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Abstract

It is well known that the complexity, i.e. the number of vertices, edges and faces, of the 3-dimensional Voronoi
diagram ofr points can be as bad &(1?). It is also known that if the points are chosen Independently Identically
Distributed uniformly from a 3-dimensional region such as a cube or sphere, thexpibeteccomplexity falls to
O(). In this paper we introduce the problem of analyzing what occurs if the points are chosen from a 2-dimensional
region in 3-dimensional space. As an example, we examine the situation when the points are drawn from a Poisson
distribution with raten on thesurfaceof a convex polytope. We prove that, in this case, the expected complexity
of the resulting Voronoi diagram is (@).
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1. Introduction

Given a setS, = {p1, p2, ..., pa} € R¥ of n points ink-dimensional Euclidean space, thleronoi
Diagram VD(S,), of S, is a very well understood subdivision Bf. For each poinp; € S, there is an
associated (convex) cell

Ci={xeR"Vj#i, d(x, p)<d(x,p)}

whered(-, -) is the Euclidean distance function. By definition these cells parti@iarirhe complexityof
VD(S,) is the number of lower dimensional pieces that composéSyp For example, in the planar case,
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k =2,VD(S,) contains edge§ and vertices’. The complexity of VOIS,) willbe | VD(S,)| = |E] + V.
Since it is also known that the 2-dimensional Voronoi Diagram is a planar graph, Euler's theorem
immediately implies thatVD(S,)| = ©(n) [11].

If k=3 then VI(S,) is composed not only of edgésand vertices) but also of the face& of the
convex cells. The complexity of V3,) will then be|VD(S,)| = |€] + |V] + | F|. In three dimensions
it can be proven thatVD(S,)| = O(n?). For some cases, such as when all of the points,iare on
the moment curve(z, 12, t3): t € R}, it can be easily proven thalt’| = © (n?) so|VD(S,)| = O(n?)
[7]. Another well known example of this worst-case behavior is built around two line segrhents
{(x,0,0): x €0, %]} and L, ={(1,y,1): ye [%, 11}; given anyn, points onL; and anyn, points
on Ly, |V| = ©(n1ny). In particular ifny = n, = § then|V| = ©(n?).

Moving away from worst-case behavior to average-case behavior it has been showmthatnifs
of S, are independently identically distributed (IID) chosen from the uniform distribution over a
“reasonably” smooth full dimensional bounded reg®rsuch as a cube or sphere theq VD(S,)|) =
O(n) [4-6]1

Dropping the condition thaP has full dimensionality dramatically changes the situation. For example,
if we setP = L, U L, to be the union of the two 1-dimensional segments previously defined and choose
n points S, uniformly at ‘random’ fromP thenn, = |S, N L1|, the number of points oh4, is a binomial
random variable with parametets%, SOE(n1) =5 andE(nf) ~ %. Sincen, = |S, N Ly =n —nq and
V = ©(n1n,) we have that

E(IV]) = ©(E(ni(n — np)) = ©(n?)

andE(|VD(S,)]) = ©(n?).

Combining the two previous paragraphs we see that, in 3-dimensional spageijiits S, are chosen
IID uniformly from P whereP is a reasonably smooth 3-dimensional region théfVD(S,,)|) = ©(n)
while for some 1-dimensiondPs, E (] VD(S,)|) = ®(n?). The obvious question then is what happens
if P is a 2dimensionalsurface in 3-dimensional space amgoints S, are chosen IID uniformly from
it. What will be the expected complexit® (| VD(S,)|) of the 3-dimensional Voronoi diagram of those
points?@ (n?)? © (n)? Something in between?

The problem of understanding the structure of the 3-dimensional Voronoi diagram of point sets from
2-dimensional surfaces has started to be of interest in recent years. This is because, as described in [1
and [8], Voronoi diagrams and their duals, the Delaunay triangulation, are of use in several geometric
problems, e.g. surface reconstruction, mesh generation and surface modeling. In these problems
2-dimensional surface is often sampled and then modeled, at least initially, by the Delaunay triangulation
of the sample. Many parameters of such algorithms such as their running times and the complexity of
their representations, then depend upon the complexity of the Delaunay triangulation (which is the same
as that of the Voronoi diagram).

The two results [1] and [8] mentioned above seem to be the first to try and formally analyze the
complexity of such Voronoi diagrams. In [1] Attali and Boissonnat prove thatviell-sampled” points

1 These references don't exactly state this fact but it can be inferred from the general techniques developed there. The idea
behind the proof is that pointg; inside? only have a constant number of Voronmighborsso their Voronoi cellC; will
have constant complexity. Points near the boundarf afight have Voronoi cells with high complexity but there are only a
small number of such boundary cells.
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are chosen from a “smooth” closed surface then the complexity of their Voronoi diagra@m’i$)Qvhere
“well-sampled” is defined using the concept of local feature 3ize.

In [8] Erickson proves that there is a setrofwell-sampled” points from the cylinder with Voronoi
diagram complexity2 (n*/?).

There does not, though, seem to be any previous work on analyzingxfreztedcomplexity of
the Voronoi Diagram when the points are chosen randomly from some 2-dimensional surface. In this
paper we make a first step towards answering this question by looking at random points chosen from the
boundary of a convex polytope 3. More specifically we prove

Theorem 1. Let P be the boundary of a convex polytopeRp. Let S, be a set of points drawn from the
standard2-dimensional Poisson distribution da with raten. ThenE (| VD(S,)|) = ®(n).

