Optimal prefix-free codes that end in a specified
pattern and similar problems: the uniform
probability case (Extended Abstract) *

Mordecai J. Golin HyeonSuk Na
Dept. of Computer Science Dept. of Mathematics
HKUST, Clear Water Bay Postech, Korea

Kowloon, Hong Kong email: hsnaa@postech.ac.kr

email: golin@cs.ust.hk

Abstract

In this paper we discuss the problem of constructing minimum-cost,
prefix-free codes for equiprobable words under the assumption that all
codewords are restricted to belonging to an arbitrary language £. We
examine how, given certain types of £, the structure of the minimum-cost
code changes as n, the number of codewords, grows.

1 Introduction

We start with a quick review of basic definitions. Let ¥ be a finite alphabet, e.g.,
¥ ={0,1},or & = {a,b,c}. A codeis a set of words C = {wy, wq, ..., wy} C T*.
A word w = 0103...0; is a prefiz of another word w' = oj0;...0p if w is the
start of w'. For example 01 is a prefix of 010011. Finally, a code is said to be
prefiz-free if for all pairs w,w' € C, w is not a prefix of w'.

Let P = {p1, p2, D3, -.. , Pn} be a discrete probability distribution, that is,
Vi,0 < p; < 1 and 3 ;p; = 1. The cost of code C' with distribution P is
Cost(C, P) = 3, |w;|-p; where |w] is the length of word w; Cost(C, P) is therefore
the average length of a word under probability distribution P. The prefiz-coding
problem is, given P, to find a prefix-free code C that minimizes Cost(C, P). When
the codewords are equiprobable, i.e., Vi, p; = 1/n, then Cost(C, P) = 1 3, |w;]
and Cost(C, P) is minimized when Y, |w;| is minimized. We will call such a code
an optimal uniform-cost code.

*The work of both authors was partially supported by HK RGC CERG grants
HKUST6137/98E and HKUST6162/00E and HKUST DAG98/99.EG23.

1068-0314/01 $10.00 © 2001 IEEE 143

144

In this paper we are interested in what happens to the uniform-cost code
problem when it is restricted so that all of the words in C' must be contained in
some language £ C X*. Given a fixed £, what is the optimal (min-cost) code C,
containing n words in £? How does C, change with n? How does Cost(Cy,, P)
grow as a function of n?

The original problem that motivated us was a very simple one; the 1-ended
binary-code problem in which every word in C,, must end in a 1, i.e., £ = (1+0)*1.
This type of prefix-free code has recently garnered interest [1] [2] [3] because,
among other reasons, it can be used in the design of self-synchronizing codes. This
problem can be generalized to the examination of optimal prefix-free codes for all
L C ¥* that end with a specified pattern P, i.e., L = ¥* P. This generalization
seems to be quite difficult to solve (no one seems to know how difficult, though.
For example, it is unkown if it is NP-Hard). We therefore restricted ourselves
to the problem of finding optimal uniform cost prefix-free codes for these cases.
We found that the techniques developed for this problem will actually work for
a much wider range of languages, more specifically for all regular languages that
are accepted by a deterministic finite automaton (DFA) of a special class that
will be described in the next section. The answer to all of the questions above
will be shown to depend upon simple parameters of the DFA. That is, given a
language L, if we know a DFA M /- in our particular class that accepts £, we can
calculate parameters hpq » and dag C of M £, and, from these parameters, exactly
derive the structure of C;,, the optimal uniform-cost prefix-free code containing
n words such that C, C L.

In the next section we quickly review the definition of deterministic finite au-
tomatons and describe the special type of automatons that accept the languages
that we will be studying. In section 3 we describe a standard transformation
from prefix-free codes into trees, transform our prefix-free code problem into a
min-cost tree problem and then introduce some useful definitions. Section 4 then
states our main lemmas and theorems on tree structures.

Note: In this eztended abstract we omit the proofs of most of the lemmas and
theorems. The proofs can be found in the full version of this paper.

