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Abstract

The standard dynamic programming solution to finding k-medians on
a line with n nodes requires O(kn2) time. Dynamic programming speed-
up techniques, e.g., use of the quadrangle inequality or properties of totally
monotone matrices, can reduce this to O(kn) time. However, these speed-
up techniques are inherently static and cannot be used in an online setting,
i.e., if we want to increase the size of the problem by one new point. Then,
in the worst case, we could do no better than recalculating the solution to
the entire problem from scratch in O(kn) time. The major result of this
paper is to show that we can maintain the dynamic programming speedup
in an online setting where points are added from left to right on a line.
Computing the new k-medians after adding a new point takes only O(k)
amortized time and O(k log n) worst case time (simultaneously). Using
similar techniques, we can also solve the online k-coverage with uniform
coverage on a line problem with the same time bounds.

1 Introduction

In the k-median problem we are given a graph G = (V,E) with nonnegative edge
costs. We want to choose k nodes (the medians) from V so as to minimize the
sum of the distances between each node and its closest median. As motivation,
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the nodes can be thought of as customers, the medians as service centers, and
the distance between a customer and a service center as the cost of servicing
the customer from that center. In this view, the k-median problem is about
choosing a set of k service centers that minimizes the total cost of servicing all
customers.
The k-median problem is often extended so that each customer (node) has a

weight, corresponding to the amount of service requested. The distance between
a customer and its closest service center (median) then becomes the cost of
providing one unit of service, i.e., the cost of servicing a customer will then
be the weight of the customer node times its distance from the closest service
center. Another extension of the problem is to assign a start-up cost to each
node representing the cost of building a service center at that node. The total
cost we wish to minimize is then the sum of the start-up costs of the chosen
medians plus the cost of servicing each of the customer requests. This is known
as the facility location problem.
Lin and Vitter [7] proved that, in general, even finding an approximate

solution to the k-median problem is NP-hard. They were able to show, though,
that it is possible in polynomial time to achieve a cost within O(1+ε) of optimal
if one is allowed to use (1+1/ε)(lnn+1)k medians. The problem remains hard if
restricted to metric spaces. Guha and Khuller [5] proved that this problem is still
MAX-SNP hard. Charikar, Guha, Tardos and Shmoys [4] showed that constant-
factor approximations can be computed for any metric space. In the specific
case of points in Euclidean space, Arora, Raghavan, and Rao [2] developed a
PTAS.
There are some special graph topologies for which fast polynomial time al-

gorithms exist, though. In particular, this is true for trees [8, 10] and lines [6].
In this paper we will concentrate on the line case, in which all of the nodes lie on
the real line and the distance between any two nodes is the Euclidean distance.
See Fig. 1 for the exact definition of the k-median on a line problem (kML) and
Fig. 2 for an illustration.
There is a straightforward O(kn2) dynamic programming (DP) algorithm

for solving kML. It fills in Θ(kn) entries in a dynamic programming table1 where
calculating each entry requires minimizing over O(n) values, so the entire algo-
rithm needs O(kn2) time. Hassin and Tamir [6] showed that this DP formulation
possesses a quadrangle or concavity property. Thus, the time to calculate the
table entries can be reduced by an order of magnitude to O(kn) using known DP
speed-up techniques, such as those found in [9]. This speed up can be viewed
as providing a way to calculate each DP table entry in O(1) time.
In this paper we study online kML, where new points are always added to

the right of old points. As will soon be seen, adding such points retains all of
old entries in the dynamic programming table and only adds O(k) new entries
to the table. Since static kML can be solved in O(kn) time, or O(1) (amortized)
time per entry, we would hope to be able to calculate the O(k) new entries in

1We do not give the details here because the DP formulation is very similar to the one
shown in Lemma 1.
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The k-Median on a Line Problem (kML)

Let k ≥ 0. Let x1 < x2 < · · · < xn be points on the real line. With
each point xj there are associated a weight wj ≥ 0 and a start-up cost
cj ≥ 0. A k-placement is a subset S ⊆ Vm = {x1, . . . , xm} of size |S| at
most k. We define the distance of point xj to S by

dj(S) = min
y∈S

|xj − y| .

The cost of S is (i) the cost of creating the service centers in S plus
(ii) the cost of servicing all of the requests from S:

cost(S) =
∑

xi∈S

ci +
n
∑

j=1

wjdj(S) .

The k-median on a line problem (kML) is to find a k-placement S min-
imizing cost(S). In online kML, the points are given to us in the order
x1, x2, . . ., and we have to compute optimal solutions for the known
points at any time.

Figure 1: The k-median on a line problem.

O(k) total time, maintaining the dynamic programming speed up.
The difficulty here is that Hassin and Tamir’s approach cannot be made

online because most DP speed-up techniques such as those in [9] are inherently
static. The best that can be done using their approach is to totally recompute
the dynamic programming matrix entries from scratch at each step using O(kn)
time per step2.
Later, Auletta, Parente and Persiano [3] studied kML in the special case of

unit lengths, i.e., xi+1 = xi+1 for all i, and no start up costs, i.e., ci = 0 for all
i. Being unaware of Hassin and Tamir’s results they developed a new technique
for solving the problem which enabled them to add a new point in amortized
O(k) time, leading to an O(kn) time algorithm for the static problem.
The major contribution of this paper is to bootstrap off of Auletta, Parente

and Persiano’s result to solve online kML when (i) the points can have arbitrary
distances between them and (ii) start up costs are allowed. In Section 2 we
prove the following theorem.