The Poisson distribution oR with raten [9] is the one that has the properties
e If M C P is any measurable region Idt(M) be the random variable signifying the number of points

the process generates M (the dependence upanis implicit). Then

_ (nArea(M))‘e ("AreaM)

a (1)

Pr(N (M) =k)

(SO E(N(M)) =n Area M)).
e If M, and M, are non-overlapping regions, thevi(M;) and N(M,) are independent random
variables.

We note that we have restricted ourselves to proving Theorem 1 for a Poisson distribution because
its mathematics are a bit cleaner (it allows us to assume that points in various regions are chosen
independently of each other) but standard modifications allow the proof to also wark@nts chosen
IID from the uniform distribution ove and show, in this case as well, thag| VD(S,)|) = ©(n).

To get a feeling for the type of problem we are analyzing, consider theBbaih diagonal corners
(0,0,0) and (3, 3,1). In Fig. 1 we see 9000 points chosen randomly IID from the uniform distribution
over the surface of the box and the 24943 Voronoi vertices that correspond to them (we do not draw the
full Voronoi diagram since such a large diagram would be impossible to view properly). Note that most
of the Voronoi vertices areside B with only a small fraction being outside the box. In our proof of
Theorem 1 we will see why this happehs.

In Section 2 we sketch the idea behind our proof and show how solving two smaller more specific
subproblems would prove Theorem 1. In Section 3 we introduce definitions and utility lemmas that will
be used throughout the rest of the paper. In Sections 4 and 5 we solve the two smaller subproblems
introduced in Section 2. In Section 6 we review our work and discuss extensions and open problems.

2 Just prior to submission we learned of new work [2] by Attali and Boissonnat that proves a linear bound on the complexity
of the Delaunay Triangulation af points well-sampled from a polyhedral surface (using a different definition of well-sampled).

3 Essentially, as can be seen in the middle figures of Fig. 1, the vast majority of the Voronoi vertices cluster “near” the
Medial axisof B. This observation provides good intuition as to what is occurring. The reason that we did not use this approach
explicitly in our analysis is that it is quite difficult to formalize a good definition of “near”. We discuss medial axis approaches
in greater detail in the concluding section of this paper.
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Fig. 1. Top-Left: 9000 random points chosen from the surface of BoXop-Right: the 24943 Voronoi vertices of the points.
Middle: the 23455 Voronoi vertices inside viewed from different view points; Bottom: the 1488 Voronoi vertices outdde
Note that the scales on the different figures are not the same.

Note. Two of the proofs of lemmas in Section 5 require relatively straightforward but quite long case-by-
case analyses of the different ways in which spheres can intersect the boundaries of convex polytopes
These analyses, while necessary to validate the results, are quite intuitive and do not provide anything
new in the way of techniques or ideas and have therefore been omitted from this paper. They are available
in their entirety, though, in [10].

2. A sketch of the proof

In what followsP will be the boundary of a given convex polytope &dwill be a set of points drawn
from the 2-dimensional Poisson distribution Brwith raten.

For a pointp € R® and any closed or finite sét € R*, we extend the Euclidean distance function so
thatd(p, X) =min,cx d(p, g). Now define
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® 4=NN(p, S»)
Y e

supporting
plane I1

p"=NN(p, 1)

Fig. 2. Notations:p is outside polytopéP. ¢ is a defining point of the Voronoi sphe& p, r). Note thatg = NN(p, S,,) is
different fromp” = NN(p, P) and fromp” = NN(p, IT).

Definition 1. Let p € R3, X € R® andr > 0:

e S(p.r)={q €R3 d(q, p) <r}is the closed ball of radiusaroundp. We call this asphere
e For pointp € R3, NN(p, X) will denote a nearest neighbgrto p in X, i.e., ag € X such that

Vqg' e X, d(p,q)<d(p,q).

In this paper all of the setX used will either be finite or closed. Thus sucly avill always exist
although it might not always be unique.

e S=S(p,r) is calledVoronoi sphereof S, if it contains no points ofS, in the interior and at least
one point ofS,, e.g. NN p, S,)), on its boundary. We will call the points &f, on S’s boundary the
definingpoints ofS. See Fig. 2.

Every vertex/edge/face/region of \(B),) corresponds to at least one Voronoi sphere with at least
4/3/2/1 defining points of, on its boundary. Since the event of points i, achosen from the Poisson
distribution being in general position has probability 1, we can assume that every vertex/edge/face/region
of VD(S,,) corresponds to Voronoi sphetewith 4/3/2/1 defining points of,, on its boundary. Two
Voronoi spheres will correspond to the same vertex/edge/face/region ¢f,YD they have the exact
same set of defining points. Therefore our strategy for bounding the complexity ¢f,YWill be to
bound the number afombinatorially different/oronoi spheres.

Furthermore, as recently pointed out by Attali and Boissonnat [2], Euler’s relations imply that the
number of tetrahedra and faces in the 3-D Delaunay triangulatians@és are linear in the number of
edges in this triangulation; by taking the dual we have that the number of Voronoi vertices and edges in
the 3-D Voronoi diagram are actually linear in the number of Voronoi faces. So, the size @f,Y[3
bounded by the number of Voronoi spheres defining Voronoi faces, i.e. the Voronoi spheres defined by
exactly two points.

To simplify matters, in the rest of this paper, we will therefore assume thasS)jbs not the full set
of Voronoi spheres but only those corresponding to Voronoi faces, i.e. those defined by two pSjnts in
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We now make explicit the connections between physical (Voronoi) spheres and combinatorial
(Voronoi) spheres.

Definition 2. Let p1, p> € R3. Set

X(p1. p2) ={S(p.r): peR®, r eR", d(p, p1) =d(p. p2) =r}

to be the set of all physical spheres with, p, on their boundaries. We refer t&'(pq1, p2) as a
combinatorial sphereNow set

F(p1, p2) ={S(p.r): S(p,r) € X(p1, p2) andS(p, r)’s interior contains no points is, }.