2 A Quick Introduction to DFAs

In this section we give a quick description of Deterministic Finite Automatons
(DFAs) and then describe the particular DFAs we will be interested in. Our
notation follows that of [5]. A DFA M is a 5-tuple (Q, go, F, Z, ¢) in which

o () is a finite set of states, gy € Q is the start state,
e F C Q is a distinguished set of final or accepting states,

e X is a finite input alphabet,

e ¢ is a function from Q x ¥ — @, called the transition function.

Informally M can be visualized as a directed graph whose nodes are the states
Q); there is one start node go and a set of accepting nodes, F. Every node ¢ has
|Z| directed edges leaving it, one labelled with each of the distinct characters of
3.

Let w = 0102...0r € I* be a word. The DFA starts in state gy and reads
the characters of w one at a time. Each time it reads a character, it follows the
edge labelled by that character from its current node to a new node. Let ¢ be
the state that M ends in after scanning all of w. w is accepted by M if and only
if ¢ € F. The language L, is the the set of all words accepted by M. It is known
that a language is regular if and only if it is accepted by some DFA.

It is also well known that given P € ¥*, there is a pattern matching DFA
with |P| + 1 states and only one final state that accepts the language £ = Z* P.
See [5] for details. (We note that this DFA can be easily modified to accept the
language £ = ¥* P¥* i.e., the language consisting of all words that contain P as
opposed to just those that end with P, by redirecting all edges leaving the final
state so that they point to itself). Figures 1 and 3 illustrate the DFAs accepting
the strings (0+1)*01 and (@ + b+ ¢)*abca, i.e., the languages of all words ending,
respectively, in 01 and abea.

Given a language £ and integer n, our goal will be to find the optimal uniform-
cost prefix free code with all n words in £. We will be able to do this for all
regular languages that are-accepted by a DFA that has only one final state and
also satisfies one other technical condition given in Section 3 (this non-degeneracy
condition is needed to guarantee that the number of words in the language grow
with the word size.) The regular languages satisfying this condition will include
the two types of languages just described; “all words ending with a given pattern
P,” and “all words containing a given pattern P”.

It will also contain another interesting large class. Suppose that ¥ = {ay,... ,ax}.
Let 71,... , 7% be asequence of nonnegative integers. Now set £ = (a]* +--- + a}*)".
There is a DFA with only one final state that accepts this language as well. Figure
2 gives the example of (00 + 111)* which has (r1,72) = (2, 3).

These languages, which we will call Varn languages, can all be accepted by
DFAs that satisfy the non-degeneracy condition in Section 3 so our result will
also characterize the optimal prefix-free codes restricted by this type of £.

We note that there is another interpretation of optimal codes over Varn Lan-
guages. Suppose that we are given k characters, aj, o, ..., 0 with unequal
lengths/costs such that the respective costs of the characters are ry,75...,7%.
The cost of a word over these characters is defined to be the sum of the lengths of
the characters in the word. The cost of a code is the sum of the costs of its code-
words. An equiprobable minimum-cost code with n words over these characters
is known as a Varn Code, hence Varn languages, and there is a large body of work
describing how to find Varn codes and their costs [4] [6] [7] [8] [9] [10]. By fixing

145

146

0
>® : é
® [s]
000 o001 o010 o1 100 o1 1I0 m
O \0/ - - R
1 - - - jang =

1 - =
(a) DFA M, with accepting (b) Infinite tree Tas, . The nodes
state S and X = {0,1}. in states A or B bad and those

in state S good.

Figure 1: M, accepts binary strings ending in '01’.

0
@\’\ 1

ly
S Sk
e

1

(a) DFA M, with ac- (b) Infinite tree Taq,.
cepting state S, ¥ =

{0,1} and sink state

H.

Figure 2: M, accepts the Varn language L = (00 + 111)".

(a) DFA M; with accepting state S and (b) Infinite tree Tass-
¥ ={a,b,c}.

Figure 3: Mj accepts stfings ending in 'abea’.

L as above we see that our results provide yet another complete characterization
for Varn codes with integral letter costs.

