Online Dynamic Programming Speedups*

Amotz Bar-Noy!, Mordecai J. Golin?, and Yan Zhang?

! Brooklyn College, 2900 Bedford Avenue Brooklyn, NY 11210
amotz@sci.brooklyn.cuny.edu
2 Hong Kong University of Science and Technology, Kowloon, Hong Kong
{golin,cszy}@cse.ust.hk

Abstract. Consider the Dynamic Program h(n) = mini<;<n, a(n, j) for
n =1,2,...,N. For arbitrary values of a(n, j), calculating all the h(n)
requires O(N?) time. It is well known that, if the a(n,j) satisfy the
Monge property, then there are techniques to reduce the time down to
O(N). This speedup is inherently static, i.e., it requires N to be known
in advance.

In this paper we show that if the a(n, j) satisfy a stronger condition,
then it is possible, without knowing N in advance, to compute the values
of h(n) in the order of n = 1,2,..., N, in O(1) amortized time per
h(n). This maintains the DP speedup online, in the sense that the time
to compute all h(n) is O(N). A slight modification of our algorithm
restricts the worst case time to be O(log N) per h(n), while maintaining
the amortized time bound. For a(n, j) that satisfy our stronger condition,
our algorithm is also simpler to implement than the standard Monge
speedup.

We illustrate the use of our algorithm on two examples from the lit-
erature. The first shows how to make the speedup of the D-median on a
line problem in an online settings. The second shows how to improve the
running time for a DP used to reduce the amount of bandwidth needed
when paging mobile wireless users.

1 Introduction

Consider the class of problems defined by
= i ] <n<
h(n) 1I§nj12n a(n,j), V1<n<N (1)

where the goal is to compute h(n) for 1 < n < N. In many applications, () is
a Dynamic Program (DP), in the sense that the values of a(n,j) depend upon
h(%), for some 1 <4 < n. In this paper, we always assume any particular a(n, j)
can be computed in O(1) time, provided that the values of h(i) it depends on
are known. For a generally defined function a(n, j), it requires ©(N?) time to
compute all the h(n). It is well known, though [I], that if the values of a(n, j)
satisfy the Monge property (see Section [[I]), then the SMAWK algorithm [2]
can compute all the h(n), for 1 <n < N, in O(N) time. To be precise, if

* The research of the second and third authors was partially supported by Hong Kong
RGC CERG grant HKUST6312/04E.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 43@ 2006.
© Springer-Verlag Berlin Heidelberg 2006



44 A. Bar-Noy, M.J. Golin, and Y. Zhang

1. the value of N is known in advance;

2. and for any 1 < j < n < N, the value of a(n, j) can be computed in O(1)
time, i.e., a(n,j) does not depend on h(7);

3. and the values of a(n, j) satisfy the Monge property defined by (),

then the SMAWK algorithm [2] can compute all of the h(n) for 1 < n < N in
O(N) time.

The main purpose of this paper is to consider the DP formula () in online
settings. By this we mean that the values of h(n) are computed in the order
n =1,2,...,N without knowing the parameter N in advance, and the values
of a(n,j) are allowed to depend on all previously-computed values of h(i) for
1 <17 < n. To be precise, our main result is

Theorem 1. Consider the DP defined by (). If

1. V1 < j<n<N, the value of a(n, j) can be computed in O(1) time, provided
that the values of h(i) for 1 <i <n are known;
2. andV1<j<n<N,

a(n, j) —a(n —1,j) = cn + 0;5n 2)

where cp, By and 0; are constants satisfying
(a) V1<n<N,p3,>0;
(b) and 61 > 6y > --- > 5N71;

then, there is an algorithm that computes the values of h(n) in the order n =
1,2,...,N in O(1) amortized and O(log N') worst-case time per h(n). The algo-
rithm does not know the value of N until h(N) has been computed.

We call the Condition 2 in Theorem [II (including Conditions (a) and (b)) the
online Monge property. As we will see in Section [T} the online Monge property
is a stronger Monge property. The SMAWK algorithm is a @(N) speedup of
the computation of ([{l) when a(n,j) satisfy the Monge property. Theorem [II
says that if a(n,j) satisfy the online Monge property, then the same speedup
can be maintained online, in the sense that the time to compute all h(n) is still
O(N). Section 2l will give the main algorithm, which achieves the O(1) amortized
bound. In Section 23] we modify the algorithm a little bit to achieve the worst
case O(log N) bound. Section B shows two applications of this technique.

