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Abstract

We present an algorithm to reconstruct a collection of disjoint smooth closed curves from noisy
samples. Our noise model assumes that the samples are obtained by first drawing points on the
curves according to a locally uniform distribution followed by a uniform perturbation in the normal
directions. Our reconstruction is faithful with probability approaching 1 as the sampling density
increases.

1 Introduction

The combinatorial curve reconstruction problem has been extensively studied recently by computational

geometers. The input consists of sample points on a collection of unknown disjoint smooth closed curves

denoted byF . The problem calls for computing a set of polygonal curves that are provablyfaithful. That

is, as the sampling density increases, the polygonal curvesshould converge toF .

Several algorithms have been proposed in the geometric modeling and image processing literature

that achieve good experimental results. Fang and Gossard [11] proposed to fit a deformable curve by

minimizing some spring energy function. Dedieu and Favardin [4] described a method to order and

connect sample points on an unknown curve. Taubin and Ronfard [20] proposed to construct a mesh

covering the sample points and then extract a polygonal curve that fits the sample points. Pottmann and

Randrup [19] used a pixel-based technique to thin an input point cloud to a curve. This image thinning

technique can handle noise, but it is difficult to come up withan appropriate pixel size. Goshtasby [15]

obtained a reconstruction by tracing points that locally maximize a certain inverse distance function

involving the noisy sample points. The traced points form the reconstruction. Lee [16] proposed a
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variant of the moving least-squares method by Levin [17, 18]. Using a weighted regression, a new point

is computed for each noisy sample point such that the new points cluster around some curve. Then the

new points are decimated to produce a reconstruction. Although good experimental results are obtained

with the above methods, there is no guarantee on the faithfulness of the reconstruction.

Amenta, Bern, and Eppstein [2] obtained the first provably faithful curve reconstruction algorithm.

They proposed a2D crustalgorithm whose output is provably faithful if the input satisfies theǫ-sampling

condition for anyǫ < 0.252. For each pointx onF , the local feature sizef(x) at x is defined as the

distance fromx to the medial axis ofF . For 0 < ǫ < 1, a setS of samples is anǫ-sampling ofF if

for any pointx ∈ F , there exists a samples ∈ S such that‖s − x‖ ≤ ǫ · f(x) [2]. The algorithm by

Amenta, Bern, and Eppstein invokes the computation of a Voronoi diagram or Delaunay triangulation

twice. Gold and Snoeyink [14] presented a simpler algorithmthat invokes the computation of Voronoi

diagram or Delaunay triangulation only once. Later, Dey andKumar [6] proposed aNN-crustalgorithm

for this problem. Since we will use the NN-crust algorithm, we briefly describe it. For each samples

in S, connects to its nearest neighbor inS. Afterwards, if a samples is incident on only one edgee,

connects to the closest sample among all samplesu such thatsu makes an obtuse angle withe. The

output curve is faithful for anyǫ ≤ 1/3 [6]. Dey, Mehlhorn, and Ramos [7] proposed aconservative-

crustalgorithm to handle curves with endpoints. Funke and Ramos [12] proposed an algorithm to handle

curves that may have sharp corners and endpoints. Dey and Wenger [8, 9] also described algorithms

and implementation for handling sharp corners. Giesen [13]discovered that the traveling salesperson

tour through the samples is a faithful reconstruction, but this approach cannot handle more than one

curve. Althaus and Mehlhorn [1] showed that such a travelingsalesperson tour can be constructed in

polynomial time.

Noise often arises in collecting the input samples. For example, when the input samples are obtained

from 2D images by scanning. The noisy samples are typically classified into two types. The first type

are samples that cluster aroundF but they generally do not lie onF . The second type are outliers that lie

relatively far fromF . No combinatorial algorithm known so far can compute a faithful reconstruction

in the presence of noise. In this paper, we propose a method that can handle noise of the first type for

a set of disjoint smooth closed curves. We assume that the input does not contain outliers. We propose

a probabilistic model of noisy samples and prove that our reconstruction is faithful with probability

approaching 1 as the number of samples increases. For simplicity and notational convenience, we

assume throughout this paper thatminx∈F f(x) = 1 andF consists of a single smooth closed curve,

although our algorithm works whenF contains more than one curve.

We prove that our algorithm returns a reconstruction which is faithful with probability at least1 −
O(n

−Ω( lnω n
fmax

−1)
), wheren is the number of input samples,ω is an arbitrary positive constant, and

fmax = maxx∈F f(x). The novelty of our algorithm is a method to cluster samples so that each cluster

comes from a relatively flat portion ofF . This allows us to estimate new points that lie close toF .

We believe that this clustering approach will also be usefulfor recognizing non-smooth features. Our

strategy resembles Lee’s method [16] in spirit. But we use purely geometric operations to estimate new

points instead of optimizing a weighted regression.

The rest of the paper is organized as follows. Section 2 discusses our sampling and noise model.

Section 3 describes our algorithm. Section 4 states the maintheorem of this paper and gives an overview
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of the analysis leading to it. Section 5 introduces the basicnotations and some basic geometric lemmas.

In Sections 6–10, we give the detailed proofs. We conclude inSection 11 and discuss some related

problems, in particular, the problem of reconstructing surfaces from noisy samples.

2 Sampling and noise model

We use probabilistic sampling and noise models. A sample is generated by drawing a point fromF

followed by randomly perturbing the point in the normal direction. In a sense, it models the location

of points on the curve by an input device, followed by perturbation due to noise. LetL =
∫

F
1

f(x)dx.

The drawing of points fromF follows the probability density function 1
L·f(x) . That is, the probability of

drawing a point from a curve segmentη is equal to
∫

η
1

f(x)dx divided byL. This is known as thelocally

uniform distribution. The distribution of each sample is independently identical.

A point p drawn fromF is perturbed in the normal direction. The perturbation is uniformly dis-

tributed within an interval that hasp as the midpoint, width2δ, and aligns with the normal direction at

p. Thusδ models the noise amplitude. Note that the noise amplitudeδ remains fixed regardless of the

number of points drawn fromF . Although the noise perturbation is restrictive, it isolates the effect of

noise from the sampling distribution which allows an initial study of noise handling. It seems necessary

that δ is less than 1. Otherwise, as the minimum local feature size is 1, the perturbed points from dif-

ferent parts ofF will mix up at some place and it seems very difficult to estimate the unknown curve

F around that neighborhood. For our analysis to work, we assume thatδ ≤ 1/(25ρ2) whereρ ≥ 5

is a constant chosen a priori by our algorithm. We emphasize that the value ofδ is unknown to our

algorithm.

One may consider other sampling distributions. A more restrictive model is theuniform distribution,

in which the probability of drawing a point from a curve segment η is equal to length(η)
length(F ) . This model is

attractive because it is natural to sample in a uniform fashion in the absence of any information about the

local feature sizes. Despite the apparent difference, the locally uniform distribution is strongly related

to the uniform distribution which can be seen as follows. When η is short, the Lipschitz property of

the local feature sizes implies that the probability of drawing a point fromη in the locally uniform

model isΘ(

R

η dx

L·f(c)) for any pointc ∈ η. This is equivalent toΘ( length(η)
L·f(c) ). If we treatL andlength(F )

as intrinsic constants forF , the probabilities of sampling in the locally uniform distribution and the

uniform distribution differ only by a factor of local feature size. Thus our analysis for the locally uniform

distribution can be adapted easily for the uniform distribution case, basically by slashing off a factor of

local feature size. In particular, the reconstruction is faithful with probability at least1−O(n−Ω(lnω n−1))

instead of1 −O(n
−Ω( lnω n

fmax
−1)

).

Our algorithm and analysis do not make use of any estimation of local feature sizes. This is demon-

strated by the fact that our analysis can be adapted to the uniform distribution case as briefly explained

above. Our algorithm constructs a small neighborhood around each noisy sample, and from this small

neighborhood, one can extract upper and lower bounds on the local feature size. However, the two

bounds differ by a factor that tends to infinity as the sampling density increases. So the small neigh-

borhood does not offer any reliable estimation of the local feature size. (We will elaborate on this point

when we describe our algorithm.) In fact, we do not know how toobtain such estimation in the presence
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Figure 1: The left figure shows the noisy samples. The middle figure shows the new points computed.

The right figure shows the remaining points after pruning.

of noise, without effectively solving the reconstruction problem first. After solving the reconstruction

problem, one may possibly estimate the local feature sizes using the Voronoi diagram of the reconstruc-

tion as an approximation of the medial axis. This is beyond the scope of this paper though.

3 Algorithm

Our algorithm consists of three main steps, POINT ESTIMATION, PRUNING, and OUTPUT. In the POINT

ESTIMATION step, the algorithm filters out the noise and computes new points that are provably much

less noisy than the input samples. Since the sampling density is high, the distances of these new points

from F can still be much larger than the distances among them. Thus adirect reconstruction using

all of the new points would produce a highly jagged polygonalcurve. As a remedy, in the PRUNING

step, the algorithm decimates the points so that the interpoint distances in the pruned subset is large

relative to their distances fromF . See Figure 1. Finally, in the OUTPUT step, we can run any provably

good combinatorial curve reconstruction algorithm. We choose to run NN-crust [6]. The following

pseudocode gives a high level description of the above threesteps and more details of the pruning step.

For each pointx ∈ R
2 that does not lie on the medial axis ofF , we usex̃ to denote the point onF

closest tox. That is,x̃ is the projection ofx ontoF . (We are not interested in points on the medial axis.)

POINT ESTIMATION : For each samples, we construct a thin rectanglerefined(s). The

long axis ofrefined(s) passes throughs and its orientation approximates the normal

at s̃. The center ofrefined(s) is the new points∗ desired. The distance‖s∗ − s̃‖
approaches zero asn→ ∞.

PRUNING: We sort the pointss∗ in decreasing order ofwidth(refined(s)). Then we scan

the sorted list and select a subset of center points: when we select the current center

point s∗, we delete all center pointsu∗ from the sorted list such that‖s∗ − u∗‖ ≤
width(refined(s))1/3.

OUTPUT: We run the NN-crust algorithm on the selected center pointsand return the out-

put curve.

The main objective of POINT ESTIMATION is to align the long axis ofrefined(s) with the normal

at s̃. This is instrumental to proving that‖s∗ − s̃‖ approaches zero asn → ∞. The construction of

refined(s) is done in three steps. We give a highlight first before providing the details.

First, we compute a small diskinitial(s) centered ats. We prove upper and lower bounds on the

radius ofinitial(s), but their ratio isΘ( n1/4

ln(1+ω)/4 n
) which tends to infinity asn → ∞. So initial(s)

does not provide a reliable estimate off(s̃). Second, we grow the disk neighborhood arounds until
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the samples inside the disk fit inside a strip whose width is small relative to the radius of the disk. The

final disk is thecoarse neighborhoodof s and it is denoted bycoarse(s). The radius ofcoarse(s) is in

the order ofδ + radius(initial(s)). The orientation of the strip approximates the tangent ats̃. SinceF

can bend quite a lot withincoarse(s), the approximation error may be in the order ofsin−1 δ. Thus an

improved estimate is needed. Third, we shrinkcoarse(s) to a smaller disk. We take a slab perpendicular

to strip(s) bounded by two parallel tangent lines of the shrunken disk. We rotate the slab arounds to

minimize the spread of the samples inside along the direction of the slab. Because of the minimization

of the spread of samples inside, we can show that the orientation of the final slab approximates the

normal at̃s well.

We provide the details of the three steps in POINT ESTIMATION below. Letω > 0 andρ ≥ 5 be

two predefined constants.

INITIAL DISK : We compute a diskD centered ats that containsln1+ω n samples. Then we

set initial(s) to be the disk centered ats with radius
√

radius(D). For sufficiently

large n, the radius ofD is less than 1, which implies thatinitial(s) containsD.

Figure 2 shows an illustration.

COARSE NEIGHBORHOOD: We initialize coarse(s) = initial(s) and compute an infinite

strip strip(s) of minimum width that contains all samples insidecoarse(s). We grow

coarse(s) and maintainstrip(s) until radius(coarse(s))
width(strip(s)) ≥ ρ. The final diskcoarse(s)

is thecoarse neighborhoodof s. Figure 2 illustrates the growth process.

REFINED NEIGHBORHOOD: Let Ns be the upward direction perpendicular tostrip(s).

The candidate neighborhoodcandidate(s, θ) is the slab that containss in the mid-

dle and makes a signed acute angleθ with Ns. The width ofcandidate(s, θ) is equal

to the minimum of
√

radius(initial(s)) and radius(coarse(s))/3. The angleθ is

positive (resp., negative) if it is on right (resp., left) ofNs. Figure 3 shows the initial

candidate neighborhood that is perpendicular tostrip(s). We enclose the samples in

candidate(s, θ)∩coarse(s) by two parallel lines that are orthogonal to the direction of

candidate(s, θ). These two lines form a rectanglerectangle(s, θ) with the boundary

lines ofcandidate(s, θ). The width ofrectangle(s, θ) is the width ofcandidate(s, θ).

The height ofrectangle(s, θ) is its length along the direction ofcandidate(s, θ). We

varyθ within the range[−π/10, π/10] to find an orientation that minimizes the height

of rectangle(s, θ). Figure 3 illustrates the rotation and the bounding rectangle. Let

θ∗ be the minimizing angle. Therefined neighborhoodof s is rectangle(s, θ∗) and is

denoted byrefined(s). We return the center points∗ of refined(s).

A few remarks are in order. Recall thatminx∈F f(x) is assumed to be 1. For sufficiently large

n (i.e., when the sampling is dense enough), the radius ofinitial(s) is less than 1. So in the RE-

FINED NEIGHBORHOODstep,
√

radius(initial (s)) > radius(initial(s)). Clearly,coarse(s) contains

initial(s). So the width ofcandidate(s, θ) andrefined(s) is at leastradius(initial(s))/3 and at most
√

radius(initial(s)) < 1.
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Figure 2: On the left, the white dot is the samples, the inner disk isD, and the outer disk isinitial(s).

On the right, we growinitial(s) until strip(s) has a relatively large aspect ratio. The final disk is

coarse(s).

Ns

Figure 3: On the left, the initial candidate neighborhood isthe one perpendicular tostrip(s). On the

right, as we rotate the candidate neighborhood, we maintainthe smallest bounding rectangle of all

samples inside.

4 Overview of analysis

Our goal is to prove the following result:

Main Theorem Assume thatδ ≤ 1/(25ρ2) andρ ≥ 5. Letn be the number of noisy samples from

a smooth closed curve. For sufficiently largen, our algorithm computes a polygonal closed curve that

has the following properties with probability at least1 −O(n
−Ω( lnω n

fmax
−1)

).

• For each output vertexs∗, ‖s∗ − s̃‖ = O(( ln1+ω n
n )1/8f(s̃)1/4).

• For each output edger∗s∗, the angle betweenr∗s∗ and the tangent at̃s isO(( ln1+ω n
n )1/48f(s̃)25/24).

• The output curve is homeomorphic to the smooth closed curve.

