
Theoretical Computer Science 263 (2001) 283–304
www.elsevier.com/locate/tcs

A combinatorial approach to Golomb forests�

Mordecai J. Golin
Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay,

Kowloon, Hong Kong, People’s Republic of China

Accepted April 2000

Abstract

Optimal binary pre)x-free codes for in)nite sources with geometrically distributed frequencies,
e.g., P = {pi(1− p)}∞i=0; 0¡p¡1, were)rst (implicitly) suggested by Golomb over 30 years
ago in the context of run-length encodings. Ten years later Gallager and Van Voorhis exhibited
such optimal codes for all values of p. These codes were derived by using the Hu2man encoding
algorithm to build optimal codes for #nite sources and then showing that the)nite codes converge
in a very speci)c sense to the in)nite one. In this note, we present a new combinatorial approach
to solve the same problem, one that does not use the Hu2man algorithm, but instead treats a
coding tree as an in)nite sequence of integers and derives properties of the sequence. One
consequence of this new approach is a complete characterization of all of the optimal codes; in
particular, it shows that for all p; 0¡p¡1; except for an easily describable countable set, there
is a unique optimal code, but for each p in this countable set there are an uncountable number
of optimal codes. Another consequence is a derivation of in)nite codes for geometric sources
when the encoding alphabet is no longer restricted to be the binary one. A)nal consequence
is the extension of the results to optimal forests instead of being restricted to optimal trees.
c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Consider an information source P with probability distribution

P = {pi}n−1i=0 ; p0¿p1¿p2¿ · · ·¿pn−1

on a set of n letters. The Hu$man Encoding problem is to associate a pre)x-free
set of n binary words {wi}ni=0⊂{0; 1}∗ with P such that the expected word length∑n

i=0 pi length(wi) is minimized, where length(wi) is the number of bits in wi; e.g.,
length (0110)=4: A pre#x-free set is one in which ∀i �= j; wi is not a pre)x of wj:

� This research was partially supported by Hong Kong RGC=CRG grant HKUST652=95E.
E-mail address: golin@cs.ust.hk (M.J. Golin).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00250 -4

284 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

It is well known (see e.g., [14]), that)nding such a code is equivalent to)nding
a tree with n leaves such that when li is the length of the ith highest leaf in the tree
then the expected external path length

∑n
i=0 pili (achieved by placing the ith letter

(pi) at the ith highest leaf) is minimized. Such a tree may easily be found using the
well-known Hu$man Encoding Algorithm [6].
Suppose now that the situation is modi)ed slightly to permit in#nite sources,

i.e.,

P = {pi}∞i=0; p0¿p1¿p2¿ · · · :
In this case the problem of)nding a pre)x-free code, or equivalently, an in)nite tree
labeled with the pi, with minimum weighted external path length, is not nearly as well
understood. It has been proven [11] that optimal trees (codes) exist if and only if the
entropy −∑i pi logpi, of P is bounded 1 but there still does not exist any algorithm
for)nding optimal codes that works for all such P with bounded entropy.
Special cases are better understood, though. The best known and earliest such case

is that of the in)nite binary codes (e.g., using only 0-s and 1-s) for the in)nite geo-
metric source. This is the source that)xes some p; 0¡p¡1, and then de)nes
Pp= {(1 − p)pi}∞i=0. Such a source arises, for example, in the description of run-
length encoding as was noted by Golomb [4]. Suppose we have a string of As and Bs
in which each character occurs independently of every other one; Bs occurring with
probability p and As with probability 1−p. Now, for i=0; 1; 2; : : : set Xi= BB : : : BB︸ ︷︷ ︸

i times

A.

Every in)nite string can be written uniquely as the concatenation of di2erent Xis with
the probability of Xi occurring being (1 − p)pi. We thus, have a situation in which
strings are composed of words from an in)nite source with given distribution Pp: Other
problems that can be recast as)nding a min-cost in)nite tree with distribution Pp arise
in operations research [5] and group testing [8, 15].
This special case of P=Pp was studied by Gallager and Van Voorhis [3] who

exhibited an optimal tree 2 for every p. Their technique was to ‘guess’ a countable
sequence of #nite sources P0

p ; P1
p ; P2

p ; P3
p ; : : :, that were better and better approxi-

mations to Pp, use the Hu2man algorithm to derive the optimal trees for these)nite
sources and then show that these codes “converge” to an in)nite tree that is optimal
for the in)nite source. Their result can be stated as:

Theorem 1 (Gallager and Van Voorhis [3]). Given p; let m be the unique integer that
satis#es

pm + pm+161¡ pm + pm−1:

1 We refer the reader to [9] for a discussion of how to generalize the concept of optimality so that
“optimal” in)nite Hu2man codes exist even when the entropy is unbounded.
2 The codes associated with these trees are sometimes known as Golomb codes. Hence the identi)cation

of these trees as Golomb trees and the natural extension to forests as Golomb forests.

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 285

Fig. 1. The tops of the in)nite “optimal” trees M1; M2; M3; M4 and M5.

Let a tree T be described as a sequence Ii; i=0; 1; 2; 3; : : : ; where Ii is the number
of internal nodes on level i. Then the tree described by

I0; I1; I2; I3; : : : ;= 1; 2; 4; : : : ; 2�log2 m�; m; m; m; : : : (1)

is optimal for Pp.

If we use Mm to denote the mth such tree, then Fig. 1 contains the tops of M1; M2;
M3; M4 and M5: In this)gure, as in all the others in this paper, a)lled-in circle
represents an internal node while a square represents a leaf.
Gallager and Van Voorhis’ basic technique was later expanded upon and extended

by Abrahams [1] and Kato et al. [10] who showed that it could be applied to other
families of in)nite sources. Abrahams [1] also showed how to extend the theorem
to cover the ternary case in which every parent can have three children rather than
two. There are also some very new results that describe how to extend the results to
two-sided geometric distributions [12, 13]. A comprehensive survey of the latest results
may be found in [2].
All of these papers share the same basic approach, in that they construct an optimal

code=tree for the in#nite source by using the Hu2man encoding algorithm to construct
optimal trees=codes for a sequence of special #nite sources and then showing that
these)nite trees=codes “converge” in a nice fashion to an in)nite one which must be
an optimal tree=code for the in)nite source.