3 Definitions

It will be helpful to move our problem from the domain of codes to that of trees.
Let ¥ = {01,092, ... ,0k}, L C T* be a language and M a DFA that accepts £. In
what follows we will strongly use the assumption that M has only one final state.
Set Thy to be the rooted infinite r-ary tree such that: (i) the root corresponds
to the empty string; (ii) every node has k edges coming out of it with the i-th
edge being labelled by the letter o, € %; (iii) each node is labelled by the string
generated by traversing the path from the root to that node. (Figures 1(b), 2(b)
and 3(b) provide examples.)

There is then a one-to-one correspondence between the nodes and words in X*.
Let w € ©* and u € Ty its associated node. Define depth(u) to be the number
of edges in the path from the root to u. Then, by definition, depth(u) = |w|, the
number of letters in w.

In what follows we will identify node u with word w, e.g., when writing “u is
in £”, the intent is that “the word w corresponding to u is in £”. The state of
node u will be the state that M is in after reading w. Node u will be good if and
only if its associated string is accepted by M.

Definition 1 See Figure 4.

e Let T' C Th be a subtree that contains the root of Thy. The external path
length(EPL) or cost, C(T"), of T' is the sum of the depths of all leaves in
T’ that are good nodes.

o A rooted subtree T' C Tyy with n good leaves is called optimal if T' has the
minimal cost among all the subtrees of Thy having n good leaves. We use
T, to denote such a tree (in the case of there being many optimal trees with
n leaves, T, will denote some arbitrary one).

A word w' is a prefix of word w if and only if the corresponding node v’ is on
the path from the root of Ty to u. The good leaves of any subtree T’ therefore
correspond to some prefix-free set of codewords in £ with the EPL of the tree
equaling the sum of the codeword costs. Similarly, given a prefix-free code with
n words there is some (often many) tree(s) whose good leaves are exactly the
nodes corresponding to the codewords. Thus, the problem of finding the min
cost prefix-free code with n words is the same as that of finding an optimal tree
with n good leaves. This is the problem that we will actually be solving.

Figure 5 illustrates a sequence of optimal binary trees for the language con-
taining all words that end in 01. That is, if left edges are labelled with Os and

147

148

(a) T' (b) Ty

Figure 4: Two rooted subtrees of Ty, with 5 good leaves. C(T") =3+4+5+
5+6=23;,C(Ts) =2+ 3+3+4+4=16. It can be shown that Ty is optimal
for all trees with 5 good leaves.

right edges with 1s then the path from the root to every good leaf must end
with a left-edge, right-edge sequence. From this figure we note that sometimes
Th+1 can be constructed by simply greedily adding one unused good leaf to T,
but sometimes the construction actually requires deleting old nodes. Examining
the sequence of trees it seems as if there is some repetitive rule involved that
determines when we add nodes and when we delete them. Such a rule does exists
and depends upon M. Its derivation is the main result of this paper.

Definition 2 Let u,v be good nodes of Thy. v is the good parent of u if v is
an ancestor of u and there is no good node between w and v. If u has no good
ancestor then set the root to be goodparent(u).

Let v be an arbitrary good node of T. Consider the good children of v in Thy;
these are the good descendants of v whose closest good ancestor (travelling up
the tree) is v. Label the good children of v as u;, ug, us, - - - in order of increasing
depth, breaking ties arbitrarily. Let I; = depth(u;) — depth(v). Define

, L+l+---+1
Vi>e, g=dtetioth
1—1
Note that the values z; depend only upon M and not upon the particular starting
vertex v.

We can then prove (this is a generalization of a lemma in [4])

Lemma 1 There ezists dp (sz’mply d), such that
Za>x3> > T < Tap1 <. (If 22 < 23, then d =2.)

We will also need the following definitions:

Definition 3 For d and z4 defined in Lemma 1 set hyy = |z4] and A =
(d—1)(hpm+1) = (4 +---+1g). For M with d = 2, note that T4 = 1) +13 = hq.