We first give an overview of the proof strategies here before diving into details later. The hardest

part is to argue that the points∗ that we estimate for the samples indeed lies very closely to the curve.

To illustrate the intuition, we assume that the curve is a flathorizontal segment locally at̃s. See Fig-

ure 4(a). So the noisy samples in the local neighborhood lie within a bandB of width 2δ. Thus the

final coarse(s) must have radiusΘ(ρδ + radius(initial (s))) in order to meet the stopping criterion of

growing coarse(s). Next, we would like to argue that the slope ofstrip(s) approximates the slope of
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Figure 4: The left figure showscoarse(s), the noise bandB, andF . In the middle figure, the bold strip

is strip(s) and the shaded area is the significant area ofB outsidestrip(s). The shaded area should be

non-empty with high probability. In the right figure, the shaded rectangle is the candidate rectangle.

the tangent at̃s. We prove this by contradiction and assume thatstrip(s) is tilted a lot. So a significant

area ofB lies outsidestrip(s) as shown in Figure 4(b). Our goal is to show that this area contains a

noisy sample with high probability. Therefore, with high probability, strip(s) cannot be much tilted

from the horizontal.

Directly discussing the emptiness of an arbitrary area (whether it contains a noisy sample or not) is

quite hard given the continuous distributions. We get around this by decomposing the space aroundF

into small cells. Since the cells have more regular shape, wecan show that each cell is non-empty with

high probability and we can also bound the diameters of the cells. The cell diameter approaches zero as

the sampling density increases. The bound on the cell diameter enables us to show that the area ofB

outsidestrip(s) in Figure 4(b) contains a cell. So the area contains a noisy sample with high probability.

The next step is to construct the refined neighborhood ofs so as to obtain an improved estimate

of the normal at̃s. This is done by rotating a candidate rectangle to minimize its height. See Fig-

ure 4(c). The width of the candidate rectangle is set to be theminimum of
√

radius(initial(s)) and

radius(coarse(s))/3. Clearly, we want the width to be small in order to generate a large variation in the

height even when we have a small angular deviation from the normal ats̃. In fact, we want to show that

radius(initial (s)) approaches zero as the sampling density increases. Recall thatinitial(s) is generated

by identifying theln1+ω n nearest samples tos. We are to show that the number of samples inside a cell

is at leastln1+ω n with high probability. Thusradius(initial(s)) is no more than the cell diameter. In

Figure 4(c), when we rotate the candidate rectangle, its upper and lower sides may invade the interior of

the bandB. This is because there may not be any noisy sample on the band boundary. Still, we want to

keep the upper and lower sides of the candidate rectangle near the band boundary, otherwise we would

not have a big increase in height despite the angular deviation from the normal at̃s. Fortunately, as

the cells are non-empty with high probability, the gaps between the upper and lower sides and the band

boundary must be too narrow for a single cell to fit in.

We have not discussed one important phenomenon so far. Sinceδ is unknown, it may be arbitrar-

ily small. In this case,radius(coarse(s)) is only lower bounded byradius(initial (s)) as we grow
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coarse(s) from initial(s). Thus we need to establish a lower bound onradius(initial (s)), and hence

radius(coarse(s)). We construct another decomposition of the space aroundF into slabs. Then by

upper bounding the number of samples in each slab, we can lower boundradius(initial(s)) by the slab

“width”.

The decompositions of the space aroundF into cells and slabs are introduced in Section 6. The

detailed proofs for the radii bound ofinitial(s) andcoarse(s), and the angular error betweenstrip(s)

and the tangent at̃s are given in Section 7. In Section 8, we give the detailed proof for the angular error

between the long axis ofrefined(s) and the normal at̃s, and then we bound‖s∗ − s̃‖. In Section 9, we

obtain the homeomorphism result by extending the NN-crust analysis. In Section 10, we put everything

together to prove the Main Theorem.

5 Notations and preliminaries

We call the bounded region enclosed byF the insideof F and the unbounded region theoutsideof F .

For 0 < α ≤ δ, F+
α (resp.,F−

α ) is the curve that passes through the pointsq outside (resp., inside)F

such that‖q − q̃‖ = α. We useFα to meanF+
α or F−

α when it is unimportant to distinguish between

inside and outside.F can be visualized as the boundary of the union of the medial disks enclosed byF .

If we increase the radii of all such medial disks byα, F+
α is the boundary of the union of the expanded

disks.F−
α has a similar interpretation after decreasing the radii of all such medial disks byα. It follows

thatF andFα have the same medial axis.

Thenormal segmentat a pointp ∈ F is the line segment consisting of the pointsq on the normal

of F at p such that‖p − q‖ ≤ δ. Given two pointsx andy onF , we useF (x, y) to denote the curved

segment traversed fromx to y in clockwise direction. We use|F (x, y)| to denote the length ofF (x, y).

The following are some technical lemmas on some geometric properties ofFα. Their proofs can

be found in the appendix. Lemma 5.1 lower bounds the radius ofthe tangent disk at any point onFα.

Lemma 5.2 shows that a small neighborhood of a pointp onFα is flat enough to fit inside a double cone

at p with small aperture. Lemma 5.3 proves the small normal variation between two nearby points on

Fα.

Lemma 5.1 Any pointp onFα has two tangent disks with radiif(p̃)−α whose interior do not intersect

Fα.

For each pointp on Fα, take the double cone of pointsq such thatpq makes an angle(π − θ)/2

or less with the support line of the normal atp. We denote the complement of this double cone by

cocone(p, θ). Note thatcocone(p, θ) is a double cone with apexp and angleθ.

Lemma 5.2 Letp be a point onFα. LetD be a disk centered atp with radius less than2(1 − α)f(p̃).

(i) For any pointq ∈ Fα ∩D, the distance ofq from the tangent atp is at most ‖p−q‖2

2(1−α)f(p̃) .

(ii) Fα ∩D ⊆ cocone(p, 2 sin−1 radius(D)
2(1−α)f(p̃)).
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Lemma 5.3 Let p be a point onFα. LetD be a disk centered atp with radius at most(1−α)f(p̃)
4 . For

any pointu ∈ Fα ∩D, the acute angle between the normals atp andu is at most2 sin−1 ‖p−u‖
(1−α)f(p̃) ≤

2 sin−1 radius(D)
(1−α)f(p̃) .

6 Decompositions

We will use two types of decompositions,β-partition andβ-grid. Let 0 < β < 1 be a parameter. We

identify a set ofcut-pointsonF as follows. We pick an arbitrary pointc0 onF as the first cut-point. Then

for i ≥ 1, we find the pointci such thatci lies in the interior ofF (ci−1, c0), |F (ci−1, ci)| = β2f(ci−1),

and |F (ci, c0)| ≥ β2f(ci). If ci exists, it is the next cut-point and we continue. Otherwise,we have

computed all the cut-points and we stop. Theβ-partition is the arrangement ofF+
δ , F−

δ , and the normal

segments at the cut-points. Figure 5 shows an example. We call each face of theβ-partition aβ-slab.

Theβ-partition consists of a row of slabs stabbed byF .

F

}c1
c2 c3 c4

β
2

Fδ
−

+Fδ

c3f ( )

Figure 5:β-partition.

The cut-points for aβ-grid are picked differently. We pick an arbitrary pointc0 onF as the first cut-

point. Then fori ≥ 1, we find the pointci such thatci lies in the interior ofF (ci−1, c0), |F (ci−1, ci)| =

βf(ci−1), and|F (ci, c0)| ≥ βf(ci). If ci exists, it is the next cut-point and we continue. Otherwise,we

have computed all the cut-points and we stop. Theβ-grid is the arrangement of the following:

• The normal segments at the cut-points.

• F , F+
δ , andF−

δ .

• F+
α andF−

α whereα = iβδ andi is an integer between 1 and⌊1/β⌋ − 1.

Theβ-grid has a grid structure. Figure 6 shows an example. We calleach face of theβ-grid aβ-cell.

There areO(1/β) rows of cells “parallel to”F .

Given aβ-partition, we claim that for every consecutive pairs of cut-pointsci−1 andci, β2f(ci−1) ≤
|F (ci−1, ci)| ≤ 3β2f(ci−1). For almost all consecutive pairs of cut-pointsci−1 andci, |F (ci−1, ci)| =

β2f(ci−1) by construction. The last pairck andc0 constructed may be an exception. We know that

|F (ck, c0)| ≥ β2f(ck). When we try to placeck+1, we find that|F (ck+1, c0)| < β2f(ck+1). So

|F (ck, c0)| ≤ β2f(ck) + β2f(ck+1). By the Lipschitz condition,f(ck+1) ≤ f(ck) + ‖ck − ck+1‖ ≤
f(ck) + β2f(ck). Thus|F (ck, c0)| ≤ (2β2 + β4)f(ck) ≤ 3β2f(ck).
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−

Fδ

f(c  )3

F

}

}

βδ

c1
c2 c3 c4

β

Fδ

+

Figure 6:β-grid.

Similarly, given aβ-grid, we can show that for every consecutive pairs of cut-points ci−1 andci,

βf(ci−1) ≤ |F (ci−1, ci)| ≤ 3βf(ci−1).

In Section 6.1, we bound the diameter of aβ-cell. In Section 6.2, we lower bound the width of

a β-slab. In Section 6.3, we analyze the probabilities of someβ-slabs andβ-cells containing certain

numbers of samples.

6.1 Diameter of aβ-cell

We need a technical lemma before proving an upper bound on thediameter of aβ-cell.

Lemma 6.1 Assume thatβ ≤ 1/12. Let p and q be two points onFα such that|F (p̃, q̃)| ≤ 3βf(p̃).

Then‖p− q‖ ≤ ‖p̃ − q̃‖ + 7βδ.

Proof. Refer to Figure 7. Letr be the pointq − q̃ + p̃. Without loss of generality, assume that

∠p̃pr ≤ ∠p̃rp. Lemma 5.3 implies that∠pp̃r ≤ 2 sin−1 3β. Therefore,∠p̃rp ≥ π/2 − sin−1 3β. By

α

+1c

p

~

r q

~p qci

F

F
i

Figure 7: Illustration for Lemma 6.1.

sine law,‖p− r‖ = ‖p−p̃‖·sin∠pp̃r
sin∠p̃rp ≤ δ sin(2 sin−1 3β)

cos(sin−1 3β)
. Note thatsin(2 sin−1 3β) ≤ 2 sin(sin−1 3β) = 6β

and sinceβ ≤ 1/12, cos(sin−1 3β) ≥ cos(sin−1(1/4)) > 0.9. So‖p − r‖ ≤ 6βδ/(0.9) < 7βδ. By

triangle inequality, we get‖p − q‖ ≤ ‖q − r‖ + ‖p − r‖ = ‖p̃− q̃‖ + ‖p− r‖ < ‖p̃ − q̃‖ + 7βδ.

Lemma 6.2 Assume thatβ ≤ 1/12 and δ < 1. Let C be anyβ-cell that lies between the normal

segments at the cut-pointsci andci+1. Then the diameter ofC is at most14βf(ci).

Proof. Let s andt be two points inC. Let p be the projection ofs towardss̃ onto a side ofC. Similarly,

let q be the projection oft towardst̃ onto the same side ofC. Note thatp̃ = s̃ andq̃ = t̃. The triangle

10



inequality and Lemma 6.1 imply that

‖s− t‖ ≤ ‖p− q‖ + ‖p − s‖ + ‖q − t‖
≤ ‖p̃− q̃‖ + 7βδ + ‖p− s‖ + ‖q − t‖.

Since‖p̃ − q̃‖ = ‖s̃ − t̃‖ ≤ 3βf(ci) and both‖p − s‖ and‖q − t‖ are at most2βδ, the diameter ofC

is at most3βf(ci) + 11βδ ≤ 14βf(ci).

6.2 Slab width

The next lemma lower bounds the width of slab in aβ-partition.

Lemma 6.3 Assume thatδ ≤ 1/8 andβ ≤ 1/6. Let ci and ci+1 be two consecutive cut-points of a

β-partition. For any point on the normal segment atci+1 (resp.,ci), its distance from the support line of

the normal segment atci (resp.,ci+1) is at least|F (ci, ci+1)|/6.

Proof. Assume that the normal atci is vertical. Take any two pointsp, q ∈ Fα such that̃p = ci and

q̃ = ci+1. We first bound the distance fromq to the support line of the normal segment atci. The same

approach also works for the distance fromp to the support line of the normal segment atci+1.

Let r be the orthogonal projection ofq onto the tangent toFα at p. Observe that the distance of

q from the support line of the normal segment atci is ‖p − r‖. We are to prove that‖p − r‖ ≥
|F (ci, ci+1)|/6. For any pointx ∈ Fα(p, q), we useθx to denote the angle between the normals at

x̃ andci. By Lemma 5.3, we haveθx ≤ 2 sin−1 ‖ci−x̃‖
f(ci)

. Sincex̃ ∈ F (ci, ci+1), we have‖ci − x̃‖ ≤
|F (ci, x̃)| ≤ |F (ci, ci+1)|. Thusθx ≤ 2 sin−1 |F (ci,ci+1)|

f(ci)
. By our assumption onβ, |F (ci,ci+1)|

f(ci)
≤ 3β2 ≤

1/12. It follows thatsin−1 |F (ci,ci+1)|
f(ci)

< 2|F (ci,ci+1)|
f(ci)

. Therefore,

θx ≤ 4|F (ci, ci+1)|
f(ci)

(1)

≤ 12β2. (2)

This implies thatFα(p, q) is monotone along the tangent toFα at p; otherwise, there is a pointx ∈
Fα(p, q) such thatθx = π/2 > 12β2, a contradiction. It follows thatF (ci, ci+1) is also monotone along

the tangent toF at ci. Refer to Figure 8. Assume thatp lies belowci, andq lies to the right ofp. Let r′

be the orthogonal projection ofci+1 onto the tangent toF atci. The monotonicity ofF (ci, ci+1) implies

that

‖ci − r′‖ =

∫

F (ci,ci+1)
cos θx dx

(2)

≥ |F (ci, ci+1)| · cos(12β2) > 0.8|F (ci, ci+1)|,

as cos(12β2) > cos(0.5) > 0.8. Let d be the horizontal distance betweenr and r′. Observe that

d = ‖ci+1 − q‖ · sin θq ≤ δθq, which is at most4δ|F (ci, ci+1)| by (1). We conclude that

‖p− r‖ ≥ ‖ci − r′‖ − d

≥ (0.8 − 4δ)|F (ci, ci+1)|
δ≤1/8
>

|F (ci, ci+1)|
4

.

11
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Figure 8: Illustration for Lemma 6.3.

This lower bounds the distance fromq to the support line of the normal segment atci.

Let dp be the distance fromp to the support line of the normal segment atci+1. We can use the

same approach to lower bounddp. The only difference is that for any pointx ∈ Fα(p, q), the angleφx
between the normals atx̃ andci+1 satisfies

φx ≤ 2 sin−1 |F (ci, ci+1)|
f(ci+1)

.