Note that the online Monge property only says that c,, 8, and d; exist. It does
not say that c,, 3, and ¢; are given. However, if §; is given, then the algorithm
will be easier to understand. So, throughout this paper we will assume we have
an extra condition:

— The values of §; can be computed in O(1) time, provided that the values of
h(i) for 1 <14 < j are known.

This condition is not really necessary. In Appendix [A]l we will show how it is
implied by other conditions in Theorem [l

As a final note we point out that there is a body of literature already discussing
“online” problems of (), e.g., [BIAUBIGI7]. We should clarify that the “online” in



Online Dynamic Programming Speedups 45

those papers actually had a different meaning than the one used here. More
specifically, the result they have is that if

1. the value of N is known in advance;

2. and for any 1 < j < n < N, the value of a(n, j) can be computed in O(1)
time, provided that the values of h(i) for 1 < i < j are known;

3. and the values of a(n, j) satisfy the Monge property defined by (),

then both the Galil-Park algorithm [6] and the Larmore-Schieber algorithm [7]
can compute all of the h(n) for 1 < n < N in O(N) time. As we can see,
their definition of “online” is only that the a(n, j) can depend upon part of the
previously-computed values of h(i), i.e., for 1 < ¢ < j. It does not mean that
h(n) can be computed without knowing the problem size N in advance.

1.1 Relations to Monge

In this section, we briefly introduce the definition of Monge property. See the
survey [I] for more details. Consider an N x N matrix A. Denote by R(n) the
indez of the rightmost minimum of row n of A, i.e.,

R(n) =max{j: An ; = IE%LHN Apit.

A matrix A is monotone it R(1) < R(2) <--- < R(N), A is totally monotone if
all submatrices] of A are monotone. The SMAWK algorithm [2] says that if A
is totally monotone, then it can compute all of the R(n) for 1 <n < N in O(N)
time.

For our problem, if we set

_Jan,j) 1<j<n<N
Anj = {oo otherwise (3)

then h(n) = a(n, R(n)). Hence, if we can show the matrix A defined by @) is
totally monotone, then the SMAWK algorithm can solve our problem (offline
version) in O(N) time. Totally monotone properties are usually established by
showing a slightly stronger property, the Monge Property (also known as the
quadrangle inequality). A matrix A is Monge if V1 <n < N andV 1 <j < N,

Anj+Anyijr < Anprj + An i
It is easy to show that A is totally monotone if it is Monge. So, for the offline
version of our problem, we only need to show that the matrix A defined by (@)
is Monge, ie,, V1< j<n <N,
a(n,j) +aln+1,j+1) <aln+1,j) + a(n,j+1). (4)

! In this paper, submatrices can take non-consecutive rows and columns from the
original matrix, and are not necessarily square matrices.



46 A. Bar-Noy, M.J. Golin, and Y. Zhang

By the conditions in Theorem [I]
a(n + 17]) + a(n,j + 1) - a’(nvj) - a(n +1,5+ 1) = (5] - 5j+1)ﬁn+1 > 0.

So, the matrix A defined by []) is Monge, and the SMAWK algorithm solves the
offline problem.

Our problem is a special case of Monge. But how special a case? Referring
to Section 2.2 of [I] for more details, we see that if we only consider the finite
entries, then a matrix A is Monge if and only if V A, ; # oo,

N
A =Put Qi+ Y > Fui (5)

k=n i=1

where P and @ are vectors, and F'is an N x N matrix, called the distribution
matriz, whose entries are all nonnegative. For our problem, let §o = §;. Then

a(n, j) = a(N, j) - Z ok — 6 Z Br

k=n+1 k=n-+1
N N N
> =60 Y B+ (60—5;) > B

k=n+1 k=n+1 k=n+1

So, in our problem,
N
Py =- Z (ck + d0 k), Q; = a(N,j), Fri = (0i—1 — 6:)Br+1,
k=n+1

where we define By1 = 0. This shows that our problem is a special case of the
Monge property where the distribution matrix has rank 1.

Conversely, if the distribution matrix F' has rank 1, then the values of a(n, j)
satisfy the conditions of Theorem [Il So, Theorem [ is really showing that the
row minima of any Monge matrix defined by a rank 1 distribution matrix can
be found online.