286 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

In this paper, we return to the original Gallager and Van Voorhis problem of the
geometric source and provide a new derivation of optimal binary trees=codes for ge-
ometric sources by deriving the structure of all optimal forests. This new derivation
does not use the Hu2man algorithm to build)nite trees or forests. It instead treats an
optimal in)nite forest as an in)nite sequence of integers (that represent the number of
leaves=internal-nodes on each level of the forest) and proves combinatorial properties
of such sequences, e.g., their elements are bounded, after some point the sequence
must cycle, etc. These properties will permit a complete description of the structure of
optimal trees (as opposed to the old proofs which exhibited only one optimal tree but
said nothing about the existence or nonexistence of any others). It will also permit gen-
eralizing the results in [3] from binary trees to d-ary forests, 3 where the generalization
is both from binary to d-ary and from trees to forests.
The rest of this paper is structured as follows. Section 2 introduces some basic

de)nitions, translating problems on trees and forests into problems on equivalent in-
)nite sequences. Section 3 presents the main theorem which completely characterizes
the structure of optimal trees for geometric sources. Section 4 introduces some basic
combinatorial operations on the tree sequences and shows that many of them preserve
optimality. Section 5 pulls everything together and proves the main theorem. Section
6 discusses an interesting related problem left open.

2. De�nitions

We start by noting that as far as our problem is concerned the actual topological
structure of a tree is not important; for calculating costs the only important quantities
in a tree are the numbers of leaves at each of its levels. Any two trees that have
identical numbers of leaves at all levels will have the same cost. For our purposes it
will also be convenient to know the number of internal nodes at each level and to be
able to represent forests (collections of trees).
Also, for reasons to be discussed later in this section, this paper will only be con-

cerned with full forests, forests in which each internal node has a full complement of
d children. Therefore, for all l¿0; El+1 + Il+1 =dIl. We thus de)ne:

De�nition 1. Let the arity, d¿2 be)xed. A forest F = {(Il; El)}∞l=0 is an in)nite
sequence of pairs of nonnegative integers satisfying

∀l¿0; El+1 + Il+1 = dIl:

The Il are called internal nodes while the El are called external or leaf nodes. Given
a forest F we de)ne

∀l¿0; Il(F) = Il and El(F) = El:

3 We should point out that even though [3] restricts itself to binary trees its proof technique could be
modi)ed to also derive optimal binary forests.

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 287

Fig. 2. The tops of three in)nite binary forests that all have the same number of nodes on their upper levels.

For pedagogical reasons, we also de)ne Al(F)=
∑

j6l Ej(F) where Al(F) is the num-
ber of leaves on or above level l. When F is understood we will simply write Al.
Finally, a tree T is a forest with (I0(T); E0(T))= (1; 0).

Since El+1 + Il+1 =dIl a forest is fully determined by knowing just the number of
leaves on its top level and the number of internal nodes on all levels. Thus, we will
usually write a forest as a sequence:

F = 〈E0; I0; I1; I2; I3; : : :〉:
For example the forests F2; F1 and F0 in Fig. 2 have initial sequences

F2 = 〈2; 1; 2; 3; 3; 3; 3; : : :〉;
F1 = 〈1; 2; 3; 3; 3; 3; 3; : : :〉 and F0 = 〈0; 3; 3; 3; 3; 3; 3; : : :〉:

We now de)ne Cost(· ; ·) in a way that corresponds to the natural cost of a tree
given a source.

De�nition 2. Let F be a forest and di(F); i=0; 1; 2; : : : be the depth of the ith leaf in
F , breaking ties arbitrarily. Thus,

di(F) = min{l: i ¡ Al(F)}:
Let P= {pi}∞i=0 be a nonincreasing sequence of nonnegative reals. The cost of F

labeled by P is the external path length of forest F when its leaves, sorted by increasing
depth, are labeled with the pi; i.e.,

Cost(F;P) =
∑
06i

pidi(F) =
∑
06i

pimin{l : i ¡ Al(F)}:

Note: if
∑

l El(F) is bounded then set Cost(F;P)=∞ (this describes the degenerate
case in which all but a)nite number of nodes in the forest are internal. Such a forest
obviously cannot be labeled with an in)nite number of leaves).

As an example, the forest F1 in the diagram has

Cost(F1;P) = 0p0 + 1p1 + 2p2 + 2p3 + 2p4 + 3p5 + 3p6 + · · · :

288 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

De�nition 3. A forest F is optimal for P if it has minimal cost among all forests with
the same number of nodes on their top levels, i.e., it is optimal if

∀Forests F ′ such that I0(F ′) + E0(F ′) = I0(F) + E0(F);

Cost(F;P)6Cost(F ′;P):

Similarly, A tree T is optimal for P if

∀Trees T ′; Cost(T;P)6Cost(T ′;P):

As previously mentioned it is known [11] that optimal trees (and, by slightly mod-
ifying their proof, optimal forests as well) actually do exist for every P with)nite
entropy H (P)=−∑i pi lnpi.
We note that an optimal forest must be full because, if it was not, adding the

“missing” node(s) as a leaf (leaves) would result in a forest with lesser cost. For
the rest of this paper we will, therefore, always assume that forests are full and, in
particular, obey the equations, El+1 + Il+1 =dIl.
We also note that, given a)xed forest F; it is impossible to permute the elements of

P to create a new sequence P′ containing the same elements in a di2erent order such
that Cost(F ;P)′6Cost(F ;P). This follows directly from the fact that the elements in
P are sorted in nonincreasing order with p0¿p1¿p2¿ · · · . Thus, the optimality of
a forest is not only over all forests with the same number of nodes on their top level
but also over all permutations of P:
It is quite easy to see that scaling P by a constant does not change optimality: for

every �¿0, F is optimal for P if and only if F is optimal for

�P = �p0; �p1; �p2; : : : :