Note that the denominator isf(ci+1) instead off(ci) in (1). Nevertheless, by the Lipschitz condition,

f(ci+1) ≥ f(ci)− ‖ci − ci+1‖ ≥ f(ci)− |F (ci, ci+1)| ≥ (1− 3β2)f(ci), which is at least11f(ci)/12

as3β2 ≤ 1/12. Therefore,

φx ≤ 2 sin−1 12|F (ci, ci+1)|
11f(ci)

≤ 2 · 24|F (ci, ci+1)|
11f(ci)

<
5|F (ci, ci+1)|

f(ci)
≤ 15β2.

Observe thatφx ≤ 15β2 < π/2. SoFα(p, q) andF (ci, ci+1) are monotone along the tangents toFα
at q andF at ci+1, respectively. Also,cosφx ≥ cos(15β2) ≥ cos(0.5) > 0.8. Hence, by imitating the

previous derivation of the lower bound of‖p− r‖, we obtain

dp ≥ (0.8 − 5δ)|F (ci, ci+1)|
δ≤1/8
>

|F (ci, ci+1)|
6

.

6.3 Number of samples in cells and slabs

We first need a lemma that estimates the probability of a sample point lying inside certainβ-cells and

β-slabs.

Lemma 6.4 Letλk =
√

k2 ln1+ω n
n for some positive constantk. Letr ≥ 1 be a parameter. LetC be a

(λk/r)-slab or(λk/r)-cell. Lets be a sample. There exist constantsκ1 andκ2 such that ifn is so large

thatλk ≤ 1/6, thenκ2λ
2
k/r

2 ≤ Pr(s ∈ C) ≤ κ1λ
2
k/r

2.
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Proof. Recall thatL =
∫

F
1

f(x)dx. Assume thatC lies between the normal segments at the cut-points

ci andci+1. We useη to denoteF (ci, ci+1) as a short hand. By our assumption onλk, for any point

x ∈ η, if C is aλk-cell, then‖x − ci‖ ≤ 3λkf(ci)/r ≤ f(ci)/2; if C is aλk-slab, then‖x − ci‖ ≤
3λ2

kf(ci)/r
2 ≤ f(ci)/12. The Lipschitz condition implies thatf(ci)/2 ≤ f(x) ≤ 3f(ci)/2. If C is a

λk-slab, thenPr(s ∈ C) = Pr(s̃ lies onη), which is 1
L ·

∫

η
1

f(x)dx ∈ [
2λ2

k
3Lr2

,
6λ2

k
Lr2

]. If C is λk-cell, then

Pr(s̃ lies onη) = 1
L ·

∫

η
1

f(x)dx ∈ [ 2λk
3Lr ,

6λk
Lr ]. SincePr(s ∈ C | s̃ lies onη) ∈ [λkδ

2δr ,
2λkδ
2δr ] = [λk

2r ,
λk
r ],

Pr(s ∈ C) ∈ [
λ2

k
3Lr2

,
6λ2

k
Lr2

].

The following Chernoff bound [10] will be needed.

Lemma 6.5 Let the random variablesX1,X2, . . . ,Xn be independent, with0 ≤ Xi ≤ 1 for each

i. Let Sn =
∑n

i=1Xi, and letE(Sn) be the expected value ofSn. Then for anyσ > 0, Pr(Sn ≤
(1 − σ)E(Sn)) ≤ exp(−σ2E(Sn)

2 ), andPr(Sn ≥ (1 + σ)E(Sn)) ≤ exp(− σ2E(Sn)
2(1+σ/3) ).

We are ready to analyze the probabilities of someβ-slabs andβ-cells containing certain numbers of

samples.

Lemma 6.6 Letλk =
√

k2 ln1+ω n
n for some positive constantk. Letr ≥ 1 be a parameter. LetC be a

(λk/r)-slab or(λk/r)-cell. Letκ1 andκ2 be the constants in Lemma 6.4. Whenevern is so large that

λk ≤ 1/6, the following hold.

(i) C is non-empty with probability at least1 − n−Ω(lnω n/r2).

(ii) Assume thatr = 1. For any constantκ > κ1k
2, the number of samples inC is at mostκ ln1+ω n

with probability at least1 − n−Ω(lnω n).

(iii) Assume thatr = 1. For any constantκ < κ2k
2, the number of samples inC is at leastκ ln1+ω n

with probability at least1 − n−Ω(lnω n).

Proof. Let Xi(i = 1, . . . , n) be a random binomial variable taking value 1 if the sample point si is

insideC, and value 0 otherwise. LetSn =
∑n

i=1Xi. ThenE(Sn) =
∑n

i=1E(Xi) = n · Pr(si ∈ C).

This implies that

E(Sn) ≤
κ1nλ

2
k

r2
=
κ1k

2 ln1+ω n

r2
, E(Sn) ≥

κ2nλ
2
k

r2
=
κ2k

2 ln1+ω n

r2
.

By Lemma 6.5,

Pr(Sn ≤ 0) = Pr(Sn ≤ (1 − 1)E(Sn))

≤ exp(−E(Sn)

2
)

≤ exp(−Ω(
ln1+ω n

r2
)).

Consider (ii). Letσ = κ
κ1k2 − 1 > 0. Sincer = 1, we have

κ ln1+ω n = κ1nλ
2
k(1 + σ) ≥ (1 + σ)E(Sn).

13



By Lemma 6.5,

Pr(Sn > κ ln1+ω n) ≤ Pr(Sn > (1 + σ)E(Sn))

≤ exp(−σ
2E(Sn)

2 + 2σ/3
)

= exp(−Ω(ln1+ω n)).

Consider (iii). Letσ = 1 − κ
κ2k2 > 0. Sincer = 1, we have

κ ln1+ω n = κ2nλ
2
k(1 − σ) ≤ (1 − σ)E(Sn).

By Lemma 6.5,

Pr(Sn < κ ln1+ω n) ≤ Pr(Sn < (1 − σ)E(Sn))

≤ exp(−σ
2E(Sn)

2
)

= exp(−Ω(ln1+ω n)).

7 Coarse neighborhood

In this section, we bound the radii ofinitial(s) andcoarse(s) for each samples. Then we show that

strip(s) provides a rough estimate of the slope of the tangent toF at s̃. Recall thatλk =
√

k2 ln1+ω n
n .

7.1 Radius ofinitial(s)

Lemma 7.1 Leth be a constant less than
√

1
3κ1

and letm be a constant greater than
√

2
κ2

, whereκ1

andκ2 are the constants in Lemma 6.4. Letψh = λh/3 andψm =
√

14λm. Let s be a sample. If

δ ≤ 1/8, λh ≤ 1/12, andλm ≤ 1/12, then

ψh
√

f(s̃) ≤ radius(initial(s)) ≤ ψm
√

f(s̃)

with probability at least1 −O(n−Ω(lnω n)).

Proof. LetD be the disk centered ats that containsln1+ω samples. We first prove the upper bound. Take

aλm-grid such thats lies on the normal segment at the cut-pointc0. LetC be theλm-cell between the

normal segments atc0 andc1 that containss. By Lemma 6.6(iii),C contains at least2 ln1+ω n samples

with probability at least1 − n−Ω(lnω n). SinceD containsln1+ω n samples,radius(D) is less than the

diameter ofC with probability at least1 − n−Ω(lnω n). By Lemma 6.2,radius(D) ≤ 14λmf(c0) =

14λmf(s̃). It follows thatradius(initial(s)) =
√

radius(D) ≤
√

14λmf(s̃).

Next, we prove the lower bound. Take aλh-partition such thats lies on the normal segment at the

cut-point c0. Consider the cut-pointscj for −1 ≤ j ≤ 1. (We usec−1 to denote the last cut-point
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picked.) We have‖c−1 − c0‖ ≤ |F (c−1, c0)| ≤ 3λ2
hf(c−1) < 0.03f(c−1) asλh ≤ 1/12. The Lipschitz

condition implies that

f(c−1) ≥ f(c0)/1.03 > 0.8f(c0). (3)

Let d−1 andd1 be the distances froms to the support lines of the normal segments atc−1 and c1,

respectively. By Lemma 6.3,

d−1 ≥ |F (c−1, c0)|
6

≥ λ2
hf(c−1)

6

(3)
>
λ2
hf(c0)

8
,

d1 ≥ |F (c0, c1)|
6

≥ λ2
hf(c0)

6
.

By Lemma 6.6(ii), theλh-slabs betweenc−1 andc0 and betweenc0 andc1 contain at mostln1+ω n/3

points with probability at least1−O(n−Ω(lnω n)). Hence, forD to containln1+ω n points,radius(D) >

max{d−1, d1} ≥ λ2
hf(c0)/6. Note thatf(s̃) = f(c0) as s̃ = c0 by construction. It follows that

radius(initial (s)) =
√

radius(D) > λh
√

f(s̃)/3.

7.2 Radius ofcoarse(s)

In this section, we prove an upper bound and a lower bound on the radius ofcoarse(s).

Lemma 7.2 Assumeρ ≥ 4 and δ ≤ 1/(25ρ2). Letm be the constant andψm be the parameter in

Lemma 7.1. Lets be a sample. Ifλm ≤ 1/(504ρ2), then

radius(coarse(s)) ≤ 5ρδ + ψm
√

f(s̃)

with probability at least1 −O(n−Ω(lnω n)).

Proof. Let s1 ands2 be points onF+
δ andF−

δ such thats̃1 = s̃2 = s̃. LetD be the disk centered ats

with radius5ρδ+ψm
√

f(s̃). By Lemma 7.1,ψm
√

f(s̃) ≥ radius(initial (s)), soD containsinitial(s)

with probability at least1−O(nΩ(lnω n)). We are to show thatcoarse(s) cannot grow beyondD. First,

sinceλm ≤ 1/(504ρ2),

ψm =
√

14λm ≤ 1/(6ρ) ≤ 1/24.

Observe that boths1 ands2 lie insideD. Since5ρδ ≤ 1/(5ρ) ≤ 1/20 andψm ≤ 1/24, radius(D) <

(1 − δ)f(s̃). Thus, the distance between any two points inD ∩ F+
δ is less than2(1 − δ)f(s̃). By

Lemma 5.2(i), the maximum distance betweenD∩F+
δ and the tangent toF+

δ ats1 is at most
(5ρδ+ψm

√
f(s̃))2

2(1−δ)f(s̃) ≤
(5ρδ

√
f(s̃)+ψm

√
f(s̃))2

2(1−δ)f(s̃) asf(s̃) ≥ 1. Thus, this distance is upper bounded by(5ρδ+ψm)2

2(1−δ) which is less than

0.51(5ρδ+ψm)2 asδ ≤ 1/(25ρ2). The same is also true forD∩F−
δ . It follows that the samples inside

D lie inside a strip of width at most2δ + 1.1(5ρδ + ψm)2 = 2δ + 1.1(5ρ)2δ2 + 2.2(5ρ)ψmδ + 1.1ψ2
m.

Sinceδ ≤ 1/(25ρ2) andψm ≤ 1/(6ρ), we have1.1(5ρ)2δ2 ≤ 1.1δ, 2.2(5ρ)ψmδ < 1.84δ, and

1.1ψ2
m < ψm/ρ. We conclude that the strip width is no more than2δ + 1.1δ + 1.84δ + ψm/ρ <

5δ + ψm/ρ ≤ radius(D)/ρ. This shows thatcoarse(s) cannot grow beyondD.
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Next, we boundradius(coarse(s)) from below. We usefmax to denotemaxx∈F f(x).

Lemma 7.3 Assume thatδ ≤ 1/8 andρ ≥ 4. Leth be the constant in Lemma 7.1. Lets be a sample.

If λh ≤ 1/32, then

radius(coarse(s)) ≥ max{2√ρδ, radius(initial(s))}

with probability at least1 −O(n−Ω(lnω n/fmax)).

Proof. Sincecoarse(s) is grown frominitial(s), radius(coarse(s)) ≥ radius(initial(s)). We are to

prove thatradius(coarse(s)) ≥ 2
√
ρδ. LetD be the disk that has centers and radiusradius(coarse(s))/

√
ρ.

LetX be the disk centered ats̃ with radiusδ. Note thats ∈ X andX is tangent toF+
δ andF−

δ . Since

δ ≤ 1/8 andf(s̃) ≥ 1, f(s̃) − δ > δ and so Lemma 5.1 implies thatX lies inside the finite region

bounded byF+
δ andF−

δ .

Suppose thatradius(coarse(s)) < 2
√
ρδ. Then radius(D) < 2δ. If D containsX, X is a

disk insideD ∩ X with radius at leastradius(D)/2. If D does not containX, then sinces ∈ X,

D ∩ X contains a disk with radiusradius(D)/2. The width of strip(s) is less than or equal to

radius(coarse(s))/ρ = radius(D)/
√
ρ. Thus,(D ∩X) − strip(s) contains a diskY such that

radius(Y ) ≥ (
1

4
− 1

4
√
ρ
) · radius(D) ≥ radius(D)

8
.

Note thatY is empty andY lies inside the finite region bounded byF+
δ andF−

δ . Take a pointp ∈ Y .

Sincep ∈ Y ⊆ D and radius(D) < 2δ, ‖p̃ − s̃‖ ≤ ‖p − p̃‖ + ‖s − s̃‖ + ‖p − s‖ ≤ 4δ ≤ 1/2

as δ ≤ 1/8. The Lipschitz condition implies thatf(p̃) ≤ 3f(s̃)/2. Observe thatradius(D) =

radius(coarse(s))/
√
ρ ≥ radius(initial (s))/

√
ρ. Thus, Lemma 7.1 implies thatradius(Y ) ≥ radius(D)/8 ≥

λh
√

f(s̃)/(24
√
ρ) > λh

√

f(p̃)/(30
√
ρ) with probability at least1−O(n−Ω(lnω n)). Letβ = λh/(420

√
ρfmax).

Then radius(Y ) > 14βf(p̃). By Lemma 6.2,Y contains aβ-cell. By Lemma 6.6(i), thisβ-cell is

empty with probability at mostn−Ω(lnω n/fmax). This implies thatradius(coarse(s)) < 2
√
ρδ occurs

with probability at mostO(n−Ω(lnω n/fmax)).

7.3 Rough tangent estimate:strip(s)

In this section, we prove that the slope ofstrip(s) is a rough estimate of the slope of the tangent ats̃.

We need the following technical lemma about various properties ofcoarse(s) andFα insidecoarse(s).

Its proof can be found in the appendix.

Lemma 7.4 Assumeρ ≥ 5 and δ ≤ 1/(25ρ2). Letm be the constant andψm be the parameter in

Lemma 7.1. Lets be a sample. If2
√
ρδ ≤ radius(coarse(s)) ≤ 5ρδ + ψm

√

f(s̃) andψm ≤ 1/100,

then for anyFα and for any pointx ∈ Fα ∩ coarse(s), the following hold:

(i) 5ρδ + ψm ≤ 0.05, 5ρδ+ψm

2(1−δ) ≤ 0.03, and 5ρδ+ψm+2δ
2(1−δ) ≤ 0.03,

(ii) Fα ∩ coarse(s) consists of one connected component,

(iii) the angle between the normals ats andx is at most2 sin−1 5ρδ+ψm+2δ
(1−δ) ≤ 2 sin−1(0.06),
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(iv) x ∈ cocone(s1, 2 sin−1 5ρδ+ψm+2δ
2(1−δ) ) ⊆ cocone(s1, 2 sin−1(0.03)) wheres1 is the point onFα

such thats̃1 = s̃.