For p1, po € S,, X(p1, p2) is a combinatoriaMoronoi spheraf F(p1, p2) # @, i.e., if there exists some
physical Voronoi spher&(p, r) with p;, p, on its boundary whose interior contains no points,jn

We will also need the following definition:

Definition 3. Let P be the boundary of a convex polytope. A physical spheia R3 is x-bad (with
respect taP) if

AreaSN'P) > x2,
A physical spheres in R® is x-good (with respect taP) if it is not x-bad

We now extend this definition to combinatorial spheres:

Definition 4. Let p1, p2 € S,. X(p1, p2) is anx-bad combinatorial sphere (with respect®) if every
physical spher&(p, r) € X(p1, p2) is anx-bad sphere.

X (p1, p2) is anx-goodcombinatorial sphere (with respect®) if it is not anx-bad

Now assume that’(p,, p») is acombinatorialVoronoi sphereX (p1, p») is anx-bad combinatorial
Voronoi sphere (with respect tB) if everyphysical sphereS(p,r) € F(p1, p2) is x-bad i.e., every
empty sphere withp,, p, on its boundary is-bad

X (p1, p2) is an x-good combinatorial Voronoi sphere (with respect ®) if it is not an x-bad
combinatorial Voronoi sphere.

The intuition here is thaf’'(p;, p2) is anx-good combinatorial Voronoi sphere if and only if there
exists some-goodphysical Voronoi sphere witp1, p, on its boundary. Note that the definitions imply
that if X'(p1, p2) is anx-good combinatorial Voronoi sphere then it is argood combinatorial sphere
(but not vice-versa).

The reason for introducing these definitions is the following lemma:

Lemma 1. Let S, be a set of points chosen from the standardimensional Poisson distribution A
with raten. Then

Pr(there exists é‘%—bad combinatorial Voronoi sphere f,) = n~2(°9",

The proof of this lemma can be found in Appendix A.
We need one more set of definitions before presenting our sketch proof of Theorem 1.
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(a) p is outsideP (b) p is insideP

Fig. 3. Type-I spheres.

Fig. 4. An example of a Type-Il spherg, the center of the sphere, is inside polytapgfor clarity many of the faces oP
have been left out of the diagram). For all the fagef P that the sphere intersects, the center of the intersection disk with
the supporting planél; is on F;.

Definition 5. Let P be a convex polytope angi= S(p, r) a physical spheres will be a Type-I, Type-ll
or Type-lll sphere ifS contains at least one point §f on its boundary and:

e Sis aType-Isphere ifi a faceF of P such thats NP C F (Fig. 3).

e Sis aType-llsphere if (i) it is not a Type-I sphere, (ip is inside? and (iii) for every faceF; of P
with corresponding supporting plaidg, if SN F; # ¢ then NNp, IT;) € F; (Fig. 4).

e If Sis not a Type-I or Type-Il sphere thehis aType-Ill sphere.

(Thesupporting planef a faceF is the infinite plandT that containgF'.)
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Type-| spheres are easily understoodp I inside? andS is not a Type-I sphere, thesis a Type-ll
sphere if, for every facé; of P thatS intersects, the center of the disk formed$y I7; is in F;. Type-Ill
spheres are catch-alls that cover every other case.

We will say that a combinatorial sphef®(p;, p2) is a Typee sphere ¢ < {I, 11, 111}) if there is
some physicalS(p, r) € X(p1, p2) such thatS(p, r) is a Typee sphere. Note that, by this definition,
a combinatorial spher& (p1, p») is not restricted to being of only one type. It can simultaneously be of
two, or even all three, types.

Similarly, we will say that a combinatorial sphe#&(p1, p,) is a Typee Voronoi sphere if there is
some physical Voronoi sphei®(p, r) € F(p1, p2) such thatS(p,r) is a Typee sphere. Note that a
Typew combinatorial Voronoi sphere is a Typeeombinatorial sphere.

We will now sketch the proof technique; it is to count the numbecarhbinatorialVoronoi spheres.
Splitting cases we find (until otherwise stated “sphere” denotes a combinatorial sphere)

No. of Voronoi spheres
= No. of IOj‘z”—bad Voronoi spheres No. of "’J‘-‘E” -good Voronoi spheres

< No. of Ioﬂ—bad V. spheres- No. of IOg”—good Type-I V. spheres

+ No. of '09” -good Type-Il V. spheres- No. of '09” -good Type-Ill V. spheres

< No. of Iog”—bad V. spheres- No. of Type-I V. spheres

Jn
+ No. of Type-Il V. spheres- No. of '09” ~=-good Type-Ill spheres (2)
The remaining sections of this paper are devoted to proving:
E(No. of IO%-bad \Voronoi spher@s= o(1). (3)
E(No. of Type-I Voronoi sphergs= O(n). 4
E (No. of Type-Il Voronoi sphergs= O(n). 5)
E(No. of '09” -good Type-lll spheres= o(n). (6)

Now, taking expectatlons of Eq. (2) gives

E(Number of Voronoi sphergs< E(No. of ":}’;:’-bad Voronoi sphergs
+ E(No. of Type-I Voronoi sphergs
+ E(No. of Type-Il Voronoi spheres
+ E(No. of ®-good Type-Ill sphergs @)

Plugging in (3)—(6) will then prove Theorem 1, that the expected number of Voronoi spheres, which is
the same as the expected complexity of the Voronoi Diagram, will a¢.0 he main reason that we use
this decomposition into good and bad spheres is that it permits us to bound from above the number of
'09” -good Type-IllIVoronoispheres by the number 5’-& -good Type-lll spheres. Bounding the number
of suchVoron0| spheres would be quite difficult smce assuming that a sphere is Voronoi, i.e. empty,
requires conditioning that skews the rest of the point distribution, making it very difficult to count the
number of other Voronoi spheres. Bounding the numbegarfd spheres is much easier since it only
requires calculating how many points could feasibly fall within a particular volume or area.
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Proving (3) will be quite simple and we do that below; proving (5) and (6) will be more complicated
and will require the remainder of this paper.