We, therefore, will not restrict ourselves to P for which
∑

ip=1 because after)nding
an optimal tree for any general P, we can always go back and scale it so that its
elements sum to 1.
In what follows, we will always assume that 0¡p¡1 is)xed and Pp= {pi}∞i=0, is

the geometric sequence it generates. We will thus abbreviate Cost(F ;P) to Cost(F).
Finally, note that for geometric series the cost has a particularly simple

form:

Lemma 1. If p is #xed then

Cost(F;P) =
∑
06i

pi ·min{l : i ¡ Al(F)} =
∑
06l

∑
Al6j

pj =
1

1− p
∑
06l

pAl(F):

As an example note that in Fig. 2, if all levels in F1 below the second level have three
leaves, then

Cost(F1;P) =
1

1− p

(
p+ p2

∑
06i

p3i
)
=

p(1 + p− p3)
(1− p)(1− p3)

:

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 289

3. The main result

As previously mentioned, the main result of this note is a combinatorial derivation
of the structure of optimal codes for geometric sources. An advantage of this new
derivation (as opposed to the existing ones) is that it permits the identi)cation of
all of the optimal Hu2man trees. In particular, it shows that for all but a countable
number of ps there is a unique optimal tree, while for each of that countable number
of ps there are an uncountable but, still easily describable, set of optimal trees. More
speci)cally:

De�nition 4. Fix the arity d¿2: Set �(d)0 = 0 and for m¿0 de)ne �(d)m to be the unique
positive real root of

1− pm(d−1)
(
d−1∑
i=0

pi
)
= 0:

Note that ∀m¿0; 0¡�(d)m ¡1 and �(d)m ↑ 1: The main result of this paper is:

Theorem 2 (Structure Theorem). Let the number of nodes on the top level of a forest
be #xed to be some I¿1.
(1) If �(d)m−1¡p¡�(d)m then there exists a unique optimal forest F for p and it has

the form

F =
{ 〈0; I; dI; d2I; : : : ; d�logd m=I�I; m; m; : : :〉 if I6m;
〈I − m; m; m; m; : : : ; : : :〉 if I ¿ m:

(2)

(2) If p = �(d)m then let S= {m;m+1}N be the set of all in#nite tuples that can be
written using integers m and m + 1. For S ∈S we write S =(S0; S1; S2; : : :) and
de#ne FS to be the forest

FS =
{ 〈0; I; dI; d2I; : : : ; d�logd m=I�I; S0; S1; S2; S3; : : :〉 if I6m;
〈I − S0; S0; S1; S2; S3; : : :〉 if I ¿ m:

Then; the set of optimal forests for p is exactly equal to {FS : S ∈S}.

This theorem says that, given p and the number of nodes on the top level of the
forest, then if p �= �(d)m for some m there exists exactly one unique forest, while if
p= �(d)m then there are an uncountable number of forests.
The rest of this paper is dedicated in proving this theorem using combinatorial tools.

Before continuing, we note that when d=2 the trees (I =1) de)ned in Eq. (2) are
what are called M -codes in [1]. Also note that the �(2)m are the roots of 1−pm−pm+1

so

p6�(2)m ⇔ 1− pm − pm+1¿0⇔ 1¿pm + pm+1:

290 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

Fig. 3. If �(2)4 ¡p¡�(2)5 then the forests U2; U3 and U7 are the only optimal forests with, respectively, 2,
3 and 7 nodes on the top level. Note that the unshown levels of the forests all have exactly)ve internal
nodes and 5 leaves.

This in turn implies that

�(2)m−1 ¡ p6�(2)m ⇔pm + pm+161¡ pm + pm−1:

Thus Theorem 2 implies Theorem 1.
For other examples of the applications of the theorem we refer the reader to

Fig. 3, which illustrates some unique optimal binary nontree forests; Fig. 4 which
illustrates two of the possible optimal binary trees for p= �(2)4 ; and Fig. 5 which il-
lustrates three optimal ternary (d=3) trees. We note that in Fig. 4 the tree S ′ has the
form

S ′ = 〈0; 1; 2; 4; 3; 4; 3; 3; 4; 3; 3; 3; 4; : : :〉;
where each successive ‘run’ of 3s is one longer than its predecessor.

4. Combinatorial operations on forests

In this section we de)ne some basic combinatorial operations that can be performed
on forests and state facts about them.
In what follows we assume that p is)xed and that

F = 〈E0; I0; I1; I2; I3; : : :〉 and F ′ = 〈E′
0; I

′
0; I

′
1; I

′
2; I

′
3; : : :〉

are forests. Recall that, by de)nition, El+1 + Il+1 =dIl and E′
l+1 + I ′l+1 =dI

′
l :

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 291

Fig. 4. The trees shown here are both tops of in)nite trees that are optimal for p= �(2)4 .

Fig. 5. The tops of the “optimal” ternary trees Te1; Te2; Te3. Te1 is optimal if 0¡p6�(3)1 ; Te2 is optimal

if �(3)1 6p6�(3)2 ; Te3 is optimal if �
(3)
2 6p6�(3)3 .

De�nition 5. Let i; j¿0 and m¿0 be integers.

F〈i〉 = 〈i; I0; I1; I2; I3; : : :〉;
Trunc(F; j) = 〈Ej; Ij; Ij+1; Ij+2; : : :〉;
Repeat(F; j) = 〈E0; I0; I1; I2; : : : ; Ij−1; Ij; Ij; Ij+1; Ij+2; : : :〉;
Cycle(F; j) = 〈E0; I0; I1; I2; : : : ; Ij−1; Ij; Ij; Ij; Ij; : : :〉;
Cm = 〈0; m; m; m; m; : : :〉:

Suppose further that for some j; I ′0 + E′
0 = Ij + Ej: Then Replace (F; F ′; j) is de)ned

so that

∀i ¡ j; Ii(Replace(F; F ′; j)) = Ii; Ei(Replace(F; F ′; j)) = Ei;

∀i¿j; Ii(Replace(F; F ′; j)) = I ′i−j; Ei(Replace(F; F
′; j)) = E′

i−j;