(v) 0.9f(s̃) < f(x̃) < 1.1f(s̃),

(vi) if x lies on the boundary ofcoarse(s), the distance betweens and the orthogonal projection ofx

onto the tangent ats is at least0.8 · radius(coarse(s)), and

(vii) for any y ∈ Fα ∩ coarse(s), the acute angle betweenxy and the tangent atx is at most

sin−1(6ρδ + 1.2ψm)) ≤ sin−1(0.06).

We highlight the key ideas before giving the proof of Lemma 7.5. Let B be the region between

F+
δ andF−

δ inside coarse(s). If strip(s) makes a large angle with the tangent ats̃, strip(s) would

cut throughB in the middle. In this case, ifB ∩ strip(s) is narrow, there would be a lot of areas inB
outsidestrip(s). But these areas must be empty. Such areas occur with low probability. Otherwise, if

B ∩ strip(s) is wide, we show thatstrip(s) can be rotated to reduce its width further, a contradiction.

We give the detailed proof below.

Lemma 7.5 Assume thatρ ≥ 5 and δ ≤ 1/(25ρ2). Letm be the constant andψm be the parameter

in Lemma 7.1. Lets be a sample. For sufficiently largen, the acute angle between the tangent ats̃

and the direction ofstrip(s) is at most3 sin−1 5ρδ+ψm+2δ
(1−δ) +sin−1(6ρδ+1.2ψm) ≤ 4 sin−1(0.06) with

probability at least1 −O(n−Ω(lnω n/fmax)).

Proof. Let ℓ1 andℓ2 be the lower and upper bounding lines ofstrip(s). Without loss of generality, we

assume that the normal ats̃ is vertical, the slope ofstrip(s) is non-negative,F−
δ ∩ coarse(s) lies below

F+
δ ∩ coarse(s), andψm ≤ 1/100 for sufficiently largen. Leth andm be the constants andψh andψm

be the parameters in Lemma 7.1. We first assume thatmax{2√ρδ, ψh
√

f(s̃)} ≤ radius(coarse(s)) ≤
5ρδ+ψm

√

f(s̃) and take the probability of its occurrence into consideration later. As a short hand, we

useη1 to denote5ρδ+ψm+2δ
(1−δ) andη2 to denote6ρδ + 1.2ψm.

Observe that bothℓ1 andℓ2 must intersect the space that lies betweenF+
δ andF−

δ insidecoarse(s).

Otherwise, we can squeezestrip(s) and reduce its width, a contradiction. Ifℓ1 intersectsFα∩coarse(s)

twice for someα, thenℓ1 is parallel to the tangent at some point onFα∩ coarse(s). By Lemma 7.4(iii),

the direction ofstrip(s) makes an angle at most2 sin−1 η1 with the horizontal and we are done. Sim-

ilarly, we are done ifℓ2 intersectsFα ∩ coarse(s) twice for someα. The remaining case is that both

ℓ1 andℓ2 intersectFα ∩ coarse(s) for anyα at most once. Suppose that the acute angle between the

direction ofstrip(s) and the horizontal is more than3 sin−1 η1 + sin−1 η2. We show that this occurs

with probabilityO(n−Ω(lnω n/fmax)).

Let q be the right intersection point betweenF−
δ and the boundary ofcoarse(s). If ℓ1 intersects

F−
δ ∩ coarse(s), let p denote the intersection point; otherwise, letp denote the leftmost intersection

point betweenF−
δ and the boundary ofcoarse(s). Refer to Figure 9(a). We claim thatF−

δ (p, q) lies

belowℓ1. If ℓ1 does not intersectF−
δ ∩coarse(s), then this is clearly true. Otherwise, by Lemma 7.4(iii),

the magnitude of the slope of the tangent atp is at most2 sin−1 η1. Since the slope ofℓ1 is more than

3 sin−1 η1 + sin−1 η2, F−
δ crossesℓ1 atp from above to below. SoF−

δ (p, q) lies belowℓ1.
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Figure 9: Figure (a) illustrates thatF−
δ (p, q) lies belowℓ1. Figure (b) illustrates our choice of a cellC

that lies belowℓ1.

We show that‖p − q‖ ≤ ψh
√

f(s̃)/2 with probability at least1 − n−Ω(lnω n/fmax). Notice thatpq

is parallel to the tangent toF−
δ at some point onF−

δ (p, q). By Lemma 7.4(iii), the tangent toF−
δ (p, q)

turns by an angle at most4 sin−1(0.06) < π/2 from p to q. This implies thatF−
δ (p, q) is monotone

with respect to the direction perpendicular topq. We dividepq into three equal segments. Letu andv

be the intersection points betweenF−
δ (p, q) and the perpendiculars ofpq at the dividing points. Assume

thatv follows u alongF−
δ (p, q). Refer to Figure 9(b). Suppose that‖p− q‖ > ψh

√

f(s̃)/2. Then

|F−
δ (u, v)| ≥ ‖p− q‖

3
≥ ψh

√

f(s̃)

6
. (4)

Sincef(ũ) < 1.1f(s̃) by Lemma 7.4(v),|F−
δ (u, v)| > ψh

√

f(ũ)/7. Consider a(λk/
√
fmax)-grid

wherek = h/294 and ũ is a cut-point. (Note thatλk = ψh/98.) Let C be the(λk/
√
fmax)-cell that

touchesF−
δ (u, v) and the normal segment throughu. By Lemma 6.2, the diameter ofC is at most

14λk
√

f(ũ) = ψh
√

f(ũ)/7 < |F−
δ (u, v)|. So the bottom side ofC lies within F−

δ (u, v). Let R be

the region insidecoarse(s) that lies belowℓ1 and aboveF−
δ (p, q). From any pointx ∈ F−

δ (u, v) ∩ C,

if we shoot a ray along the normal atx into R, either the ray will leaveC first or the ray will hitℓ1 or

the boundary ofcoarse(s) in R. We are to prove that the distances fromx to ℓ1 and the boundary of

coarse(s) in R are more than2λkδ ≥ 2λkδ/
√
fmax. This shows that the ray always leavesC first, so

C lies completely insideR. Then the upper bound on‖p− q‖ follows asC is empty with probability at

mostn−Ω(lnω n/fmax) by Lemma 6.6(i).

Consider the distance from any pointx ∈ F−
δ (u, v) to ℓ1. By Lemma 7.4(iii), the angle between

ℓ1 and the tangent atp (measured by rotatingℓ1 in the clockwise direction) is at least3 sin−1 η1 +

sin−1 η2−2 sin−1 η1 = sin−1 η1 +sin−1 η2 and at mostπ/2+2 sin−1 η1. By Lemma 7.4(vii), the acute

angle betweenpx and the tangent atp is at mostsin−1 η2. So the angle betweenpx andℓ1 is at least

sin−1 η1 and at mostπ/2 + 2 sin−1 η1 + sin−1 η2. This implies that the distance fromx to ℓ1 is at least

‖p − x‖ · min{η1 , cos(2 sin−1 η1 + sin−1 η2)}. By Lemma 7.4(i),η1 ≤ 0.06 < cos(3 sin−1(0.06)) ≤
cos(2 sin−1 η1 +sin−1 η2). Therefore, the distance fromx to ℓ1 is at least‖p−x‖·η1 > 5ρδ ·‖p−x‖ ≥
25δ · (‖p − q‖/3)

(4)
> 4δψh

√

f(s̃). Sinceλk = ψh/98, this distance is greater than2λkδ.
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Figure 10: The shaded region denotesR in both figures. In figure (a),q is the closest point inR to x. In

figure (b),p or q is the closet point inR to x.

Next, we consider the distanced from any pointx ∈ F−
δ (u, v) to the boundary ofcoarse(s) in

R. Take a radiussy of coarse(s) that passes throughx. Suppose thaty lies outsideR. Refer to

Figure 10. Ifℓ1 intersectsF−
δ ∩ coarse(s) atp (Figure 10(a)), thend = ‖q−x‖. If ℓ1 does not intersect

F−
δ ∩ coarse(s) (Figure 10(b)), thend = min{‖p − x‖ , ‖q − x‖}. Thus, by (4),d ≥ ‖p − q‖/3 ≥
ψh

√

f(s̃)/6 > 2λkδ. The remaining possibility is thaty lies on the boundary ofR. Then eithersy

is tangent toF−
δ at x or sy intersectsF−

δ ∩ coarse(s) at least twice. Soxy is parallel to the tangent

at some point onF−
δ ∩ coarse(s). By Lemma 7.4(iii), the acute angle betweenxy and the tangent

at x is at most4 sin−1 η1. By Lemma 7.4(vii), the acute angle betweenqx and the tangent atx is

at mostsin−1 η2. So the angle betweenqx andxy is at most4 sin−1 η1 + sin−1 η2. It follows that

d = ‖x− y‖ ≥ ‖q− x‖ · cos(4 sin−1 η1 + sin−1 η2) ≥ ‖q− x‖ · cos(5 sin−1(0.06)) > 0.9 · ‖q− x‖ ≥
0.9 · (‖p − q‖/3) ≥ 0.15ψh

√

f(s̃) > 2λkδ.

In all, C lies insideR. SoC must be empty which occurs with probability at mostn−Ω(lnω n/fmax)

by Lemma 6.6(i). It follows that‖p − q‖ ≤ ψh
√

f(s̃)/2 with probability at least1 − n−Ω(lnω n/fmax).

By Lemma 7.4(vi), the horizontal distance betweenq and the left intersection point betweenF−
δ and

the boundary ofcoarse(s) is at least1.6 · radius(coarse(s)) ≥ 1.6ψh
√

f(s̃) > ‖p − q‖. We conclude

thatℓ1 intersectsF−
δ ∩ coarse(s) exactly once atp.

Refer to Figure 11. Lety be the leftmost intersection point betweenF+
δ and the boundary of

coarse(s). Symmetrically, we can also show thatℓ2 intersectsF+
δ ∩ coarse(s) exactly once at some

pointz, F+
δ (y, z) lies aboveℓ2, and‖y−z‖ ≤ ψh

√

f(s̃)/2 with probability at least1−n−Ω(lnω n/fmax).

Consider the projections ofF+
δ (y, z) andF−

δ (p, q) onto the horizontal diameter ofcoarse(s) through

s. By Lemma 7.4(vi), the projections ofy andq are at distance at least0.8 · radius(coarse(s)) from s.

Thus, the distance between the projections ofF+
δ (y, z) andF−

δ (p, q) is at least1.6·radius(coarse(s))−
‖p−q‖−‖y−z‖ ≥ 1.6·radius(coarse(s))−ψh

√

f(s̃) ≥ 1.6·radius(coarse(s))−radius(coarse(s)) >

radius(coarse(s))/ρ. That is, this distance is greater than the width ofstrip(s). But then we can rotate

ℓ1 andℓ2 aroundp andz, respectively, in the clockwise direction to reduce the width of strip(s) while

not losing any sample insidecoarse(s). See Figure 11. This is impossible. It follows that, under the

condition thatmax{2√ρδ, ψh
√

f(s̃)} ≤ radius(coarse(s)) ≤ 5ρδ + ψm
√

f(s̃), the acute angle be-

19



p
q

y
z

> π

l1

coarse (s)

Fδ
−

Fδ
+

l2

Figure 11: Rotatingℓ1 andℓ2 slightly in the clockwise direction decreases the width ofstrip(s).

tween the direction ofstrip(s) and the tangent at̃s is at most3 sin−1 η1 + sin−1 η2 with probability at

least1 − O(nΩ(lnω n/fmax)). By Lemmas 7.1, 7.2, and 7.3, the inequalitiesmax{2√ρδ, ψh
√

f(s̃)} ≤
radius(coarse(s)) ≤ 5ρδ + ψm

√

f(s̃) hold with probability at least1 − O(nΩ(lnω n)/fmax). So the

lemma follows.

8 Refined neighborhood

The results in Section 7 show that after the step COARSE NEIGHBORHOOD, the algorithm already has

a normal estimate at each noisy sample with an error in the order of δ + ψm. However, this error bound

does not tend to zero as the sampling density increases. Thisexplains the need for the step REFINED

NEIGHBORHOODin the algorithm. This step will improve the normal estimateso that the error tends to

zero as the sampling density increases. This will allow us toprove the pointwise convergence.

We introduce some notations. In the step REFINED NEIGHBORHOOD, we aligncandidate(s, θ)

with the normal at̃s by varyingθ within [−π/10, π/10]. Recall thatθ is the signed acute angle between

the upward direction ofcandidate(s, θ) andNs, whereNs is the upward direction perpendicular to

strip(s). Let angle(strip(s)) denote the signed acute angle betweenNs and the upward normal at̃s. If

Ns points to the right of the upward normal ats̃, angle(strip(s)) is positive. Otherwise,angle(strip(s))

is negative. We defineθs = θ+angle(strip(s)). That is,θs is the signed acute angle between the upward

direction ofcandidate(s, θ) and the upward normal at̃s. The sign ofθs is determined in the same way

asangle(strip(s)). For anyFα and for any pointp ∈ Fα ∩ candidate(s, θ), let γp be the signed acute

angle between the upward direction ofcandidate(s, θ) and the upward normal at̃p. The sign ofγp is

determined in the same way asangle(strip(s)).

We need the following two technical lemmas. Their proofs canbe found in the appendix. There are

two main results in Lemma 8.1. First, we show that the range ofrotation[−π/10, π/10] of candidate(s, θ)

covers the normal direction ats̃. Second, we relateγp to θs. This is useful because we will see that for a

proper choice ofp, the height ofcandidate(s, θ) is directly related toγp (and hence toθs). We will need

to focus on a smaller area insidecandidate(s, θ). Lemma 8.2 bounds distances and angles involving

points onFα inside this smaller area.
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Lemma 8.1 Assume thatδ ≤ 1/(25ρ2) and ρ ≥ 5. Let s be a sample. LetWs be the width of

candidate(s, θ). For sufficiently largen, the following hold with probability at least1−O(n−Ω(lnω n/fmax))

throughout the variation ofθ within [−π/10, π/10].

(i) Ws ≤ 0.1f(s̃).

(ii) θs ∈ [−π/5, π/5] andθs = 0 for someθ ∈ [−π/10, π/10].

(iii) Any line, which is parallel tocandidate(s, θ) and insidecandidate(s, θ), intersectsFα∩coarse(s)

for anyα exactly once.

(iv) For anyFα and for any pointp ∈ Fα ∩ candidate(s, θ), θs − 0.2|θs| − 3Ws/f(s̃) ≤ γp ≤
θs + 0.2|θs| + 3Ws/f(s̃).

Lemma 8.2 Assume thatδ ≤ 1/(25ρ2) andρ ≥ 5. Lets be a sample. LetH be a strip that is parallel

to candidate(s, θ) and lies insidecandidate(s, θ). Whenn is sufficiently large, for anyFα and for any

two pointsu andv onFα ∩H, the following hold with probability at least1 −O(n−Ω(lnω n/fmax)).