Theorem 1 We can solve the online k-median on a line problem in O(k) amor-
tized and O(k log n) worst case time per update. These time bounds hold simul-

2Although not stated in [6] it is also possible to reformulate their DP formulation in terms of
finding row-minima in k n×n totally monotone matrices and then use the SMAWK algorithm
[1] — which finds the row-minima of an n×n totally monotone matrix in O(n) time — to find
an O(kn) solution. This was done explicitly in [11]. Unfortunately, the SMAWK algorithm is
also inherently static, so this approach can also not be extended to solve the online problem.
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Figure 2: k-median on a line example. The data are taken from the example in
Section 2.6. Each node is drawn at its x-coordinate with a vertical bar and a
circle. The length of the vertical bar illustrates the start-up cost, and the area
of the circle corresponds to the weight. The optimal locations of resources are
indicated by si (1 ≤ i ≤ k). The six figures show the optimal locations when
the number of nodes is 4 or 5 and the number of resources k ranges from 1 to
3, respectively.
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taneously. 2

A variant of kML is the k-coverage problem (kCL) where the cost of servicing
customer xj is zero if it is closer than rj to a service center, or wj otherwise.
See Fig. 3 for the exact definition of kCL and Fig. 4 for an illustration.

The k-Coverage on a Line Problem (kCL)

In addition to the requirements of kML, each node xj is also given a
coverage radius rj . It is covered by a k-placement S if dj(S) ≤ rj . In
that case, the service cost for xj is zero. Otherwise, the service cost is
wj . The cost of S is then

cost(S) =
∑

xi∈S

ci +

n
∑

j=1

wjIj(S) ,

where

Ij(S) =

{

0 if dj(S) ≤ rj

1 if dj(S) > rj .

The k-coverage on a line problem (kCL) is to find a k-placement S min-
imizing cost(S). Online kCL is defined similarly to online kML.

Figure 3: The k-coverage on a line problem.

Hassin and Tamir [6] showed how to solve static kCL in O(n2) time (indepen-
dent of k), again using the quadrangle inequality/concavity property. In Section
3 we restrict ourselves to the special case of uniform coverage, i.e., there is some
r > 0 such that rj = r for all j. In this situation we can use a similar (albeit
much simpler) approach as in Section 2 to maintain optimal partial solutions
S as points are added to the right of the line. In Section 3 we will prove the
following theorem.

Theorem 2 We can solve the online k-coverage on a line problem with uniform
coverage in O(k) amortized and O(k log n) worst case time per update. These
time bounds hold simultaneously. 2

2 The k-Median Problem

2.1 Notations and Preliminary Facts

In the online k-median problem, we start with an empty line and, at each step,
append a new node to the right of all of the previous nodes. So, at step m we
will have m points

x1 < x2 < · · · < xm
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Figure 4: k-coverage on a line example. The data are taken from the example
in Section 3.1. Each node is drawn at its x-coordinate with a vertical bar and a
circle. The length of the vertical bar illustrates the start-up cost, and the area
of the circle corresponds to the weight. The optimal locations of resources are
indicated by si (1 ≤ i ≤ k). The six figures show the optimal locations when
the number of nodes is 5 or 6 and the number of resources k ranges from 1 to
3, respectively.
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and when adding the (m + 1)st point we have xm < xm+1. Each node xj will
have a weight wj , and a start-up cost cj associated with it. At step m, the task
is to pick a set S of at most k nodes from x1, x2, . . . , xm that minimizes

cost(S) =
∑

xi∈S

ci +
m
∑

j=1

wjdj(S) . (1)

Our algorithm actually keeps track of 2k median placements for every step.
The first k placements will be optimal placements for exactly i resources, for
1 ≤ i ≤ k. More specifically, let

OPTi(m) = min
S⊆Vm, |S|=i





∑

xi∈S

ci +

m
∑

j=1

wjdj(S)



 .

We will see later how to efficiently compute all the OPTi(m) values during step
m. Once the OPTi(m) values are calculated, they will be kept for the rest of
the algorithm.
The remaining k placements are called pseudo-optimal placements. These

are optimal placements under the constraint that xm must be one of the chosen
resources. That is, for i = 1, . . . , k

POPTi(m) = min
S⊆Vm, |S|=i

xm∈S





∑

xi∈S

ci +

m
∑

j=1

wjdj(S)



 .

In particular, note that if i = 1, then S = {xm} and

POPT1(m) = cm +
m−1
∑

j=1

wj(xm − xj). (2)

As with OPTi(m), all of these values are computed in step m and, once com-
puted, will be kept for the rest of the algorithm. Optimal and pseudo-optimal
placements are related by the following straightforward equations.

