPT;(m) = min {wm + OPT;(m —1), m<in< POPTi(j)} 9)
covy, <j<m
Uncm, <j<m-—1

The first term in the minimum of Eq. (9) corresponds to the possibility that x,,
is not covered; the second term to the possibility that x,, is covered. It ranges
over all possible covers.

In order to solve the problem in an online fashion we will need to be able
to calculate the values of OPT;(m) and POPT;(m) efficiently at step m when
processing x,,. This can be done in a fashion similar to that employed for kML

resulting in a similar result, i.e., computing all of the OPT;(m) and POPT;(m)
values can be in O(k) amortized time and O(k log m) worse case time per update.
The details can be found in the full version of this paper.

4 Conclusion and Open Problems

In this paper we discussed how to solve the online k-median on a line problem
in O(k) amortized time and O(klogn) worst case time per point addition. This
algorithm maintains in the online model the dynamic programming speed-up for
the problem that was first demonstrated for the static version of the problem
in [6]. The technique used is a generalization of one introduced in [3]. We also
showed how a simpler form of our approach can solve the online k-coverage on
a line problem with uniform coverage radius in the same time bounds. It is not
clear how to extend our ideas to the non-uniform coverage radius case.

A major open question is how to solve the dynamic k-median and k-coverage
on a line problem. That is, points will now be allowed to be inserted (or deleted!)
anywhere on the line and not just on the right hand side. In this case would it
be possible to maintain the k-medians or k-covers any quicker than recalculating
them from scratch each time?

References

1. A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber. “Geometric applications
of a matrix-searching algorithm,” Algorithmica, 2(2), 1987, pp. 195-208.

2. Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. “Approximation schemes for
Euclidean k-medians and related problems,” Proceedings of the 30th Annual ACM
Symposium on the Theory of Computing, 1998, pp. 106-113.

3. V. Auletta, D. Parente and G. Persiano. “Placing resources on a growing line,”
Journal of Algorithms, 26, 1998, pp. 87-100.

4. M. Charikar, S. Guha, E. Tardos, and D.B. Shmoys. “A constant-factor approxi-
mation algorithm for the k-median problem,” Journal Computer System Sciences,
65, 2002, pp. 129-149.

5. Sudipto Guha, Samir Khuller. “Greedy strikes back: improved facility location
algorithms,” Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, (SODA’98), 1998, pp. 649-657.

6. R. Hassin and A. Tamir. “Improved complexity bounds for location problems on
the real line.” Operations Research Letters 10, 1991, pp. 395-402.

7. J-H. Lin and J.S. Vitter. “e-approximations with minimum packing constraint
violation,” Proceedings of the 24th Annual ACM Symposium on the Theory of
Computing, 1992, pp. 771-782.

8. A. Tamir. “An O(pn?) algorithm for the p-median and related problems on tree
graphs,” Operations Research Letters, 19 1996,pp. 59-64.

9. R. Wilber. “The concave least-weight subsequence problem revisited,” Journal of
Algorithms, 9, 1988, pp. 418-425.

10. A. Vigneron, L. Gao, M. Golin, G. Italiano and B. Li. “An algorithm for finding a
k-median in a directed tree,” Information Processing Letters, 74, 2000, pp. 81-88.

11. G. Woeginger. “Monge strikes again: optimal placement of web proxies in the
internet.” Operations Research Letters, 27, 2000 , pp. 93-96.