(i) ‖u− v‖ < 3width(H).

(ii) The angle between the normals atu andv is at most9width(H).

(iii) The acute angle betweenuv and the tangent toFα at u is at most5width(H).

8.1 Normal approximation

We show that our algorithm alignsrefined(s) approximately well with the normal at̃s. Our algorithm

variesθ so as to minimize the height ofrectangle(s, θ). Letθ∗ denote the minimizing angle. Recall that

refined(s) = rectangle(s, θ∗). Let θ∗s denoteθ∗ + angle(strip(s)). We apply Lemmas 8.1 and 8.2 to

show thatθ∗s is very small.

Lemma 8.3 Assume thatδ ≤ 1/(25ρ2) and ρ ≥ 5. Let s be a sample. LetWs be the width of

refined(s). For sufficiently largen, |θ∗s | ≤ 23Ws with probability at least1 −O(nΩ(lnω n/fmax)).

Proof. We rotate the plane such thatcandidate(s, θ∗) is vertical. Suppose that|θ∗s | > 23Ws. We

first assume that Lemmas 7.1, 7.2, 7.3, 8.1, and 8.2 hold deterministically and show that a contra-

diction arises with probability at least1 − O(nΩ(lnω n/fmax)). The contradiction is that we can ro-

tatecandidate(s, θ∗) slightly to reduce its height further. Since these lemmas hold with probability at

least1 − O(nΩ(lnω n/fmax)), we can then conclude that|θ∗s | > 23Ws occurs with probability at most

O(nΩ(lnω n/fmax)).

Without loss of generality, we assume thatθ∗s > 0. That is, the upward normal ats points to the

left. Also, we assume thatF−
δ ∩ coarse(s) lies belowF+

δ ∩ coarse(s). LetL be the left boundary line

of candidate(s, θ∗). By Lemma 8.1(iii),L intersectsF−
δ ∩ coarse(s) exactly once. We usep to denote

the pointL ∩ F−
δ ∩ coarse(s). We first prove a general claim which will be useful later.
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CLAIM 1 Orient space such thatcandidate(s, θ) is vertical. Ifθs > 23Ws, then for anyα,

Fα ∩ candidate(s, θ) increases strictly from left to right.

Proof. Take any pointz ∈ Fα ∩ candidate(s, θ). By Lemma 8.1(iv),γz ≥ 0.8θs − 3Ws,

which is positive asθs ≥ 23Ws by assumption. Therefore, the upward normal atz points

to the left, so the slope of the tangent toFα atz is positive.

We highlight the proof strategy before giving the details. If θs > 23Ws, by Claim 1, bothF−
δ

andF+
δ increase from left to right insidecandidate(s, θ). Then we dividecandidate(s, θ∗) into three

smaller slabs of equal width in left to right order, and show that the lower side ofrectangle(s, θ∗)

intersectsF−
δ at a pointa inside the leftmost slab. Similarly, the upper side ofrectangle(s, θ∗) intersects

F+
δ at a pointb inside the rightmost slab. Since bothF−

δ andF+
δ increase from left to right, this allows

us to rotaterectangle(s, θ∗) arounda andb in the anti-clockwise direction to reduce its height. This

contradicts the minimality of the height ofrectangle(s, θ∗). We give the details in the following.

We first prove that the lower side ofrectangle(s, θ∗) intersectsF−
δ within the leftmost slab. Leth

andm be the constants in Lemma 7.1. Letk = h/3240. LetH1 be the slab insidecandidate(s, θ∗) such

thatH1 is bounded byL on the left andwidth(H1) = Ws/3. LetH be the slab insidecandidate(s, θ∗)

that is bounded byL on the left and has width30λk
√

f(s̃). Refer to Figure 12. Sinceradius(initial(s)) ≤

x

C
u

v

r

H

p

H1

d

d

v

x

L

Fδ
−

Figure 12: Illustration for Lemma 8.3.

ψm
√

f(s̃), radius(initial(s)) < 1 for sufficiently largen. So
√

radius(initial (s)) > radius(initial(s)).

SinceWs = min{
√

radius(initial (s)), radius(coarse(s))
3 }, Ws ≥ radius(initial(s))/3 ≥ λh

√

f(s̃)/9.

We get

width(H) = 30λk
√

f(s̃) =
λh

√

f(s̃)

108
≤ Ws

12
. (5)

Thus,H lies insideH1. By Lemma 8.1(iii),F−
δ crossesH completely. Letr be the intersection point

betweenF−
δ and the center line ofH. Take the(λk/

√
fmax)-grid in which r̃ is the first cut point. Let

C be the(λk/
√
fmax)-cell such thatC containsr andC lies between the normal segments atr̃ and

the second cut point. The distance fromr to the boundary ofH is 15λk
√

f(s̃). By Lemma 6.2, the

diameter ofC is at most14λkf(r̃)/
√
fmax ≤ 14λk

√

f(r̃). Sincef(r̃) ≤ 1.1f(s̃) by Lemma 7.4(v),

the diameter ofC is less than15λk
√

f(s̃). It follows thatC lies insideH.
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Let u be the rightmost vertex ofC onF−
δ . Let v be the vertex ofC different fromu on the normal

segment atu. Let x be the intersection point betweenF−
δ and the right boundary line ofH1. We

are to prove thatx lies aboveC. SinceC is non-empty with very high probability, the lower side of

rectangle(s, θ∗) should intersectF−
δ insideH1 at a point belowx then.

By Claim 1,v is the highest point inC andx is the highest point onF−
δ (p, x). Let dv anddx be

the height ofv andx from p, respectively. Letφ be the acute angle betweenpu and the horizontal

line throughp. Sinceφ is at most the sum ofγp and the angle betweenpu and the tangent atp,

by Lemma 8.2(iii), we haveφ ≤ γp + 5width(H). By Lemma 8.2(i),‖p − u‖ ≤ 3width(H).

Observe thatdv ≤ ‖p − u‖ · sinφ + ‖u − v‖. Sodv < 3φwidth(H) + 2λkδ < 3γp width(H) +

15width(H)2 + 2λkδ. By (5), we getdv < Wsγp/4 + 5W 2
s /48 + 2λkδ. We bound2λkδ as follows.

Recall thatWs = min{
√

radius(initial(s)), radius(coarse(s))/3}. If Ws =
√

radius(initial (s)),

by Lemma 7.1,Ws ≥
√

λh/3f(s̃)1/4 ≥
√

λh/3. So 2λkδ < 2λk = λh/1620 < 0.002W 2
s . If

Ws = radius(coarse(s))/3, by Lemmas 7.1 and 7.3,Ws ≥ 2
√
ρδ/3 andWs ≥ λh

√

f(s̃)/9 ≥ λh/9.

We getλk = λh/3240 ≤ Ws/360 and2δ ≤ 3Ws/
√
ρ ≤ 3Ws/

√
5, so2λkδ < 0.004W 2

s . We conclude

that

dv <
Wsγp

4
+ 0.2W 2

s .

Observe thatpx is parallel to the tangent at some pointz on F−
δ (p, x). By Lemma 8.2(ii),γz ≥

γp − 9width(H1) = γp − 3Ws. Sincedx = width(H1) · tan γz = (Ws/3) · tan γz, we get

dx ≥ Wsγz
3

≥ Wsγp
3

−W 2
s .

Sinceθ∗s > 23Ws by our assumption, Lemma 8.1(iv) implies thatγp ≥ 0.8θ∗s − 3Ws > 15Ws. There-

fore,dx − dv > Wsγp/12 − 1.2W 2
s > 0. It follows thatx lies aboveC.

SinceC is a(λk/
√
fmax)-cell, by Lemma 6.6(i),C contains some sample with probability at least

1 − nΩ(lnω n/fmax). Thus, the lower side ofrectangle(s, θ∗) lies belowx with probability at least

1 − nΩ(lnω n/fmax). On the other hand, the lower side ofrectangle(s, θ∗) cannot lie belowF−
δ ∩ H1,

otherwise it could be raised to reduce the height ofrectangle(s, θ∗), a contradiction. So the lower side

of rectangle(s, θ∗) intersectsF−
δ ∩H1 at some pointa. See the left figure in Figure 13.

ss

a

b

a

b

H1 H2

Fδ
−

Fδ
+

H1 H2

Fδ
−

Fδ
+

Figure 13: In the right figure, the middle bold rectangle is the obtained by a slight anti-clockwise

rotation. Its height is smaller than that of the middle dashed rectangle.

Let H2 be the slab insidecandidate(s, θ∗) such thatH2 is bounded by the right boundary line of

candidate(s, θ∗) on the right andwidth(H2) = Ws/3. By a symmetric argument, we can prove that
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the upper side ofrectangle(s, θ∗) intersectsF+
δ ∩H2 at a pointb.

Consider an angleθ that is slightly less thanθ∗. As shown in the right figure in Figure 13, this is

equivalent to rotating the candidate neighborhood in the anti-clockwise direction. By Lemma 8.1(ii),θs
can reach zero during the variation ofθ. Thus, asθ∗s > 0, decreasingθ from θ∗ is legal. Moreover, as

θ∗s > 23Ws, the small rotation keepsθs greater than23Ws. Correspondingly, we rotate the lower and

upper sides ofrectangle(s, θ∗) arounda andb, respectively, to obtain a rectangleR. Orient the plane

such that the new candidate neighborhood becomes vertical.By Claim 1,F−
δ increases strictly from left

to right, soF−
δ crosses the lower side ofR at most once ata from below to above. Similarly,F+

δ crosses

the upper side ofR at most once atb from below to above. This implies thatR contains all the samples

inside the new candidate neighborhood . Sincea is on the left ofb and belowb, the anti-clockwise

rotation makes the height ofR strictly less than the height ofrectangle(s, θ∗). This contradicts the

assumption that the height ofrectangle(s, θ∗) is already the minimum possible.

8.2 Pointwise convergence

Once refined(s) is aligned well with the normal at̃s, it is intuitively true that the center point of

refined(s) should lie very close tõs. The following lemma proves this formally.

Lemma 8.4 Assume thatδ ≤ 1/(25ρ2) and ρ ≥ 5. Let s be a sample. LetWs be the width of

refined(s). For sufficiently largen, the distance between the center points∗ of refined(s) and s̃ is at

most(138δ + 3)Ws with probability at least1 −O(n−Ω(lnω n/fmax)).

Proof. We first assume that Lemmas 7.1, 7.2, 7.3, 8.1, 8.2, and 8.3 hold deterministically and show

that the lemma is true with probability at least1 − O(nΩ(lnω n/fmax)). Since these lemmas hold with

probability at least1 −O(nΩ(lnω n/fmax)), the lemma follows.

Assume thats lies onF+
α , the normal at̃s is vertical, andF+

δ ∩ coarse(s) is aboveF−
δ ∩ coarse(s).

Let rd (resp.,ru) be the ray that shoots downward (resp., upward) froms and makes an angleθ∗s with

the vertical. Letx andy be the points onF+
δ andF hit by ru andrd respectively. Letz be the point on

F−
δ hit by rd. Let s1 be the point onF−

δ such thats̃1 = s̃. Without loss of generality, we assume that

θ∗s ≥ 0. Refer to Figure 14.

Our strategy for bounding‖s̃−s∗‖ is as follows. By triangle inequality,‖s̃−s∗‖ ≤ ‖s∗−y‖+‖s̃−y‖.

Thus it suffices to bound‖s∗−y‖ and‖s̃−y‖. While‖s̃−y‖ can be bounded directly, a few intermediate

steps are needed to bound‖s∗ − y‖. If the upper and lower sides ofrefined(s) pass throughx andz,

respectively, then‖s∗ − y‖ is just the distance between the midpoint ofxz andy. Then we consider the

cases that the upper and lower sides ofrefined(s) do not pass throughx andz, and bound the maximum

displacement ofs∗ from the midpoint ofxz. This yields the bound on‖s∗ − y‖. We give the details in

the following.

First, we bound the distance between the midpoint ofxz andy. By Lemma 7.4(iv), the acute angle

betweens1z and the tangent ats1 (the horizontal) is at mostsin−1(0.03). It follows that ∠ss1z ≤
π/2 + sin−1(0.03). So∠szs1 = π− θ∗s −∠ss1z ≥ π/2− θ∗s − sin−1(0.03), which is greater than0.9

asθ∗s ≤ π/5 by Lemma 8.1(ii). By applying sine law to the shaded trianglein Figure 14, we get

‖s1 − z‖ =
‖s− s1‖ · sin θ∗s

sin ∠szs1
≤ (δ + α)θ∗s

sin(0.9)
< 2(δ + α)θ∗s . (6)
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Figure 14: Illustration for Lemma 8.4.

Similarly, we get

‖s̃− y‖ =
‖s − s̃‖ · sin θ∗s

sin ∠sys̃
≤ αθ∗s

sin(0.9)
< 2αθ∗s . (7)

By triangle inequality,‖s − s1‖ − ‖s1 − z‖ ≤ ‖s− z‖ ≤ ‖s− s1‖ + ‖s1 − z‖. Then (6) yields

(δ + α) − 2(δ + α)θ∗s ≤ ‖s− z‖ ≤ (δ + α) + 2(δ + α)θ∗s . (8)

We can use a similar argument to show that

(δ − α) − 2(δ − α)θ∗s ≤ ‖s− x‖ ≤ (δ − α) + 2(δ − α)θ∗s , (9)

α− 2αθ∗s ≤ ‖s− y‖ ≤ α+ 2αθ∗s . (10)

Let dx anddy be the distances from the midpoint ofxz to x andy, respectively. Since‖x − z‖ =

‖s − x‖ + ‖s − z‖, by (8) and (9), we get2δ − 4δθ∗s ≤ ‖x − z‖ ≤ 2δ + 4δθ∗s . Therefore,δ − 2δθ∗s ≤
dx ≤ δ+2δθ∗s . Since‖x−y‖ = ‖s−x‖+‖s−y‖, by (9) and (10), we getδ−2δθ∗s ≤ ‖x−y‖ ≤ δ+2δθ∗s .

We conclude that

dy = |dx − ‖x− y‖| ≤ 4δθ∗s . (11)

Second, we bound the displacement ofs∗ from the midpoint ofxz. There are two cases.

Case 1: the upper side ofrefined(s) lies abovex. The upper side ofrefined(s) must intersectF+
δ ∩

candidate(s, θ∗) at some pointv, otherwise we could lower it to reduce the height ofrefined(s),

a contradiction. Since‖x − v‖ ≤ 3Ws by Lemma 8.2(i), the distance betweenx and the upper

side ofrefined(s) is at most3Ws.

Case 2: the upper side ofrefined(s) lies belowx. Leth be the constant in Lemma 7.1. Letk = h/270.

Take the(λk/
√
fmax)-grid in whichx̃ is the first cut point. LetC be the cell such thatC contains

x andC lies between the normal segments atx̃ and the second cut point.