Ti3- I depth

25 26 27 28 290 30 3 32 33 34 35 36 37 38 I 40

Figure 5: For M, this figure illustrates a sequence {T},} of optimal trees for 12 <"

n < 40. Left edges should be thought of as labelled with Os; right edges with 1s. M
accepts words that end with “01”. Starting with optimal tree 74, optimal trees T)3-T5
are constructed greedily by simply always adding the highest available good leaf. To
construct Thy, though, we must erase leaf 21, make leaf 2 internal and add its good
children 2', 21" and 22. To construct Tb3 we again simply add the highest available
unused good leaf. To construct Tb4, though, we need again to erase a good leaf, this
time 23, make 3 internal and add the new good leaves 3', 23’ and 24. Optimal trees
T5-Tyo are then constructed greedily. We see from this example that there are times
when the greedy strategy works and there are times when it is better to make a highest
good leaf internal by adding some good children of that node. These moments are
exactly when we move from Tngle to TLI9V¢_1l+1 and from THIFVH_I to TLIchl' (See
Definition 5.)

149

150

Definition 4 Let V be a set of nodes in Tpq and T' a rooied subtree of Thy.
o GLEAF(V) := {u is a good node in Tr | goodparent(u) € V,u & V},
o GLEAF,(V) is a set of r nodes of smallest depth in GLEAF(V),

For a set of nodes V, let |V| be the number of nodes in V. Let gV; :=
{u is a good node in Ty | depth(u) < i}. Given M and its corresponding tree
T, we say that M satisfies the Non-degeneracy Condition if there exists
Nas € N such that for YN > Ny,

e« if N<t<N+hp—1,
then |{u € GLEAF (gVn_1) | depth(u) = t}| > 2,

o ift> N+ hy
then [{u € GLEAF(gVy_1) | depth(u) = t}] > (d — 1).

This technical condition is needed in order to prove our results. If it does
not hold then an analogous, but somewhat messier result, can be proven. The
important fact for us is that

Lemma 2 The following three types of languages are all accepted by a DFA that
satisfies the non-degeneracy condition: all words that end with a given pattern P;
all words that contain a given pattern P; all Varn languages.

We point out that the value N4, in the Non-degeneracy Condition is very DFA
specific but can usually be calculated efficiently. We also point out that the
three types of languages listed in the lemma are not the only ones that satisfy
the condition; many others do as well. For example, the language £ C {0,1}*,
containing all words whose number of 1s is divisible by 2 and whose number of
Os is divisible by 3 is also accepted by a DFA with one final state that satisfies
the non-degeneracy condition and would therefore be covered by our result.

4 The Main result

In this section we state, without proof, our main result. Before starting we note
that, if M satisfies the non-degeneracy condition then, V¥t > N + 1, there exist
at least two good nodes on level ¢ so |gV;-.| < |gVi| and |gVi—1]| +1 < |gVi] — 1.

Now recall that hay = (z4). The next definition will depend upon whether
Zqg = hp oor z4 > hpg

Definition 5 Let M be a DFA with one final state that satisfies the non-degeneracy
condition. We define a sequence of pairs Ly, R,, as follows:
Casel: If x4 = hpq then

1. If, for somet, m = |gVi|:

Ly = |{u€ GLEAF(gV,1) |depth(u) <t +hn — 2},

Rm= |{u€GLEAF(gVi1)|depth(u) < t+hp— 1} +d—2.
2. Otherwise |gVi—1| +1 <m < |gVi] —1: Let o =m — |gVi-1] and set
L= |{u€ GLEAF(gViy UGLEAF ,(gVicr)) | depth(u) <t +ha — 1},
Rn= |{ueGLEAF(gVi1 U GLEAF,(gVie1)) | depth(u) < t+ hp — 1} +d-2.
Case2: If xq4 > haq then
1. If, for some t, m = |gV;_1| set:

L= |{ueGLEAF(gVior) |depth(u) < t+hp — 1} = A,
Ry = |{u€ GLEAF(gVi-1)|depth(u) <t+hm}t|+d—2—=du

2. Otherwise |gVi1|+1<m < |gVhl =1 Leto =m — lgVi1] and set
L= Hu & GLEAF(gVio) UGLEAF ;(gVi1)) | depth(u) < £+ ham} — Am
Rn= |{u€ GLEAF(gVies UGLEAF (gVs1)) | depth(u) <t +hu}l+d—2— An-

Lemma 3 Ym > |gVnul, Lm < Rn+1=Lnn.