2 The Algorithm

In this section, we show the main algorithm that achieves the O(1) amortized
bound in Theorem [[l We will show the algorithm at step m, where the values
of h(i) have been computed for 1 < ¢ < n, and we want to compute the value
of h(n). By the conditions in Theorem [[] and the extra condition, all the values
a(n,j) and §; for 1 < j <n < N are known.

The key concept of the algorithm is a set of straight lines defined as follows.

Definition 2. V1 < j <n < N, we define

L} (x) = a(n,j) +6; -z (6)



Online Dynamic Programming Speedups 47

So, h(n) = min;<j<n L7 (0). To compute mini<;j<, L7 (x) at x = 0 efficiently, the
algorithm maintains min;<;<, L} () for the entire range z > 0, i.e., at step n,
the algorithm maintains the lower envelope of the set of lines { L} (z) : 1 < j <n}

in the range = € [0, c0).

2.1 The Data Structure

The only data structure used is an array, called the active-indices array, Z =
(#1,...,2t) for some length t. It will be used to represent the lower envelope.
It stores, from left to right, the indices of the lines that appear on the lower
envelope in the range x € [0,00). That is, at step n, if we walk along the lower
envelope from x = 0 to the right, then we will sequentially encounter the lines
L? (), L%, (x),..., L. (x). Since 6; > 2 > --- > &, and by the properties of
lower envelopes, we have z; < z2 < --- < 2y = n, and no line can appear more
than once in the active-indices array.

Once we have the active-indices array, computing h(n) becomes easy as h(n) =
a(n, z1). So, the problem is how to obtain the active-indices array. Inductively,
when the algorithm enters step n from step n — 1, it maintains an active-indices
array for step n — 1, which represents the lower envelope of the lines {L;“l(az) :
1 <j < n—1}. So, the main part of the algorithm is to update the old active-
indices array to the new active-indices array for {L%(z) : 1 < j < nj}.

Before introducing the algorithm, we introduce another concept, the break-

point array, X = (xq,...,2¢), where g = 0, &y = oo and z; (1 < i < t)
is the z-coordinate of the intersection point of lines L7 (z) and L7, (z). The

break-point array is not stored explicitly, since for any i, the value of x; can be
computed in O(1) time, given the active-indices array.

2.2 The Main Algorithm

In step n, we need to consider n lines {L;‘(x) : 1 < j < n}. The algorithm will
first deal with the n — 1 lines {L}(z) : 1 < j < n — 1}, and then add the last
line L7 (x). Figure [0 illustrates the update process by an example. Figure [}a)
shows what we have from step n — 1, Figure [I{b) shows the considerations for
the first n — 1 lines, and Figure [[l(c¢) shows the adding of the last line.

Deal with the first n—1 lines. For the first n—1lines {L}(z) : 1 < j < n—1},
the key observation is the following lemma.

Lemma 3. V1<n<N andV z,

n _ tn—1 .
Li(z) = L} (z+ Bn) + cn, vV1i<j<n-1L1

Proof. By @) and (@),

= [a<n - lvj) + Cn} + 6]’ (x +ﬂn)
= L;’Lil(x + ﬂn) + cp.-



48 A. Bar-Noy, M.J. Golin, and Y. Zhang

1) -
LgH(x) ~-
1) -
—13 -~ |
L7 (@)
L) —-

Fig. 1. The update of the active-indices array from Step n — 1 to Step n, where n = 8.
The thick solid chains are the lower envelopes. Figure (a) shows the lower envelope
for the lines {L?’l(oc) :1 < j < n—1}, Figure (b) shows the lower envelope for the
lines {Lj(x) : 1 < j < n — 1}, and Figure (c) shows the lower envelope for the lines
{L}(x) : 1 < j < n}. The numbers beside the line segments are the indices of the lines.
The active-indices array changes from (a)(1,2,4,5,7), to (b)(4,5,7), then to (¢)(4, 5, 8).

Lemma Bl says that if we translate the line L?il(x) to the left by (3, and upward
by ¢y, then we obtain the line L} (z). The translation is independent of j, for
1<j<n-1.8So,

Corollary 4. The lower envelope of the lines {L}(x) : 1 < j < n — 1} is the

translation of the lower envelope of {L;“l(:r) : 1< 5 <n—1} to the left by By
and upward by c, .

As an example, see Figure[l], (a) and (b). From Figure [i(a) to [dI(b), the entire
lower envelope translates to the left by 3, and upward by c,.