To prove (3) letA =) . Area(F;) be the total surface area®f Then P(|S,| =k) = %’?ke‘/‘”. SetX
to be the number o%-bad Voronoi spheres. Recall that, in the worst case, poirS,seefines at most
O(]S,|%) Voronoi spheres. Thus

2 (An)k —An —Q(logn)
k>2An :

where I is the indicator random variable for eveBt i.e, Iz = 1 if B occurs and 0 otherwise. On the
other hand, Lemma 1 states that the probability that theré‘%ebad Voronoi sphere ig~21°9" g0

E(XIys,1<2an) < O(124n%)Pr(X > 0) = 09" (9)
Combining (8) and (9) proves
E(No. of 92 -bad Voronoi spherds= E(X)

N
= E(XIjs,>24n) + E(X s, 1<24n))
— n—Q(Iogn)

and thus we have shown (3).

The proofs of (4), (5) and (6) will be based on the following idea: suppose we want to enumerate, for
instance, the number of Type-Il Voronoi spheres. R&lp1, p,) be a Type-ll Voronoi sphere. Then by
the definition of Type-ll combinatorial Voronoi spheiphysical sphere = S(p, r) € X(p1, p2) such
that S is a Type-Il physical Voronoi sphere withy, p, on its boundary. This means that the number of
Type-Il Voronoi spheres is bounded by the numbecahbinatorially different physicalype-1I Voronoi
spheres where two physical spheres are considered combinatorially different if and only if they have
different set of defining pointg1, p; € S,.

So, in the proofs of (4), (5) and (6), we will now always deal with those specified physical spheres
and will study how many combinatorially different physical spheres can exist. From now on, a “sphere”
can denote either a combinatorial sphere or a physical sphere belonging to a combinatorial sphere (if
not obvious from context we will specify which is which). “Counting spheres” will mean counting
combinatorially different physical spheres.

Proving (4) is quite easy. From the definition of Type-| spheres we haveSihatS C F; for some
face F; of P. This means thats will be a Voronoi sphere of thelanar Voronoi diagram of the
points S, N F; on the supporting planél; of F;. Since planar Voronoi diagrams @i points have
complexity Qm), we immediately have that the total number of combinatorially different Type-1 Voronoi
spheresS intersecting faceF; (we no longer have to restrict ourselves to good ones),(|S,O F;|).
Summing over all faced; gives that the total number of combinatorially different Type-l Voronoi
spheres is @ _; |S, N F;|) = O(|S,]). The expected number of Type-I Voronoi spheres is therefore
O(E(]S,1)) = O(An) = O(n) proving (4).

The remainder of this paper is devoted to proving (5) (in Section 4) and (6) (in Section 5) which will
both require tedious case-by-case analysis:

To prove (5) the intuition is that for each Type-Il Voronoi sphére- S(p, r), there exist two faces
F1, F» of P with corresponding supporting plaié,, T, such thati = 1, 2, SN F; # (. Moreover, from
the definition of Type-Il sphere, we have that NN /T;) € F1 and NN p, IT,) € F>.
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Therefore, given two face$;,, F;, with corresponding supporting planés,, I1,,, we essentially
partition F;; up into small squares, each with arnéaFor each such squam® C F;,, we calculate the
expected number of combinatorially different Type-1l Voronoi spheses S(p,r) such thatv; =
1,2, SN F; # @ and NN(p, IT;;) € B and prove that this is Q). Since there are only @) squares
in the partition and @L) pair of faces, this will prove (5).

To prove (6) the intuition is that we show that for any Type'—‘fﬁnﬁ-good sphere centered atthere
exists an associated region around the nearest poori the skeleton oP to p, call it M(p’), with area
O(log®n/n) such that the points in th%%”-good sphere must be i (p’). Thus the number of such
spheres can be bounded by the number of pairs of poinfs M (p’) for the samep’. Summing this
number over every segment of skeletorfowill prove (6).

3. Definitionsand utility lemmas

In this section we introduce some basic definitions and utility lemmas that will be used in the rest of
the paper.

We will often use the following basic properties of the Poisson distribution so we encapsulate them in
two lemmas.

Lemma 2.

e LetM, M’ be measurable regions wit¥f’ € M, X a set of points drawn from the Poisson distribution
with raten over M and X’ a set drawn from the Poisson distribution with rateover M’. ThenX’
has the same distribution 8N M’.

e Let F be a convex polygon an§j, a set of points drawn from the Poisson distribution with rate
over F. The probability that four points ii§, are cocircular isO.

e LetP be the boundary of a convex polytope df)dh set of points drawn from the Poisson distribution
with raten overP. The probability that five points i, are cospherical i9.

Lemma 3. Let Z be any discrete Poisson distribution with any ratei.e.,Vk > 0, Pr(Z = k) = xk%.
ThenE(Z) = A andVk > 1, 34, independent of such thatE (Z%) < diA*. Thatis,E(Z*) < di(E(2Z))*.

We also strongly use the following geometric definitions:

Definition 6. Let IT be a plane iR3; Cjy, D3, and Dy are the circle, open and closed disks

Cr(p,r) = {qeM: d(g,p)=r}.
Dy (p,r) = {q ell: d(q, p) <r}.
Dp(p,r) ={qeM:d(q,p)<r}=Cn(p,r)UDy(p,r).

