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Abstract

We present an algorithm to reconstruct a collection of disjemooth closed curves from noisy
samples. Our noise model assumes that the samples areasbtaijrfirst drawing points on the
curves according to a locally uniform distribution follod/by a uniform perturbation in the normal
directions. Our reconstruction is faithful with probatyilapproaching 1 as the sampling density
increases.

1 Introduction

The combinatorial curve reconstruction problem has be@msively studied recently by computational
geometers. The input consists of sample points on a cateofiunknown disjoint smooth closed curves
denoted by. The problem calls for computing a set of polygonal curves #éine provablyaithful. That

is, as the sampling density increases, the polygonal cshvasld converge t@'.

Several algorithms have been proposed in the geometriclmgdend image processing literature
that achieve good experimental results. Fang and Gossalgidposed to fit a deformable curve by
minimizing some spring energy function. Dedieu and Favafd| described a method to order and
connect sample points on an unknown curve. Taubin and Rb[2&] proposed to construct a mesh
covering the sample points and then extract a polygonakciiiat fits the sample points. Pottmann and
Randrup [19] used a pixel-based technique to thin an inpunt gtoud to a curve. This image thinning
technique can handle noise, but it is difficult to come up \aithappropriate pixel size. Goshtasby [15]
obtained a reconstruction by tracing points that locallyximéze a certain inverse distance function
involving the noisy sample points. The traced points form tlconstruction. Lee [16] proposed a
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variant of the moving least-squares method by Levin [17, 8]ng a weighted regression, a new point
is computed for each noisy sample point such that the newipoiaster around some curve. Then the
new points are decimated to produce a reconstruction. Adth@ood experimental results are obtained
with the above methods, there is no guarantee on the faiédalof the reconstruction.

Amenta, Bern, and Eppstein [2] obtained the first provabityfial curve reconstruction algorithm.
They proposed aD crustalgorithm whose output is provably faithful if the inputiséies the-sampling
condition for anye < 0.252. For each point: on F', thelocal feature sizef (z) atx is defined as the
distance frome to the medial axis of’. For0 < ¢ < 1, a setS of samples is ar-sampling ofF if
for any pointz € F, there exists a samplec S such that|s — z|| < e- f(z) [2]. The algorithm by
Amenta, Bern, and Eppstein invokes the computation of anrdiagram or Delaunay triangulation
twice. Gold and Snoeyink [14] presented a simpler algorithat invokes the computation of Voronoi
diagram or Delaunay triangulation only once. Later, Dey ldathar [6] proposed &lN-crustalgorithm
for this problem. Since we will use the NN-crust algorithie triefly describe it. For each sample
in S, connects to its nearest neighbor if. Afterwards, if a sample is incident on only one edge
connects to the closest sample among all samplesuch thatsu makes an obtuse angle with The
output curve is faithful for any < 1/3 [6]. Dey, Mehlhorn, and Ramos [7] proposead@nservative-
crustalgorithm to handle curves with endpoints. Funke and Rari@jgjroposed an algorithm to handle
curves that may have sharp corners and endpoints. Dey andenVg) 9] also described algorithms
and implementation for handling sharp corners. Giesen disfjovered that the traveling salesperson
tour through the samples is a faithful reconstruction, hig approach cannot handle more than one
curve. Althaus and Mehlhorn [1] showed that such a travedialgsperson tour can be constructed in
polynomial time.

Noise often arises in collecting the input samples. For gptamvhen the input samples are obtained
from 2D images by scanning. The noisy samples are typicédlysdied into two types. The first type
are samples that cluster arouRut they generally do not lie oR. The second type are outliers that lie
relatively far fromF. No combinatorial algorithm known so far can compute a faltheconstruction
in the presence of noise. In this paper, we propose a metlabadn handle noise of the first type for
a set of disjoint smooth closed curves. We assume that the dges not contain outliers. We propose
a probabilistic model of noisy samples and prove that ouonsttuction is faithful with probability
approaching 1 as the number of samples increases. For Gity@id notational convenience, we
assume throughout this paper thaitn,.» f(z) = 1 and F' consists of a single smooth closed curve,
although our algorithm works whefi contains more than one curve.

We prove that our algorithm returns a reconstruction whecfaithful with probability at least —

O(n_Q(lfr;n%_l)), wheren is the number of input samples, is an arbitrary positive constant, and
fmax = maxger f(z). The novelty of our algorithm is a method to cluster samptethat each cluster
comes from a relatively flat portion df'. This allows us to estimate new points that lie closdto
We believe that this clustering approach will also be uskfurecognizing non-smooth features. Our
strategy resembles Lee’s method [16] in spirit. But we ugelgigeometric operations to estimate new
points instead of optimizing a weighted regression.

The rest of the paper is organized as follows. Section 2 d&siour sampling and noise model.
Section 3 describes our algorithm. Section 4 states the tinegrem of this paper and gives an overview



of the analysis leading to it. Section 5 introduces the basiations and some basic geometric lemmas.
In Sections 6-10, we give the detailed proofs. We conclud8dation 11 and discuss some related
problems, in particular, the problem of reconstructingastes from noisy samples.

2 Sampling and noise model

We use probabilistic sampling and noise models. A samplemegted by drawing a point frodi
followed by randomly perturbing the point in the normal diten. In a sense, it models the location
of points on the curve by an input device, followed by perétidn due to noise. Lel = fF ﬁdm
The drawing of points fron#’ follows the probability density functiogfl—m. That s, the probability of
drawing a point from a curve segmenis equal tofT7 ﬁdw divided by L. This is known as th&cally
uniform distribution The distribution of each sample is independently idehtica

A point p drawn from F' is perturbed in the normal direction. The perturbation igarmly dis-
tributed within an interval that hgsas the midpoint, widtt2s, and aligns with the normal direction at
p. Thusd models the noise amplitude. Note that the noise amplituaamains fixed regardless of the
number of points drawn froni’. Although the noise perturbation is restrictive, it iselthe effect of
noise from the sampling distribution which allows an idistudy of noise handling. It seems necessary
thato is less than 1. Otherwise, as the minimum local feature siZg the perturbed points from dif-
ferent parts off” will mix up at some place and it seems very difficult to estiendite unknown curve
F around that neighborhood. For our analysis to work, we aestivats < 1/(25p%) wherep > 5
is a constant chosen a priori by our algorithm. We emphasiatthe value ob is unknown to our
algorithm.

One may consider other sampling distributions. A more ictste model is theuniform distribution
in which the probability of drawing a point from a curve segineis equal tolengﬁi‘((g)) This model is
attractive because it is natural to sample in a uniform tashi the absence of any information about the
local feature sizes. Despite the apparent difference,abely uniform distribution is strongly related
to the uniform distribution which can be seen as follows. Whes short, the Lipschitz property of
the local feature sizes implies that the probability of drayva point fromn in the locally uniform
model 'SQ(Lff(c)) for any pointc € 7. This is equivalent t@(lengt}(l() 1)) If we treatL andlength(F)
as intrinsic constants foF’, the probabilities of sampling in the locally uniform dibtrition and the
uniform distribution differ only by a factor of local featisize. Thus our analysis for the locally uniform
distribution can be adapted easily for the uniform distitiu case, basically by slashing off a factor of
local feature size. In particular the reconstructionithfal with probability at least —O (n (2" n—1))
instead ofl — O(n‘mm_l))

Our algorithm and analysis do not make use of any estimatfitotal feature sizes. This is demon-
strated by the fact that our analysis can be adapted to th@rmdistribution case as briefly explained
above. Our algorithm constructs a small neighborhood at@ach noisy sample, and from this small
neighborhood, one can extract upper and lower bounds oroda¢ feature size. However, the two
bounds differ by a factor that tends to infinity as the sangptiensity increases. So the small neigh-
borhood does not offer any reliable estimation of the loeatdre size. (We will elaborate on this point
when we describe our algorithm.) In fact, we do not know howtitain such estimation in the presence




Figure 1: The left figure shows the noisy samples. The middieréi shows the new points computed.
The right figure shows the remaining points after pruning.

of noise, without effectively solving the reconstructiorolplem first. After solving the reconstruction
problem, one may possibly estimate the local feature sizieg) the Voronoi diagram of the reconstruc-
tion as an approximation of the medial axis. This is beyomdsttope of this paper though.

3 Algorithm

Our algorithm consists of three main stepsRT ESTIMATION, PRUNING, and QUTPUT. Inthe ROINT
ESTIMATION step, the algorithm filters out the noise and computes nemtpthat are provably much
less noisy than the input samples. Since the sampling gaagiigh, the distances of these new points
from F' can still be much larger than the distances among them. Thliset reconstruction using
all of the new points would produce a highly jagged polygonaive. As a remedy, in theRRINING
step, the algorithm decimates the points so that the inigrpiistances in the pruned subset is large
relative to their distances frorh. See Figure 1. Finally, in the @ PUT step, we can run any provably
good combinatorial curve reconstruction algorithm. Weas®to run NN-crust [6]. The following
pseudocode gives a high level description of the above 8isges and more details of the pruning step.
For each pointz € R? that does not lie on the medial axis Bt we usei to denote the point o’
closest tar. That s,z is the projection of: onto F'. (We are not interested in points on the medial axis.)

POINT ESTIMATION: For each sample, we construct a thin rectanglefined(s). The
long axis ofrefined(s) passes through and its orientation approximates the normal
at 5. The center ofrefined(s) is the new points* desired. The distancgs™ — 3|
approaches zero as— oc.

PRUNING: We sort the points™ in decreasing order ofidth(refined(s)). Then we scan
the sorted list and select a subset of center points: wherelgetdhe current center
point s*, we delete all center points* from the sorted list such thats* — u*|| <
width(refined(s))"/3,

OuTpPUT. We run the NN-crust algorithm on the selected center pa@intsreturn the out-
put curve.

The main objective of BINT ESTIMATION s to align the long axis ofefined(s) with the normal
ats. This is instrumental to proving thgt* — s|| approaches zero as — co. The construction of
refined(s) is done in three steps. We give a highlight first before priogdhe details.

First, we compute a small diskitial(s) centered ak. We prove upper and lower bounds on the
radius ofinitial(s), but their ratio is@(%) which tends to infinity ass — oo. Soinitial(s)
In n
does not provide a reliable estimate &(fs). Second, we grow the disk neighborhood arounghtil
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the samples inside the disk fit inside a strip whose width ialkralative to the radius of the disk. The
final disk is thecoarse neighborhoodf s and it is denoted byoarse(s). The radius okoarse(s) is in
the order ofy + radius(initial(s)). The orientation of the strip approximates the tangest &inceF’
can bend quite a lot withimoarse(s), the approximation error may be in the ordesif ! 5. Thus an
improved estimate is needed. Third, we shrinkrse (s) to a smaller disk. We take a slab perpendicular
to strip(s) bounded by two parallel tangent lines of the shrunken disk.r@tate the slab aroundto
minimize the spread of the samples inside along the dinrectidhe slab. Because of the minimization
of the spread of samples inside, we can show that the oriemtaf the final slab approximates the
normal ats well.

We provide the details of the three steps ibIRT ESTIMATION below. Letw > 0 andp > 5 be
two predefined constants.

INITIAL DISK : We compute a disl centered a# that containgn' ™ n samples. Then we
setinitial(s) to be the disk centered atwith radius+/radius(D). For sufficiently
large n, the radius ofD is less than 1, which implies thatitial(s) containsD.
Figure 2 shows an illustration.

COARSE NEIGHBORHOOD We initialize coarse(s) = initial(s) and compute an infinite
strip strip(s) of minimum width that contains all samples insiderse(s). We grow
coarse(s) and maintainstrip(s) until % > p. The final diskcoarse(s)
is thecoarse neighborhoodf s. Figure 2 illustrates the growth process.

REFINED NEIGHBORHOOD Let N, be the upward direction perpendicular itip(s).
The candidate neighborhoadndidate (s, 6) is the slab that contains in the mid-
dle and makes a signed acute angigith ;. The width ofcandidate (s, 0) is equal
to the minimum of/radius(initial(s)) andradius(coarse(s))/3. The angled is
positive (resp., negative) if it is on right (resp., left) §f. Figure 3 shows the initial
candidate neighborhood that is perpendiculasti@p(s). We enclose the samples in
candidate (s, 0)Ncoarse(s) by two parallel lines that are orthogonal to the direction of
candidate(s,0). These two lines form a rectangtectangle (s, 6) with the boundary
lines of candidate(s, #). The width ofrectangle (s, ) is the width ofcandidate(s, ).
The height ofrectangle(s, #) is its length along the direction efindidate (s, ). We
vary 6 within the rangd—= /10, 7 /10] to find an orientation that minimizes the height
of rectangle(s, ). Figure 3 illustrates the rotation and the bounding red&anget
0* be the minimizing angle. Theefined neighborhoodf s is rectangle(s,6*) and is
denoted byrefined(s). We return the center poist of refined(s).