Lemma 1

OPTi(m) = min
1≤j≤m



POPTi(j) +
m
∑

l=j+1

wl · d(j, l)



 (3)

POPTi(m) = min
1≤j≤m−1



OPTi−1(j) +

m−1
∑

l=j+1

wl · d(l,m)



+ cm , (4)

where d(j, l) = xl − xj is the distance between xj and xl. 2
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Proof : In (3), index j corresponds to the choice of location of the rightmost
median. Given that the rightmost median is at location j, POPTi(j) is the best
way of servicing all of the nodes x1, . . . , xj and

∑m

l=j+1
wl · d(j, l) is the cost of

servicing nodes xj+1, . . . , xm (using node j).
In (4), we assume that there is a median at node m. Index j is the rightmost

node that is not serviced by node m so OPTi−1(j) is the best way of servicing

nodes x1, . . . , xj using the remaining i− 1 medians while
∑m−1

l=j+1
wl · d(l,m) is

the cost of servicing nodes xj+1, . . . , xm (using node m). 2

Denote by MINi(m) the index j at which the “min” operation in Eq. (3)
achieves its minimum value and by PMINi(m) the index j at which the “min”
operation in Eq. (4) achieves its minimum value. When computing the OPTi(m)
and POPTi(m) values the algorithm will also compute and keep the MINi(m)
and PMINi(m) indices.
The optimum cost we want to find is OPT = min1≤i≤k(OPTi(n)).

3 It is not
difficult to see that, knowing all values of OPTi(m), MINi(m), POPTi(m) and
PMINi(m) for 1 ≤ i ≤ k, 1 ≤ m ≤ n, we can unroll the equations in Lemma 1
in O(k) time to find the optimal set S of at most k medians that yields OPT .
So, maintaining these 4nk variables suffices to solve the problem.
A straightforward calculation of the minimizations in Lemma 1 permits cal-

culating the value of POPTi(m) from those of OPTi−1(j) in O(m) time and
the value of OPTi(m) from those of POPTi(j) in O(m) time. This permits
a dynamic programming algorithm that calculates all of the OPTi(m) and
POPTi(m) values in O (k

∑n

m=1
m) = O(kn2) time, solving the problem. Sec-

tion 2.6 provides a worked example of OPTi(j) and POPTi(j) values and how
they provide a solution.
As discussed in the previous section, this is very slow. The rest of this section

is devoted to improving this by an order of magnitude; developing an algorithm
that, at step m for each i, will calculate the value of POPTi(m) from those
of OPTi−1(m) and the value of OPTi(m) from those of POPTi(m) in O(1)
amortized time and O(log n) worst case time.

2.2 The Functions Vi(j,m, x) and V ′
i
(j,m, x)

As mentioned, our algorithm is actually an extension of the algorithm in [3]. In
that paper, the authors defined two sets of functions which played important
roles. We start by rewriting those functions using a slightly different notation
which makes it easier to generalize their use. For all 1 ≤ i ≤ k and 1 ≤ j ≤ m
define

Vi(j,m, x) = POPTi(j) +

m
∑

l=j+1

wl · d(j, l) + x · d(j,m) . (5)

3Note that the optimum might not be OPTk(n). That is, startup costs might be so
expensive that it can sometimes be cheaper not to use all k allowed vertices. Section 2.6
provides a concrete example of this.
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For all 1 ≤ i ≤ k and 1 ≤ j ≤ m− 1 define

V ′i (j,m, x) = OPTi−1(j) +

m−1
∑

l=j+1

wl · d(l,m) + x ·

m−1
∑

l=j+1

wl . (6)

Then Lemma 1 can be written as

OPTi(m) = min
1≤j≤m

Vi(j,m, 0) (7)

POPTi(m) = min
1≤j≤m−1

V ′i (j,m, 0) + cm . (8)

The major first point of departure between this section and [3] is the follow-
ing lemma, which basically says that Vi(j,m, x) and V ′i (j,m, x) can be computed
in constant time when needed. This will permit us to design an algorithm that
works efficiently online.

Lemma 2 Suppose we are given,

W (m) =

m
∑

l=1

wl and M(m) =

m
∑

l=1

wl · d(1, l) .

Then, given the values of POPTi(j), the function Vi(j,m, x) can be evaluated at
any x in constant time. Similarly, given the values of OPTi−1(j), the function
V ′i (j,m, x) can be evaluated at any x in constant time.

Proof : We first examine Vi(j,m, x). We already know POPTi(j) so we only
need to compute the terms

m
∑

l=j+1

wl · d(j, l) + x · d(j,m).

It is easy to verify that

m
∑

l=j+1

wl · d(j, l) = [M(m)−M(j)]− [W (m)−W (j)] · d(1, j)

which can be computed in constant time. For V ′i (j,m, x), we also only need to
compute

m−1
∑

l=j+1

wl · d(l,m) + x ·

m−1
∑

l=j+1

wl.

But

m−1
∑

l=j+1

wl · d(l,m) = [W (m− 1)−W (j)] · d(1,m)− [M(m− 1)−M(j)]
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and
m−1
∑

l=j+1

wl =W (m− 1)−W (j)

which can both be computed in constant time. 2

In the next two subsections we will see how to use this lemma to efficiently
calculate POPTi(j) and OPTi(j).

2.3 Computing OPTi(m)

We start by explaining how to maintain the values of OPTi(m). Our algorithm
uses k similar data structures to keep track of the k sets of OPTi(m) values, for
1 ≤ i ≤ k. Since these k structures are essentially the same we will fix i and

consider how the ith data structure permits the computation of the values of
OPTi(m) as m increases.