We claim thatC lies insidecandidate(s, θ∗). Sinceradius(initial(s)) ≤ ψm
√

f(s̃), we have

radius(initial (s)) < 1 for sufficiently largen. So
√

radius(initial(s)) > radius(initial (s)).
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Thus,Ws = min{
√

radius(initial (s)), radius(coarse(s))/3} ≥ radius(initial (s))/3, which

is at leastλh
√

f(s̃)/9. By Lemma 6.2, the diameter ofC is at most14λkf(x̃)/
√
fmax ≤

14λk
√

f(x̃). Sincef(x̃) ≤ 1.1f(s̃) by Lemma 7.4(v), the diameter ofC is less than15λk
√

f(s̃).

SinceWs ≥ λh
√

f(s̃)/9 = 30λk
√

f(s̃), C must lie insidecandidate(s, θ∗).

SinceC is a(λk/
√
fmax)-cell, by Lemma 6.6(i),C contains some sample with probability at

least1 − n−Ω(lnω n/fmax). Thus, the upper side ofrefined(s) cannot lie belowC. It follows that

the distance betweenx and the upper side ofrefined(s) is at most the diameter ofC, which has

been shown to be less thanWs/2.

Hence, the position of the upper side ofrefined(s) may causes∗ to be displaced from the midpoint of

xz by a distance of at most3Ws/2. The position of the lower side ofrefined(s) has the same effect. So

the distance betweens∗ and the midpoint ofxz is at most3Ws. It follows that‖s∗ − y‖ ≤ dy + 3Ws.

By (11), we get‖s∗ − y‖ ≤ 4δθ∗s + 3Ws. Starting with triangle inequality, we obtain

‖s̃− s∗‖ ≤ ‖s∗ − y‖ + ‖s̃− y‖
≤ 4δθ∗s + 3Ws + ‖s̃ − y‖
(7)

≤ 6δθ∗s + 3Ws.

Sinceθ∗s ≤ 23Ws by Lemma 8.3, we conclude that‖s̃− s∗‖ ≤ (138δ + 3)Ws.

9 Homeomorphism

In this section, we prove more convergence properties whichlead to the proof that the output curve of

the NN-crust algorithm is homeomorphic toF . For each samples, we uses∗ to denote the center point

of refined(s). We briefly review the processing of the center points. We first sort the center points in

decreasing order of the widths of their corresponding refined neighborhoods. Then we scan the sorted

list to select a subset of center points. When the current center points∗ is selected, we delete all center

pointsp∗ from the sorted list such that‖p∗ − s∗‖ ≤ width(refined(s))1/3.

In the end, we call two selected center pointss∗ andt∗ adjacentif F (s̃, t̃) orF (t̃, s̃) does not contain

ũ for any other selected center pointu∗. We useG to denote the polygonal curve that connects adjacent

selected center points. Note that the degree of every vertexin G is exactly two. Clearly, if we connect̃s

and t̃ for every pair of adjacent selected center pointss∗ andt∗, we obtain a polygonal curveG′ that is

homeomorphic toF . Our goal is to show that the output curve of the NN-crust algorithm is exactlyG.

Since there is a bijection betweenG andG′, the homeomorphism result follows.

Throughout this section, we assume thatwidth(initial(s)) < 1 for any samples, which is true

for sufficiently largen. There are a few consequences. First, it implies that
√

radius(initial (s)) ≥
radius(initial (s)). Second, sincewidth(refined (s)) = min{

√

radius(initial (s)), radius(coarse(s))/3},

we havewidth(refined(s)) ≤
√

radius(initial(s)) < 1. This implies that for any constantsa > b > 0,

width(refined(s))a < width(refined(s))b. Lastly,width(refined(s)) ≥ radius(initial (s))/3.

We need the technical results Lemmas 9.1–9.6. The proofs of Lemmas 9.1, 9.3, 9.4, and 9.5 are

given in the appendix.
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Lemma 9.1 There exists a constantµ1 > 0 such that whenn is sufficiently large, for any two cen-

ter pointsp∗ and q∗, if ‖p̃ − q̃‖ ≤ f(p̃)/2, thenWq ≤ µ1f(p̃)
√

Wp with probability at least1 −
O(n−Ω(lnω n/fmax)).

Lemma 9.2 Letp∗ andq∗ be two selected center points. Then‖p∗ − q∗‖ > max{W 1/3
p ,W

1/3
q }.

Proof. Assume without loss of generality thatp∗ was selected beforeq∗. Sinceq∗ was selected subse-

quently,q∗ was not eliminated by the selection ofp∗. Thus,‖p∗ − q∗‖ > W
1/3
p ≥W

1/3
q .

Lemma 9.3 Whenn is sufficiently large, for any two center pointsx∗ and y∗ such that‖x̃ − ỹ‖ ≤
f(ỹ)/2 and‖x∗−y∗‖ ≥W

1/3
y , the acute angle betweenx∗y∗ andx̃ỹ isO(f(ỹ)W

1/6
y ) with probability

at least1 −O(n−Ω(lnω n/fmax)).

Lemma 9.4 Whenn is sufficiently large, for any three center pointsx∗, y∗, and z∗ such thatỹ ∈
F (x̃, z̃), ‖x̃ − z̃‖ ≤ max{f(x̃)/5, f(z̃)/5}, ‖x∗ − y∗‖ ≥ W

1/3
y , and‖y∗ − z∗‖ ≥ W

1/3
y , the angle

∠x∗y∗z∗ is obtuse with probability at least1 −O(n−Ω(lnω n/fmax)).

Lemma 9.5 There exists a constantµ2 > 0 such that whenn is sufficiently large, for any edgee in G

connecting two center pointsp∗ andq∗, length(e) ≤ µ2f(p̃)W
1/3
p + µ2f(q̃)W

1/3
q with probability at

least1 −O(n−Ω(lnω n/fmax)).

Lemma 9.6 Whenn is sufficiently large, for any two selected center pointsp∗ andq∗ such thatp∗ andq∗

are not adjacent inG and‖p∗−q∗‖ ≤ f(p̃)/5, there is an edgee inG incident top∗ such that the angle

betweene andp∗q∗ is acute andlength(e) < ‖p∗−q∗‖ with probability at least1−O(n−Ω(lnω n/fmax)).

Proof. Sincep∗ andq∗ are not adjacent inG, there is some selected center pointu∗ adjacent top∗ such

thatũ lies onF (p̃, q̃) orF (q̃, p̃), sayF (p̃, q̃). By Lemma 9.2,‖p∗−u∗‖ > W
1/3
u and‖q∗−u∗‖ > W

1/3
u .

By Lemma 9.4, the angle∠p∗u∗q∗ is obtuse with probability at least1−O(n−Ω(lnω n/fmax)). It follows

that∠u∗p∗q∗ is acute and‖p∗ − u∗‖ < ‖p∗ − q∗‖.

We apply the above technical lemmas to show that the output curve of the NN-crust algorithm is

exactlyG. Then this allows us to show that the output curve is homeomorphic to the underlying smooth

closed curve.

Lemma 9.7 For sufficiently largen, the output curve obtained by running the NN-crust algorithm on

the selected center points is exactlyG with probability at least1 −O(n−Ω( lnω n
fmax

−1)).

Proof. We first prove the lemma assuming that Lemmas 8.4, 9.4, 9.5, and 9.6 hold deterministically. We

will discuss the probability bound later.

Letp∗ be a selected center point. Letp∗u∗ andp∗v∗ be the edges ofG incident top∗. Without loss of

generality, we assume thatp̃ lies onF (ũ, ṽ). By Lemma 9.2,‖p∗−u∗‖ > W
1/3
p and‖p∗−v∗‖ > W

1/3
p .

Let k = 138δ + 3. By Lemmas 8.4 and 9.5,‖p̃ − ũ‖ ≤ ‖p̃ − p∗‖ + ‖ũ − u∗‖ + ‖p∗ − u∗‖ ≤
kWp + kWu + µ2f(p̃)W

1/3
p +µ2f(ũ)W

1/3
u , which is less than(f(p̃) + f(ũ))/30 for sufficiently large

n. The Lipschitz condition implies that

0.9f(p̃) < f(ũ) < 1.1f(p̃).
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So we get

‖p̃− ũ‖ ≤ f(p̃) + f(ũ)

30
< 0.07f(p̃), ‖p∗ − u∗‖ ≤ f(p̃) + f(ũ)

30
< 0.07f(p̃).

Similarly, we can show that

‖p̃− ṽ‖ < 0.07f(p̃), ‖p∗ − v∗‖ < 0.07f(p̃).

Let p∗q∗ be an edge computed by the NN-crust algorithm when it processes the vertexp∗. Assume

to the contrary thatp∗q∗ is not an edge inG. If p∗q∗ is computed in step 1 of the NN-crust algorithm,

then q∗ is the nearest neighbor ofp∗. So ‖p∗ − q∗‖ ≤ ‖p∗ − u∗‖ < 0.07f(p̃). By Lemma 9.6,

there is another edgee in G such thatlength(e) < ‖p∗ − q∗‖, a contradiction. Suppose thatp∗q∗

is computed in step 2 of the NN-crust algorithm. As we have just shown, the step 1 of the NN-crust

algorithm already outputs an edge, sayp∗u∗, of G whereu∗ is the nearest neighbor ofp∗. Observe

that‖ũ − ṽ‖ ≤ ‖p̃ − ũ‖ + ‖p̃ − ṽ‖ < 0.14f(p̃) < 0.2f(ũ). By Lemma 9.4,∠u∗p∗v∗ is obtuse. By

the NN-crust algorithm,∠u∗p∗q∗ is also obtuse. Since the NN-crust algorithm prefersp∗q∗ to p∗v∗,

‖p∗ − q∗‖ ≤ ‖p∗ − v∗‖ < 0.07f(p̃). By Lemma 9.6,G has an edgee incident top∗ that is shorter

thanp∗q∗ (p∗v∗ too) and makes an acute angle withp∗q∗. The edgee is notp∗v∗ ase is shorter than

p∗v∗. The edgee is not p∗u∗ as∠u∗p∗q∗ is obtuse. But then the degree ofp in G is at least three, a

contradiction.

We have shown that each output edge belongs toG. Since the NN-crust algorithm guarantees that

each vertex in the output curve has degree at least two, the output curve andG have the same number of

edges. So the output curve is exactlyG.

Since Lemmas 8.4, 9.4, 9.5, and 9.6 hold with probability at least1−O(n−Ω(lnω n/fmax)), the output

edges incident top∗ are edges ofG with probability at least1 − O(n−Ω(lnω n/fmax)). Since there are

O(n) output vertices, the probability that this holds for all vertices is at least1 −O(n
−Ω( lnω n

fmax
−1)

).

Corollary 9.1 For sufficiently largen, the output curve obtained by running the NN-crust algorithm on

the selected center points is homeomorphic to the underlying smooth closed curve with probability at

least1 −O(n
−Ω( lnω n

fmax
−1)

).

Proof. We have shown that the output curve isG. LetG′ be the curve obtained by connectingp̃ and q̃

for each edgep∗q∗ of G. G′ is homeomorphic to the underlying smooth closed curve asp∗ andq∗ are

adjacent inG. Clearly,G is homeomorphic toG′ as there is a bijection between the edges ofG andG′.

10 Finale

We make use of the lemmas in the previous subsections to provethe key result of this paper, stated as

the Main Theorem in Section 4.
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Proof of the Main Theorem. First of all, for any noisy samples, letWs denote the width ofrefined(s).

By construction,Ws ≤
√

radius(initial(s)). By Lemma 7.1,radius(initial (s)) = O(( ln1+ω n
n )1/4f(s̃)1/2).

ThusWs = O(( ln1+ω n
n )1/8f(s̃)1/4).

By Lemma 8.4, asn tends to∞, for each output vertexs∗, ‖s∗ − s̃‖ = O(Ws) with probability at

least1−O(n−Ω(lnω n/fmax)). Since there areO(n) output vertices, the distance bounds hold simultane-

ously with probability at least1 − O(n−Ω( lnω n
fmax

−1)). Next, we analyze the angular differences between

the tangents of the smooth closed curve and the output curve.

Let r∗s∗ be an output edge. By Lemma 9.5, with probability at least1 − O(n−Ω(lnω n/fmax)), we

have

‖r∗ − s∗‖ ≤ µ2f(r̃)W 1/3
r + µ2f(s̃)W 1/3

s . (12)

Let k = 138δ + 3. Using the above, the triangle inequality, and Lemma 8.4, weget

‖r̃ − s̃‖ ≤ ‖r̃ − r∗‖ + ‖s̃− s∗‖ + ‖r∗ − s∗‖ (13)

≤ kWr + kWs + µ2f(r̃)W 1/3
r + µ2f(s̃)W 1/3

s . (14)

By (12), ‖r∗ − s∗‖ < f(r̃)/5 + f(s̃)/5 for sufficiently largen. The Lipschitz condition implies that

f(r̃) < 1.5f(s̃). So‖r∗ − s∗‖ < f(s̃)/2. Thus, Lemma 9.1 applies and yieldsWr ≤ µ1f(s̃)
√
Ws with

probability at least1 −O(n−Ω(lnω n/fmax)). Substituting into (14), we conclude that

‖r̃ − s̃‖ ≤ µ3f(s̃)4/3W 1/6
s , (15)

for some constantµ3 > 0.

Letθ be the angle betweeñrs̃ and the tangent at̃s. By Lemma 5.2(ii), we haveθ ≤ sin−1 µ3f(s̃)1/3W
1/6
s

2 .

Let θ′ be the acute angle betweenr∗s∗ andr̃s̃. By (15),‖r̃− s̃‖ ≤ f(s̃)/2 for sufficiently largen. Thus,

by Lemma 9.3,θ′ = O(f(s̃)W
1/6
s ) with probability at least1−O(n−Ω(lnω n/fmax)) for sufficiently large

n. We conclude that the angle betweenr∗s∗ and the tangent at̃s, which is upper bounded byθ + θ′, is

O(f(s̃)W
1/6
s ). Since there areO(n) output edges, the angular difference bounds hold simultaneously

with probability at least1 −O(n
−Ω( lnω n

fmax
−1)

).

The output curve is homeomorphic to the smooth closed curve by Corollary 9.1.

11 Conclusion

Curve reconstruction is a popular task in computer vision and image processing, and quite a number of

algorithms have been developed by researchers in these areas [4, 10, 11, 15, 16, 17, 18, 19, 20]. Despite

the effectiveness of these algorithms as demonstrated by experiments, no guarantee of the output quality

is known. This makes it difficult to gauge one’s confidence on the output’s correctness as well as how

well the output approximates the unknown curve. Recently, significant progress has been made and

several curve reconstruction algorithms with quality guarantees have been proposed [1, 2, 6, 7, 8, 9, 12,

13, 14]. However, all of them assume that the input sample points are noiseless, i.e., they lie exactly on

the unknown curve. This assumption fails in a practical environment as input devices inevitably make

some measurement errors. This paper presents the first theoretical study of how to guarantee a faithful

output in the presence of noise.
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We propose a probabilistic model of noisy samples. In a sense, it models the location of points on the

curve by an input device, followed by perturbation due to noise. We assume that the perturbation (due

to noise) moves the points in the normal directions randomlyand uniformly within an interval of fixed

unknown width. Based on this model, we develop an algorithm that returns a faithful reconstruction with

probability approaching 1 as the number of noisy samples increases. A straightforward implementation

of our algorithm runs in cubic time. This is the first theoretical result known for handling noise, albeit

under some restrictive assumptions.