A few remarks are in order. Recall thatin,cr f(x) is assumed to be 1. For sufficiently large
n (i.e., when the sampling is dense enough), the radiug@ial(s) is less than 1. So in thelR
FINED NEIGHBORHOODStep,/radius(initial(s)) > radius(initial(s)). Clearly, coarse(s) contains
initial(s). So the width ofcandidate(s,#) andrefined(s) is at leastradius(initial(s))/3 and at most
/radius(initial(s)) < 1.




Figure 2: On the left, the white dot is the samplehe inner disk isD, and the outer disk igitial(s).
On the right, we growinitial(s) until strip(s) has a relatively large aspect ratio. The final disk is

coarse(s).

Figure 3: On the left, the initial candidate neighborhoothis one perpendicular terip(s). On the
right, as we rotate the candidate neighborhood, we mairtkersmallest bounding rectangle of all
samples inside.

4 Overview of analysis

Our goal is to prove the following result:

Main Theorem Assume thad < 1/(25p%) andp > 5. Letn be the number of noisy samples from
a smooth closed curve. For sufficiently largeour algorithm computes a polygonal closed curve that

has the following properties with probability at least- O(n~Fuax V).
e For each output vertex*, ||s* — 3|| = O((‘“l%)l/gf(g)l/ﬁt).

e For each output edge*s*, the angle betweert s* and the tangent atis O((12-n)1/48 f(5)25/24)

n

e The output curve is homeomorphic to the smooth closed curve.

We first give an overview of the proof strategies here befavang into details later. The hardest
part is to argue that the point that we estimate for the sampiendeed lies very closely to the curve.
To illustrate the intuition, we assume that the curve is alftaizontal segment locally & See Fig-
ure 4(a). So the noisy samples in the local neighborhood ilieiwa bandB of width 2. Thus the
final coarse(s) must have radiu®(pd + radius(initial(s))) in order to meet the stopping criterion of
growing coarse(s). Next, we would like to argue that the slope ©fip(s) approximates the slope of



(a) (b) (c)

Figure 4: The left figure showsarse(s), the noise band®, andF'. In the middle figure, the bold strip
is strip(s) and the shaded area is the significant areB oltsidestrip(s). The shaded area should be
non-empty with high probability. In the right figure, the died rectangle is the candidate rectangle.

the tangent a§. We prove this by contradiction and assume titatp(s) is tilted a lot. So a significant
area of B lies outsidestrip(s) as shown in Figure 4(b). Our goal is to show that this areaatasita
noisy sample with high probability. Therefore, with highopability, strip(s) cannot be much tilted
from the horizontal.

Directly discussing the emptiness of an arbitrary area {ladret contains a noisy sample or not) is
quite hard given the continuous distributions. We get adailns by decomposing the space around
into small cells. Since the cells have more regular shapesamneshow that each cell is non-empty with
high probability and we can also bound the diameters of the. CEhe cell diameter approaches zero as
the sampling density increases. The bound on the cell daneeibles us to show that the areabof
outsidestrip(s) in Figure 4(b) contains a cell. So the area contains a noisypkawith high probability.

The next step is to construct the refined neighborhood &b as to obtain an improved estimate
of the normal ats. This is done by rotating a candidate rectangle to minimigeneight. See Fig-
ure 4(c). The width of the candidate rectangle is set to bertimémum of \/radius(initial(s)) and
radius(coarse(s))/3. Clearly, we want the width to be small in order to generategd variation in the
height even when we have a small angular deviation from theaaloats. In fact, we want to show that
radius(initial (s)) approaches zero as the sampling density increases. Retalltial(s) is generated
by identifying theln!™ n nearest samples to We are to show that the number of samples inside a cell
is at leasin'™ n with high probability. Thusadius(initial(s)) is no more than the cell diameter. In
Figure 4(c), when we rotate the candidate rectangle, itetugpd lower sides may invade the interior of
the bandB. This is because there may not be any noisy sample on the loamdi&ry. Still, we want to
keep the upper and lower sides of the candidate rectangtehreehand boundary, otherwise we would
not have a big increase in height despite the angular demidtom the normal ag. Fortunately, as
the cells are non-empty with high probability, the gaps leemwthe upper and lower sides and the band
boundary must be too narrow for a single cell to fit in.

We have not discussed one important phenomenon so far. &isagnknown, it may be arbitrar-
ily small. In this caseradius(coarse(s)) is only lower bounded byadius(initial(s)) as we grow




coarse(s) from initial(s). Thus we need to establish a lower boundradius(initial(s)), and hence
radius(coarse(s)). We construct another decomposition of the space ardumuto slabs. Then by
upper bounding the number of samples in each slab, we cam lmwedradius(initial(s)) by the slab
“width”.

The decompositions of the space aroundnto cells and slabs are introduced in Section 6. The
detailed proofs for the radii bound @fitial(s) and coarse(s), and the angular error betweetrip(s)
and the tangent atare given in Section 7. In Section 8, we give the detailed foimahe angular error
between the long axis otfined(s) and the normal a&, and then we bounfis* — 5||. In Section 9, we
obtain the homeomorphism result by extending the NN-cmialyais. In Section 10, we put everything
together to prove the Main Theorem.

5 Notations and preliminaries

We call the bounded region enclosed Bythe insideof F' and the unbounded region tbatsideof F'.
For0 < a < 4, F.f (resp.,F) is the curve that passes through the pointutside (resp., insidey’
such that|q — ¢|| = a. We useF,, to meanF or F; when it is unimportant to distinguish between
inside and outsideF’ can be visualized as the boundary of the union of the mediikdinclosed by

If we increase the radii of all such medial disksdyF.! is the boundary of the union of the expanded
disks. F, has a similar interpretation after decreasing the radillafieh medial disks by. It follows
that I’ and F,, have the same medial axis.

The normal segmenat a pointp € F'is the line segment consisting of the poigten the normal
of F" atp such that|p — ¢|| < 6. Given two pointst andy on F', we useF'(z, y) to denote the curved
segment traversed fromto y in clockwise direction. We usg’(z, y)| to denote the length df (x, y).

The following are some technical lemmas on some geometopepties ofF,,. Their proofs can
be found in the appendix. Lemma 5.1 lower bounds the radidBeofangent disk at any point ar,.
Lemma 5.2 shows that a small neighborhood of a pemn £, is flat enough to fit inside a double cone
atp with small aperture. Lemma 5.3 proves the small normal tiarisbetween two nearby points on
F,.

Lemma 5.1 Any pointp on F, has two tangent disks with radfi(p) — « whose interior do not intersect
F,.

For each poinp on F,, take the double cone of poinissuch thatpg makes an anglér — 6)/2
or less with the support line of the normalat We denote the complement of this double cone by
cocone(p, ). Note thatcocone(p, 6) is a double cone with apgxand angle).

Lemma 5.2 Letp be a point onF,,. Let D be a disk centered atwith radius less thar2(1 — «) f(p).

(i) Forany pointq € F, N D, the distance of from the tangent ap is at mostiﬂy’i;‘fﬁﬁ).
—1 radius(D) )

(i) Fon D C cocone(p,2sin™" 55—



Lemma 5.3 Letp be a point onF,,. Let D be a disk centered at with radius at mos 1_02f(ﬁ). For

any pointu € F, N D, the acute angle between the normalg @nd« is at most2 sin~! (ipa_)ugﬁ) <
—1 radius(D)
(1-a) f(P)"

2sin

6 Decompositions

We will use two types of decompositions;partition and 5-grid. Let0 < g < 1 be a parameter. We
identify a set otut-pointson £ as follows. We pick an arbitrary poing on F' as the first cut-point. Then
for i > 1, we find the point; such that; lies in the interior ofF'(c;_1,co), |F(ci—1,¢:)| = 82 f(ci—1),
and|F(c;,co)| > B%f(c;). If ¢; exists, it is the next cut-point and we continue. Otherwige,have
computed all the cut-points and we stop. Theartition is the arrangement &t Fy, and the normal
segments at the cut-points. Figure 5 shows an example. Weawdl face of theg-partition as-slab
The p-partition consists of a row of slabs stabbedmy

Figure 5:3-partition.

The cut-points for g-grid are picked differently. We pick an arbitrary poifgton F' as the first cut-
point. Then fori > 1, we find the point; such that; lies in the interior ofF'(¢;—1, o), |F(ci—1,¢)| =
Bf(ci—1), and|F(c;, co)| > Bf(ci). If ¢; exists, it is the next cut-point and we continue. Otherwige,
have computed all the cut-points and we stop. Bkgrid is the arrangement of the following:

e The normal segments at the cut-points.
o F,Fj, andF; .
e FF andF, wherea = i36 andi is an integer between 1 and/3] — 1.

The §-grid has a grid structure. Figure 6 shows an example. Weeeah face of thgd-grid a G-cell.
There are)(1/3) rows of cells “parallel to"F.

Given ag-partition, we claim that for every consecutive pairs ofpatntsc; ; andc;, 5% f(c;—1) <
|F(ci_1,¢;)| < 383%f(ci_1). For almost all consecutive pairs of cut-poinfs; andc;, |F(c;_1,¢;)| =
(% f(ci—1) by construction. The last paif, andcy constructed may be an exception. We know that
|F(ck,co)| > B%f(ck). When we try to placey 1, we find that|F'(cx.1,c0)] < B%f(cks1). SO
|F(cr,co)| < B%f(ck) + B%f(cry1). By the Lipschitz conditionf (cii1) < f(cr) + |lck — crr1]l <
fler) + 52 f (ex)- Thus|F(cg, co)| < (267 + 5*) f (ex) < 367 f(cx)-



Figure 6:3-grid.

Similarly, given ag-grid, we can show that for every consecutive pairs of cutga:; | andc;,
Bf(cim1) < |Fleimy, )| < 36f(cim1).

In Section 6.1, we bound the diameter offacell. In Section 6.2, we lower bound the width of
a g-slab. In Section 6.3, we analyze the probabilities of sgivstabs and3-cells containing certain
numbers of samples.

6.1 Diameter of ag-cell

We need a technical lemma before proving an upper bound agidheeter of a3-cell.

Lemma 6.1 Assume thatt < 1/12. Letp and g be two points or¥,, such that|F'(p, q)| < 35f(p).
Then|lp — q|| < [|p — ql| + 706.

Proof. Refer to Figure 7. Let be the pointg — ¢ + p. Without loss of generality, assume that
Zppr < Zprp. Lemma 5.3 implies that ppr < 2sin~! 33. Therefore,/prp > /2 — sin~! 33. By

Figure 7: lllustration for Lemma 6.1.

. _5ll-sin ZoB §sin(2sin—13 . . e
sine law,|[p — r|| = [l Sliﬂll\ilgrpppr < (S;:)I;((siilglw)ﬁ)' Note thatsin(2sin ! 33) < 2sin(sin~! 33) = 63

and sinced < 1/12, cos(sin~! 33) > cos(sin~!(1/4)) > 0.9. So|lp — r|| < 636/(0.9) < 735. By
triangle inequality, we geltp — q|| < [l — ([ + [lp =l = |lp — qll + llp — || <P — qll + 75%.

Lemma 6.2 Assume thatp < 1/12 andé < 1. LetC be anyg-cell that lies between the normal
segments at the cut-pointsandc; 1. Then the diameter af is at mostl45f(c;).

Proof. Let s andt be two points inC'. Letp be the projection of towardss onto a side of”'. Similarly,
let ¢ be the projection of towardst onto the same side @f. Note thatp = 5 and§ = ¢. The triangle
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inequality and Lemma 6.1 imply that

ls =t < llp—qll +lp— sl +llg — ¢
< p—all+ 766+ llp = sl + llg — ¢].

Sincel||p — G| = ||5 — || < 38f(¢;) and both||p — s|| and||q — || are at mosg34, the diameter of”
isatmosBif(c;) + 11680 < 148 f(¢;).

6.2 Slab width

The next lemma lower bounds the width of slab ig-gartition.

Lemma 6.3 Assume that < 1/8 andf < 1/6. Let¢; and¢;4; be two consecutive cut-points of a
(B-partition. For any point on the normal segmentcat; (resp.,c;), its distance from the support line of
the normal segment at (resp.,c;+1) is at least| F'(¢;, ¢;11)] /6.

Proof. Assume that the normal af is vertical. Take any two pointg, ¢ € F,, such thatp = ¢; and
G = ci+1. We first bound the distance frognto the support line of the normal segmentatThe same
approach also works for the distance froro the support line of the normal segmentat; .