292 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

Fig. 6. The trees M2 and M3 are as described previously. The other forests are examples of the operations
introduced in De)nition 5. For illustration purposes forests de)ned using the Trunc() operator are left on
the same level that they appeared on their original trees.

i.e.,

Replace(F; F ′; j) = 〈E0; I0; I1; I2; : : : ; Ij−2; Ij−1; I ′0; I ′1; I ′2; I ′3; : : :〉:

F〈i〉 is Forest F with i instead of E0 leaves on its top level. Trunc(F; j) is F starting
at level j: Repeat(F; j) is F with Ij repeated once. Cycle(F; j) is the top j levels of F
and then Ij repeated forever. Cm is just the forest with m internal nodes on every level.
Note that, by de)nition, CIj =Trunc(Cycle(F; j); j)

〈0〉: Replace(F; F ′; j) starts with F ,
keeps its top j levels, and replaces everything on level j and below with forest F ′:
Examples of these operations can be found in Figs. 6–8. Also C1 is just tree M1 from
Fig. 1 and C4 can be found in Fig. 7.
Many of these operations preserve optimality of forests.

Lemma 2. If F and F ′ are optimal for p then
(1) ∀j¿0; Trunc(F; j) is optimal.
(2) If E′

0 + I ′0 =Ej + Ij then Replace(F; F ′; j) is optimal.
(3) ∀i6E0; F〈i〉 is optimal.
(4) If I ′06I06I ′0 + E′

0 then ∀i6I ′0 + E′
0 − I0; F〈i〉 is optimal.

Before proving this lemma we describe a typical application. Referring to Fig. 6
suppose that both M2 and M3 are optimal. From Lemma 2(1) we have that both

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 293

Fig. 7. The trees C4 and C
〈2〉
4 . Given that C〈2〉

4 and F =Trunc(M3; 3) are optimal Lemma 2(4) immediately

implies that C〈2〉
4 is also optimal. Note that Lemma 2(3) cannot be used to prove this fact.

Fig. 8. The tree S′ seen previously and Repeat(S′; 4): Note that the four internal nodes on level 4 of S′ are
repeated on level 5 of Repeat(S′; 4) after which the remainder of the levels of S′ are continued.

F =Trunc(M3; 3) and Trunc(M2; 4) are optimal. Since F is optimal, from Lemma 2(3)
we have that F〈1〉 is also optimal. Since both Trunc(M2; 4) and F〈1〉 have exactly
the same number (four) of nodes on their top level we have from Lemma 2(2) that
Replace(M2; F〈1〉; 4) is also optimal.

Proof. F can be thought of as having two parts; a top part consisting of levels
0; 1; : : : ; j − 1, and a bottom part consisting of Trunc(F; j): Replace(F; F ′; j) is con-
structed by keeping the top part of F but replacing the bottom part with F ′: thus,

Cost(F)− Cost(Replace(F; F ′; j)) = pAj−1 (Cost(Trunc(F; j))− Cost(F ′)): (3)

Now suppose that Lemma 2(1) is not true and that, for some j; Trunc(F; j) is
not optimal. Let F ′ be any optimal forest with E′

0 + I ′0 =Ej + Ij. Then Cost(F ′)¡

294 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

Cost(Trunc(F; j)) so Eq. (3) implies

Cost(Replace(F; F ′; j))¡ Cost(F)

contradicting the optimality of F: This proves Lemma 2(1).
To prove Lemma 2(2) note that if F ′ is optimal with E′

0 + I ′0 =Ej + Ij then the
optimality of Trunc(F; j) from Lemma 2(1) implies that Cost(F ′)=Cost(Trunc(F; j))
so Eq. (3) implies

Cost(Replace(F; F ′; j)) = Cost(F)

and the optimality of Replace(F; F ′; j).
We will now prove that if E0¿0 then F〈E0−1〉 is optimal. The proof of Lemma 2(3)

will follow by iterating this fact to show that F〈E0−2〉; F〈E0−3〉; : : : ; F〈0〉 are all optimal
as well.
So assume, by contradiction, that F〈E0−1〉 is not optimal and let F ′ be some optimal

forest with I ′0+E
′
0 = I0+E0−1 nodes on its top level. Then Cost(F ′)¡Cost(F〈E0−1〉)=

p−1 Cost(F): Now add one new leaf to the top level of F ′ to)nd

Cost(F
′〈E′+1〉) = pCost(F ′)¡ Cost(F):

But, since F
′〈E′

0+1〉 has the same number of nodes on its top level as F does this
contradicts the optimality of F . Thus, F〈E0−1〉 is optimal and Lemma 2(3) follows.
To prove Lemma 2(4))rst note that from Lemma 2(3) both F〈0〉 and F

′〈I0−I ′0〉 are
optimal forests with I0 nodes on their top levels. Then,

Cost(F〈I ′0+E′
0−I0〉) =pI

′
0+E

′
0−I0Cost(F〈0〉)

=pI
′
0+E

′
0−I0Cost(F

′〈I0−I ′0〉)

= Cost(F ′):

Since F ′ is optimal so is F〈I ′0+E′
0−I0〉: Another application of Lemma 2(3) shows that

for every i6I ′0 + E′
0 − I0; F〈i〉 is also an optimal forest, proving Lemma 2(4).

The last lemma provides us with tools for manipulating optimal trees. For example,

Lemma 3. Let F = 〈E0; I0; I1; I2; I3; : : :〉 be an optimal forest for p such that; for
some j; Ij+16Ij: Then both Repeat(F; j) and Repeat(F; j+1) are also optimal forests.

Proof. Set Fj =Trunc(F; j) and Fj+1 =Trunc(F; j + 1): From Lemma 2(1) we have
that both Fj and Fj+1 are optimal forests. Note that

I0(Fj) = Ij; E0(Fj) = Ej;

I0(Fj+1) = Ij+1; E0(Fj+1) = Ej+1:

In particular, since

Ij+16Ij¡dIj = Ij+1 + Ej+1

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 295

we have

I0(Fj+1)6I0(Fj)¡I0(fj+1) + E0(Fj+1):

Thus, by Lemma 2(4) F〈(d−1)Ij〉
j is also an optimal forest. Finally, applying Lemma 2(2)

shows that

Repeat(F; j) = Replace(F; F〈(d−1)Ij〉
j ; j + 1)

is also optimal. To prove Repeat(F; j + 1) simply note that

E0(Fj+1) = dIj − Ij+1¿(d− 1)Ij+1

so, by Lemma 2(3), F〈(d−1)Ij+1〉
j+1 is an optimal forest and thus

Repeat(F; j + 1) = Replace(F; F〈(d−1)Ij+1〉
j+1 ; j + 2)

is also optimal.