2.3.1 The Data Structures

Recall Eq. (5). Consider the m functions Vi(j,m, x) for 1 ≤ j ≤ m. They are
all linear functions in x so the lower envelope of these functions is a piecewise
linear function to which each Vi(j,m, x) contributes at most one segment.
We are only interested in OPTi(m) = min1≤j≤m Vi(j,m, 0) (Eq. (7)) which

is equivalent to evaluating this lower envelope at x = 0. In order to update
the data structure efficiently, though, we will see that we will need to store the
entire lower envelope for x ≥ 0. We store the envelope by storing the changes
in the envelope.
More specifically, our data structure for computing the values of OPTi(m)

consists of two arrays
∆i(m) = (δ0, δ1, . . . , δs) (9)

and
Zi(m) = (z1, . . . , zs), (10)

such that

if δh−1 < x+W (m) < δh, then Vi(zh,m, x) = minj≤m Vi(j,m, x) . (11)

The reasons for the shift term W (m) =
∑m

l=1
wl will become clear later. Since

we only keep the lower envelope for x ≥ 0, we have δ0 ≤W (m) < δ1.
An important observation is that the slope of Vi(j,m, x) is d(j,m) which

decreases as j increases, so we have z1 < · · · < zs and zs = m at step m.
In particular, note that V (m,m, x), which is the rightmost part of the lower
envelope, has slope 0 = d(m,m) and is a horizontal line.
Given this data structure, computing the value of OPTi(m) becomes trivial.

We simply have MINi(m) = z1 and OPTi(m) = Vi(z1,m, 0).
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2.3.2 Updating the Data Structures

After all of the setup this subsection is the heart of the algorithm and explains
why the algorithm is efficient. Assume that the data structure given by Eq. (9),
(10) and (11) is storing the lower envelope after step m and, in step m+1, point
xm+1 is added. We now need to recompute the lower envelope of Vi(j,m+1, x),
for 1 ≤ j ≤ m+ 1 and x ≥ 0. Note that in step m we have m functions

{Vi(j,m, x) : 1 ≤ j ≤ m}

but we now have m+ 1 functions

{Vi(j,m+ 1, x) : 1 ≤ j ≤ m+ 1} .

If we only consider the lower envelope of the first m functions Vi(j,m+1, x)
for 1 ≤ j ≤ m, then the following lemma guarantees that the two arrays ∆i(m)
and Zi(m) do not change.

Lemma 3 Assume Vi(zh,m, x) minimizes Vi(j,m, x) for 1 ≤ j ≤ m when
δh−1 < x +W (m) < δh. Then Vi(zh,m + 1, x) minimizes Vi(j,m + 1, x) for
1 ≤ j ≤ m when δh−1 < x+W (m+ 1) < δh.

Proof : It is easy to verify that for 1 ≤ j ≤ m

Vi(j,m+ 1, x) = Vi(j,m, x+ wm+1) + (x+ wm+1) · d(m,m+ 1) .

Since δh−1 < x+W (m+1) < δh iff δh−1 < (x+wm+1)+W (m) < δh, the above
formula is minimized when j = zh. 2

This lemma is the reason for defining Eq. (9), (10) and (11) as we did with
the shift term instead of simply keeping the breakpoints of the lower envelope
in ∆i(m). Note that the lemma does not say that the lower envelope of the
functions remains the same (this could not be true since all of the functions
have been changed). What the lemma does say is that the structure of the
breakpoints of the lower envelope is the same after the given shift.
Now, we consider Vi(m+1,m+1, x). As discussed in the previous subsection,

Vi(m + 1,m + 1, x) is the rightmost segment of the lower envelope and is a
horizontal line. So, we only need to find the intersection point between the lower
envelope of Vi(j,m + 1, x) for 1 ≤ j ≤ m and the horizontal line y = Vi(m +
1,m + 1, x). Assume they intersect at the segment Vi(zmax,m + 1, x). Then,
Zi(m+1) becomes (z1, . . . , zmax,m+1), and ∆i(m+1) changes correspondingly.
We can find this point of intersection either by using a binary search or a

sequential search. The binary search would require O(logm) worst case compar-
isons between y = Vi(m + 1,m + 1, x) and the lower envelope. The sequential
search would scan the array Zi(m) from right to left, i.e. from zs to z1, dis-
carding segments from the lower envelope until we find the intersection point of
y = Vi(m+1,m+1, x) with points on the lower envelope. The sequential search
might take Θ(m) time in the worst case but only uses O(1) in the amortized
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case since lines thrown off the lower envelope will never be considered again in
a later step.
In both methods a comparison operation requires being able to compare the

constant Vi(m+1,m+1, x) to Vi(j,m+1, x) for some j and some arbitrary value
m. Recall from Lemma 2 that we can evaluate Vi(j,m+ 1, x) at any particular
x in constant time. Thus, the total time required to update the lower envelope
is O(logm) worst case and O(1) amortized.
To combine the two bounds we perform the sequential and binary search

alternately, i.e., we use sequential search in odd numbered comparisons and
binary search in even numbered comparisons. The combined search finishes
when the intersection value is first found. Thus, the running time is proportional
to the one that finishes first and we achieve both the O(1) amortized time and
the O(logm) worst case time.
Since we only keep the lower envelope for x ≥ 0, we also need to remove

from Zi(m+1) and ∆i(m+1) the segments corresponding to negative x values.
Set zmin = max{zh : δh−1 < W (m + 1) < δh}. Then Zi(m + 1) should be
(zmin, . . . , zmax,m+ 1), and ∆i(m+ 1) should change correspondingly.
To find zmin, we also use the technique of combining sequential search and

binary search. In the sequential search, we scan from left to right, i.e., from
z1 to zs. The combined search also requires O(1) amortized time and O(logm)
worst case time.