Let » be the orthogonal projection gfonto the tangent td, atp. Observe that the distance of
q from the support line of the normal segmentcats |p — r||. We are to prove thap — r|| >
|F(ci,ciq1)|/6. For any pointz € F,(p,q), we used, to denote the angle between the normals at
# and¢;. By Lemma 5.3, we havé, < 2sin~! % Sincez € F(c¢;,cit1), we havellc; — z|| <
|F(c;,%)| < |F(ci,civ1)]- Thush, < 2sin~! % By our assumption of, % < 3432

1/12. It follows thatsin ! 'F(jf(’(f?)“)‘ < Aerc)| Therefore,

N

fles)
4|F(Cz', Ci+1)|
0, < o) (1)
< 124 (2)

This implies thatF, (p, ¢) is monotone along the tangent £, at p; otherwise, there is a point
F.(p,q) suchtha¥, = 7/2 > 12/3?, a contradiction. It follows thaF'(c;, c; 1) is also monotone along
the tangent td* atc;. Refer to Figure 8. Assume thaties belowc;, andq lies to the right ofp. Letr’
be the orthogonal projection ef;; onto the tangent té” atc;. The monotonicity of'(¢;, ¢;11) implies
that

©)
llei —7'|| = / cos O, dx > |F(ci,civ1)| - cos(123%) > 0.8/ F(ci, civ1)l,
F(ci,cit1)
ascos(124%) > cos(0.5) > 0.8. Let d be the horizontal distance betweerands’. Observe that
d = ||ci+1 — ¢q|| - sinf, < 66,, which is at mostlé|F'(c;, ci+1)| by (1). We conclude that

lp=rl = llei=rll-d
> (0.8 —46)|F(ci,cir1)]
e<1/8 Wclliﬂl

11



Figure 8: lllustration for Lemma 6.3.

This lower bounds the distance frapto the support line of the normal segmentat

Let d,, be the distance from to the support line of the normal segmentcat;. We can use the
same approach to lower bourdg. The only difference is that for any pointe F,(p, ¢), the anglep,
between the normals &tandc; ;; satisfies

|F'(ci; civ1)|
fleir)
Note that the denominator j§c;+1) instead off(c;) in (1). Nevertheless, by the Lipschitz condition,

f(Ci_;,_l) > f(CZ) — HCZ — ci—i—l” > f(CZ) — ‘F(CZ',CZ'_H)‘ > (1 — 352)f(cl), which is at |ea311f(cz)/12
as33? < 1/12. Therefore,

by < 2sin~!

1 12[F(e i) 24P (ci civa)| _ BIE (e, civn)]
llf(cl') - 11f(CZ') f(CZ)
Observe thaty, < 1532 < 7/2. S0F,(p,q) and F(c;, c;1) are monotone along the tangentsio

atq and I atc;, 1, respectively. Alsogos ¢, > cos(154%) > cos(0.5) > 0.8. Hence, by imitating the
previous derivation of the lower bound [pf — ||, we obtain

¢z < 2 sin < 1532

dy > (0.8 =50)|F(ci,civ1)l
6§1/8 F 15 G
S M

6.3 Number of samples in cells and slabs

We first need a lemma that estimates the probability of a saipght lying inside certairs-cells and
(-slabs.

Lemma 6.4 Let \, = \/% for some positive constait Letr > 1 be a parameter. Lef’ be a
(A\x/r)-slab or (A /r)-cell. Lets be a sample. There exist constartsand x, such that ifn is so large
that \y, < 1/6, thenkaA? /12 < Pr(s € C) < ki A} /r.

12



Proof. Recall thatL = || F ﬁdm. Assume that” lies between the normal segments at the cut-points
¢; ande; 1. We usen to denoteF'(c;, ¢;+1) as a short hand. By our assumption Jn for any point
x € n, if Cisalg-cell, then||x — ¢;|| < 3\pf(c)/r < f(ci)/2; if Cis alg-slab, then|z — ¢ <
3A2 f(c;)/r? < f(e;)/12. The Lipschitz condition implies that(c;)/2 < f( ) <3f(c;)/2. lf Cisa
A-slab, therPr(s € C) = Pr(5 lies onn), which is 1 - fn f(m)da: € [SL 5y Ty 2] If C'is \g-cell, then
Pr(5 lies onn) = + - y hyde € (575, Pk]. SincePr(s € C | 5 lies onn) € [g57, ] = 35, 2%,

T

2
Pr(s € C) € [k, 2.

The following Chernoff bound [10] will be needed.

Lemma 6.5 Let the random variables(;, X, ..., X,, be independent, with < X; < 1 for each
i. LetS, = Y I, X;, and letE(S,) be the expected value 6f,. Then for anys > 0, Pr(S, <
2
(1= 0)E(Sy)) < exp(—ZEE) andPr(S, > (1+ 0)E(S,)) < exp(— grank).
We are ready to analyze the probabilities of sgimaabs ands-cells containing certain numbers of
samples.

Lemma 6.6 Let \, = \/’mnl% for some positive constait Letr > 1 be a parameter. Lef’ be a
(A\x/r)-slab or (A, /r)-cell. Letx; and x4y be the constants in Lemma 6.4. Whenevés so large that
A < 1/6, the following hold.

(i) C is non-empty with probability at leagt— r,~2(n”n/7%),

(i) Assume that = 1. For any constank > 1 k2, the number of samples @ is at mostsIn!™ n
with probability at leastl — n =" 7)

(iii) Assume that = 1. For any constank < r»k?, the number of samples @ is at leasts In* ™ n
with probability at leastl — n =" 7)

Proof. Let X;(i = 1,...,n) be a random binomial variable taking value 1 if the samplepgi is
insideC, and value OotherW|se Leét, = > " | X;. ThenE(S,) = > " E(X;) =n-Pr(s; € ).
This implies that

K1 n)\% kikZIn'tvn ﬁgn)\% kokZIn'tv n
E(STL) < T2 = T2 ’ E(STL) 2 TQ = T2
By Lemma 6.5,
Pr(S, <0) = Pr(S,<(1-1)E(S,))
< exp(— (S ))
1 1+w
< ep(-0(= )

Consider (ii). Lets = ez —1>0. Sincer = 1, we have

kI 0 = knAL(1+ o) > (1 +0)E(Sy).

13



By Lemma 6.5,

Pr(S, > xIn'*n) < Pr(S, > (1+0)E(S,))
a’E(S,)
2+20/3

= exp(—Q(In'*¥ n)).

< exp(—

Consider (iii). Leto =1 — ?’22 > 0. Sincer = 1, we have

kIn'Tn = konAi(1 — o) < (1 — 0)E(Sy).

By Lemma 6.5,
Pr(S, < kln'™n) < Pr(S, < (1 —0)E(S,))
2
E(Sy,
< op(-ZE),

7 Coarse neighborhood

In this section, we bound the radii @fitial(s) and coarse(s) for each sample. Then we show that
strip(s) provides a rough estimate of the slope of the tangefit &t 5. Recall that\, = \/%.

7.1 Radius ofinitial(s)

Lemma 7.1 Leth be a constant less tha{)/% and letm be a constant greater tha{}/mz2 , wherer

and k9 are the constants in Lemma 6.4. gt = )\;/3 and,, = 14)\,,. Lets be a sample. If
d <1/8, N\ <1/12,and ), < 1/12, then

Y/ f(8) < radius(initial(s)) < ¥mr/ f(3)
with probability at leastl — O(n 27" 7)),

Proof. Let D be the disk centered athat containgn'** samples. We first prove the upper bound. Take
a \,,-grid such that lies on the normal segment at the cut-paint Let C' be the),,-cell between the
normal segments a} andc; that contains. By Lemma 6.6(iii),C’ contains at leastIn'** n samples
with probability at least — n=*("“ ") SinceD containsln'** n samplesradius(D) is less than the
diameter ofC with probability at leastt — n~(" ") By Lemma 6.2radius(D) < 14\, f(co) =
14, f(3). It follows thatradius(initial(s)) = /radius(D) < \/14A,, f(3).

Next, we prove the lower bound. Take\g-partition such that lies on the normal segment at the
cut-pointcy. Consider the cut-pointg; for —1 < j < 1. (We usec_; to denote the last cut-point

14



picked.) We havéc_1 — co|| < |F(c_1,c0)| < 3A7 f(c_1) < 0.03f(c_1) asA, < 1/12. The Lipschitz
condition implies that

fle—1) > f(ep)/1.03 > 0.8f(co). 3)

Let d_; andd; be the distances from to the support lines of the normal segments:at and ¢y,
respectively. By Lemma 6.3,
|[Fle-1,c0)| _ Aafle) ® A f (co)

6 - 6 8 7
|[Feo, 1)l o Aif(co)

6 - 6
By Lemma 6.6(ii), the\,,-slabs between_; andc, and betweemr, andc; contain at mosin!** n,/3
points with probability at least— O (n =1 ")), Hence, forD to containin'*“ n points,radius(D) >
max{d_1,d1} > A2 f(cp)/6. Note thatf(3) = f(co) ass = co by construction. It follows that

radius(initial(s)) = /radius(D) > A/ f(5)/3.

d_q >

dy >

7.2 Radius ofcoarse(s)

In this section, we prove an upper bound and a lower bounderattius ofcoarse(s).

Lemma 7.2 Assumep > 4 andd < 1/(25p%). Letm be the constant andy,, be the parameter in
Lemma 7.1. Let be a sample. If\,, < 1/(504p?), then

radius(coarse(s)) < 5p0 + ¥m/ f(8)
with probability at leastl — O (n 22" 7)),

Proof. Let s; andss be points onF(;r andFy such thats; = s = 5. Let D be the disk centered at
with radius5pd + 1,1/ f (3). By Lemma 7.3,/ (3) > radius(initial(s)), S0D containsinitial(s)
with probability at least — O(n*(*” ™)), We are to show thatoarse(s) cannot grow beyond. First,
since\,, < 1/(504p?),

Um = /T4Am < 1/(6p) < 1/24.

Observe that botk; ands; lie inside D. Sincebpd < 1/(5p) < 1/20 andv,, < 1/24, radius(D) <
(1 — 8)f(5). Thus, the distance between any two pointsim F;" is less thar2(1 — &) f(3). By

[+(3))2
Lemma 5.2(i), the maximum distance betwe.{e;EmF(;r and the tangent tE(;r ats; is at most% <

(5’)5@3?{9)/%)2 asf(s) > 1. Thus, this distance is upper boundedi%?(ﬂ’TTg)2 which is less than
0.51(5p6 +1bym)? @sé < 1/(25p%). The same is also true fd» N F . It follows that the samples inside
D lie inside a strip of width at mosts + 1.1(508 + ¥,)? = 26 + 1.1(5p)?6% + 2.2(5p) 1m0 + 1192,
Sinced < 1/(25p%) and ), < 1/(6p), we havel.1(5p)%6? < 1.14, 2.2(5p)¢md < 1.849, and
1.1¢2, < v, /p. We conclude that the strip width is no more thah+ 1.15 + 1.840 + ¥y, /p <

59 + ¢ /p < radius(D)/p. This shows thatoarse(s) cannot grow beyond.
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Next, we boundadius(coarse(s)) from below. We uséf,,.x to denotemax,cr f(z).

Lemma 7.3 Assume thad < 1/8 andp > 4. Leth be the constant in Lemma 7.1. Lsbe a sample.
If A\, <1/32, then
radius(coarse(s)) > max{2./pd, radius(initial(s))}

with probability at leastl — O(n—Q(lnw n/fmx))_

Proof. Sincecoarse(s) is grown frominitial(s), radius(coarse(s)) > radius(initial(s)). We are to
prove thatadius(coarse(s)) > 2,/pd. Let D be the disk that has centeand radiusadius(coarse(s))/ /p.
Let X be the disk centered atwith radiuss. Note thats € X andX is tangent taF;” and F; . Since
0 < 1/8andf(s) > 1, f(5§) —d > 6 and so Lemma 5.1 implies thaf lies inside the finite region
bounded byF;" andFj .

Suppose thatadius(coarse(s)) < 2,/pd. Thenradius(D) < 260. If D containsX, X is a
disk inside D N X with radius at leastadius(D)/2. If D does not containX, then sinces € X,
D N X contains a disk with radiusadius(D)/2. The width of strip(s) is less than or equal to
radius(coarse(s))/p = radius(D)/,/p. Thus,(D N X) — strip(s) contains a disk” such that

radius(Y) > (1 - L) -radius(D) > 71“&(11118(1)).
4 4p 8

Note thatY is empty andy” lies inside the finite region bounded WF andFy . Take a poinp € Y.
Sincep € Y C D andradius(D) < 26, [[p— 5| < |lp— 5|l + lls = 5| + llp — s|| < 46 < 1/2
asé < 1/8. The Lipschitz condition implies thaf(p) < 3f(5)/2. Observe thatadius(D) =
radius(coarse(s))//p > radius(initial(s))//p. Thus, Lemma 7.1 implies theddius(Y") > radius(D)/8 >
M/ 1(3)/(24y/P) > M/ f(B)/(30,/p) with probability atleast —O(n =2 2)). Let 8 = X\, /(420v/p froax)-
Thenradius(Y') > 148f(p). By Lemma 6.2,Y contains as-cell. By Lemma 6.6(i), thiss-cell is
empty with probability at most~(n" n/fmax) - This implies thatadius(coarse(s)) < 2,/pd occurs
with probability at mosO (n =20 7/ fmax)),

7.3 Rough tangent estimate:strip(s)

In this section, we prove that the slopesfip(s) is a rough estimate of the slope of the tangert. at
We need the following technical lemma about various progeuf coarse(s) and Fy, inside coarse(s).
Its proof can be found in the appendix.