Online Dynamic Programming Speedups 49

We call an active-index z; negative if the part of L7 (x) that appears on the
lower envelope is completely contained in the range z € (—o0, 0]. By Corollary[4]
to obtain the active-indices array for {L;L(x) :1 < j <n—1} from the old active-
indices array, we only need to delete those active-indices who becomes negative
due to the translation. This can be done by a simple sequential scan. We scan
the old active-indices array from left to right, check each active-index whether it
becomes negative. If it is, we delete it. As soon as we find the first active-index
that is nonnegative, we can stop the scan, since the rest of the indices are all
nonnegative.

To be precise, we scan the old active-indices array from z; to z;. For each
z;, we compute x;, the right break-point of the segment z;. If z; < 0, then
z; is negative. Let znyin be the first active-index that is nonnegative, then the
active-indices array for {L;‘(x) :1<j<n—1}18 (Zmin,-- -, 2t)-

Adding the last line. We now add the line L7 (z). Recall Condition (a) in The-
orem[Il Since L7 (x) has the smallest slope over all lines, it must be the rightmost
segment on the lower envelope. And since no line can appear on the lower enve-
lope more than once, we only need to find the intersection point between L7 (x)
and the lower envelope of {L%(z) : 1 < j < n — 1}. Assume they intersect on
segment zmax, then the new lower envelope should be (zmin, - - - Zmax, 7). See
Figure Dl(c), in the example, zpax = 5.

To find zmax, we also use a sequential scan, but from right to left. We scan
the active-indices array from z; to zmin. For each z;, we compute x;_1, the left
break-point of segment z;, and compare the values of L} (x; 1) and L7, (z;—1). If
L(x;—1) is smaller, then z; is deleted from the active-indices array. Otherwise,
we find zyax.

The running time. The two sequential scans use amortized O(1) time per
step, since each line can be added to or deleted from the active-indices array at
most once.

2.3 The Worst-Case Bound

To achieve the worst-case bound, we can use binary search to find zyi, and zmax.
Since for a given index z and value = the function L7 (z) can be computed in
O(1) time, the binary search takes O(log N) time worst case.

To keep both the O(1) amortized time and the O(log N) worst-case time, we
run both the sequential search and the binary search in parallel, interleaving
their steps, stopping when the first one of the two searches completes.

3 Applications

We will now see two applications. Both will require multiple applications of our
technique, and both will be in the form



50 A. Bar-Noy, M.J. Golin, and Y. Zhang

. . 4 (d)
Hdn) = min  (H(d=15)+ W) (7)

where the value of Wfld]) can be computed in O(1) time, and the values of H(d, n)
for d = 0 or n = d are given. The goal is to compute H (D, N). Setting
aD(n,j) = H(d—1,7) + W\,
for each fixed d (1 < d < D), the values of a(¥)(n, j) satisfy the online Monge
property in Theorem [ i.e.,
a®D(n,j) —alD(n—1,5) =W —w? = cd+60DpD. ®)
where 5§d) decreases as j increases, and 57@ >0.
As before, we want to compute H(d,n) in online fashion, i.e., as n increases
from 1 to N, at step n, we want to compute the set H,, = {H(d,n) | 1 <d < D}.
By Theorem [ this can be done in O(D) amortized time per step. This gives a

total of O(DN) time to compute H(D, N), while the naive algorithm requires
O(DN?) time.

3.1 D-Medians on a Directed Line

The first application comes from [§]. It is the classic D-median problem when
the underlying graph is restricted to a directed line. In this problem we have N
points (users) v < v < --- < vy, where we also denote by v; the z-coordinate
of the point. Each user v; has a weight, denoted by w;, representing the amount
of requests. We want to choose a subset S C V' as servers (medians) to provide
service to the users’ requests. The line is directed, in the sense that the requests
from a user can only be serviced by a server to its left. So, v; must be a server.
Denote by £(v;,S) the distance from v; to the nearest server to its left, i.e.,
£(v;, S) = min{v; — v; | v; € S,v; < v;}. The objective is to choose D servers
(not counting v1) to minimize the cost, which is vazl wil(v;, S).

The problem can be solved by the following DP. Let H(d,n) be the minimum
cost of servicing wvy,vs,...,v, using exactly d servers (not counting vp). Let
Wh = Z?:H_l wi(v; — vjy1) be the cost of servicing vjy1,...,v, by server
Vj41- Then

0 n=d
H(d,n) ={ Wno d=0,n>1
. 4 4 <
o i (H(d=1,7) + Wy ), 1<d<n
The optimal cost we are looking for is H(D, N).
To see the online Monge property, since

Wi = Wao1,j = wn(vn — vj41),



Online Dynamic Programming Speedups 51

we have ¢, = wpvp, §; = —vj41 and B, = wy, satistfying (). So, Theorem [I]
will solve the online problem in O(D) amortized time per step. Hence, the total
time to compute H (D, N) is O(DN).