2.4 Computing POPTi(m)

In the previous section we showed how to update the values of OPTi(m) by
maintaining a data structure that stores the lower envelope of Vi(j,m, x) and
evaluating the lower envelope at x = 0, i.e., OPTi(m) = min1≤j≤m Vi(j,m, 0).
In this section we will show how, in a very similar fashion, we can update
the values of POPTi(m) by maintaining a data structure that stores the lower
envelope of V ′i (j,m, x). We can then use Eq. (8) to find

POPTi(m) = cm + min
1≤j≤m−1

V ′i (j,m, 0),

i.e., evaluating the lower envelope at x = 0 and adding cm.
As before we will be able to maintain the lower envelope of V ′i (j,m, x),

1 ≤ j ≤ m − 1, in O(1) amortized time and O(logm) worst case time. The
data structure is almost the same as the one for maintaining Vi(j,m, x) in the
previous section so we only quickly sketch the ideas.
As before the algorithm uses k similar data structures to keep track of the

k lower envelopes; for our analysis we fix i and consider the data structures
for maintaining the lower envelope of V ′i (j,m, x) (and thus POPTi(m)) as m
increases.

2.4.1 The Data Structures

By their definitions in Eq. (6) the m−1 functions V ′i (j,m, x), for 1 ≤ j ≤ m−1,
are all linear functions, so their lower envelope is a piecewise linear function to
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which each Vi(j,m, x) contributes at most one segment.
As before, in order to compute the values of POPTi(m), we only need to

know the value of the lower envelope at x = 0 but, in order to update the
structure efficiently, we will need to store the entire lower envelope.
Our data structures for computing the values of POPTi(m) consist of two

arrays
∆′i(m) = (δ

′
0, δ

′
1, . . . , δ

′
s) (12)

and
Z ′i(m) = (z

′
1, . . . , z

′
s), (13)

such that

if δ′h−1
< x+ d(1,m) < δ′h, then V ′i (z

′
h,m, x) = minj≤m−1 V ′i (j,m, x) . (14)

Since we only keep the lower envelope for x ≥ 0, we have δ′0 ≤ d(1,m) < δ′1.

Since the slopes
(

∑m−1

l=j+1
wl

)

of V ′i (j,m, x) decrease when j increases, we have

z′1 < · · · < z′s and z′s = m−1 at step m. In particular, note that V ′(m−1,m, x),
the rightmost part of the lower envelope, has slope 0 and is a horizontal line.
Given such data structures, computing the value of POPTi(m) becomes

trivial. We simply have PMINi(m) = z′1 and POPTi(m) = cm + V ′i (z
′
1,m, 0).

2.4.2 Updating the Data Structures

Given the lower envelope of V ′i (j,m, x), for 1 ≤ j ≤ m− 1 at step m we need to
be able to recompute the lower envelope of V ′i (j,m+ 1, x), for 1 ≤ j ≤ m after
xm+1 is added.
As before, we will first deal with the functions V ′i (j,m + 1, x) for 1 ≤ j ≤

m− 1, and then later add the function V ′i (m,m+ 1, x).
If we only consider the functions V ′i (j,m+ 1, x) for 1 ≤ j ≤ m− 1, we have

an analogue of Lemma 3 for this case that guarantees that the two arrays ∆′i(m)
and Z ′i(m) do not change.

Lemma 4 Assume V ′i (z
′
h,m, x) minimizes V ′i (j,m, x) for 1 ≤ j ≤ m− 1 when

δ′h−1
< x + d(1,m) < δ′h. Then V ′i (z

′
h,m + 1, x) minimizes V ′i (j,m + 1, x) for

1 ≤ j ≤ m− 1 when δ′h−1
< x+ d(1,m+ 1) < δ′h.

Proof : It is easy to verify that for 1 ≤ j ≤ m− 1

V ′i (j,m+ 1, x) = V ′i (j,m, x+ d(m,m+ 1)) + (x+ d(m,m+ 1)) · wm+1 .

Since δ′h−1
< x+ d(1,m+ 1) < δ′h iff δ′h−1

< (x+ d(m,m+ 1)) + d(1,m) < δ′h,
the above formula is minimized when j = z′h. 2

Since V ′i (m,m + 1, x) must be the rightmost segment of the lower enve-
lope, we only need to find the intersection point between the lower envelope of
V ′i (j,m + 1, x) for 1 ≤ j ≤ m − 1 and the line y = V ′i (m,m + 1, x). Assume
they intersect at the segment of V ′i (z

′
max,m + 1, x). Then, Z

′
i(m+ 1) becomes

(z′1, . . . , z
′
max,m), and ∆

′
i(m+ 1) changes correspondingly.
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We again use both a binary and a sequential search to find z′max, alternating
between the steps of the two. The binary search requires O(logm) time in the
worst case. The sequential search scans the array Z ′i(m) from right to left and
requires O(1) time amortized time. The total search therefore requires O(1)
amortized and O(logm) worst case time per step (simultaneously).
Since we only keep the lower envelope for x ≥ 0, we also need to remove

from Z ′i(m+1) and ∆
′
i(m+1) the segments corresponding to negative x values.