As a concrete application, refer back to Fig. 8. In that)gure the tree S ′ has I4 = 4¡3
= I3: Thus, if S ′ is optimal then Repeat(S ′; 4) is also optimal.
Actually, we can prove a much stronger result, speci)cally, that if Ij¿Ij+1 then

Cycle(F; j) and Cycle(F; j + 1) are both optimal.
First note the following lemma which says that if a sequence of optimal forests

‘converges’ level-by-level to some forest F then F is also optimal.

Lemma 4 (Convergence Lemma). Let F be a forest and Fj; j=0; 1; 2; : : : ; be some
sequence of optimal forests such that Fj is identical to F on its #rst j levels; i.e.;
∀j; E0(Fj)=E0 and ∀l¡j; Il(Fj)= Il: Then F is also an optimal forest.

Proof. Let C be the cost of an optimal forest with E0+ I0 nodes on its top level. Then
∀j; Cost(Fj)=C: The conditions of the lemma imply that ∀i¡Aj(F); di(Fj)=di(F):
Thus, by the de)nition of cost, we also have

Cj =
∑
i¡Aj

pi di(Fj) =
∑
i¡Aj

pi di(F)¡ C;

where Cj is the cost contributed by the leaves on the)rst j levels of Fj. But, again
by the de)nition of cost,

Cost(F) = lim
j
Cj6C:

Since Cost(F)¿C (de)nition of optimal cost C) this implies Cost(F)=C and the
optimality of F:

Corollary 5. Let F be an optimal forest for p and j such that Ij+16Ij: Then the
forests CIj and CIj+1 are both optimal.

296 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

Proof. Iteratively de)ne Fi as follows: F0 =F and ∀i¿0; Fi=Repeat(Fi−1; j), e.g.,

F0 = 〈E0; I0; I1; I2; : : : ; Ij−1; Ij; Ij+1; Ij+2; : : :〉;
F1 = 〈E0; I0; I1; I2; : : : ; Ij−1; Ij; Ij; Ij+1; Ij+2; : : :〉;
F2 = 〈E0; I0; I1; I2; : : : ; Ij−1; Ij; Ij; Ij; Ij+1; Ij+2; : : :〉;
F3 = 〈E0; I0; I1; I2; : : : ; Ij−1; Ij; Ij; Ij; Ij; Ij+1; Ij+2; : : :〉:

By Lemma 3, all of the Fi are optimal. The proof that Cycle(F; j) is an optimal that
follows from Lemma 4. Since CIj =Trunc(F; j)

〈0〉 the optimality of CIj then follows
from Lemma 2(1) and (3).
The proof that Cycle(F; j + 1) and thus, CIj+1 =Trunc(F; j + 1)

〈0〉 are optimal is
similar.

5. Proof of the main theorem

Corollary 5 says that if F is optimal and, for some j; Ij+16Ij then Cycle(F; j) and
Cycle(F; j+1) are both optimal trees. A priori, there is no reason to expect that such a
j exists, though; perhaps the Ij are monotonically increasing. The next lemma implies
that such a j always exists.

Lemma 6 (Optimal forests have bounded width). Let p be #xed and B=min{k:pk¡1
− p}: Then; if F is any optimal forest; ∀l; Il(F)6B:

Proof. Suppose by contradiction that F is optimal and Il(F)¿B for some l: Without
loss of generality we may assume that l=0 and El=0: Otherwise, replace F by the
optimal forest Trunc(F; l)〈0〉:
Now note that since all leaves of F are below level 0; 1=(1 − p)¡Cost(F): But

then

Cost(C〈I0(F)−1〉
1) =

pI0(F)−1

(1− p)2
6

pB

(1− p)2
6

1
1− p

¡ Cost(F)

contradicting the optimality of F:

Recall the de)nition of the Cyclic Forest

Cm = 〈0;m;m;m;m; m; : : :〉: (4)

Note that if F is optimal for some P there must always exist some j such that
Ij+16Ij. Otherwise the Ii are a monotonically increasing sequence, contradicting
Lemma 6. For this j both Cycle(F; j) and Cycle(F; j + 1) are optimal and thus CIj =
Trunc(F; j)〈0〉 and CIj+1 =Trunc(F; j + 1)

〈0〉 are also both optimal.
Since the Cm have such special forms we can actually calculate for which p they

are optimal.

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 297

Fig. 9. The trees C4 and C
〈1〉
3 , both of which have four nodes on their top levels.

Lemma 7. Let Cm be as de#ned above. Then

Cost(C〈1〉
m)6Cost(Cm+1) (5)

if and only if

p6�(d)m (6)

with equality in (5) if and only if there is equality in (6).

Proof. Refer to Fig. 9. From Lemma 1 we)nd that

Cost(Cm+1) =
1

1− p
(1 + p(m+1)(d−1) + p2(m+1)(d−1) + · · ·)

=
1

(1− p)
1

(1− p(m+1)(d−1))

and

Cost(C〈1〉
m) =

1
1− p

(p+ pm(d−1)+1 + p2m(d−1)+1 + · · ·) = 1
(1− p)

p
(1− pm(d−1))

:

Thus,

Cost(Cm+1)− Cost(C〈1〉
m) =

1
1− p

(
1

1− p(m+1)(d−1)
− p
1− pm(d−1)

)

=
1− pm(d−1) − p+ p(m+1)(d−1)+1

(1− p)(1− p(m+1)(d−1))(1− pm(d−1))

=
(1− p)− pm(d−1)(1− pd)

(1− p)(1− p(m+1)(d−1))(1− pm(d−1))

=
1− pm(d−1)

∑
06i¡d p

i

(1− p(m+1)(d−1))(1− pm(d−1))
:

The proof of the lemma follows from De)nition 4 in which �(d)m is de)ned to be the
unique positive real root of 1− pm(d−1)(

∑d−1
i=0 p

i):

Corollary 8. Cm is optimal if and only if �(d)m−16p6�(d)m .