[8] also gives an O(DN) time algorithm, by observing the standard Monge
property and applying the SMAWK algorithm. The algorithm in this paper
has smaller constant factor in the O(-) notation, and hence is more efficient
in practice. Further more, the online problem makes sense in this situation.
It is known as the ome-sided online problem. In this problem, a new user is
added from right in each step. When a new user comes, our algorithm recom-
putes the optimal solution in O(D) time amortized and O(Dlog N) time worst
case.

We note that the corresponding online problem for solving the D-median
on an undirected line was treated in [9], where a problem-specific solution was
developed. The technique in this paper is a generalization of that one.

3.2 Wireless Mobile Paging

The second application comes from wireless networking [10]. In this problem, we
are given N regions, called the cells, and there is a user somewhere. We want to
find which cell contains the user. To do this, we can only query a cell whether
the user is in or not, and the cell will answer yes or no. For each cell i, we know
in advance the probability that it contains the user, denote it by p;. We assume
p1 > p2 > --- > py. We also approximate the real situation by assuming the
cells are disjoint, so p; is the probability that cell ¢ contains the user and no
other cell does.

There is a tradeoff issue between the delay and the bandwidth requirement.
For example, consider the following two strategies. The first strategy queries all
cells simultaneously, while the second strategy consists of N rounds, querying
the cells one by one from p; to pn, and stops as soon as the user is found.
The fist strategy has the minimum delay, which is only one round, but has
the maximum bandwidth requirement since it queries all N cells. The second
strategy has the maximum worst case delay of N rounds, but the expected
bandwidth requirement is the minimum possible, which is Zf\[:l ip; queries. In
the tradeoff, we are given a parameter D, which is the worst case delay that can
be tolerated, and we are going to find an optimal strategy that minimize the
expected number of queries.

It is obvious that a cell with larger p; should be queried no later than one with

smaller p;. So, the optimal strategy actually breaks the sequence p1,po,...,pN
into D contiguous subsequences, and queries one subsequence in each round. Let
0=1r9p<r <---<rp= N, and assume in round i, we query the cells from

Dr;_1+1 to pr,. Recall that the cells are disjoint. The expected number of queries,
defined as the cost, is
T

D
Z i Z b - (9)

i=1 I=r;i_1+1



52 A. Bar-Noy, M.J. Golin, and Y. Zhang

[10] developed a DP formulation to solve the problem. It is essentially the
following DP. Let H(d,n) be the optimal cost for querying cells p1, ..., p, using
exactly d rounds. Denote W,, ; = nzl":j 41 Pi the contribution to @) of one
round that queries p;i1,...,p,. Then

POy "= d
H(d,n) = =0, n>1
. s 4 -
dqgljlgnq (Hd—-1,5)+W,;), 1<d<n

[10] applied the naive approach to solve the DP in O(DN?) time. Actually, this
DP satisfies the online Monge property. Since

n—1
Wn,j - anl,j = Npn + Z Di,
I=j+1
we can set ¢, = np, + Zlnz_ll D, 05 = —Z{:Ipl and 8, = 1, satisfying (&).

So, the DP can be solved in O(DN) time, using either the SMAWK algorithm
or the technique in this paper. However, in this problem, there is no physical
interpretation to the meaning of the online situation. But, due to the simplicity
of our algorithm, it runs faster than the SMAWK algorithm in practice, as
suggested by the experiments in [I1], and is therefore more suitable for real time
applications.