Definition 7. Let F C R® be a planar object ilR3. Its supporting planés the unique planél c R? such
that F C IT.

Definition 8. We also define thekeletorandr-boundaryof P:
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SkelP) = {u € P: u is on some edge oP}
Bd(r) = {u € P: Ipointv € SkelP) such that/(u, v) < r}.
Thus Bdr) is the set of points off? within distancer of an edge or vertex dP.

Finally, we will need the following basic geometric lemmas and definition in various places in the
paper, so we state them here at the beginning:

Lemma 4. Let F be a convex polygon anfl its supporting plane. Then there exist some constgnt
K > 0 dependent upo#’ such that

e Vr <K, VpeF, AreaFNDp(p,r)) >
e Vr>K,VpeF, Area(FﬂDn(p,r))>aK2

The lemma permits us to introduce the following definition:
Definition 9. Let P be a convex polytope;;, i =1, ..., k,itsfaces andT;, i =1, ..., k, their respective
supporting planes. Let; andK; be theo and K associated withF; in Lemma 4. Set
1
A/ min,’ o;

and Ko = min; K;. We note that this directly implies that if € F; for someF; then

co=

Yeor < Ko, Area(E N Dp,(p, cor)) >r2.
Lemmab.

(1) LetP be the boundary of a convex polytope. There existsvith 0 < ¢; < 1, depending only upon
‘P such that the following property holds for gt € P\ SkekP): Let F be the face o such that
p’ € F, IT its supporting plane and = d(p’, SkekP)). Then

S(p',cir'YNPCF.

Equivalently, the distance fropi to any other face oP is greater thanc,r'.
(2) Let p’ € P\ SkekP), F, IT and r’ as defined above. Lgi be any point outsidé® such that
NN(p,P) = p'. Also letr > d(p, p’). Then the following is truelf S(p,r) NP ¢ F then

Dn(p/, Cl’ )S S(p,r)NF.

Proof. The proof of (1) is straightforward from the convexity @&. To prove (2) suppose that
S(p,r)NPE F butDp(p/, Clr YL S(p,ryNII.

Sincep’ ¢ SkelP) andp = NN(p,P) we have thap’ = NN(p, IT) andS(p,r) N IT = D (p’, B)
for somep. ThusD(p/, cl’ )Z S(p,r) N IT means tha‘fl—r > B.

Also, sinceS(p,r) N 7? ¢ F, 3g € S(p,r) NP such thatq ¢ F. By the convexity of? and the
fact that NN p, P) € I1, we have that line segmemply intersects/T at some point, denotegf. Then
q' € S(p,r)NII =Dn(p’, B). In particular, this means thd(p’, ¢') < 8 < 617’/
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We will now also see thai(q, ¢') < % Suppose in contradiction thdtg, ¢") > % First note that
becausep, ¢ andq’ are collinear angy’ = NN(p, IT),

/ / / cr/
r>d(p,q>=d(p,q>+d(q,q>>d(p,p>+17.

This then implies that

Dp (p/,

crr’

5 ) CS(p,r)NI =Dp(p, B,

contradicting > . Sod(q, ¢') < &-.
Combining this with the previously provef(p’, ¢’) < % yields that

cir’

d(p',q)<d(p',q)+d(q',q) <2 >

But now part 1 of the lemma tells us that for sughif ¢ € P theng must be onF, contradicting our
assumption thag ¢ F. Thus our original assumption must be incorrect and

/
=C1r .

/

Dn (p’, Clzr ) c S(p.r)N1I.

Since part 1 also tells us th&; (p’, c1r’) C F, we have

, clr’
Dl p, > CS(p,r)NF

and are done. O

4. Bounding the number of Type-Il Voronoi spheres

In this section we will investigate the expected number of Type-II Voronoi spheres. Our goal will be
to prove (5):

E (Number of Type-Il Voronoi sphergs= O(n).

Recall that a Voronoi spher& = S(p, r) of point setsS, has no points ofS, in its interior and two
points on its boundanys is Type-Il if (i) p is inside® and (ii) for all facesF; of P, if S N F; # @ then
NN(p, I1;) € F; where[l,; is the supporting plane df;. (See Fig. 4.)

Our proof will require flipping back and forth between different related distributions. To do this we
will need to introduce some new definitions that generalize our old ones:

Definition 10. Let F;, F, be two faces ofP andI1,, IT; their corresponding supporting planes.

(1) A Voronoi sphereS(p, r) for a point setX C P is Type-ll over Fy, F», if (i) p is inside’P and (ii)
Vi=1,2 SNF,#@and NNp, IT) € F,.

(2) Sk, ry.n is asetof points drawn from the 2-dimensional Poisson distribution witherateF; U Fs.

(3) Xk, k.n is the set of Type-Il Voronoi spheres 6§, g, , over Fi, Fs.
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If S(p,r) e X(p1, p2) is a Type-1l Voronoi sphere, them, p, € S, are on the boundary ¢f(p, r) and
S(p, r) contains no points of, in its interior. Thus, for every subsét C S, with p;, po € 8, S(p,r)
is also a Voronoi sphere f&. Furthermore, ifF; and F; are the faces dP such thatp, € F, p; € F>,
then S(p,r) is a Type-ll Voronoi sphere oveF,, F, for S, N (F, U F»,). (Note that the converse is
not necessarily true§(p, ) being a Voronoi sphere fa$,, N (F1 U F>) does not necessarily imply that
S(p, r)is aVoronoi sphere fas,, and being Type-Il oveF,, F, does not necessarily imply being Type-II
overpP.)