Lemma 7.4 Assumep > 5 andd < 1/(25p%). Letm be the constant and,, be the parameter in
Lemma 7.1. Let be a sample. I12,/p0 < radius(coarse(s)) < 5pd + m+/ f(5) andp, < 1/100,
then for anyF,, and for any point: € F,, N coarse(s), the following hold:

() 56 + thm < 0.05, %tie < 0.03, and 250ead 2 < 0,03,

(i) F, N coarse(s) consists of one connected component,

iii) the angle between the normals aandz is at most sin~! 222E¥m+20 < 9 4in—1(0.06),
(1-9)

16



(iv) z € cocone(sy,2sin™* %) C cocone(s1,2sin1(0.03)) wheres; is the point onF,,

such thats; = 3.

(V) 0.9f(5) < f(z) < 1.1f(5),

(vi) if z lies on the boundary afoarse(s), the distance betweenand the orthogonal projection of
onto the tangent at is at least0.8 - radius(coarse(s)), and

(vii) for any y € F, N coarse(s), the acute angle betweery and the tangent at: is at most
sin~ (606 + 1.214,,)) < sin~1(0.06).

We highlight the key ideas before giving the proof of Lemm&a. 7Let 5 be the region between
Fy" and Fy inside coarse(s). If strip(s) makes a large angle with the tangentiastrip(s) would
cut throughB in the middle. In this case, B N strip(s) is narrow, there would be a lot of areasfin
outsidestrip(s). But these areas must be empty. Such areas occur with lovalpitih Otherwise, if
B N strip(s) is wide, we show thattrip(s) can be rotated to reduce its width further, a contradiction.
We give the detailed proof below.

Lemma 7.5 Assume thap > 5 andd < 1/(25p?). Letm be the constant ang,, be the parameter
in Lemma 7.1. Let be a sample. For sufficiently large, the acute angle between the tangent at
and the direction oftrip(s) is at mosB sin—! W +sin™1(6pd + 1.2¢hy,) < 4sin™1(0.06) with
probability at leastl — O (n =" 7/ fmax)),

Proof. Let ¢, and/s be the lower and upper bounding linessofip(s). Without loss of generality, we
assume that the normal &ts vertical, the slope oftrip(s) is non-negativeFy N coarse(s) lies below
Fy" N coarse(s), andyy, < 1/100 for sufficiently largen. Leth andm be the constants ang, and),
be the parameters in Lemma 7.1. We first assumertiat{2,/55, 15/ f (3)} < radius(coarse(s)) <
5p0 + wmm and take the probability of its occurrence into consideratater. As a short hand, we
usen; to denote% andr), to denotebpd + 1.2¢,,.

Observe that bot#, and/, must intersect the space that lies betwé&ghand £~ inside coarse(s).
Otherwise, we can squeezeip(s) and reduce its width, a contradiction./IfintersectsF, N coarse(s)
twice for somey, then/; is parallel to the tangent at some point BN coarse(s). By Lemma 7.4(iii),
the direction ofstrip(s) makes an angle at mo®tin—! »; with the horizontal and we are done. Sim-
ilarly, we are done i, intersectsF, N coarse(s) twice for somex. The remaining case is that both
¢, and/, intersectF, N coarse(s) for any « at most once. Suppose that the acute angle between the
direction of strip(s) and the horizontal is more thawsin ! n; + sin~!7,. We show that this occurs
with probability O (n =00 7/ fmax) ),

Let ¢ be the right intersection point betweéfy and the boundary ofoarse(s). If £; intersects
Fy N coarse(s), let p denote the intersection point; otherwise, pedenote the leftmost intersection
point betweenrs~ and the boundary ofoarse(s). Refer to Figure 9(a). We claim that (p, q) lies
below/;. If /; does not intersedt; N coarse(s), then this is clearly true. Otherwise, by Lemma 7.4(iii),
the magnitude of the slope of the tangenp @ at most2sin~! ;. Since the slope of; is more than
3sin~tn + sin~ 7o, Fy crossed; atp from above to below. S& (p, ¢) lies below/;.

17



coarses) I2

9,
Fs "
‘ N

(a) (b)

I

coarse§)

Figure 9: Figure (a) illustrates that (p, q) lies below/,. Figure (b) illustrates our choice of a céll
that lies below/;.

We show that|p — ¢|| < 1n+/f(3)/2 with probability at least — n =" "/fmax)  Notice thatpq
is parallel to the tangent tB; at some point orf’; (p, ¢). By Lemma 7.4(iii), the tangent t6; (p, q)
turns by an angle at modtsin~*(0.06) < 7/2 from p to ¢g. This implies thatF; (p,¢) is monotone
with respect to the direction perpendicularpp We dividepq into three equal segments. Letandv
be the intersection points betweeh (p, ¢) and the perpendiculars pf at the dividing points. Assume
thatv follows u along F; (p, q). Refer to Figure 9(b). Suppose that— g|| > 15,/ f(5)/2. Then

|F5_(’LL,’U)| > ||pgq|| > ﬂ)h \/Gf(g)

(4)

Since f (@) < 1.1f(3) by Lemma 7.4(v),|F; (u,v)| > ¥n\/f(@)/7. Consider aAg/v/ fmax)-grid
wherek = h/294 andu is a cut-point. (Note thak, = 1),/98.) Let C be the(\x/v/ fmax)-cell that
touchesFjy (u,v) and the normal segment through By Lemma 6.2, the diameter @ is at most
14N/ f (@) = Yp/f(@)/T < |Fy5 (u,v)|. So the bottom side of lies within F; (u,v). Let R be
the region insideoarse(s) that lies below’; and aboveFy (p, q). From any pointc € Fy (u,v) N C,
if we shoot a ray along the normal atinto R, either the ray will leave” first or the ray will hit¢; or
the boundary ofoarse(s) in R. We are to prove that the distances franto ¢; and the boundary of
coarse(s) in R are more thartA\,0 > 2X\;d/v/ fmax. This shows that the ray always leav@dirst, so
C'lies completely insid&k. Then the upper bound dip — ¢/|| follows asC' is empty with probability at
mostn ~ 10”7/ fmax) by Lemma 6.6(i).

Consider the distance from any pointe Fj (u,v) to /;. By Lemma 7.4(iii), the angle between
¢, and the tangent gi (measured by rotating; in the clockwise direction) is at lea8tsin ="' 7; +
sin~!ny —2sin~t 7 = sin~!y; +sin~! 1, and at mostr /2 +2sin~! 5;. By Lemma 7.4(vii), the acute
angle betweepz and the tangent atis at mostsin ™! 5. So the angle between: and/; is at least
sin~!n; and at mostr/2 + 2sin~! 5, + sin ! 15. This implies that the distance fromto /; is at least
lp — x| - min{n; , cos(2sin~ ! + sin~17,)}. By Lemma 7.4(i)71 < 0.06 < cos(3sin1(0.06)) <
cos(2sin~ !y +sin~! 19). Therefore, the distance fromto ¢, is at least|p — x| -n, > 5pd-||p—z| >

@ ~ L .
250 - (|[p — ql|/3) > 49¢p+/ f(8). Sincel, = 1y, /98, this distance is greater than;J.
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Figure 10: The shaded region dendfed both figures. In figure (a); is the closest point ik to z. In
figure (b),p or q is the closet point iR to x.

Next, we consider the distaneefrom any pointz € Fy (u,v) to the boundary otoarse(s) in
R. Take a radiussy of coarse(s) that passes through. Suppose thay lies outsideR. Refer to
Figure 10. If¢; intersectsFy N coarse(s) atp (Figure 10(a)), thed = |l¢ — z||. If £; does not intersect
Fy N coarse(s) (Figure 10(b)), ther! = min{||p — ||, ||¢ — z||}. Thus, by (4)d > ||p —q||/3 >
wh\/mm > 2)\;0. The remaining possibility is that lies on the boundary dR. Then eithersy
is tangent toFy atx or sy intersectsFy N coarse(s) at least twice. Say is parallel to the tangent
at some point orFy N coarse(s). By Lemma 7.4(iii), the acute angle between and the tangent
at x is at most4sin~!7;. By Lemma 7.4(vii), the acute angle between and the tangent at is
at mostsin—! 7. So the angle betweeqr: and xy is at mostdsin—!7; + sin~!7,. It follows that
d=|lz -yl > |lg— x| - cos(4dsin™' n +sin" ) > ||¢ — x| - cos(5sin~1(0.06)) > 0.9 ||g — x| >
0.9 (lp — qll/3) = 0159,/ F(3) > 2\46.

In all, C lies insideR. SoC must be empty which occurs with probability at mast(n* 7/ fmax)
by Lemma 6.6(i). It follows thatip — q|| < +r,+/f(3)/2 with probability at least — =" 7/ fuax),
By Lemma 7.4(vi), the horizontal distance betwegeand the left intersection point betweé?y and
the boundary ofoarse(s) is at leastl.6 - radius(coarse(s)) > 1.6¢,/f(3) > ||p — ¢||. We conclude
that/; intersectsFy; N coarse(s) exactly once ap.

Refer to Figure 11. Ley be the leftmost intersection point betweé@L and the boundary of
coarse(s). Symmetrically, we can also show thatintersectsF;" N coarse(s) exactly once at some
pointz, F;" (y, 2) lies abovels, and||y —z|| < 14/ f(5)/2 with probability at least —n =20 n/fmax),

Consider the projections @' (y, z) andF; (p, q) onto the horizontal diameter obarse (s) through
s. By Lemma 7.4(vi), the projections gfandq are at distance at lea@R - radius(coarse(s)) from s.
Thus, the distance between the projection8ofy, z) andF; (p, g) is at least..6-radius(coarse(s)) —
lp—ql|—|ly—=z|| > 1.6-radius(coarse(s))—wp+/f(§) > 1.6-radius(coarse(s))—radius(coarse(s)) >
radius(coarse(s))/p. Thatis, this distance is greater than the widti#oip(s). But then we can rotate
¢, and/, aroundp andz, respectively, in the clockwise direction to reduce thettviof strip(s) while
not losing any sample insidearse(s). See Figure 11. This is impossible. It follows that, under th

condition thatmax{2,/pd, ¥~/ f(5)} < radius(coarse(s)) < 5pd + 1m+/ f(3), the acute angle be-
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Figure 11: Rotating; and/; slightly in the clockwise direction decreases the widthiip(s).

tween the direction oftrip(s) and the tangent atis at most3 sin ! 7, + sin~! 7, with probability at
leastl — O(nS¥In”n/fmax)) By Lemmas 7.1, 7.2, and 7.3, the inequalitiesx{2,/55, ¥, \/f(3)} <
radius(coarse(s)) < 5p8 + 1/ f(3) hold with probability at least — O (nStIn”n)/fmax) - So the
lemma follows.

8 Refined neighborhood

The results in Section 7 show that after the stepn€sE NEIGHBORHOOD, the algorithm already has
a normal estimate at each noisy sample with an error in ther afd + «,,,. However, this error bound
does not tend to zero as the sampling density increases.eXpigins the need for the steERNED
NEIGHBORHOODIN the algorithm. This step will improve the normal estimsdethat the error tends to
zero as the sampling density increases. This will allow yzdéwe the pointwise convergence.

We introduce some notations. In the stepFRED NEIGHBORHOOD, we align candidate(s, §)
with the normal ag by varyingd within [—7 /10, 7/10]. Recall tha® is the signed acute angle between
the upward direction ofandidate(s,d) and N, where Ny is the upward direction perpendicular to
strip(s). Let angle(strip(s)) denote the signed acute angle betw&grand the upward normal at If
N, points to the right of the upward normal&tangle(strip(s)) is positive. Otherwisegngle(strip(s))
is negative. We defing, = 0+ angle(strip(s)). Thatis,f, is the signed acute angle between the upward
direction of candidate (s, ) and the upward normal &t The sign off, is determined in the same way
asangle(strip(s)). For anyF, and for any poinp € F;, N candidate(s, §), let, be the signed acute
angle between the upward direction @fndidate(s, #) and the upward normal @ The sign ofy, is
determined in the same way asgle(strip(s)).