Set z′min = max{z
′
h : δ′h−1

< d(1,m + 1) < δ′h}; then Zi(m + 1) should be
(z′min, . . . , z

′
max,m), and ∆

′
i(m+ 1) should change correspondingly. Also, z

′
min

can be found by a combined binary/sequential search in both O(1) amortized
and O(logm) worst case time per step (simultaneously).

2.5 The Algorithm

Given the data structures developed in the previous section the algorithm is
very straightforward. After nodes x1 < x2 < · · · < xm have been processed in
step m the algorithm maintains

• W (j) =
∑j

l=1
wl and M(j) =

∑j

l=1
wl · d(1, l), for 1 ≤ j ≤ m.

• For 1 ≤ i ≤ k , the data structures described in Sections 2.3.1 and 2.4.1 for
storing the lower envelopes minj≤m Vi(j,m, x) and minj≤m−1 V ′i (j,m, x).

• For 1 ≤ i ≤ k and 1 ≤ j ≤ m, all of the values OPTi(j), POPTi(j) and
corresponding indices MINi(j), PMINi(j).

After adding xm+1 with associated values wm+1 and cm+1 the algorithm updates
its data structures by

• Calculating W (m + 1) = W (m) + wm+1 and M(m + 1) = M(m) +
wm+1d(1,m+ 1) in O(1) time.

• Updating the 2k lower envelopes as described in Sections 2.3.2 and 2.4.2
in O(logm) worst case and O(1) amortized time (simultaneously) per
envelope.

• For 1 ≤ i ≤ k, calculating OPTi(m + 1) = minj≤m+1 Vi(j,m + 1, 0) and
POPTi(m+ 1) = cm +minj≤m V ′i (j,m+ 1, 0) in O(1) time each.

Thus, in each step, the algorithm uses, as claimed, only a total of O(k log n)
worst case and O(k) amortized time (simultaneously).
The algorithm above only fills in the dynamic programming table. But,

given the values OPTi(j), POPTi(j) and the corresponding indices MINi(j),
PMINi(j) one can construct the optimal set of medians in O(k) time so this
fully solves the problem and finishes the proof of Theorem 1.
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2.6 A k-Median Example

We show an example for illustration. n = 9 is the total number of nodes, and
k = 3 is the maximum number of resources. The x-coordinates of the 9 nodes
are 0, 5, 7, 10, 12, 13, 55, 72, 90. The start-up costs cj of the nodes are 5400,
2100, 3100, 100, 0, 9900, 8100, 7700, 13000. And the weights wj are 14, 62, 47,
51, 35, 8, 26, 53, 14.
Tables 1 to 4 show the values of OPT , MIN , POPT and PMIN , respec-

tively. From these tables, we can see that the optimal placement of 3 resources
to cover all 9 points is to place two resources at x4 and x5 (and do not use the
third resource).
Fig. 5 shows the functions V2(j, 8, x) and V2(j, 9, x). If m = 8, the two

arrays for the lower envelope are Z2(8) = (5, 8) and ∆2(8) = (296, 361.5,+∞).
Ifm = 9, the two arrays for the lower envelope are Z2(9) = (5, 8, 9) and ∆2(9) =
(310, 361.5, 669.4,+∞). As we can see, the intersection point of line 5 and line
8 in the upper part of Fig. 5 shifts to the left by w9 when we add x9 in the next
step (lower half of the figure), i.e., from 65.6 to 51.5. Actually, all intersection
points will shift the same amount when a new node is added. That is why
the partitioning value 361.5 does not change in the arrays ∆2(8) and ∆2(9)
(361.5 = 65.5 +W (8) = 51.5 +W (9)).

3 The k-Coverage Problem

In this section we describe how to solve online kCL with uniform coverage, i.e.,
to maintain a k-placement S minimizing

cost(S) =
∑

xi∈S

ci +

n
∑

j=1

wjIj(S) ,

where

Ij(S) =

{

0 if dj(S) ≤ r
1 if dj(S) > r

as m grows, where r is some fixed constant. As we will see, this problem has
a simpler DP solution than the k-median problem, albeit one with a similar
flavor.
In what follows we will say that xj is covered by a point in S if dj(S) ≤ r.

For a point xj , let covj denote the index of the smallest of the points x1, . . . , xj

covered by xj , and uncj the index of largest of the points x1, . . . , xj not covered
by xj :

covj = min{i : i ≤ j and r + xi ≥ xj} and

uncj = max{i : i < j and r + xi < xj} .