By the standard property of the Poisson distribution (Lemma 2), the set of @intsF; U F»>) has
the same distributioras Sy, r,,, SO the expected number of Type-ll Voronoi spheres for the point set
S, N (F1LU F») is equal to the expected number of Type-Il Voronoi spheres foF., ,,.

Combining these observations and using linearity of expectation, we have just shown that if
Fi, F,, ..., F, is the set of faces dP then

E (Number of Type-Il Voronoi sphergs< Z E(1X £, Fyml)- (10)
1<ir<io<k
The remainder of this section will be devoted to proving the following two lemmas.

Lemma 6. Let F; and F» be two convex polygons IR® and I || IT, their respective supporting planes.
ThenE(|X gy, pynl) = On).

Lemma7. Let F; and F» be two convex polygons Ik and IT, }f IT, their respective supporting planes.
ThenE(|X gy, pynl) = On).

Note that applying these two lemmas to Eq. (10) proves (5) with some constant ir)tdeg2nding
on the number of faces @?.

In the next subsection we introduce some properties and prove a utility lemma. In the one following
we return and prove Lemmas 6 and 7.

4.1. Useful properties and a utility lemma
We start with a definition and some properties:

Definition 11.
Z(p.r)={qeR® d(q, p)=r}
is thesphereof radiusr around pointp (to be distinguished from thieall S(p, r) defined previously).

Property 1 [3]. Thepower of a point (x, y, z) with respect to a spher® = X (p, r) is defined as the
quantity p (¢, X) =d (&, p)® — r?. As its2-dimensional analog, the power of a poitr, y) with respect

to a circle C = C(p, r) is defined by (£, C) = d (&, p)?> — r?. The power of with respect to a sphere

X (p, r) is equal to the power df with respect to any circle obtained by intersecting the sphere with any
plane containing.

Let I7, and IT, be planes such thdf, } IT,. Given a sphereX = X (p,r) with ¥ N IT; # ¢ and
XN #9Y, letq, o, q',  be such thaCp, (¢, ) = X N I1; andCp, (g, B) = X N I1,. See Fig. 5(a).
By Property 1, we have¢ € IT, N 15,
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Y.(p,r)

Cr(9, )

€ I,

@pE Z(p,r)=pE Crayq. @) =pE Cray(g', B) (b) For the perpendicula¥ dropped fromy onto 173 N
My, q'h L (ITy N ITp).

Fig. 5. Properties of the circleSr, (¢, «) andCp,(¢’, B), having a sphere& = X (p, r) such that N Ty = Cp7, (¢, «) and
I NMy=Cm,(q', B).

p(&. Z(p.r) = p(&.Cny(g. @) = p(&. Cr,(q'. B))
=d(£,q)° —a®=d(E, q)° - B

Now letCp, (¢, o) be given. LetY = ¥ (p, r) be any sphere witly’ N [T, = Cpy, (¢, o) andq’, g such
that X N IT, = Cr,(q’, B). Leth be the perpendicular from onto the linef1, N I1,. Sincepq L I1; and
gh L (I11NI1y), ph L (ITyNI15). Also pq/ 1 Iy, soph L (I1y N 1) yleldlng q/h 1 (IT:NI1y), which
means thag’ must lie on the line of T,, passing through and perpendicular tdr, N IT,. See Fig. 5(b).
Moreover, Property 1 yields the following condition for the radius, dengteaf the diskS N IT5:

BE=d(h,q")? —d(h,q)* + o (11)

As a consequence, we have

Property 2. Given a circle Cpy,(¢,«) and a sphereX with ¥ N 1Ty = Cp,(q,«), let h be the
perpendicular fromy onto the linelTy N IT,. If ¥ N IT, # @, then the centey’ of the circle ¥ N IT,
must be on the line dff, which passes through and is perpendicular td7, N IT,, and the radius3 of
the circle X N IT, must satisfy8? = d(h, ¢')? — d(h, q)* + o?.

Finally, we prove a utility lemma that will be useful in the proof of Lemma 6 and Lemma 7.
Definition 12. Vm >0, setl,, = {r e R |m//n <r < (m+1)//n}.

Lemma8. Let F be a convex polygon iR® and I7 its supporting plane. LeS;, be a set of points drawn
from a Poisson distribution of rate over F. Let B be a square with centdr and sides of Iengthj—ﬁ. Let

Up,m = {u € IT | u is on some circle&C; (¢, o) withg € B, « € I,, and D}, (g, @) N Sk, = B}.

Then(all constants implicit in th€() notation depend only upoR)
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(@) Vm =0, E(|SF., N Ug nu|?) = O@m*).

(b) Vm: 2<m < K/n+1, E(|Sp., N Up ml|?) = O(m2e—om=-D%),
(c) If m > /n Diamete(F) + 1, then|Sr, N U | = 0.

(d) Z,(:lo:o E(|SF,n N UB,m|2) = O(l)

Proof. Since thisis the first time that we do such a calculation we explicitly recall two facts about Poisson
processes that we are using. The firstis thatd I7 is some region, thej$ , N A|, the number of points
of S, in A, satisfies a Poisson distribution with rateThe second fact is that there exists some universal
constantc, such that ifZ is any discrete Poisson distribution thef(|Z|?) < c¢(E(|Z]))? (¢ = d» from
Lemma 3).

To computeE (IS¢, N Ug.,|%) exactly would be quite complicated because by definitigy, and
U, are not independent of each other|Sp, N U ,,| is not Poisson distributed with rate Instead,
we will bound|Sr, N Us ,,| from above with something whose expectation is easier to calculate.