298 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

Proof. From the discussion preceding Lemma 5 we know that for any)xed p there
must exist at least one m such that Cm is optimal for p (e.g., m= Ij where j is such
that Ij+16Ij). We now use Lemma 5 to discover what the possible values of m are.
First suppose that p¡�(d)k−1: Then Cost(C

〈1〉
k−1)¡Cost(Ck) so Ck is not optimal.

Now suppose that �(d)k ¡p: Then Cost(C〈1〉
k)¿Cost(Ck+1) so C〈1〉

k is not optimal.

But if Ck was optimal then from Lemma 2 C〈1〉
k =Trunc(Ck; 1)〈1〉 is also optimal.

We can condense the above paragraphs into two statements:

If p ¡ �(d)k−1 then Ck is not optimal for p: (7)

If �(d)k ¡ p then Ck is not optimal for p: (8)

We now prove the lemma. First suppose that p is such that �(d)t−1¡p¡�(d)t for
some t: From (7) we have that t − 1¡m while from (8) we have that m¡t + 1: In
other words, Cm is optimal for m= t and no other m:
Now suppose that p= �(d)t for some t: Then the same reasoning shows that

t − 1¡m¡t + 2 or that m∈{t; t + 1} so at least one of Ct and Ct+1 must be op-
timal but if m =∈{t; t + 1} then Cm is not optimal. Suppose)rst that Ct+1 is optimal.
From Lemma 7, Cost(C〈1〉

t)=Cost(Ct+1) so C
〈1〉
t is optimal and thus, from Lemma 2,

Ct itself is also optimal.
Now suppose that Ct is optimal. Then from Lemma 2, C〈1〉

t =Trunc(Ct; 1)〈1〉 is also
optimal. From Lemma 7, Cost(Ct+1)=Cost(C

〈1〉
t) and thus Ct+1 is also optimal.

We have just seen that if p= �(d)t then Ct is optimal if and only if Ct+1 is optimal.
Thus, they are both optimal, completing the proof of the corollary.

We need one more corollary before proceeding. It says that if p= �(d)m then there
are an uncountable number of optimal forests:

Corollary 9. Let S= {m;m+1}N be the set of all in#nite tuples that can be written
using integers m and m+1. For S ∈S we write S =(S0; S1; S2; : : :): Then; ∀S ∈S de#ne

US = 〈0; S0; S1; S2; S3; : : :〉:
Then ∀S ∈S; US is optimal for p= �(d)m : Furthermore; ∀i6(d− 1)(m+ 1); ∀S ∈S;
U 〈i〉
S is also optimal.

Proof. In the previous corollary we have already seen that

Cm = 〈0;m;m;m;m; : : :〉 and Cm+1 = 〈0;m+ 1; m+ 1; m+ 1; m+ 1; : : :〉
are both optimal for p= �(d)m : Straightforward application of Lemma 2 shows that

Vm = C〈(d−1)m+d〉
m and Vm+1 = C〈(d−1)m−1〉

m+1

are also both optimal. Now recursively de)ne

F0 = CS0 and ∀i ¿ 0; Fi = Replace(Fi−1; VSi ; i):

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 299

That is

F0 = 〈0; S0; S0; S0; S0; S0; S0; : : :〉;
F1 = 〈0; S0; S1; S1; S1; S1; S1; : : :〉;
F2 = 〈0; S0; S1; S2; S2; S2; S2; : : :〉;
F3 = 〈0; S0; S1; S2; S3; S3; S3; : : :〉;
F4 = 〈0; S0; S1; S2; S3; S4; S4; : : :〉:

Note that, again from Lemma 2 we)nd that all of the Fi are optimal forests. Setting
F =US and applying Lemma 4 proves that US =F is also optimal.
To prove that U 〈i〉

S is optimal for i6(d− 1)(m+ 1) note that the proof above also
shows that

U(m+1; S) = 〈0;m+ 1; S0; S1; S2; S3; : : :〉
is also optimal. Then Lemma 2 shows that

U 〈i〉
S = Trunc(U(m+1; S); 1)〈i〉

is also optimal.

We can now almost prove the main theorem. Speci)cally, we can prove:

Lemma 10. Let F = 〈E0; I0; I1; I2; I3; : : :〉 be an optimal forest. Let k be the smallest
value for which Ik6Ik+1; i.e;

I0 ¡ I1 ¡ I2 ¡ · · ·¡ Ik¿Ik+1:

Then;
• if �(d)m−1¡p¡�(d)m then ∀j¿k; Ij =m;

• if p= �(d)m then ∀j¿k; Ij ∈{m;m+ 1}.

Proof. Let j be any value such that Ij+16Ij. From Lemma 6 we know that such a j
exists. From Corollary 5 we have that forests CIj and CIj+1 are both optimal. But from
Corollary 8 we see that only this can happen
• if �(d)m−1¡p¡�(d)m and Ij = Ij+1 =m;

• or if p= �(d)m and Ij; Ij+1 ∈{m;m+ 1}.
The proof follows.

We now know that I0¡I1¡I2¡ · · ·¡Ik¿Ik+1 and how Ij behaves for j¿k. We
require one more technical lemma that will be used to derive how Ij grows when
j¡k.

Lemma 11. Let �(d)m−1¡p6�(d)m . If F is a forest with E0 = 1 and I0¡m then F is not
optimal for p.

300 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

Fig. 10. Example trees F and F ′ for the proof of Lemma 11. Note that F ′ is created by taking the leaf on
the top level of F and making it internal. In this example we assume that m=4.