Note that xuncj
is the point to the left of xcovj

, i.e., uncj = covj − 1 if this
point exists. The points that can cover xj are exactly the points in [xcovj

, xj ].
As before, let OPTi(m) denote the minimum cost of an i-cover for the first
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m
1 2 3 4 5 6 7 8 9

1 5400 2170 2264 691 761 785 1955 5241 6337
2 - 7500 5270 2364 691 699 1817 4997 6089i
3 - - 10600 5370 2364 2372 3490 6670 7762

Table 1: The values of OPTi(m).

m
1 2 3 4 5 6 7 8 9

1 1 2 2 4 4 4 4 4 5
2 - 2 3 4 5 5 5 5 5i
3 - - 3 4 5 5 5 5 5

Table 2: The values of MINi(m).

m
1 2 3 4 5 6 7 8 9

1 5400 2170 3322 691 939 11048 18362 22093 32721
2 - 7500 5270 2364 691 10626 8885 8927 15649i
3 - - 10600 5370 2364 10591 8799 8841 15563

Table 3: The values of POPTi(m).

m
1 2 3 4 5 6 7 8 9

1 - - - - - - - - -
2 - 1 2 3 4 4 6 6 6i
3 - - 2 3 4 5 6 6 6

Table 4: The values of PMINi(m).
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Figure 5: Functions V2(j, 8, x), for j = 2, . . . , 8, and V2(j, 9, x), for j = 2, . . . , 9.
The lines are labelled by j. The thick lines are the lower envelopes.
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m points x1, . . . , xm, for i = 1, . . . , k. If all start-up costs ci are zero, we can
iteratively, for m = 1, . . . , n, compute the value of OPTi(m) as

OPTi(m) = min {OPTi(m− 1) + wm, OPTi−1(unccovm
)} , (15)

for i = 1, . . . , k. The first term in the minimum accounts for the possibility
that the new point xm is not covered in the optimal solution OPTi(m). The
second term is the minimum cost if xm is covered, because in this case we
can assume that the service center covering xm is located at covm (it cannot be
cheaper to place it further to the right) and thus covers all of the points between
xunccovm

(not included) and xm. Computing covm and uncm, the point to its
left takes time O(log n) in the worst case, but only constant amortized time over
all iterations. (Once covj and uncj are known for all j ≤ m, unccovm

itself can
be calculated in constant time.) Thus, the time per iteration to compute all the
values OPTi(m), 1 ≤ i ≤ k, is O(k) amortized and O(k + log n) worst case.
If the costs ci are not all zero, then Eq. (15) becomes the two step recurrence:

OPTi(m) = min

{

wm +OPTi(m− 1) , min
covm≤j≤m

POPTi(j)

}

(16)

POPTi(m) = cm + min
uncm≤j≤m−1

OPTi−1(j). (17)

POPTi(m) is the minimum cost of covering x1, . . . , xm if xm is one of the re-
sources. The first term in the minimum of Eq. (16) corresponds to the possibility
that xm is not covered; the second term to the possibility that xm is covered.
It ranges over all possible covers.
In order to solve the problem in an online fashion we will need to be able

to calculate the values of OPTi(m) and POPTi(m) efficiently at step m when
processing xm. We have already seen that it is possible to maintain covj and
uncj for j ≤ m in O(1) amortized and O(logm) worst case time per step. The
only hard part that remains would be calculating mincovm≤j≤m POPTi(j) and
minuncm≤j≤m−1 OPTi−1(j) efficiently for each i as m increases. We will only
show how to calculate the values of mincovm≤j≤m POPTi(j). Calculating the
values of minuncm≤j≤m−1 OPTi−1(j) can be done similarly. Let yj = POPTi(j)
and lm = covm. Then the problem can be restated as follows: maintain min{yj :
lm ≤ j ≤ m} as m increases under the constraint that lm ≤ lm+1.
We can do this by keeping the sequential list of the right-to-left minimum

(RTLM) sequence of Ym = {yj : lm ≤ j ≤ m}. A point yj is a right-to-left
minimum of sequence y1, y2, . . . , yt if ys ≥ yj for all s ≥ j. For example, the
RTLM of sequence (6, 8, 2, 5, 14, 12, 10, 15) are (2, 5, 10, 15). Note that an RTLM
sequence is monotonically increasing. Given the RTLM of a sequence, the full
sequence’s minimum value can be calculated in constant time; it is simply the
first entry in the RTLM sequence.
Along with the RTLM sequence we will also need to keep the indices corre-

sponding to the original location of the RTLM entries in the original sequence.
For example, if (6, 8, 2, 5, 14, 12, 10, 15) is our original sequence with y1 = 6 and
y8 = 15 then we will keep the corresponding indices (3, 4, 7, 8) along with the
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RTLM sequence (2, 5, 10, 15). Note that the indices sequence is also monotoni-
cally increasing. The operations that we need to perform to maintain our data
structure are to update the RTLM sequence when (a) adding a new item ym+1

to the right of Ym and (b) deleting ylm , . . . , ylm+1−1 from the left of Ym.
When a new item ym+1 is added to the right of a sequence its RTLM sequence

is updated by (i) discarding all of the current RTLM values not smaller than
ym+1 and then (ii) appending ym+1 to the right of the RTLM sequence.
Since the RTLM sequence is monotonically increasing this can be done either

by sequentially scanning the RTLM sequence from right to left, discarding all
items not smaller than ym+1 until an item smaller than ym+1 is found, or by
using a binary search to find the first item in the RTLM sequence smaller than
ym+1 and then chopping off everything in the RTLM sequence after it. Once
an item is discarded from the RTLM sequence it never returns, so sequentially
discarding uses O(1) amortized time per update (but can be arbitrarily bad in
the worst case). The binary search method requires O(logm) worst case time.
We can therefore alternate steps between the two methods (as described in the
k-median algorithm of the previous section) to get O(1) amortized time and
O(logm) worse case time simultaneously.
Deleting items ylm , . . . , ylm+1−1 from the left of Ym is even easier. All that

needs to be done is to find the first index in the RTLM sequence which is not
smaller than ylm+1

and chop off everything to the left of this index. Again, this
can be done in O(1) amortized time per update using a sequential scan from
the left or an O(logm) worst case time binary search. Combining the two gives
O(1) amortized time and O(logm) worse case time simultaneously.
We have just seen that we can update the RTLM sequence of Ym to the