This Lemma implies that, for each n > Ljgvy, |, there exists a, unique m such
that n € [Ly, Rm). We then define:

Definition 6 Let m, L, and R,, be as in Definition 5. For every m, define Wy,
and T" as follows:

e W,, is the set consisting of the root and m highest, i.e., smallest depth
non-root good nodes. :

o For Ly <n< Rm, T7=WnUGLEAF,(Wn)
This is important because of the following:
Theorem 1 Let n € [Ly, Ry). Then T} is optimal for n leaves.

Lemma 3 and Theorem 1 are the heart of our result (and require the majority of
the full paper to prove). They state that an optimal tree for n good leaves, and
therefore a minimum cost prefix-free code, can be found first by (i) calculating m
such that n € [Ly,, Ry, setting Wy, to be the set of the root and m highest good
nodes and then (ii) choosing the n highest good children of W, that are not in
W,,. These n good children will be the leaves of the optimal tree (and thus the
tree can be reconstructed from them).

152

It is beyond the scope of this extended abstract to show but, with this Lemma.
and Theorem in hand, we can, given £ and n, (a) derive a O(n) time algorithm
for constructing T and also (b) derive an exact closed formula T'(n) = C(T)
for the cost of the optimal trees/prefix-free codes as a function of n.

To recap, these results derive what we started out searching for, a combina-
torial description of the optimal uniform cost prefix-free codes/trees under the
assumption that the codewords must all end in an arbitrary pattern, P. By re-
casting our problem we showed that our analysis actually worked for a much
larger set of restrictions, e.g., when the codewords belong to any language £ that
is accepted by a certain subclass of DFAs. One obvious continuation of our inves-
tigations, and one that we are currently attempting, is to extend our analysis to
work for any L that is accepted by a DFA, i.e., to all regular languages £. This
will require additional techniques since our results until now have been strongly
dependent upon the fact that the accepting machine M has only one final state.

References

[1] T. Berger and R. W. Yeung, “Optimum “1”-ended Binary Prefix codes,” IEEE Trans-
actions on Information Theory, 36 (6) (Nov. 1990), 1435-1441.

[2] R. M. Capocelli, A. De Santis, and G. Persiano, “Binary Prefix Codes Ending in
a “1”.” IEEE Transactions on Information Theory, 40 (1) (Jul. 1994), 1296-1302.

[3] Chan Sze-Lok and M. Golin, “A Dynamic Programming Algorithm for Constructing
Optimal “1”-ended Binary Prefix-Free Codes,” IEEE Transactions on Information The-
ory, 46 (4) (July 2000) 1637-44.

[4] V. S.-N. Choi and Mordecai J. Golin, “Lopsided Trees I: Analyses,” To appear in
Algorithmica.

[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to
Algorithms, The MIT Press, (1990).

[6] Sanjiv Kapoor and Edward Reingold, “Optimum Lopsided Binary Trees,” Journal of
the Association for Computing Machinery, 36 (3) (July 1989) 573-590.

[7) Y. Perl, M. R. Garey, and S. Even. “Efficient Generation of Optimal Prefix Code:
Equiprobable Words Using Unequal Cost Letters,” Journal of the Association for Com-
puting Machinery, 22(2):202-214, April 1975.

[8] Serap A. Savari, “Some Notes on Varn Coding,” IEEE Transactions on Information
Theory, 40(1) (Jan. 1994) 181-186.

[9] Serap A. Savari, “A Probabilistic Approach to Some Asymptotics in Noiseless Com-
munications,” IEEE Transactions on Information Theory, 46(4) (July 2000) 1246-1262.

[10] B.F. Varn, “Optimal Variable Length Codes (Arbitrary Symbol Costs and Equal Code
Word Probabilities),” Informat. Contr., 19 (1971) 289-301