Proof. We will assume that such an F is optimal and show a contradiction.
We will also assume that F satis)es

I0¡I1¡I2¡ · · ·¡Ik−1¡m = Ik = Ik+1 = Ik+2 = · · · (9)

for some k. If �(d)m−1¡p¡�(d)m then Lemma 10 says F necessarily must satisfy this con-

dition. If p = �(d)m then it is possible that F might not satisfy the condition. Lemma 10
says that F still must be of the form

I0¡I1¡I2¡ · · ·¡Ik¿Ik+1

with ∀j¿k; Ij ∈{m;m+ 1} and that the forest with the same E0 value and
I0¡I1¡I2¡ · · ·¡Ik−1¡m = Ik = Ik+1 = Ik+2 = · · ·

is also optimal. We can then take this new optimal forest as our F .
So now assume that we have an optimal F = 〈1; I0; I1; I2; I3; : : :〉 satisfying (9)

with E0 = 1 and I0¡m. Let F ′= 〈0; I0+1; I1; I2; I3; : : :〉 be the forest resulting from
transforming the highest leaf of F into an internal node all of whose d children are
leaves (see for, example, Fig. 10). We will now show that Cost(F ′)¡Cost(F) contra-
dicting the optimality of F and completing the proof.
Recall that Ai(F) is the number of leaves in F on or above level i and that

Cost(F)= 1=(1− p)
∑

06l p
Al(F). Note that A0(F)= 1; and A0(F ′)= 0. Also,

∀i ¿ 0; Ai(F ′) = Ai(F) + d− 1:
Thus,

Cost(F) =
1

1− p

(
p+

∑
16l

pAl(F)
)

Cost(F ′) =
1

1− p

(
1 +

∑
16l

pAl(F
′)

)

=
1

1− p

(
1 + pd−1

∑
16l

pAl(F)
)

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 301

so

Cost(F ′)− Cost(F) = 1
1− p

(
1− p− [1− pd−1]

∑
16l

pAl(F)
)

= 1−
(∑
06i¡d−1

pi

)∑
16l

pAl(F):

Now note that I0¡I16m so I06m− 1. Therefore,

E1 = dI0 − I1¡(d− 1)I06(d− 1)(m− 1):

Since E0 = 1 this implies that

A1(F) = E0 + E161 + (d− 1)(m− 1)− 1 = (d− 1)(m− 1):

Also note that since ∀i¿0 we have Ii6Ii+1 and Ii6m,

Ei+1 = dIi − Ii+16(d− 1)Ii6(d− 1)m:

But Ai+1(F)=Ai(F) + Ei so iterating shows that

∀i¿1; Ai6(d− 1)(m− 1) + (i − 1)(d− 1)m:

Summing over i gives

∑
16l

pAl(F)¿
∑
16l

p(d−1)(m−1)+(l−1)(d−1)m =
p(d−1)(m−1)

1− p(d−1)m
:

Plugging back into our cost equations yields

Cost(F ′)− Cost(F) = 1−
(∑
06i¡d−1

pi
) ∑
16l

pAl(F)

6 1−
(∑
06i¡d−1

pi
)
p(d−1)(m−1)

1− p(d−1)m

=
1− p(d−1)m − (∑06i¡d−1 p

i)p(d−1)(m−1)

1− p(d−1)m

=
1− (∑06i¡d p

i)p(d−1)(m−1)

1− p(d−1)m
:

But, since �(d)m−1¡p we know that

1− p(d−1)(m−1)
∑

06i¡d
pi ¡ 0

and Cost(F ′)¡Cost(F); contradicting the optimality of F .

302 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

Corollary 12. Let �(d)m−1¡p6�(d)m . If F is an optimal forest for p then
(1) If I0¡m then E0 = 0.
(2) ∀i¿0; Ii+1¿min{dIi; m}.

Proof. To prove (1) note that if I0¡m but E0¿0 then, by Lemma 2 F〈1〉 is optimal
contradicting Lemma 11.
To prove (2) note that if, for some i; Ii+1¡min{dIi; m} then Ei+1 =dIi − Ii+1 ¿ 0.

Thus Lemma 2 says that Trunc(F; i)〈1〉 is optimal. But since Ii+1¡m Lemma 11 says
that Trunc(F; i)〈1〉 is not optimal, leading to a contradiction.

We can now prove Theorem 2. In what follows, we assume that F = 〈E0; I0; I1; I2;
I3; : : :〉 is an optimal tree for p and examine its possible structures.
We examine the theorem’s two cases of �(d)m−1¡p¡�(d)m and p= �dm separately:

�(d)m−1¡p¡�(d)m . Before starting, note that Lemma 10 implies that ∀i; Ii6m. In par-
ticular I06m. On the other hand, Corollary 12 can be read as saying I0¿min{I; m}.
We thus)nd that I0 = min{I; m}.
If I6m set l= �logd m=I�. From the argument above we have that I0 = I . Successive

applications of Corollary 12 show that

I0; I1; I2; I3; : : : ; Il = I; dI; d2I; : : : ; dlI:

Since dIl=dl+1I ¿ m Corollary 12 implies that Il+1¿m. Lemma 10 then says that
∀i¿l; Ii=m. Combining everything yields

F = 〈0; I; dI; d2I; : : : ; d�logd m=I�I; m; m; : : :〉:

If I ¿ m then I0 =m and thus, by Lemma 10 ∀i¿0; Ii=m. In other words

F = 〈I − m;m;m;m; : : : ; : : :〉:

p= �(d)m . The beginning of the analysis is very similar to that performed in the
previous case. Note here that Lemma 10 implies that ∀i; Ii6m + 1. In particular
I06m+1. On the other hand, Corollary 12 can be read as saying I0¿min{I; m}. We
thus)nd that if I6m then I0 = I while if I ¿ m then I0 ∈{m;m+ 1}.
Now suppose that I6m. We have seen that I0 = I . As before, successive applications

of Corollary 12 show that

I0; I1; I2; I3; : : : ; Il = I; dI; d2I; : : : ; dlI:

Using Lemma 10 we then)nd that ∀i¿l; Ii ∈{m;m+1}. Combining everything yields

F = 〈0; I; dI; d2I; : : : ; d�logd m=I�I; S0; S1; S2; S3; : : :〉

for some S =(S0; S1; S2; : : :)∈S.
Now let S ′=(S ′0; S

′
1; S

′
2; : : :)∈S be any S ′ ∈S. Since dlI6m and S ′0 ∈{m;m + 1}

we have that dl+1I − S06(d− 1)m. Thus, from Lemma 9 we)nd that U 〈dl+1I−S′0〉
S′ is