We need the following two technical lemmas. Their proofs loariound in the appendix. There are
two main results in Lemma 8.1. First, we show that the rangetafion|—= /10, 7 /10] of candidate(s, 0)
covers the normal direction &t Second, we relatg, to ¢,. This is useful because we will see that for a
proper choice op, the height ocandidate(s, 6) is directly related toy, (and hence td,). We will need
to focus on a smaller area insidendidate(s, ). Lemma 8.2 bounds distances and angles involving
points onfF,, inside this smaller area.
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Lemma 8.1 Assume that < 1/(25p?) andp > 5. Lets be a sample. Lel, be the width of
candidate(s, §). For sufficiently larger, the following hold with probability at leagt—O (n =2 7/ fmax))
throughout the variation of within [—7 /10, 7/10].

(i) Ws <0.1£(3).
(i) 65 € [—n/5,7/5] andfs = 0 for somed) € [—7 /10, 7/10].

(iii) Any line, which is parallel tocandidate(s, #) and insidecandidate (s, 0), intersectsf, Ncoarse(s)
for any a exactly once.

(iv) For any F,, and for any pointp € F, N candidate(s,0), 05 — 0.2|05] — 3W,/f(5) < 7 <
0s + 0.2]0,] + 3Ws/f(3).

Lemma 8.2 Assume thaf < 1/(25p%) andp > 5. Lets be a sample. Lel be a strip that is parallel
to candidate(s,#) and lies insidecandidate (s, §). Whenn is sufficiently large, for any,, and for any
two pointsu andv on F,, N H, the following hold with probability at leagt — O (n (0" 7/ fmax))

(i) |lu—v| < 3width(H).
(i) The angle between the normals@atndv is at most9 width(H).

(iii) The acute angle betweem and the tangent td, at v is at mosts width(H ).

8.1 Normal approximation

We show that our algorithm aligngfined(s) approximately well with the normal & Our algorithm
variesf so as to minimize the height eéctangle(s, ). Leto* denote the minimizing angle. Recall that
refined(s) = rectangle(s,0*). Let 07 denoted* + angle(strip(s)). We apply Lemmas 8.1 and 8.2 to
show thatd} is very small.

Lemma 8.3 Assume that < 1/(25p%) andp > 5. Lets be a sample. LetV, be the width of
refined (s). For sufficiently largen, |0¥| < 23W, with probability at leastl — O (nfIn” 7/ fmax)),

Proof. We rotate the plane such thaindidate(s,0*) is vertical. Suppose thad?| > 23W,. We
first assume that Lemmas 7.1, 7.2, 7.3, 8.1, and 8.2 holdndigtistically and show that a contra-
diction arises with probability at leagt — O(n¥("”"/fmax)) The contradiction is that we can ro-
tate candidate(s, 0*) slightly to reduce its height further. Since these lemmdd tadgth probability at
leastl — O(nS¥In” 7/fmax)) we can then conclude thit'| > 23, occurs with probability at most
O (n¥n* 7/ fmax))

Without loss of generality, we assume ti#gt > 0. That is, the upward normal atpoints to the
left. Also, we assume thdt; N coarse(s) lies belowF;™ N coarse(s). Let L be the left boundary line
of candidate (s, 6*). By Lemma 8.1(iii),L intersectsF;” N coarse(s) exactly once. We usgto denote
the pointL N F N coarse(s). We first prove a general claim which will be useful later.
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CLAIM 1 Orient space such thatundidate(s, 6) is vertical. 1f6; > 23W, then for anyx,
F, N candidate (s, ) increases strictly from left to right.

Proof. Take any point € F,, N candidate(s,0). By Lemma 8.1(iv),;y, > 0.805 — 3W,

which is positive a®, > 23W, by assumption. Therefore, the upward normat abints
to the left, so the slope of the tangentHg at z is positive.

We highlight the proof strategy before giving the detail§.0J > 23W, by Claim 1, bothF}~
and F; increase from left to right insideandidate (s, 6). Then we dividecandidate (s, 0*) into three
smaller slabs of equal width in left to right order, and shdwattthe lower side ofectangle (s, 0*)
intersectsFy at a pointa inside the leftmost slab. Similarly, the upper side@ftangle(s, 0*) intersects
Fy at a pointb inside the rightmost slab. Since baly andF;" increase from left to right, this allows
us to rotaterectangle (s, 6*) arounda andb in the anti-clockwise direction to reduce its height. This
contradicts the minimality of the height oéctangle (s, 8*). We give the details in the following.

We first prove that the lower side efctangle(s, 0*) intersectsFy~ within the leftmost slab. Lek
andm be the constants in Lemma 7.1. lket= h/3240. Let H; be the slab insideandidate (s, 6*) such
that H; is bounded by on the left andvidth(H;) = W,/3. Let H be the slab insideandidate (s, 6)
that is bounded by. on the left and has widtB0 A,/ f (3). Refer to Figure 12. Sinaadius(initial(s)) <

Hy

p

MG
ey

Figure 12: lllustration for Lemma 8.3.

Ym/ f(5), radius(initial(s)) < 1for sufficiently largen. So/radius(initial(s)) > radius(initial(s)).
SinceW, = min{y/radius(initial(s)), mdlus(cgw}, W, > radius(initial(s))/3 > A/ f(5)/9.
We get

width(H) = 307\e/F(3) = Ahlivoé(s) < ‘f/—2 (5)
Thus, H lies insideH;. By Lemma 8.1(iii), ;- crossest completely. Letr be the intersection point
betweenF; and the center line off. Take the(\/+v/fmax)-grid in which 7 is the first cut point. Let
C be the(A\x/v/ fmax)-cell such thatC' containsr and C' lies between the normal segments~and
the second cut point. The distance frento the boundary off is 15\;+/f(5). By Lemma 6.2, the
diameter ofC' is at mostl4\, f(7)/v/ fmax < 14X\g+/f(7). Sincef(7) < 1.1f(5) by Lemma 7.4(v),
the diameter o€’ is less thanl5A;+/ f(3). It follows thatC lies insideH.
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Letu be the rightmost vertex af’ on F . Letwv be the vertex of” different fromw on the normal
segment at.. Let z be the intersection point betweery and the right boundary line off;. We
are to prove that lies aboveC. SinceC' is non-empty with very high probability, the lower side of
rectangle(s,0*) should intersecty inside H; at a point belows then.

By Claim 1,v is the highest point i’ andz is the highest point oy (p, z). Letd, andd, be
the height ofv andx from p, respectively. Let) be the acute angle between and the horizontal
line throughp. Since¢ is at most the sum ofy, and the angle betweepm: and the tangent at,
by Lemma 8.2(iii), we have) < ~, + 5width(H). By Lemma 8.2(i),|lp — | < 3width(H).
Observe thatl, < |lp — ul| - sin¢ + |lu — v||. Sod, < 3¢ width(H) + 2)\,d < 3, width(H) +
15width(H)? + 2\,0. By (5), we getd, < Wyy,/4 + 5W2/48 + 2)\6. We bound2)..d as follows.
Recall thatW, = min{/radius(initial(s)), radius(coarse(s))/3}. If Wy = y/radius(initial(s)),
by Lemma 7.1,W, > /An/3f(5)Y4 > /An/3. S02M\id < 2\, = \p/1620 < 0.002W2. If
W, = radius(coarse(s))/3, by Lemmas 7.1 and 7.3V, > 2,/p5/3 andW, > A\p\/f(3)/9 > Ap/9.
We get), = ), /3240 < W,/360 and2d < 3W,/,/p < 3W,/v/5, S02\6 < 0.004W2. We conclude
that

dy < @ +0.2W2.

Observe thapz is parallel to the tangent at some pomion Fy (p,z). By Lemma 8.2(ii),y. >
vp — 9width(H;) = v, — 3W,. Sinced, = width(H;) - tan~y, = (W,/3) - tan~,, we get
Sincef; > 23W, by our assumption, Lemma 8.1(iv) implies that> 0.80; — 3W, > 15W,. There-
fore,d, — d, > Wy, /12 — 1.2W2 > 0. It follows thatx lies aboveC.

SinceC is a(\/v/fmax)-cell, by Lemma 6.6(i)C contains some sample with probability at least
1 — pf0¥n/fmax) - Thus, the lower side ofectangle(s,#*) lies below z with probability at least
1 — nf¥n"n/fmax) - On the other hand, the lower side @ftangle (s, 6*) cannot lie belowF; N Hy,
otherwise it could be raised to reduce the heighteofangle(s, 8*), a contradiction. So the lower side
of rectangle (s, §*) intersectsFy” N H; at some point.. See the left figure in Figure 13.

d, > _w.

Figure 13: In the right figure, the middle bold rectangle ie tibtained by a slight anti-clockwise
rotation. Its height is smaller than that of the middle dasteztangle.

Let Hy be the slab insideandidate (s, 0*) such thatH, is bounded by the right boundary line of
candidate (s, 6*) on the right andvidth(H,) = W,/3. By a symmetric argument, we can prove that
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the upper side ofectangle(s, 0*) intersectsl?gr N H, at a pointh.

Consider an anglé that is slightly less thafd*. As shown in the right figure in Figure 13, this is
equivalent to rotating the candidate neighborhood in thiecdwockwise direction. By Lemma 8.1(ii});
can reach zero during the variation@fThus, a®); > 0, decreasing from 6* is legal. Moreover, as
0% > 23W5, the small rotation keep®; greater thar23W,. Correspondingly, we rotate the lower and
upper sides ofectangle(s,8*) arounda andb, respectively, to obtain a rectangle Orient the plane
such that the new candidate neighborhood becomes veifigdllaim 1, ;" increases strictly from left
to right, SoF; crosses the lower side &f at most once at from below to above. Similarlyt;" crosses
the upper side oR at most once & from below to above. This implies th&t contains all the samples
inside the new candidate neighborhood . Sinas on the left ofb and belows, the anti-clockwise
rotation makes the height a? strictly less than the height okctangle(s,6*). This contradicts the
assumption that the height efctangle(s, 6*) is already the minimum possible.

8.2 Pointwise convergence

Once refined(s) is aligned well with the normal af, it is intuitively true that the center point of
refined(s) should lie very close t@. The following lemma proves this formally.

Lemma 8.4 Assume that < 1/(25p%) andp > 5. Lets be a sample. LelV, be the width of
refined(s). For sufficiently largen, the distance between the center paihtof refined(s) and s is at
most(1385 + 3)W, with probability at leastl — O (n = 7/ fmax)),

Proof. We first assume that Lemmas 7.1, 7.2, 7.3, 8.1, 8.2, and 8dBd=ikrministically and show
that the lemma is true with probability at ledst- O (n‘2("” 7/fmax)) " Since these lemmas hold with
probability at least — O(n*(»* "/ fmax)) the lemma follows.

Assume thas lies onF;, the normal ag is vertical, andF;™ N coarse(s) is aboveF; N coarse(s).
Letry (resp.,r,) be the ray that shoots downward (resp., upward) feoamd makes an angle with
the vertical. Letr andy be the points orF(;r andF hit by r,, andr, respectively. Let be the point on
Fy hitby ry. Lets; be the point onFy” such thats; = 5. Without loss of generality, we assume that
0% > 0. Refer to Figure 14.

Our strategy for boundinfjs—s*|| is as follows. By triangle inequality,s—s*|| < ||s*—yl|+||s—v/l-
Thus it suffices to bounflis* —y|| and||5—y||. While ||5—y/|| can be bounded directly, a few intermediate
steps are needed to boufpel — y||. If the upper and lower sides otfined (s) pass through: and z,
respectively, thetfjs* — y|| is just the distance between the midpointrefandy. Then we consider the
cases that the upper and lower sidesdgined (s) do not pass through andz, and bound the maximum
displacement of* from the midpoint ofrz. This yields the bound oftss* — y||. We give the details in
the following.

First, we bound the distance between the midpointzoéndy. By Lemma 7.4(iv), the acute angle
betweens;z and the tangent at; (the horizontal) is at mostin—'(0.03). It follows that /ss;z <
7/2+sin"1(0.03). S0Lszs1 = 7 — 0% — Lss12 > 7/2 — 0% — sin~1(0.03), which is greater thaf.9
asf} < x/5 by Lemma 8.1(ii). By applying sine law to the shaded trianiglEigure 14, we get
||s — s1|| - sin 6% < (0 4+ a)B}

sinZszs;  — sin(0.9)

lIs1 — z|| = < 2(0 4+ a)br. (6)
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Iy

Figure 14: lllustration for Lemma 8.4.