References

1. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in opti-
mization. Discrete Applied Mathematics 70(2) (1996) 95-161

2. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P.W., Wilber, R.E.: Geometric
applications of a matrix-searching algorithm. Algorithmica 2 (1987) 195-208

3. Wilber, R.: The concave least-weight subsequence problem revisited. Journal of
Algorithms 9(3) (1988) 418-425

4. Eppstein, D., Galil, Z., Giancarlo, R.: Speeding up dynamic programming. In:
Proceedings of the 29th Annual Symposium on Foundations of Computer Science.
(1988) 488-496

5. Galil, Z., Giancarlo, R.: Speeding up dynamic programming with applications to
molecular biology. Theoretical Computer Science 64(1) (1989) 107-118

6. Galil, Z., Park, K.: A linear-time algorithm for concave one-dimensional dynamic
programming. Information Processing Letters 33(6) (1990) 309-311

7. Larmore, L.L., Schieber, B.: On-line dynamic programming with applications to
the prediction of RNA secondary structure. Journal of Algorithms 12(3) (1991)
490-515

8. Woeginger, G.J.: Monge strikes again: Optimal placement of web proxies in the
Internet. Operations Research Letters 27(3) (2000) 93-96

9. Fleischer, R., Golin, M.J., Zhang, Y.: Online maintenance of k-medians and k-
covers on a line. Algorithmica 45(4) (2006) 549-567



Online Dynamic Programming Speedups 53

10. Krishnamachari, B., Gau, R.H., Wicker, S.B., Haas, Z.J.: Optimal sequential pag-
ing in cellular wireless networks. Wireless Networks 10(2) (2004) 121-131

11. Bar-Noy, A., Feng, Y., Golin, M.J.: Efficiently paging mobile users under delay
constraints. Unpublished manuscript (2006)

A  Dropping the Extra Condition

This appendix will show how to drop the condition that

— the values of §; can be computed in O(1) time, provided that the values of
h(i) for 1 <14 < j are known.

In real applications, this doesn’t seem to be an issue. For example, in both of the
applications in Section [3, the value of §; can easily be computed in O(1) time
when needed, and in neither of the applications does d; depend on the previously-
computed values of h(i) for 1 < ¢ < j. It is a theoretical issue, though, so in this
appendix, we will show how to dispense with the condition.

Recall @) from Theorem [I Tt is true that we cannot compute §,, from other
values available at step n, since the constraints containing J,, will only appear
from step n 4+ 1. However, it suffices to compute J,, at step n + 1, since we can
modify the algorithm a little bit. The only place that uses J,, in step n of the
algorithm is in the addition of new line L7 (z) to the lower envelope. After that,
the algorithm computes h(n) by evaluating the value of the lower envelope at
x = 0, and then precedes to step n+ 1. So, we can postpone the addition of line
L™(z) to the beginning of step n + 1, after we compute 6,,. To compute h(n) at
step n, we can evaluate the value of the lower envelope without L' (x) at = = 0,
compare it with L"(0) = a(n,n), and take the smaller of the two. Hence, what
is left is to show

Lemma 5. A feasible value of 6,, can be computed in O(1) time at step n + 1.

Proof. We will show an algorithm that computes ¢,, and [, at step n, and
computes &, at step n+1. There are actually many feasible solutions of ¢,, 5, and
d; for [@). Consider a particular solution ¢,, 3, and d;. If we set ¢}, = ¢,, + 2,
B, = Bn and 0% = 6; — x for some arbitrary value z, then the new solution c,,
By, and &’ still satisfies (2]). This gives us the degree of freedom to choose d;. We
choose §; = 0 and immediately get

en =a(n,1) —a(n —1,1), V1<n<N.

So, we can compute ¢, at step n.
What is left is to compute (3, and ;. The constraints ([2]) become V 1 < j <
n <N,
5]’/871 :a<naj) _a(n_]-vj) — Cn. (10)

(2 does not show up in the constraints ([I0). In fact, the value of (3 will not affect
the algorithm. So, we can choose an arbitrary value for it, e.g. G2 = 0. All other
values, B, (3 < n < N) and J; (2 < j < N), appear in the constraints (I0),



54 A. Bar-Noy, M.J. Golin, and Y. Zhang

but we still have one degree of freedom. Consider a particular solution 3, and
d; to the constraints (I0). If we set 3;, = 3,/x, and 0} = d; - = for some x > 0,
then we obtain another feasible solution. So, we can choose d; to be an arbitrary
negative value, e.g. o = —1. The rest is easy. In step n, we can compute G, by

ﬂn = [a(n, 2) - a(n - 17 2) - Cn]/527
and in step n + 1, we compute §,, by
5” = [a’(n + ]-7 n) - a’(nv n) - Cn+1]//6n+1~

Hence, the lemma follows.



	Introduction
	Relations to Monge

	The Algorithm
	The Data Structure
	The Main Algorithm
	The Worst-Case Bound

	Applications
	D-Medians on a Directed Line
	Wireless Mobile Paging

	Dropping the Extra Condition


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