RTLM sequence of Ym+1 in O(1) amortized time and O(logm) worse case time
simultaneously. Once we have done this we can calculate the OPTi(m + 1)
values in O(1) time. We need to do this for each i, 1 ≤ i ≤ m so the entire
update operation uses O(k) amortized time and O(k logm) worse case time
simultaneously.
As we mentioned before, the values of POPTi(m) can be calculated similarly

in O(k) amortized time and O(k logm) worse case time per update. This finishes
the proof of Theorem 2.

3.1 A k-Coverage Example

We show an example to illustrate the k-coverage algorithm. n = 9 is the total
number of nodes, and k = 3 is the maximum number of resources. The x-
coordinates of the 9 nodes are 2, 4, 49, 64, 74, 87, 90, 94, 99. The set-up costs
cj of the nodes are 29, 68, 59, 7, 88, 49, 89, 76, 66. The weights wj are 97, 17,
14, 76, 31, 46, 34, 1, 33. And the radius r is 20.
Tables 5 to 8 show the values of OPT , MIN , POPT and PMIN , respec-

tively. From these tables, we can see that the optimal placement when m = 9
is to place 3 resources at x1, x4 and x6.
Table 9 shows the changes of the RTLM sequence for POPT3(j) as m in-

creases. For example, the RTLM sequence is (85, 112) when m = 8, and it
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changes to (85, 102) when x9 was added.

4 Conclusion and Open Problems

In this paper we discussed how to solve the online k-median on a line problem
in O(k) amortized time and O(k log n) worst case time per point addition. This
algorithm maintains in the online model the dynamic programming speed-up for
the problem that was first demonstrated for the static version of the problem
in [6]. The technique used is a generalization of one introduced in [3]. We also
showed how a simpler form of our approach can solve the online k-coverage on
a line problem with uniform coverage radius in the same time bounds. It is not
clear how to extend our ideas to the non-uniform coverage radius case.
A major open question is how to solve the dynamic k-median and k-coverage

on a line problem. That is, points will now be allowed to be inserted (or deleted!)
anywhere on the line and not just on the right hand side. In this case would it
be possible to maintain the k-medians or k-covers any quicker than recalculating
them from scratch each time?
We would also like to propose a simpler extension of the problem, the two-

sided online k-median (and k-coverage) problem. In this extension, nodes can
be added both to the left and right of the existing nodes, not just to the right.
While initially this might sound like an easy extension there are reasons for
believing that it will be much more complex than the one-sided online problem
studied in this paper. Essentially, the problem studied in this paper was to fill
in the O(kn) sized dynamic programming table given by Lemma 1. Adding
new points to the right of the line added O(k) new entries to the table but
did not change any of the old entries. This dynamic program is known in
advance to possess special properties, i.e., the quadrangle inequality/concavity,
that permits solving it quickly, e.g., [6]. What we did in this paper was find
a way to maintain this dynamic programming speed-up while calculating the
O(k) new values.
Being able to add points to both sides of the line could totally change all

of the Θ(kn) entries in the table. A dynamic programming approach would
therefore require updating all Θ(kn) entries, requiring Θ(kn) time. Since we
can solve the static problem in O(kn) time it therefore appears that we could
not use a Dynamic Programming approach for efficiently updating the two-sided
online k-median problem and would therefore have to find a totally different
technique.
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m
1 2 3 4 5 6 7 8 9

1 29 29 43 119 121 167 201 202 235
2 - 97 88 36 36 82 116 117 150i
3 - - 156 95 95 85 85 85 85

Table 5: The values of OPTi(m).

m
1 2 3 4 5 6 7 8 9

1 1 1 1 1 4 4 4 4 4
2 - 1 3 4 4 4 4 4 4i
3 - - 3 4 4 6 6 6 6

Table 6: The values of MINi(m).

m
1 2 3 4 5 6 7 8 9

1 29 68 173 121 216 253 293 280 301
2 - 97 88 36 131 168 208 195 187i
3 - - 156 95 124 85 125 112 102

Table 7: The values of POPTi(m).

m
1 2 3 4 5 6 7 8 9

1 - - - - - - - - -
2 - 1 2 2 3 4 4 4 5i
3 - - 2 3 4 4 4 4 5

Table 8: The values of PMINi(m).

j 1 2 3 4 5 6 7 8 9
POPT3(j) - - 156 95 124 85 125 112 102
m covm

3 3 156
4 3 95
5 4 95 124
6 5 85
7 5 85 125
8 5 85 112
9 6 85 102

Table 9: The changes of the RTLM sequences for POPT3(j) as nodes are added.
The shaded regions are the intervals [covm,m], where the RTLM sequences is
considered. The values of POPT3(j) are shown if it is a right-to-left minimum
in the RTLM sequence.
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