Similarly, we get

I5 -yl =12 ;isj: - < sir?(%%) < 2a6;. 0
By triangle inequality)|s — s1|| — |[s1 — z|| < ||s — z|| < ||s — s1]| + ||s1 — z]||. Then (6) yields
(0+a)—2(0+a)f: <|s—=z|]| <(6+a)+2(6 + )b (8)
We can use a similar argument to show that
(0 —a) =2(6 — )by < [ls — 2| < (6 — ) +2(6 — )0y, (9)
a—2a0; < |ls —yl| < a+2a0;. (10)

Let d, andd, be the distances from the midpoint ©f to « andy, respectively. Sincglz — z|| =
lls —z|| + ||s — z||, by (8) and (9), we ge?j — 4007 < ||z — z|| < 2§ + 400%. Thereforep — 2507 <
dy < 54206%. Sincel|z—y| = ||s—z||+|ls—yl|, by (9) and (10), we g&t—256* < |lz—y|| < 5+2507.
We conclude that

dy = |de — ||z — yll| < 4065, (11)

Second, we bound the displacementbfrom the midpoint ofcz. There are two cases.

Case 1: the upper side offined(s) lies abover. The upper side ofefined(s) must interseciFgr N
candidate (s, 0*) at some point, otherwise we could lower it to reduce the heightefned(s),
a contradiction. Sincéx — v|| < 3W, by Lemma 8.2(i), the distance betweerand the upper
side ofrefined(s) is at mosB3 V5.

Case 2: the upper side offined(s) lies belowz. Leth be the constant in Lemma 7.1. Let= h/270.
Take the(\x/v/ fmax)-0rid in which z is the first cut point. LeC' be the cell such that’ contains
x andC lies between the normal segmentsand the second cut point.

We claim thatC' lies insidecandidate(s, 0*). Sinceradius(initial(s)) < m+/ f(S), we have
radius(initial(s)) < 1 for sufficiently largen. So/radius(initial(s)) > radius(initial(s)).
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Thus, W, = min{/radius(initial(s)), radius(coarse(s))/3} > radius(initial(s))/3, which
is at least\,\/f(3)/9. By Lemma 6.2, the diameter @ is at most14\; f()/v/ fmax <
14\ \/f(%). Sincef (#) < 1.1f(3) by Lemma 7.4(v), the diameter 6fis less thari 5,/ f(3).
SinceW, > Ay /£ (3)/9 = 30M\,+/f(3), C must lie insidecandidate s, 6*).

SinceC' is a(\;/v/ fmax)-cell, by Lemma 6.6(i)(C' contains some sample with probability at
leastl — n~ (0 "/fmax)  Thus, the upper side offined(s) cannot lie belowC. It follows that
the distance betweenand the upper side okfined(s) is at most the diameter @f, which has
been shown to be less théi; /2.

Hence, the position of the upper siderafined(s) may cause™ to be displaced from the midpoint of
xz by a distance of at mogi#V; /2. The position of the lower side otfined(s) has the same effect. So
the distance betweest and the midpoint ofz is at mosBWs. It follows that||s* — y|| < d,, + 3W.
By (11), we get|s* — y|| < 466 + 3W. Starting with triangle inequality, we obtain

[5=s" < ls" =yl + 15—yl
< 4005 +3Ws + |15 —y|

7
< 6067 + 3Ws.

—~
N

Sinced; < 23W, by Lemma 8.3, we conclude thi§ — s*|| < (1386 + 3)Ws.

9 Homeomorphism

In this section, we prove more convergence properties wieiath to the proof that the output curve of
the NN-crust algorithm is homeomorphic #& For each sample, we uses* to denote the center point
of refined(s). We briefly review the processing of the center points. We $iost the center points in
decreasing order of the widths of their corresponding rdfimeghborhoods. Then we scan the sorted
list to select a subset of center points. When the curreriec@oints* is selected, we delete all center
pointsp* from the sorted list such thilp* — s*|| < width(refined(s))'/3.

In the end, we call two selected center poisitendt* adjacentif F(3,%) or F(, §) does not contain
u for any other selected center poirit. We useG to denote the polygonal curve that connects adjacent
selected center points. Note that the degree of every vieri@xs exactly two. Clearly, if we conneét
andt for every pair of adjacent selected center pokitandt*, we obtain a polygonal curv@’ that is
homeomorphic ta&F. Our goal is to show that the output curve of the NN-crust @llgm is exactlyG.
Since there is a bijection betweéhandG’, the homeomorphism result follows.

Throughout this section, we assume thatlth(initial(s)) < 1 for any samples, which is true
for sufficiently largen. There are a few consequences. First, it implies tfaadius(initial(s)) >
radius(initial(s)). Second, sinceridth(refined(s)) = min{y/radius(initial(s)), radius(coarse(s))/3},
we havewidth(refined(s)) < y/radius(initial(s)) < 1. This implies that for any constants> b > 0,
width(refined(s))® < width(refined(s))?. Lastly, width(refined(s)) > radius(initial(s))/3.

We need the technical results Lemmas 9.1-9.6. The proofewintas 9.1, 9.3, 9.4, and 9.5 are
given in the appendix.
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Lemma 9.1 There exists a constant; > 0 such that whem is sufficiently large, for any two cen-
ter pointsp* and ¢*, if ||[p — || < f(p)/2, thenW, < w1 f(p)y/W, with probability at leastl —
O(n—Q(ln“’ n/fmax))'

Lemma 9.2 Letp* andg* be two selected center points. Thigf — ¢*|| > max{Wpl/‘g, qu/?’}.

Proof. Assume without loss of generality thgit was selected beforg’. Sinceq* was selected subse-
quently,¢* was not eliminated by the selectionof. Thus,||p* — ¢*|| > Wpl/3 > qu/‘g.

Lemma 9.3 Whenn is sufficiently large, for any two center point$ and y* such that||z — g|| <
£()/2 and||z* —y*|| > W,’?, the acute angle betweerty* andz is O(f(3)W,’®) with probability
at |eaSt1 — O(?’L—Q(lnw n/fmax))_

Lemma 9.4 Whenn is sufficiently large, for any three center points, y*, and z* such thaty <
F(#,2), |7 — 2| < max{f(&)/5, f(2)/5}, 2" = y*l| > W,"°, and |y — 2*|| > W,"*, the angle
Zx*y*z* is obtuse with probability at leagt — O (n =20 7/ fmax)),

Lemma 9.5 There exists a constapt, > 0 such that whem is sufficiently large, for any edgein G
connecting two center poinjs’ and ¢*, length(e) < ugf(pﬁ)Wpl/g + ugf((j)qu/?’ with probability at
leastl — O(n =" 1/ fmax)),

Lemma 9.6 Whenn is sufficiently large, for any two selected center popitandg* such thap* andg*
are not adjacent irG and ||p* — ¢*|| < f(p)/5, there is an edge in G incident top* such that the angle
betweere andp*q* is acute andength(e) < ||p* —¢*|| with probability at leastl — O (n =" 7/ fmax)),

Proof. Sincep* andq* are not adjacent i, there is some selected center paiihtadjacent tg* such
thatw lies onF'(p, ¢) or F(q,p), sayF (p, ¢). By Lemma 9.2||p* —u*|| > W3 and||¢* —u*|| > Wa/3.
By Lemma 9.4, the anglgp*u*q* is obtuse with probability at leagt— O(n =" 7/ fmax)) |t follows
that Zu*p*q* is acute andp* — v*|| < [|p* — ¢*||.

We apply the above technical lemmas to show that the outpueaf the NN-crust algorithm is
exactlyG. Then this allows us to show that the output curve is homephioto the underlying smooth
closed curve.

Lemma 9.7 For sufficiently largen, the output curve obtained by running the NN-crust algaonitbn
In%

the selected center points is exaatlywith probability at leastl — O(n‘Q(fmax ‘1)).

Proof. We first prove the lemma assuming that Lemmas 8.4, 9.4, 99 &hold deterministically. We
will discuss the probability bound later.
Letp* be a selected center point. Lgt* andp*v* be the edges daF incident top*. Without loss of
generality, we assume thaties onF'(@, ). By Lemma 9.2|p* —u*|| > Wpl/3 and||p* —v*|| > Wpl/‘g.
Letk = 1385 + 3. By Lemmas 8.4 and 9.9p — a|| < [|p — p*|| + [|[& — u*|| + [|p* — w*|| <
kW, + kW, + qu(ﬁ)W,}/?’ + qu(a)Wi/?’, which is less thatif (p) + f(w))/30 for sufficiently large
n. The Lipschitz condition implies that

0.9f(p) < f(u) <1.1f(p)-
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So we get

f®) + f(@)
30

Similarly, we can show that

f(p) + f(a)

0.07f(p F—ut <

1P —all < < 0.07f(p).

Ip =2l <0.07f(p),  p" —v*|| <0.07f(p).

Let p*¢* be an edge computed by the NN-crust algorithm when it presete vertey*. Assume
to the contrary thap*q* is not an edge irf=. If p*¢* is computed in step 1 of the NN-crust algorithm,
then ¢* is the nearest neighbor @f. So |p* — ¢*|| < |p* — v*|| < 0.07f(p). By Lemma 9.6,
there is another edgein G such thatlength(e) < |[p* — ¢*||, a contradiction. Suppose thatg*
is computed in step 2 of the NN-crust algorithm. As we haveé shewn, the step 1 of the NN-crust
algorithm already outputs an edge, 3ay.*, of G wherewu* is the nearest neighbor of. Observe
that||a — 9| < ||p — @l + ||p — || < 0.14f(p) < 0.2f(a). By Lemma 9.4 /u*p*v* is obtuse. By
the NN-crust algorithm/Zu*p*q* is also obtuse. Since the NN-crust algorithm prefetg to p*v*,
lp* — ¢*|| < |lp* — v*|| < 0.07f(p). By Lemma 9.6,G has an edge incident top* that is shorter
thanp*q* (p*v* too) and makes an acute angle withy*. The edgee is notp*v* ase is shorter than
p*v*. The edgee is notp*u* as Zu*p*q* is obtuse. But then the degreein G is at least three, a
contradiction.

We have shown that each output edge belongs.t&ince the NN-crust algorithm guarantees that
each vertex in the output curve has degree at least two, thetaturve and~ have the same number of
edges. So the output curve is exactly

Since Lemmas 8.4, 9.4, 9.5, and 9.6 hold with probabilitgastl — O (n~2("* 7/ fmax)) the output
edges incident tp* are edges o with probability at least. — O(n 22" 7/fmax)) " Since there are

In¥ n

O(n) output vertices, the probability that this holds for alltiegs is at least — O(n_Q(fmax ‘1)).

Corollary 9.1 For sufficiently largen, the output curve obtained by running the NN-crust algonithn

the selected center points is homeomorphic to the underistnooth closed curve with probability at
In% n

leastl — O(n‘Q( -

fmax ) ) .

Proof. We have shown that the output curveds Let G’ be the curve obtained by connectifgndg
for each edge*q¢* of G. G’ is homeomorphic to the underlying smooth closed curvg*andq* are
adjacent inG. Clearly,G is homeomorphic t@:’ as there is a bijection between the edge&'@ndG’.

10 Finale

We make use of the lemmas in the previous subsections to pheveey result of this paper, stated as
the Main Theorem in Section 4.
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Proof of the Main Theorem. First of all, for any noisy sample let W denote the width ofefined(s).
By construction}¥, < +/radius(initial(s)). By Lemma 7.1yadius(initial (s)) = O((\n=n)1/4 £ (5)1/2),
ThusW, = O((I22)1/8 f(5)1/4).

By Lemma 8.4, as tends toco, for each output vertex*, ||s* — 5|| = O(W;) with probability at
leastl — O(n~ (0 n/fmax)) | Since there ar®(n) output vertices, the distance bounds hold simultane-

ously with probability at least — O(n‘mﬁ%_l)). Next, we analyze the angular differences between
the tangents of the smooth closed curve and the output curve.
Let r*s* be an output edge. By Lemma 9.5, with probability at least O(n =207/ fmax))  we
have
I = "Il < paf (AW + o f AW, (12)

Letk = 138§ + 3. Using the above, the triangle inequality, and Lemma 8.4gete

7 =3l < [lF =7+ 1158 = s"]| + [Ir" — 57| (13)
< KWy A+ kW + paf (WP + pa f(5) W3, (14)

(7)/5 + f(8)/5 for sufficiently largen. The Lipschitz condition implies that
f(r) < 1.5f( ). So||r* —s*|| < f(8)/2. Thus, Lemma 9.1 applies and yields. < u; f(3)v/Ws with
probability at least — O (n ="/ fmax) ) Substituting into (14), we conclude that

|17 — 3| < ps f(3)3W S, (15)

for some constants > 0.