To do this first notice thatfu € UB ms

m + 1 m+2
f NN
Thus, we immediately have thélg ,, € Dy (&, (m + 2)/4/n) so

m+2
SF.n ﬁDn(f, 7) .

d&,u)<dE,q)+d(q,u) < (12)

|SF,n N UB,ml <

SinceDp (&, (m+2)/4/n) isindependent of r,, we have thatSr, N D (&, (m +2)/+/n)| isa Poisson
distributed random variable with rate So
m—+2 m—+2
E|(|SF,.ND , = nAreda D ,——— |NF
(2020 255)]) = e o255 ) 1)
2 2
<nx "D _o(m?).
n
Part (a) then follows directly from the standard properties of the Poisson distribution that were reviewed
at the beginning of the proof.
If m > 2, then we can also bourtl&, u) from below for allu € Ug ,,:

dE 1) > |dE.q) — d(u, )| =d(u, q) — d(E.q) > 1= — = "1 (13)
5 = vq vq - 7q q [ [ [
ThusVm > 2,
m+42 m—1
Ugm CDp (S, 7>\Dn (57 7) (14)

i.e.,Up.» is contained in an annulus with centeand width%. See Fig. 6(a). Similarly it can be shown
that

-1
quBa Vaelma DH( 7m—) gD;'[(CLa) (15)

Jn
See Fig. 6(b).
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(a) Dotted circles ar€ 7 (q, (m+1)//n) for g (b) Dotted circles ar€ (g, m/+/n) for g the
the four corner points oB. Note that all circles four corner points ofB. Note that all circles
are contained i, . containA,,.

Fig. 6. Let Ay, = D&, (m — 1)//n) and By, = D€, (m + 2)//n) \ D&, (m — )//n). If m > 2, then
¥q € B, Va € Iy, Am S D (q, @) andUp ;,; C By

We can now prove part (b) of the lemma. L%t, be given, and for notational simplicity, set

m—1 m+2 m—1
Am=Dn(f§,7> and Bm=DH(€a7)\DH(§a7)-
If Sg., N A, #0, then by (15),
Yqe B, Yael,, Sr,ND}(g, a)#0.

Thus by definitionUg ,, = ¥, sO|Sr, N U u| = 0. If Sg,, N A, =@, thenUg ,, might not be empty.
However using (14), we know th@sz, N Up | < |SF., N B,y |. Therefore fovm > 2

550 01Ul <[5, 08,1, Sy (ke 28 )
which yields
E(ISkn NUgml?) < E(ISkn NBul? | Skn N Ay =9) x PI(Sp, N A, =)
= E(ISr.,n N Bul?) x PI(SF, N A, = 0) (17)
< (E(1Spn N Bul))® x PH(SE, N Ay =0) (18)
< c(nAreaB,, N F))® x g " AreaAnD) (19)
— O(m?e ™Y for2<m < KJ/n+1, (20)

wherec is a universal constant and K are some constants of Lemma 4.

Equality (17) follows from the fact tha#,, and 53, are disjoint soS¢, N A,, and Sg, N B, are
independent. (18) comes from the previously noted fact that there is a universal censtightthat if
Z is any Poisson random variable th&iZ?) < c(E(Z))?, (19) from the definition of Poisson random
variables, (20) from the fact that Ar@d, N F) = O(m/n) and Lemma 4; the reason for restricting
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m < K/n + 1is to guarantee thdtﬁ < K so that Lemma 4 can be applied to bound Aréan F)
from below byo ((m — 1)//n)2. We have thus proven part (b).
To prove part (c), lel. = Diamete(F). Form > \/n L + 1, we haveF C A,, s0Sr, N A, = Sk,
Eqg. (16) and the definition df,, then give|SF, NUg | =0
Combining (a) and (b) proves that
LK /n+1]
Y E(SkaNUgnl®)=0().
m=0
Part (c) gives

> E(SeaNUgn»H= ) 0=0

m>[/nL+1] m>[y/nL+1]
Thus, to prove part (d) it only remains to show that
|V/nL+1]
> E(ISraNUgwl®) = 0.
m=[K /n+1]

Returning to (19) we see thdin > [K /n + 1]

E(ISr.n NUg ul?) < c(n AreaB,, N F))? . e "ACaANE) — (2. g Al 6.K)0F))
sinceVm, Area3,, N F) < Area(F) and

vm >[K+y/n+1], Area(A, NF)>Area(Dp(§, K)NF).
Lemma 4 tells us that Aré®; (£, K)N F) >0 K?, so

V/nL+1]
> E(ISraNUswl?) =O((WnL+1)-n? e "8 = 0(1),
m=[K /n+1]
and we are done. O

4.2. Proofs of Lemmas 6 and 7
We now have the tools to prove Lemma 6.

Proof of Lemma 6. In this lemma we assume that we are using a coordinate systa ahd its
associated orthogonal projection o such that that every point df; and F, have positivex- and
y-coordinates in this system. See Fig. 7.

Now letk =1,2. We partition plané'[k into axis parallel squares

Bt {(x y) €1l <x < . y < l+1}
”' = ’ k \
s, [ [ [ [
Let L be suchthatfok=1,2, F, Cc{(x,y) e IT; |0<x <L, 0<y< L} Lisaconstant thatis a
function of F; and F». By the definition ofL,
LL/n]
fork=12 FC U BY,.
s,i=0




214 M.J. Golin, H.-S. Na / Computational Geometry 25 (2003) 197-231

///H/\ I

Fig. 7. Coordinate system @i, andIT> whenITq || IT>.