We expect that our approach will also help in reconstructingcurves with features such as corners,

branchings and terminals (with or without noise). Another research direction is to study the reconstruc-

tion of surfaces from noisy samples. Recently, we have extended our algorithm and its guarantees to

reconstructing surfaces in three dimensions for a deterministic noise model which is strongly related to

the probabilistic noise model in this paper [3]. When the sample size is sufficiently large, the output is

homeomorphic to the unknown surface. As the sample size tends to infinity, the distance between the

reconstruction and the surface tends to zero and the normalsof the triangles converge to the true surface

normals. Independently, Dey and Goswami [5] have proposed another surface reconstruction algorithm

for points that follow a different noise model. Their experiments show that the algorithm works in prac-

tice. In their model, the noise amplitude is proportional tothe local feature size. This has the advantage

that a larger noise can be accommodated in areas of larger local feature sizes. On the other hand, unlike

our model, their noise amplitude decreases as the sampling density increases. They prove that the output

is homeomorphic to the unknown surface and the distance between the reconstruction and the surface is

bounded by the noise amplitude. A constant bound is given on the angles between the normals of the

triangles and the true surface normals, which can be reducedfor smaller noise amplitude.

It is open whether more general noise models are amenable to theoretical analysis.
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Appendix

Proof of Lemma 5.1

LetMα be the medial disk ofFα touching a pointp ∈ Fα. By the definition ofFα, there is a medial disk

M of F touchingp̃ such thatM andMα have the same center. Moreover,radius(Mα) = radius(M)−
α ≥ f(p̃) − α.

Proof of Lemma 5.2

Assume that the tangent atp is horizontal. Consider (i). Refer to Figure 15(a). LetB be the tangent

disk atp that lies abovep and has centerx and radius(1 − α)f(p̃). Let C be the circle centered atp

with radius‖p − q‖. Since‖p − q‖ < 2(1 − α)f(p̃), C crossesB. Let r be a point inC ∩ ∂B. Let d

be the distance ofr from the tangent atp. By Lemma 5.1,d bounds the distance fromq to the tangent

at p. Observe that‖p − q‖ = ‖p − r‖ = 2(1 − α)f(p̃) sin(∠pxr
2 ) andd = ‖p − r‖ · sin(∠pxr

2 ). Thus,

d = 2(1 − α)f(p̃) sin2(∠pxr
2 ) = ‖p−q‖2

2(1−α)f(p̃) .

r

~f ( )

Fα

Fα

tangent to
pat

p

x
d

(1−α)
B

C

p

θ

α

p

D

F

(a) (b)

Figure 15: Illustration for Lemma 5.2.

Consider (ii). Refer to Figure 15(b). By (i), the distance between any point inFα∩D and the tangent

atp is bounded byradius(D)2

2(1−α)f(p̃) . Letθ be the smallest angle such thatcocone(p, θ) containsFα∩D. Then

sin θ
2 ≤ radius(D)2

2(1−α)f(p̃) ·
1

radius(D) = radius(D)
2(1−α)f(p̃) .

Proof of Lemma 5.3

Take any pointu on Fα ∩ D. Let ℓ be the tangent toFα at u. Let ℓ′ be the line that is perpendicular

to ℓ and passes throughu. LetC be the circle centered atp with radius‖p − u‖. LetA andB be the

two tangent circles atp with radius (1−α)f(p̃)
2 . Let x be the center ofA. Without loss of generality, we

assume that the tangent toFα at p is horizontal,A is belowB, u lies to the left ofp, and the slope ofℓ
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is positive or infinite. (We ignore the case where the slope ofℓ is zero as there is nothing to prove then.)

It follows that the slope ofℓ′ is zero or negative. Refer to Figure 16.
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Figure 16: Illustration for Lemma 5.3.

By Lemma 5.1,u lies outsideA andB. Let q be the intersection point betweenC andA on the

left of p. Since‖p − q‖ = ‖p − u‖ ≤ (1−α)f(p̃)
4 = radius(A)/2, q lies abovex. Also, ∠pxq =

2 sin−1 ‖p−u‖
(1−α)f(p̃) .

Suppose thatℓ′ does not lie abovex, see Figure 16(a). Sinceu lies above the support line ofqx, the

angle betweenℓ′ and the vertical is less than or equal to∠pxq = 2 sin−1 ‖p−u‖
(1−α)f(p̃) .

Suppose thatℓ′ lies abovex but not abovep, see Figure 16(b). We show that this case is impossible.

Let w the intersection point betweenA and ℓ′ on the right ofp. Note thatp lies betweenu andw

and∠upw > π/2. If we grow a disk that lies belowl and remains tangent tol at u, the disk will hit

Fα at some point different fromu when the disk passes throughp or earlier. It follows that there is a

medial diskMu of Fα that touchesu and lies belowl. Observe that the center ofMu lies on the half

of ℓ′ on the right ofu. Furthermore, the center ofMu lies on the line segmentuw; otherwise, since

∠upw > π/2, Mu would containp, a contradiction. Thus, the distance from̃p to the center ofMu is

less thanmax{‖p−u‖, ‖p−w‖}+‖p− p̃‖ ≤ 2 · radius(A)+α = (1−α)f(p̃)+α ≤ f(p̃). However,

since the center ofMu is also a point on the medial axis ofF , its distance from̃p should be at leastf(p̃),

a contradiction.

The remaining case is thatℓ′ lies abovep, see Figure 16(c). Sinceu lies outsideB and the slope of

ℓ′ is zero or negative,ℓ′ lies betweenp and the center ofB. The situation is similar to the previous case

whereℓ′ lies betweenp andx. So a similar argument shows that this case is also impossible.

Proof of Lemma 7.4

A straightforward calculation shows (i).

If Fα ∩ coarse(s) consists of more than one connected component, the medial axis of Fα intersects
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the interior ofcoarse(s). SinceF andFα have the same medial axis, the distance froms̃ to the medial

axis is at most2 radius(coarse(s)) ≤ 2(5ρδ + ψm
√

f(s̃)) ≤ 2(5ρδ + ψm)f(s̃) < f(s̃) by (i), a

contradiction. This proves (ii).

Let s1 be the point onFα such thats̃1 = s̃. The distance‖s1 − x‖ ≤ ‖s − x‖ + ‖s − s1‖ ≤
5ρδ + ψm

√

f(s̃) + 2δ ≤ (5ρδ + ψm + 2δ)f(s̃). By Lemma 5.3, the angle between the normals ats1

andx is at most2 sin−1 ‖s1−x‖
(1−δ)f(s̃) ≤ 2 sin−1 5ρδ+ψm+2δ

(1−δ) ≤ 2 sin−1(0.06) by (i). This proves (iii).

By Lemma 5.2(ii),x ∈ cocone(s1, 2 sin−1 ‖s1−x‖
2(1−δ)f(s̃)) ⊆ cocone(s1, 2 sin−1(0.03)). This proves

(iv).

The distance‖s̃−x̃‖ ≤ ‖s−s̃‖+‖s−x‖+‖x−x̃‖ ≤ 5ρδ+ψm
√

f(s̃)+2δ ≤ (5ρδ+ψm+2δ)f(s̃) <

0.1f(s̃). Then the Lipschitz condition implies (v).

2sin   (0.03)
1

−1sin   (0.5)
s

x
−1

s

Figure 17: Illustration for Lemma 7.4.

Consider (vi). Refer to Figure 17. Assume that the tangent ats is horizontal. By sine law,

sin ∠sxs1 = ‖s−s1‖·sin∠ss1x
‖s−x‖ ≤ 2δ

radius(coarse(s)) as‖s − s1‖ ≤ 2δ and‖s − x‖ = radius(coarse(s)).

Sinceradius(coarse(s)) ≥ 2
√
ρδ andρ ≥ 5, we have∠sxs1 ≤ sin−1 1√

ρ < sin−1(0.5). By (iv),

∠s1sx ≥ π − ∠sxs1 − (π/2 + sin−1(0.03)) > π/2 − sin−1(0.5) − sin−1(0.03). Thus, the horizontal

distance betweens andx is equal to‖s− x‖ · sin ∠s1sx ≥ ‖s− x‖ · cos(sin−1(0.5) + sin−1(0.03)) >

0.8 · ‖s− x‖.

Consider (vii). Sincey ∈ Fα ∩ coarse(s), ‖x− y‖ ≤ 2 radius(coarse(s)) ≤ 2(5ρδ + ψm
√

f(s̃))

which is at most0.1f(s̃) by (i). So Lemma 5.2(ii) applies and the acute angle betweenxy and the tangent

atx is at mostsin−1 ‖x−y‖
2(1−δ)f(x̃) ≤ sin−1 (5ρδ+ψm)f(s̃)

(1−δ)f(x̃) . Sincef(x̃) ≥ 0.9f(s̃) by (v) andδ ≤ 1/(25ρ2),

the acute angle is less thansin−1(1.2(5ρδ + ψm)), which is less thansin−1(0.06) by (i).

Proof of Lemma 8.1

We first assume thatmax{2√ρδ, ψh
√

f(s̃)} ≤ radius(coarse(s)) ≤ 5ρδ+ψm
√

f(s̃) andradius(initial(s)) ≤
ψm

√

f(s̃). We will take the probabilities of their occurrences later into consideration.

SinceWs ≤
√

radius(initial(s)) ≤
√
ψmf(s̃)1/4 andψm ≤ 0.01 for sufficiently largen, Ws ≤

0.1f(s̃). This proves (i).

By Lemma 7.5, for sufficiently largen, |angle(strip(s))| ≤ 4 sin−1(0.06) < π/10. Sinceθ ∈
[−π/10, π/10], θs = θ + angle(strip(s)) ∈ [−π/5, π/5] andθs = 0 for someθ. This proves (ii).

Consider (iii). Letℓ be a line that is parallel tocandidate(s, θ) and insidecandidate(s, θ). We

first prove thatℓ intersectsFα. Refer to Figure 18. Without loss of generality, assume thatthe normal

at s̃ is vertical, the slope ofcandidate(s, θ) is positive, andℓ is belows. Let s1 ands2 be the points

on F+
δ andF−

δ , respectively, such that̃s1 = s̃2 = s̃. Shoot two rays upward froms1 with slopes
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± sin−1(0.03). Also, shoot two rays downward froms2 with slopes± sin−1(0.03). LetR be the region

insidecoarse(s) bounded by these four rays. By Lemma 7.4(iv),Fα ∩ coarse(s) lies insideR. Let x

be the upper right vertex ofR. Let y be the right endpoint of a horizontal chord throughs1. LetL be

the line that passes throughx and is parallel toℓ. LetL′ be the line that passes throughs and is parallel

to ℓ. Let z be the point onL such thats1z is perpendicular toL.

s z

x

s2

y

−1sin  (0.03)

L’ L

s1

θs

Figure 18: Illustration for Lemma 8.1(iii).

We claim thatL′ is aboveL andL andL′ intersect both the upper and lower boundaries ofR. By

Lemma 7.4(iv),∠xs1y ≤ sin−1(0.03), so∠xsy ≤ 2 sin−1(0.03). Observe thatcos ∠s1sy = ‖s−s1‖
‖s−y‖ ≤

2δ
radius(coarse(s)) . Sinceradius(coarse(s)) ≥ 2

√
ρδ, cos ∠s1sy ≤ 1/

√
ρ ≤ 1/

√
5 which implies that

∠s1sy > π/3. Since∠s1sx = ∠s1sy − ∠xsy, we get

∠s1sx ≥ π/3 − 2 sin−1(0.03) > π/5 ≥ |θs|. (16)

SoL′ cuts through the angle betweenss1 andsx. It follows thatL′ is aboveL. Observe thatL′ intersects

s1x. By symmetry,L′ intersects the left downward ray froms2 too. We conclude thatL andL′ intersect

both the upper and lower boundaries ofR.

Since|θs| ≤ π/5 and∠sxz = ∠s1sx−|θs|, by(16), ∠sxz ≥ π/3−2 sin−1(0.03)−π/5 > 0.3. The

distance froms toL is equal to‖s−x‖·sin ∠sxz > ‖s−x‖·sin(0.3) > 0.2·radius(coarse(s)). Recall

thatℓ lies belows by our assumption. The distance betweenℓ ands is at mostWs/2 and our algorithm

enforces thatWs/2 ≤ radius(coarse(s))/6. Soℓ lies betweenL′ andL. SinceL andL′ intersect both

the upper and lower boundaries ofR, so doesℓ. It follows thatℓ must intersectFα ∩ coarse(s).

Next, we show thatℓ intersectsFα ∩ coarse(s) exactly once. If not,ℓ is parallel to the tangent

at some point onFα ∩ coarse(s). By Lemma 7.4(iii), the angle betweenℓ and the vertical is at least

π/2 − 2 sin−1(0.06) > π/5, contradicting the fact that|θs| ≤ π/5.

Consider (iv). Letℓ be a line that is parallel tocandidate(s, θ) and passes throughs. By (iii), ℓ

intersectsFα at some pointb. We first prove thatθs − 0.2|θs| ≤ γb ≤ θs + 0.2|θs|. Let s1 be the point

onFα such that̃s = s̃1. Assume that the tangent ats is horizontal,s is aboves1, andb is to the left of

s. LetC be the circle tangent toFα at s1 that lies belows1, is centered atx, and has radiusf(s̃) − δ.

By Lemma 5.1,Fα does not intersect the interior ofC. Refer to Figure 19(a). Letsa be a tangent to

C that lies on the left ofx. We claim that∠asx > |θs|. Otherwise,‖s − x‖ ≥ ‖a − x‖/ sin(π/5) =

(f(s̃) − δ)/ sin(π/5) > f(s̃) + δ ≥ ‖s − x‖, a contradiction. Sosb lies betweensa andsx. Let

sr be the extension ofsb such thatr lies onC. We have‖a − s‖ =
√

‖s− x‖2 − ‖a− x‖2 ≤
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Figure 19: Illustration for Lemma 8.1(iv).

√

(f(s̃) + δ)2 − (f(s̃) − δ)2 = 2
√

δf(s̃). Thus,‖r − s‖ ≤ ‖a− s‖ ≤ 2
√

δf(s̃). Observe that

∠rxs = sin−1 ‖r − s‖ · sin |θs|
‖r − x‖ ≤ sin−1 2

√

δf(s̃) · |θs|
‖r − x‖ .

Sinceδ ≤ 1/(25ρ2) and|θs| ≤ π/5, we have

2
√

δf(s̃) · |θs|
‖r − x‖ =

2
√

δf(s̃) · |θs|
f(s̃) − δ

=
2
√
δ · |θs|

√

f(s̃) − δ/
√

f(s̃)
≤ 2

√
δ · |θs|

1 − δ
< 0.06. (17)

Combing (17) with the following fact

x ≤ 0.6 ⇒ sin−1 x < 1.1x, (18)

we get∠rxs <
2.2
√
δf(s̃)·|θs|

‖r−x‖ . Since‖b− s1‖ ≤ ‖r − s1‖ = ‖r − x‖ · 2 sin ∠rxs
2 , we get

‖b− s1‖ ≤ ‖r − x‖ · ∠rxs ≤ 2.2
√

δf(s̃) · |θs|.