Letd be the angle betwegis and the tangent & By Lemma 5.2(ii), we havé < sin—! M
Let 0’ be the acute angle betweets* andrs. By (15), ||7 — 5|| < f(5)/2 for sufficiently largen. Thus,
by Lemma 9.3¢' = O(f(3)W+/®) with probability at least — O (n~20n n/fuax)) for sufficiently large
n. We conclude that the angle betwee€n* and the tangent at which is upper bounded b+ ¢’, is
O(f(§)Wsl/6). Since there ar®(n) output edges, the angular difference bounds hold simuitzsie
with probability at least — O(n~ i ),

The output curve is homeomorphic to the smooth closed curv@drollary 9.1.

11 Conclusion

Curve reconstruction is a popular task in computer visiahiarage processing, and quite a number of
algorithms have been developed by researchers in these[drd®, 11, 15, 16, 17, 18, 19, 20]. Despite
the effectiveness of these algorithms as demonstratedgariexents, no guarantee of the output quality
is known. This makes it difficult to gauge one’s confidencel@dutput's correctness as well as how
well the output approximates the unknown curve. Recenidyificant progress has been made and
several curve reconstruction algorithms with quality guéees have been proposed [1, 2, 6, 7, 8, 9, 12,
13, 14]. However, all of them assume that the input sampletpaire noiseless, i.e., they lie exactly on
the unknown curve. This assumption fails in a practical rmment as input devices inevitably make
some measurement errors. This paper presents the firsetivabstudy of how to guarantee a faithful
output in the presence of noise.
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We propose a probabilistic model of noisy samples. In a sénsedels the location of points on the
curve by an input device, followed by perturbation due tsaoiWe assume that the perturbation (due
to noise) moves the points in the normal directions randamly uniformly within an interval of fixed
unknown width. Based on this model, we develop an algorithemhreturns a faithful reconstruction with
probability approaching 1 as the number of noisy samplagases. A straightforward implementation
of our algorithm runs in cubic time. This is the first theoratiresult known for handling noise, albeit
under some restrictive assumptions.

We expect that our approach will also help in reconstructiagyes with features such as corners,
branchings and terminals (with or without noise). Anottesearch direction is to study the reconstruc-
tion of surfaces from noisy samples. Recently, we have eeigrour algorithm and its guarantees to
reconstructing surfaces in three dimensions for a detéstimoise model which is strongly related to
the probabilistic noise model in this paper [3]. When the giansize is sufficiently large, the output is
homeomorphic to the unknown surface. As the sample sizestenuhfinity, the distance between the
reconstruction and the surface tends to zero and the noahids triangles converge to the true surface
normals. Independently, Dey and Goswami [5] have propoeethar surface reconstruction algorithm
for points that follow a different noise model. Their expeeints show that the algorithm works in prac-
tice. In their model, the noise amplitude is proportionathie local feature size. This has the advantage
that a larger noise can be accommodated in areas of largdrféature sizes. On the other hand, unlike
our model, their noise amplitude decreases as the sam@imgjtyl increases. They prove that the output
is homeomorphic to the unknown surface and the distancedeetihe reconstruction and the surface is
bounded by the noise amplitude. A constant bound is givermerangles between the normals of the
triangles and the true surface normals, which can be redocetnaller noise amplitude.

It is open whether more general noise models are amenabitedcetical analysis.
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Appendix

Proof of Lemma 5.1

Let M, be the medial disk of, touching a poinp € F,,. By the definition ofF,,, there is a medial disk
M of F touchingp such that\/ and M, have the same center. Moreoverlius(M,) = radius(M) —
a> f(p) —a.

Proof of Lemma 5.2

Assume that the tangent atis horizontal. Consider (i). Refer to Figure 15(a). Letbe the tangent
disk atp that lies abovey and has center and radiug1 — «) f(p). Let C be the circle centered at
with radius||p — ¢||. Since|lp — ¢|| < 2(1 — «) f(p), C crossesB. Letr be a pointinC' N dB. Letd
be the distance af from the tangent gt. By Lemma 5.14 bounds the distance fromto the tangent
atp. Observe thallp — ¢|| = |l[p — r|| = 2(1 — «) f(p) sm(@m) andd = |[jp —r|| - Sm(@m) Thus,

~ . xr _ 2
d = 2(1 - a) f(p) sin*(B") = 2zt

(1-0) f(P)

tangent to p 0
Fq atp

Figure 15: lllustration for Lemma 5.2.

Consider (ii). Refer to Figure 15(b). By (i), the distancéren any point irf,, N D and the tangent

atp is bounded by% Letd be the smallest angle such thatone(p, §) containsF, N D. Then
radius(D)?2 ) 1 _radius(D)
20-a)f(p) " radius(D) — H1-a) [’

Sln <

Proof of Lemma 5.3

Take any point, on F,, N D. Let/ be the tangent td", atu. Let ¢’ be the line that is perpendicular
to ¢ and passes through Let C be the circle centered atwith radius||p — u||. Let A and B be the
two tangent circles at with radius(l_oéM. Let z be the center ofi. Without loss of generality, we
assume that the tangent k) atp is horizontal,A is below B, u lies to the left ofp, and the slope of
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is positive or infinite. (We ignore the case where the slopéiskero as there is nothing to prove then.)
It follows that the slope of’ is zero or negative. Refer to Figure 16.

Figure 16: lllustration for Lemma 5.3.

By Lemma 5.1 lies outsideA and B. Let ¢ be the intersection point betweéhand A on the

left of p. Since|lp — ¢q|| = [[p — | < U#Bf(ﬁ) = radius(A)/2, q lies abover. Also, Zpxq =
2sin ! 1t

Suppose that’ does not lie above, see Figure 16(a). Sineelies above the support line ofr, the
angle betweer and the vertical is less than or equaltpzg = 2sin~! (ipa_)?gﬁ).

Suppose that lies abover but not above, see Figure 16(b). We show that this case is impossible.
Let w the intersection point betwee# and ¢’ on the right ofp. Note thatp lies betweernu and w
and Zupw > /2. If we grow a disk that lies belowand remains tangent foat «, the disk will hit
F,, at some point different frona when the disk passes througtor earlier. It follows that there is a
medial diskM,, of F,, that touches: and lies belowl. Observe that the center 8f,, lies on the half
of ¢/ on the right ofu. Furthermore, the center @f/, lies on the line segmentw; otherwise, since
Zupw > w/2, M, would containp, a contradiction. Thus, the distance frgnto the center of\/,, is
less thamax{||p —ul|, [|[p —w||} + [|[p—p|| < 2-radius(A)+a = (1—a)f(p) +a < f(p). However,
since the center a¥/,, is also a point on the medial axis 6f, its distance fronp should be at least(p),

a contradiction.

The remaining case is thétlies abovep, see Figure 16(c). Sineelies outsideB and the slope of

(" is zero or negative/, lies betweerp and the center oB. The situation is similar to the previous case

where/’ lies betweerp andz. So a similar argument shows that this case is also impessibl

Proof of Lemma 7.4

A straightforward calculation shows (i).
If F, N coarse(s) consists of more than one connected component, the medsabiak, intersects
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the interior ofcoarse(s). SinceF andF,, have the same medial axis, the distance frotm the medial
axis is at mose radius(coarse(s)) < 2(5pd + Ymr/f(5)) < 2(5p6 + i) f(5) < f(3) by (i), a
contradiction. This proves (ii).

Let s; be the point onF,, such thats; = 5. The distancd|s; — z|| < ||s — x| + ||s — s1]] <
506 + Ym~/f(8) + 26 < (506 + ¥, + 26) f(5). By Lemma 5.3, the angle between the normals; at
andz is at most2 sin~! (yg)—ﬁ;) < 2sin~! 28ELRE2 < 95in=1(0.06) by (i). This proves (iii).

By Lemma 5.2(ii),x € cocone(sy,2sin~! %) C cocone(sy,2sin"1(0.03)). This proves
(iv).

The distancdl 53— || < ||s—5||+||s—z |+ ||z —Z|| < 5p0+m/F(3)+26 < (5p8+m+28) f(3) <
0.1f(3). Then the Lipschitz condition implies (v).

< sin }(0.5)

< 2sin 1(0.03)~

Figure 17: lllustration for Lemma 7.4.

Consider (vi). Refer to Figure 17. Assume that the tangent gt horizontal. By sine law,
sin Zsxs; = ”s_slnl'ii;l"ésslx < radms(fjame(s)) as||s — s1|| < 26 and||s — z|| = radius(coarse(s)).
Sinceradius(coarse(s)) > 2,/pd andp > 5, we haveZszs; < sin™* % < sin™1(0.5). By (iv),
/sisx > — Lswsy — (1/2 +sin71(0.03)) > 7/2 — sin~1(0.5) — sin~!(0.03). Thus, the horizontal
distance betweenandz is equal to||s — z|| - sin Zsysz > ||s — z|| - cos(sin~1(0.5) 4+ sin~1(0.03)) >
0.8 |ls — x|

Consider (vii). Sincey € Fy, N coarse(s), ||z — y[| < 2radius(coarse(s)) < 2(5p0 + tm+/ f(5))
which is at mos0.1f(3) by (i). So Lemma 5.2(ii) applies and the acute angle betwgeand the tangent
atx is at mostin ! % < sin™! % Sincef () > 0.9f(3) by (v) ands < 1/(25p?),
the acute angle is less tham ! (1.2(5p8 + 1,,)), which is less thasin=1(0.06) by (i).

Proof of Lemma 8.1

We first assume thatiax{2,/pd, ¢5,\/f(3)} < radius(coarse(s)) < 5pd+1,+/f(3) andradius(initial(s)) <
Vm m We will take the probabilities of their occurrences latgpiconsideration.

SinceW, < +/radius(initial(s)) < v/@mf(8)"* andy,, < 0.01 for sufficiently largen, W, <
0.1£(3). This proves (i).

By Lemma 7.5, for sufficiently large, |angle(strip(s))| < 4sin~1(0.06) < /10. Sinced €
[—7/10,7/10], 85 = 0 + angle(strip(s)) € [-7/5,7/5] andfs = 0 for somed. This proves (ii).

Consider (iii). Letl be a line that is parallel teandidate(s, ) and insidecandidate(s,0). We
first prove that’ intersectsF,,. Refer to Figure 18. Without loss of generality, assume ti@tormal
at s is vertical, the slope otandidate(s,0) is positive, and is belows. Let s; andss be the points
on F(;r and Fy, respectively, such thafj = s; = 5. Shoot two rays upward froms; with slopes
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+sin~1(0.03). Also, shoot two rays downward fross with slopest sin—1(0.03). Let R be the region
inside coarse(s) bounded by these four rays. By Lemma 7.4(if), N coarse(s) lies insideR. Letz
be the upper right vertex g®. Lety be the right endpoint of a horizontal chord through Let L be
the line that passes throughand is parallel td. Let L’ be the line that passes throughlnd is parallel
to /. Let z be the point on. such thats; z is perpendicular td..

< sin *(0.03)

Figure 18: lllustration for Lemma 8.1(iii).

We claim thatZ’ is aboveL and L and L’ intersect both the upper and lower boundariekofBy
Lemma 7.4(iv),/xs1y < sin~1(0.03), soZzsy < 2sin~1(0.03). Observe thatos /s sy = ls=sll <

— ls=yll =
m. Sinceradius(coarse(s)) > 2/pd, cos Zsisy < 1/,/p < 1/+/5 which implies that
Zs1sy > /3. Sincess sz = Ls1sy — Lxsy, we get
Zsysz > )3 —2sin"1(0.03) > 7/5 > |6,]. (16)

SoL’ cuts through the angle between, andsz. It follows thatZ’ is abovel. Observe that’ intersects
s1z. By symmetry,L’ intersects the left downward ray from too. We conclude that and L’ intersect
both the upper and lower boundariesfof

Since|f,| < w/5andZsxz = Zsisx—|0s|, by (16), Lszz > m/3—25sin"1(0.03)—7/5 > 0.3. The
distance froms to L is equal to|s — x| -sin Zsxzz > ||s — x| -sin(0.3) > 0.2-radius(coarse(s)). Recall
that? lies belows by our assumption. The distance betwéemds is at mostiV, /2 and our algorithm
enforces thatV /2 < radius(coarse(s))/6. Sol lies betweerl andL. SinceL and L’ intersect both
the upper and lower boundaries7f so doed. It follows that/ must intersect, N coarse(s).

Next, we show that intersectsF, N coarse(s) exactly once. If not/ is parallel to the tangent
at some point orF,, N coarse(s). By Lemma 7.4(iii), the angle betweenand the vertical is at least
7/2 — 2sin~1(0.06) > 7 /5, contradicting the fact thad,| < /5.