M.J. Golin / Theoretical Computer Science 263 (2001) 283–304 303

optimal. Since this forest has dl+1 nodes on its top level and FS has dIl=dl+1 nodes
on its (l+ 1)st level Lemma 2 says that

FS′ = Replace(FS; U
〈dl+1I−S′0〉
S′ ; l+ 1)

is also optimal. In other words, we have just shown that a tree F is optimal if and
only if F =FS for some S ∈S.
Suppose then that I¿m. We have just seen that I0¿m; I0 ∈{m;m+ 1}. Lemma 10

then tells us that ∀i¿0; Ii ∈m;m+ 1. Thus,
F = FS = 〈I − S0; S0; S1; S2; S3; : : :〉

for some S =(S0; S1; S2; : : :)∈S. Note that in the notation of Corollary 9 F =FS =
U 〈I−S0〉
S .
We now show that

FS′ = 〈I − S ′0; S
′
0; S

′
1; S

′
2; S

′
3; : : :〉

is optimal for all S ′=(S ′0; S
′
1; S

′
2; : : :)∈S.

First note that if S0 = S ′0 then, by Corollary 9 both US and US′ are optimal. Since
they both have the same number (S0 = S ′0) of nodes on their top level this implies
Cost(US)=Cost(US′) so

Cost(U 〈I−S0〉
S) = pI−S0Cost(US) = pI−S′0Cost(US′) = Cost(U

〈I−S0〉
S′):

But, since FS′ =U
〈I−S′0〉
S′ this says Cost(FS)=Cost(FS′) so FS′ is also optimal.

Now suppose that S ′0 �= S0. Without loss of generality we will assume that S ′0 =m
and S0 =m+1 (the other case is symmetric). From Corollary 9 both US and U

〈1〉
S′ are

optimal. Since they both have m+ 1 nodes on their top level this implies Cost(US)=
Cost(U 〈1〉

S′) so

Cost(U 〈I−S0〉
S) = pI−(m+1)Cost(US) = pI−mCost(U 〈1〉

S′) = Cost(U
〈I−S0〉
S′):

But, since FS′ =U
〈I−S′0〉
S′ this says Cost(FS)=Cost(FS′) so FS′ is also optimal. In other

words we have just shown that a tree F is optimal if and only if F =FS for some
S ∈S completing the proof of Theorem 2.

6. Conclusion

In this paper we derived combinatorial properties of optimal (minimum-external path
length) forests for distributions Pp= {pi(1 − p)}∞i=0. These combinatorial properties
permitted us to exactly derive the form of these optimal forests.
One very interesting open question would be the construction of such trees for

other distributions. At the moment the only distributions for which optimal trees are
known seem to be the geometric ones, some of its variations [12, 13] and the (tails

304 M.J. Golin / Theoretical Computer Science 263 (2001) 283–304

of) Poisson distributions [7]. Others have not been addressed. It would, for example,
be quite interesting to know the optimal tree for the Zeta-distributions

P� =
{
1
i�

}∞
i=1

;

where �¿1. We note that one complication that arises in the optimal trees for these
derivations is that their width, i.e., the maximum number of nodes that can appear on
any level is unbounded. This is in sharp contrast to the situation in the geometric case
in which Lemma 6 bounds (as a function of p) the number of nodes that can appear
on any level.

Acknowledgements

The author would like to thank Julia Abrahams and Akiko Kato for providing point-
ers and references to this problem. He would also like to thank Yong Xue Rong and
the anonymous referees for careful comments on an earlier version of this paper.

References

[1] J. Abrahams, Hu2man-type codes for in)nite source distributions, J. Franklin Inst. 331B (3) (1994)
265–271.

[2] J. Abrahams, Code and parse trees for lossless source encoding, Sequences 1997 (1997).
[3] R.G. Gallager, D.C. Van Voorhis, Optimal source codes for geometrically distributed integer alphabets,

IEEE Trans. Inform. Theory March 1975 228–230.
[4] S.W. Golomb, Run length encodings IEEE Tran. Informat. Theory IT-12 (1966) 399–401.
[5] R. Hassan, A dichotomous search for a geometric random variable, Oper. Res. 32 (2) (1984) 423–439.
[6] D.A. Hu2man, A method for the construction of minimum-redundancy codes, Proc. IRE 40 (1952)

1098–1101.
[7] P. Humblet, Optimal source coding for a class of integer alphabets, IEEE Trans. Inform. Theory IT-24

(1) (1978) 110–112.
[8] F.K. Hwang, On)nding a single defective in binomial group testing, J. Amer. Statist. Assoc. 69 (345)

(1974) 146–150.
[9] A. Kato, Hu2man-like optimal pre)x codes and search codes for in)nite alphabets, Manuscript, January

20, 1997.
[10] A. Kato, Te Sun Han H. Nagaoka, Hu2man coding with an in)nite alphabet, IEEE Trans. Inform.

Theory 42 (3) (1996) 977–984.
[11] T. Linder, V. Tarokh, K. Zeger, Existence of optimal pre)x codes for in)nite source alphabets, IEEE

Trans. Inform. Theory 43 (6) (1997) 2026–2028.
[12] N. Merhav, G. Seroussi, M.J. Weinberger, Optimal pre)x codes for two-sided geometric distributions

(Abstract), Proc. Internat. Sympos. on Information Theory, 1997, p. 71.
[13] N. Merhav, G. Seroussi, M.J. Weinberger, Universal probability assignment in the class of two-sided

geometric distributions (Abstract), Proc. Internat. Symp. on Information Theory, 1997, p. 70.
[14] R. Sedgewick, Algorithms, Addison-Wesley, Reading, MA, 1983.
[15] Y.C. Yao, F.K. Hwang, On optimal nested group testing algorithms, J. Statist. Plann. Inference 24

(1990) 167–175.