Let γ′ be the acute angle between the normals atb ands1. By Lemma 5.3,γ′ ≤ 2 sin−1 ‖b−s1‖
(1−α)f(s̃) ≤

2 sin−1 2.2
√
δ·|θs|

1−α ≤ 2 sin−1 2.2
√
δ·|θs|

1−δ . By (17) and (18), we conclude thatγ′ < 4.84
√
δ·|θs|

1−δ < 0.2|θs|. It

follows that

θs − 0.2|θs| ≤ θs − γ′ ≤ γb ≤ θs + γ′ ≤ θs + 0.2|θs|.

Next, we prove the upper and lower bounds forγp for any pointp ∈ Fα ∩ candidate(s, θ). Let η be

the acute angle betweenbp and the line that passes throughb and is perpendicular tocandidate(s, θ).

See Figure 19(b). By Lemma 7.4(vii), the acute angle betweenbp and the tangent atb is at most

sin−1(0.06). It follows that η ≤ γb + sin−1(0.06) ≤ θs + 0.2|θs| + sin−1(0.06) ≤ 1.2(π/5) +

sin−1(0.06) < 0.9. Thus,

‖b− p‖ ≤ Ws

2 cos η
< 0.9Ws.
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Note thatWs ≤ radius(coarse(s))/3 ≤ (5ρδ+ψm)f(s̃)/3, which is less than0.02f(s̃) by Lemma 7.4(i).

Also, by Lemma 7.4(v),f(p̃) ≥ 0.9f(s̃). It follows that

‖b− p‖ < 0.9Ws ≤ 0.02f(p̃). (19)

So we can invoke Lemma 5.3 to bound the angleγ′′ between the normals atb andp:

γ′′ ≤ 2 sin−1 ‖b− p‖
(1 − α)f(p̃)

≤ 2 sin−1 0.9Ws

(1 − α)f(p̃)
≤ 2 sin−1 Ws

f(p̃)
.

By (19),Ws/f(p̃) < 0.03. So by (18), we getγ′′ ≤ 2.2Ws/f(p̃). Sincef(p̃) ≥ 0.9f(s̃), we conclude

thatγ′′ < 3Ws/f(s̃). This implies that

θs − 0.2|θs| − 3Ws/f(s̃) ≤ γb − γ′′ ≤ γp ≤ γb + γ′′ ≤ θs + 0.2|θs| + 3Ws/f(s̃).

Finally, we have proved the lemma under the conditions thatmax{2√ρδ, ψh
√

f(s̃)} ≤ radius(coarse(s)) ≤
5ρδ+ψm

√

f(s̃) andradius(initial(s)) ≤ ψm
√

f(s̃). These conditions hold with probabilities at least

1 −O(n−Ω(lnω n/fmax)) by Lemmas 7.1, 7.2, and 7.3. So the lemma follows.

Proof of Lemma 8.2

Letφ be the acute angle betweenuv and the tangent toFα atu. Letη be the acute angle betweenuv and

the direction ofcandidate(s, θ). By Lemma 7.4(vii),φ ≤ sin−1(0.06). Soη ≥ π/2− γu− φ ≥ π/2−
γu − sin−1(0.06). By Lemma 8.1(i), (ii), and (iv),η ≥ π/2 − 1.2(π/5) − 3(0.1) − sin−1(0.06) > 0.4.

Thus,‖u− v‖ ≤ width(H)
sin η ≤ width(H)

sin(0.4) < 3width(H). This proves (i).

Consider (ii). Note thatWs ≤ radius(coarse(s))/3 ≤ (5ρδ + ψm)f(s̃)/3. So by (i),‖u − v‖ ≤
3Ws ≤ (5ρδ + ψm)f(s̃). By Lemma 7.4(i) and (v),5ρδ + ψm ≤ 0.05 andf(ũ) ≥ 0.9f(s̃). It follows

that

‖u− v‖ < 0.06f(ũ). (20)

Thus, we can invoke Lemma 5.3 to bound the angleξ between the normals atu andv:

ξ ≤ 2 sin−1 ‖u− v‖
(1 − α)f(ũ)

≤ 2 sin−1 3width(H)

0.9(1 − α)f(s̃)
< 2 sin−1 4width(H)

f(s̃)
.

Since4width(H)/f(s̃) ≤ 4Ws/f(s̃) which is at most 0.4 by Lemma 8.1(i), we can apply (18) to

conclude thatξ < 9width(H)/f(s̃) ≤ 9width(H). This proves (ii).

Finally, by (20), we can invoke Lemma 5.2(ii) to bound the acute angle betweenuv and the tangent

atu. This angle is at mostsin−1 ‖u−v‖
2(1−α)f(ũ) which is less thanξ/2.

Proof of Lemma 9.1

We prove the lemma by assuming that Lemma 7.1, 7.2, and 7.3 hold deterministically. The proba-

bility bound then follows from the probability bounds in these lemmas. Fori = p or q, let Ri =

radius(coarse(i)) and letri = radius(initial (i)). The Lipschitz condition implies thatf(p̃)/2 ≤
f(q̃) ≤ 3f(p̃)/2. Leth andm be the constants in Lemma 7.1.
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Suppose thatWp =
√
rp. By Lemma 7.1, we have

Wp =
√
rp ≥

√

λh
√

f(p̃)

3
=

√

hλm
√

f(p̃)

3m
.

Note thatWq ≤ √
rq andrq ≤

√

14λmf(q̃) by Lemma 7.1. So we get

Wp ≥

√

h
√

f(p̃)

42mf(q̃)
· rq ≥

√

h

63m
√

f(p̃)
·W 2

q ≥
√

h

63m
·
W 2
q

f(p̃)
.

Suppose thatWp = Rp/3. First, sinceRp ≥ 2
√
ρδ by Lemma 7.3, we getρδ ≤ 3

√
ρWp/2. Sec-

ond, Wp = Rp/3 ≥ rp/3 which is at leastλh
√

f(p̃)/9 by Lemma 7.1. So we get
√

λmf(p̃) =
√

mλhf(p̃)/h ≤ 3
√

mWp/h·f(p̃)1/4 ≤ 3
√

mWp/h·f(p̃). Finally, sinceWq ≤ Rq/3, by Lemma 7.2,

we get

Wq ≤ 5ρδ

3
+

√

14λmf(q̃)

3

≤ 5ρδ

3
+

√

7λmf(p̃)

3

≤ 5
√
ρWp

2
+

√

21mWp

h
· f(p̃).

Proof of Lemma 9.3

We prove the lemma by assuming that Lemmas 8.4 and 9.1 hold deterministically. The probability

bound then follows from the probability bounds in these lemmas.

We translatex∗y∗ to align y∗ with ỹ. Let z denote the pointx∗ + ỹ − y∗. Let k = 138δ + 3.

By triangle inequality and Lemma 8.4,‖x̃ − z‖ ≤ ‖x∗ − x̃‖ + ‖y∗ − ỹ‖ ≤ kWx + kWy. Since

‖x̃− ỹ‖ ≤ f(ỹ)/2, by Lemma 9.1,Wx ≤ µ1f(ỹ)
√

Wy. So‖x̃− z‖ ≤ kµ1f(ỹ)
√

Wy +kWy, which is

smaller thanW 1/3
y ≤ ‖x∗ − y∗‖ for sufficiently largen. Thus,x̃z is not the longest side of the triangle

x̃ỹz. It follows that∠x̃ỹz is acute. Since‖x̃−z‖ is an upper bound on the height ofz from x̃ỹ, we have

∠x̃ỹz ≤ sin−1 ‖x̃−z‖
‖ỹ−z‖ = sin−1 ‖x̃−z‖

‖x∗−y∗‖ ≤ sin−1(kµ1f(ỹ)W
1/6
y + kW

2/3
y ). We conclude that∠x̃ỹz is

O(f(ỹ)W
1/6
y ) asn tends to∞.

Proof of Lemma 9.4

We first show that‖x̃− z̃‖ ≤ min{f(x̃)/4, f(z̃)/4}. Assume that‖x̃− z̃‖ ≤ f(x̃)/5. By the Lipschitz

condition, we havef(z̃) ≥ 4f(x̃)/5. Therefore,‖x̃− z̃‖ ≤ f(x̃)/5 ≤ f(z̃)/4.

Let D be the disk centered at̃x with radiusf(x̃)/4. Observe thatF (x̃, z̃) lies completely inside

D. Otherwise, the medial axis ofF intersects the interior ofD which implies thatf(x̃) ≤ f(x̃)/4, a

contradiction. So‖x̃− ỹ‖ ≤ f(x̃)/4. The Lipschitz condition implies thatf(ỹ) ≥ 3f(x̃)/4.

We claim that the angle∠x̃ỹz̃ is obtuse. The line segments̃xỹ and ỹz̃ are parallel to the tan-

gents at some points onF (x̃, ỹ) andF (ỹ, z̃), respectively. Lemma 5.3 implies that∠x̃ỹz̃ ≥ π −
4 sin−1 radius(D)

f(x̃) = π − 4 sin−1(1/4) > π/2.
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Since‖x̃ − ỹ‖ ≤ f(x̃)/4 ≤ f(ỹ)/3, by Lemma 9.3, the angle betweenx∗y∗ andx̃ỹ is negligible

with probability at least1−O(n−Ω(lnω n/fmax)) asn tends to∞. A symmetric argument shows that the

angle betweeny∗z∗ andỹz̃ is negligible with probability at least1 − O(n−Ω(lnω n/fmax)) asn tends to

∞. Thus,∠x∗y∗z∗ converges to∠x̃ỹz̃ which is obtuse.

Proof of Lemma 9.5

Note thatp∗ andq∗ are adjacent and they are selected by the algorithm. Letk = 138δ + 3. LetDp be

the disk centered atp∗ with radius(1 + kµ1f(p̃))W
1/3
p . LetDq be the disk centered atq∗ with radius

(1 + kµ1f(q̃))W
1/3
q . By Lemma 8.4,‖p̃− p∗‖ ≤ kWp which is less thanW 1/3

p for sufficiently largen.

So p̃ lies insideDp. Similarly, q̃ lies insideDq.

If Dp intersectsDq, then‖p∗ − q∗‖ ≤ (1 + µ1f(p̃))W
1/3
p + (1 + µ1f(q̃))W

1/3
q and we are done.

Suppose thatDp does not intersectDq. We claim thatF (p̃, q̃) ∩ Dp is connected. Otherwise, the

medial axis ofF intersects the interior ofDp which implies thatf(p̃) ≤ radius(Dp) which is less

thanf(p̃) for sufficiently largen, a contradiction. Similarly,F (p̃, q̃) ∩Dq is connected. It follows that

F (p̃, q̃) − (Dp ∪Dq) is also connected. There are two cases.

Case 1:F (p̃, q̃)− (Dp ∪Dq) does not contaiñu for any sampleu. Let y be the endpoint ofF (p̃, q̃)−
(Dp ∪ Dq) that lies onDp. Let h be the constant in Lemma 7.1. Take aλh-partition such that

y is the first cut-point. SinceF (p̃, q̃) − (Dp ∪ Dq) does not contaiñu for any sampleu, by

Lemma 6.6(i),F (p̃, q̃) − (Dp ∪Dq) does not containF (y, c1), wherec1 is the second cut-point,

with probability at least1 −O(n−Ω(lnω n)). It follows that

|F (p̃, q̃) − (Dp ∪Dq)| < λ2
hf(y). (21)

Since‖p̃− y‖ ≤ 2 radius(Dp) = 2(1 + kµ1f(p̃))W
1/3
p , ‖p̃− y‖ ≤ f(p̃)/2 for sufficiently large

n. Thus,f(y) ≤ 3f(p̃)/2, soλ2
hf(y) < 3λ2

hf(p̃)/2. SinceWp ≥ radius(initial (p))/3 which is

at leastλh
√

f(p̃)/9 by Lemma 7.1, we haveλ2
hf(ỹ) ≤ 243W 2

p /2. Substituting into (21), we get

|F (p̃, q̃)| ≤ 243W 2
p /2 + 2 radius(Dp) + 2 radius(Dq).

By Lemma 8.4,‖p̃ − p∗‖ ≤ kWp and ‖q̃ − q∗‖ ≤ kWq. We conclude that‖p∗ − q∗‖ ≤
‖p̃ − p∗‖ + |F (p̃, q̃)| + ‖q̃ − q∗‖ ≤ µ2f(p̃)W

1/3
p + µ2f(q̃)W

1/3
q for some constantµ2 > 0.

Case 2:F (p̃, q̃) − (Dp ∪ Dq) containsũ for some sampleu. We show that this case is impossible if

Lemmas 9.1 and 9.4 hold deterministically. It follows that case 2 occurs with probability at most

O(n−Ω(lnω n/fmax)). We first claim that‖p∗ − u∗‖ > W
1/3
p . If not, Lemma 9.1 implies that

Wu ≤ µ1f(p̃)
√

Wp for sufficiently largen. But then‖p∗ − ũ‖ ≤ ‖p∗ − u∗‖ + ‖ũ − u∗‖ ≤
W

1/3
p + kWu ≤ W

1/3
p + kµ1f(p̃)

√

Wp. This is a contradiction as̃u lies outsideDp. Similarly,

‖q∗ − u∗‖ > W
1/3
q . Sou∗ is not eliminated by the selection ofp∗ andq∗.

Next, take any selected center pointz∗ different fromp∗ andq∗ such that̃q ∈ F (ũ, z̃). We

show thatu∗ is not eliminated by the selection ofz∗. Assume to the contrary that this is false.

So‖u∗ − z∗‖ ≤ W
1/3
z . By Lemma 9.1,Wu ≤ µ1f(z̃)

√
Wz for sufficiently largen. Let k′ =

1 + k + kµ1. Then‖ũ − z̃‖ ≤ ‖u∗ − z∗‖ + ‖z∗ − z̃‖ + ‖u∗ − ũ‖ ≤ W
1/3
z + kWz + kWu ≤
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W
1/3
z + kWz + kµ1f(z̃)

√
Wz ≤ k′f(z̃)W

1/3
z . For sufficiently largen, k′f(z̃)W

1/3
z ≤ f(z̃)/5.

By Lemma 9.4, the angle∠u∗q∗z∗ is obtuse. It follows that‖q∗ − z∗‖ < ‖u∗ − z∗‖ ≤ W
1/3
z ,

contradicting Lemma 9.2.

Symmetrically, we can show thatu∗ is not eliminated by any selected center pointz∗ different

from p∗ andq∗ such that̃p ∈ F (z̃, ũ). In all, our algorithm should select another center pointu∗

such that̃u ∈ F (p̃, q̃) − (Dp ∪Dq). This contradicts the assumption thatp∗ andq∗ are adjacent

in G.
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