Consider (iv). Let/ be a line that is parallel teandidate(s, ) and passes through By (iii), ¢
intersectst, at some poinb. We first prove thad, — 0.2|6,| < 7, < 05 + 0.2|05|. Let s be the point
on F,, such thats = s7. Assume that the tangent ats horizontal,s is aboves, andb is to the left of
s. Let C be the circle tangent td,, ats; that lies belows;, is centered at, and has radiug(s) — 9.
By Lemma 5.1,F, does not intersect the interior 6f. Refer to Figure 19(a). Leia be a tangent to
C that lies on the left ofc. We claim thatZasz > |0,|. Otherwise ||s — z|| > ||a — ||/ sin(7/5) =
(f(8) = §)/sin(n/5) > f(8) + 0 > ||s — z||, a contradiction. Sab lies betweensa and sz. Let
sr be the extension ofb such thatr lies onC. We havella — s| = /[[s —z|]?2 — [Jla — z|? <
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direction ofcandidate(s,0)

normal atp

tangent atp

Figure 19: lllustration for Lemma 8.1(iv).

V() +0)2 = (f(8) —6)2 =2,/6f(3). Thus,||r — s|| < |la — s| < 21/5f(5). Observe that
1 flr = sl - sin 6] _ gin~1 2V f(5) - \93\‘

lr =l [ = =]

Zrxs = sin

Sinces < 1/(25p%) and|;| < /5, we have

2¢/6f(3)-10s]  23/5f(3) 105 23 - 64| 23 - (04|
lr—2 —  f(8) =96 —m_é/mﬁ =5 < 0.06. (17)

Combing (17) with the following fact

<06 = sin"lz <11z, (18)
we getras < Z2PICHEL sincel|b — 51| < || — 51| = || — ]| - 25in 452, we get

[[r—a

16— s1]| < ||r — x| - Lrazs < 2.2/ f(5) - |0s]-

Let v/ be the acute angle between the normals atds;. By Lemma 5.3’ < 2sin~! (1”_”;)5}&) <

2sin~! % < 2sin~! % By (17) and (18), we conclude that < % < 0.2/6,]. It
follows that

0s —0.20s] < 05—+ <y <0s++" <05+ 0.2|0].

Next, we prove the upper and lower bounds-pffor any pointp € F,, N candidate(s,0). Letn be
the acute angle betweeép and the line that passes throulgland is perpendicular teandidate (s, 9).
See Figure 19(b). By Lemma 7.4(vii), the acute angle betwgeand the tangent at is at most
sin~1(0.06). It follows thatn < v, + sin™1(0.06) < 65 + 0.2]0s] + sin™1(0.06) < 1.2(r/5) +
sin~1(0.06) < 0.9. Thus,

W
b=l <3 < 0.9W.
cosn
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Note thatiVs < radius(coarse(s))/3 < (5pd+1m)f(5)/3, which isless than.02f(5) by Lemma 7.4(i).
Also, by Lemma 7.4(v)f(p) > 0.9f(3). It follows that

16— pll < 0.9W, < 0.02f(p). (19)

So we can invoke Lemma 5.3 to bound the angléetween the normals atandp:
_1 09w 1 W

lo-pl _,. it e
-/ =™ T/ - ™ 7o)

By (19), W,/ f(p) < 0.03. So by (18), we get” < 2.2W,/f(p). Sincef(p) > 0.9f(s), we conclude
thaty” < 3W,/f(5). This implies that

7" < 2sin™?

Os — 0.2|05] — 3W/f(5) < — " <9p <+ <05+ 0.2|05] + 3W, /£ (3).

Finally, we have proved the lemma under the conditionsithat{2, /56, ¢5,\/ f ()} < radius(coarse(s)) <
500 +m+/ f(5) andradius(initial(s)) < ¥m+/ f(5). These conditions hold with probabilities at least
1 — O(n~ 40" n/fmax)) py Lemmas 7.1, 7.2, and 7.3. So the lemma follows.

Proof of Lemma 8.2

Let ¢ be the acute angle between and the tangent té,, atu. Letn be the acute angle between and
the direction ofcandidate (s, 6). By Lemma 7.4(vii),¢ < sin=1(0.06). Son > 7/2 — v, — ¢ > 7/2 —
Y. — sin~1(0.06). By Lemma 8.1(i), (ii), and (iv)y > 7/2 — 1.2(7/5) — 3(0.1) — sin~1(0.06) > 0.4.
Thus,||u — v|| < Wi‘ifff?H) < Wsiicrlf(gfg) < 3width(H). This proves (i).

Consider (ii). Note thatVy < radius(coarse(s))/3 < (5pd + 1) f(8)/3. So by (i), ||lu — v|| <
3Ws < (500 + ) f(5). By Lemma 7.4(i) and (V)59 + 1, < 0.05 and f (@) > 0.9f(3). It follows

that

|lu —v|| < 0.06f(a). (20)
Thus, we can invoke Lemma 5.3 to bound the aggbetween the normals atando:

llu — | < 94in-1 3width(H) < 2in-! 4width(H)

(L—a)f(a) — 0.9(1 — a) f(5) f(3)
Since4width(H)/f(5) < 4W,/f(5) which is at most 0.4 by Lemma 8.1(i), we can apply (18) to
conclude that < 9width(H)/f(5) < 9width(H). This proves (ii).

Finally, by (20), we can invoke Lemma 5.2(ii) to bound thetaecangle betweenv and the tangent

atwu. This angle is at mosiin ! % which is less thag /2.

£<2sin”!

Proof of Lemma 9.1

We prove the lemma by assuming that Lemma 7.1, 7.2, and 7ddweikerministically. The proba-
bility bound then follows from the probability bounds in feelemmas. Foi = p orgq, let R; =
radius(coarse(i)) and letr; = radius(initial(i)). The Lipschitz condition implies that(p)/2 <
f(@) <3f(p)/2. Leth andm be the constants in Lemma 7.1.
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Suppose thaV,, = , /7,. By Lemma 7.1, we have

_ MVI®) [ hn/F D)
Mo =i = \/ NEE \/ “am

Note thatW, <, /ry andr, < /14, f(q) by Lemma 7.1. So we get

W2
Wp = 42mf \/ 63m«/ q - V 63

Suppose thatV,, = R,/3. First, sinceR, > 2,/pd by Lemma 7.3, we gepé < 3,/pW,/2. Sec-
ond, W, = R,/3 > r,/3 which is at least\;/ f (”)/9 by Lemma 7.1. So we ge{/\,.f(p) =

\/mth (B)/h < 3y/mW,/h-f(p)Y/* < 3\/mW,/h- (). Finally, sinceW, < R,/3, by Lemma 7.2,
we get

5pd 140, f (G
W, 508 f(a)

IN

3 3
o 50, [Tl )
- 3 3
5/ pW, 21m
< c T+ L (D)

Proof of Lemma 9.3

We prove the lemma by assuming that Lemmas 8.4 and 9.1 hotdndieistically. The probability
bound then follows from the probability bounds in these leaem

We translater*y* to align y* with . Let z denote the point™ + § — y*. Letk = 1385 + 3.
By triangle inequality and Lemma 8.4% — z|| < ||z* — Z| + ||ly* — gl < kW, + kW,. Since
1Z =gl < £(5)/2, by Lemma 9.1W,, < 1 f(§)+/Wy. Sol|3 — 2| < kpur f(§)/Wy + kW, which is
smaller tharWyl/ < ||z* — y*|| for sufficiently largen. Thus,zz is not the longest side of the triangle
Zyz. Itfollows that£zyz is acute. Sincéz — z|| is an upper bound on the heightofrom Zg, we have

/&2 < sin~! Hy j” = sin~! ”lf:;UH < sin Y (kui f(§ )W1/6 + kW2/3) We conclude tha¥' 3z is

O(f(gj)W;/G) asn tends toco.

Proof of Lemma 9.4

We first show thal|z — Z|| < min{f(z)/4, f(Z )/4} Assume thallz — z|| < f(z)/5. By the Lipschitz
condition, we havef (2) > 4f(z)/5. (@)/5 < f(2)/4.

Let D be the disk centered atwith radlusf( )/4. Observe thatf’(z, ) lies completely inside
D. Otherwise, the medial axis df intersects the interior ab which implies thatf (z) < f(%)/4, a
contradiction. Sd|z — || < f(#)/4. The Lipschitz condition implies that(;) > 3f (i) /4.

We claim that the angle’zyZz is obtuse. The line segmenig and ¢z are parallel to the tan-
gents at some points oR(z,y) and F(y, Z), respectively. Lemma 5.3 implies thattgz > 7 —
4sin~! D) — 7 — 4sin~!(1/4) > 7/2.
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Since||z — g|| < f(2)/4 < f(g)/3, by Lemma 9.3, the angle betweehy* andzy is negligible
with probability at least — O (n~?(2* n/fmax)) asn tends taxo. A symmetric argument shows that the
angle between*z* andjz is negligible with probability at least — O (n =" 7/ fmax)) asn tends to
oo. Thus,Zx*y*z* converges ta/ £y z which is obtuse.

Proof of Lemma 9.5

Note thatp* andg¢* are adjacent and they are selected by the algorithmk l-et1 386 + 3. Let D,, be
the disk centered at* with radius(1 + k1 f(p)) W) /3 . Let D, be the disk centered at with radius
(T+kpi f(q)Wy /3 . By Lemma 8.4]|p — p*|| < kW, which is less thar‘Wl/3 for sufficiently largen.
Sop lies insideD,,. Similarly, g lies insideD,,.

o P =gt < (1+ ulf(”))Wl/?’ + (1 + ulf("))W1/3 and we are done.
Suppose tha,, does not mtersecD We claim thatF'(p, ¢) N D, is connected. Otherwise, the
medial axis ofF intersects the interior oD, which implies thatf(p) < radius(D,) which is less
than f (p) for sufficiently largen, a contradiction. SimilarlyF'(p, §) N D, is connected. It follows that
F(p,q) — (D, U D,) is also connected. There are two cases.

Case 1:F(p,q) — (D, U D,) does not contair for any sample:. Lety be the endpoint of'(p, §) —
(Dp U Dy,) that lies onD,,. Leth be the constant in Lemma 7.1. Take\gpartition such that
y is the first cut-point. Sincé’(p,q) — (D, U D,) does not contairi for any sampleu, by
Lemma 6.6(i),F'(p, §) — (D, U D,) does not contai'(y, c1 ), wherec; is the second cut-point,
with probability at least — O(n~2(2“ ")) |t follows that

[F(5,4) — (Dp U Dy)| < N f(y)- (21)

Since||p — y|| < 2radius(D,) = 2(1 + kui f(p ))W]D/3 Ilp — || < f(p)/2 for sufficiently large
n. Thus, f(y) < 3f(p)/2, SON2 f(y) < 3A\2 f(p)/2. SinceW, > radius(initial(p))/3 which is
atleast\,\/f(p)/9 by Lemma 7.1, we hava? f(7) < 243W? /2. Substituting into (21), we get

|F(p,q)| < 243W; /2 + 2radius(D,) + 2radius(Dy).

By Lemma 8.4,||p — p*|| < kW, and||¢ — ¢*|| < kEW,. We conclude thatlp* — ¢*|| <
16 = 1l + 1F(5,@)| + ld = a*l| < p2f )Wp'? + 2 (@)W, for some constantz > 0.

Case 2:F(p,q) — (D, U D) containsu for some sample.. We show that this case is impossible if
Lemmas 9.1 and 9.4 hold deterministically. It follows thase 2 occurs with probability at most
O(n=%0n n/fnax)) . We first claim that]p* — u*[| > W,’*. If not, Lemma 9.1 implies that
W, < p1f(p)y/W, for sufficiently largen. But then|jp* — a|| < |[p* — u*|| + ||i — uw*|| <
W1/3 + kW, < W, V3 4k f(p 5)r/W,p. This is a contradiction a& lies outsideD,,. Similarly,
llg* —u*|| > Wy /3. Sow* is not eliminated by the selection pf andg*.

Next, take any selected center poiritdifferent fromp* and¢* such thaty € F(a, z). We
show thatu* is not eliminated by the selection ef. Assume to the contrary that this is false.
So|lu* — 2*|| < w3, By Lemma 9.1W, < u1f(2)/W, for sufficiently largen. Let k' =
1+ k + kpy. Then|ja — 2|| < [u* — 2| + ||z* — 2| + |u* — @l| < W23 + kW, + kW, <
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W23+ kW, + kui f ()W < K f(2)W2/. For sufficiently largen, &' f(2) W2/ < f(3)/5.
By Lemma 9.4, the anglgu*q*z* is obtuse. It follows thafig* — z*| < ||u* — 2*| < wi/?,
contradicting Lemma 9.2.

Symmetrically, we can show that is not eliminated by any selected center paihtifferent
from p* andq* such thatp € F(z,@). In all, our algorithm should select another center paint
such that: € F(p,q) — (D, U Dy). This contradicts the assumption thétandq* are adjacent
inG.
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