Let Y, z2 be the set of Voronoi spherégp, r) € X, r,,, Such that
$,0°°71, ]

NN(p, Ty) € B}, and NNp,IT,) € B ;.
Recall that by definition, for any sphes&p,r) € X¢, r, ., NN(p, IT1) € F1 and NNp, IT5) € F>. This
means that
LLy/n]) LL/n)

XF.Fon = U U Yp1 g2 .

s,i=0 l‘,j=0
However, from the construction diii andij and the fact thail, || IT,, we have that if NNp, IT;) €
B!, then NN(p, IT,) € BZ, and vice-versa. Thus,
LL/n)

Xrmn= | Yo w2
s,i=0

and
LL/n] LLy/n]

|XF1 Fp, n Z Z |YB}; Bfl . (21)

Fors,i €{0,1,. LLfJ} m =0, let
Ut = {u € ITy | u is on some circle, (¢, ) With g € BY,, a € 1,,
and D}, (g, ) N Sgy pn =0}
Let S = S(p,r) be a Voronoi sphere it 52 . Then by the definition of 5. g2, SN [Ty = Dpr, (g, @)

forg =NN(p, IT)) € B‘}’i anda > 0. Furthermorel);’h(q, o) N Sk, r.n =¥ and one defining point of
isonCp,(q, a). Lettingm be such thai € I,,, we see thabg, g, , N (SN IT1) = Sk, pn N Crry(q, o) C
SFy. Fon N US ime Similarly there exists:’ such thatSe, r,,» N (S N IT2) € Spy 0 N Uf,i,m,. This means
thatVw € SFlsFZs" ns,

{ if we My, thenw € S, 5, VU, ,, and

if well,, thenw e SFl,Fz,n N US21 w
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Recall that a Voronoi sphere fdfy, r,, is determined by two defining points and by the discussion
above, these two defining points must beUiﬁZ U U?2.  for somem,m’. Hence the number of these

Ylnl

spheres, i. elpr g2 I, is bounded by the number of all possible 4-tuples of points;gfs, , such that

for arbitrarym, m’, 2 points are fronSg, £, , N Ul and 2 points are fromSe, k0 N U”’m This leads
automatically to

S,i,m

00 No. of 4 tuples(wl, wi, w2 wi)
|Yle_i*Bs2_i| < Z such tha( w%, w2 (S SFl»FZ 2N Uyll m ) . (22)

m,m'=0 wf, w% c SFl»FZ 2N U2

s,i,m’

Forfixedm, m’, the number of such 4 tuples is equal to

|SF o NU.

Also, sinceSy, r,.n is distributed by a Poisson process, the distributionSef r, , N F1| is independent
of that of | S, r,.» N F2|. Hence taking expectations over (22) yields

)

|Spy, o N U2

vzm| Ylnl

o0
E(Yg 2 1) < Y E(|Srmn N UL X Sk pa NUZ,

m,m’=0

00
Z E(|SF1sF2”mlelm| )X E(|SF1F2’1mUv1m/| )
=0

o 2 o

< [ZE(|SF1,F2,,, NUL | )} x { > E(|Srpn NUZ, )}_ (23)
m=0 m'=0

By Lemma 8, we hav®_ " o E(|Sk,. pm N U, 1% @nd Y p o E(ISk, 0 0 U, |?) are both @1),

automatically yielding

E(1Yg g2 1) =O(D). (24)
Plugging this into (21) we get
E(|XF1,F2,n|) = O(l’l), (25)

and are done. O
We now prove Lemma 7.

Proof of Lemma 7. We assume that we are given coordinate systems#Ifork = 1, 2, that satisfy the
following conditions (see Fig. 8(a)):

(i) the x-axis of IT; is IT; N IT,. It is oriented so tha#; lies on the right-hand side of the positive
direction of IT; N IT,. The origin is chosen so that every point Bf U F, has positivex-coordinate.
(i) Among the two half planes of7, separated by7, N IT,, the one containingr; corresponds to
positive y-coordinate. Such a pair of coordinate systems can be chosen be¢alide, and the facts
that F; is totally contained in one of the closed halfspaces boundedignd F; is totally contained in
one of the closed halfspaces bounded’hy
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(a) Coordinate system df1 and T, (b) The boxeslel. C I1; and Bszj cIlp

Fig. 8. The case thdlq }f 1.

We partitionIT, into axis parallel squares

1 i+ 1
<x<s~l- i <z—|— }

N
Jn NN
See Fig. 8(b). Sef}; to be the center of

23+1 2i+1
Bt &f = —=, —= | e Ik {.
i B {(Zﬁ m)e }

Let L be a constant large enough so tlat> max(Diametef F;), Diamete(F,)) and fork =1, 2,
FoCc{(x,y) el |0<x <L, 0<y<L}. In particular, this last implies that

Bf,i = {(x, y) € Iy

LL/7)
fork=12 F.C U B,
s,i=0

Note that for anyS(p,r) € Xpg 0, NN(p, IT1) € F1 and NNp, ITy) € F>. As in the proof of
Lemma 6, we analyz& s, r,, by partitioning it into smaller sets indexed by the squares in which the
NN(p, IT;) are located. Lelz: g2 be the set of Voronoi spherésp, r) € Xp, r,» Such that

st

NN(p. 1) € B}, and NNp,IT,) € B,

In the proof of Lemma 6, wherf, || I1,, we strongly used the fact thagl 2 = = unlesss =¢ and
L

i = j. Now thatlT, }f I, this is no longer true. Instead we use somethlng weakempl etNN(p, I17)
andp, = NN(p, IT,). Expressp1 = (x1, y1), p2 = (x2, y2) using the respective coordinate systemsigr
and [T, that were described above. In this notation, Property 2 statesithat,. Thus, by the definition
of the BY ,, we have thaVi, j, if s # ¢ then Yy g2 =0 This means that

LL/n) LLy/n) |Ly/m]

|XF1F2n Z Z Z |YBl BZ . (26)

=0 =0 ;=0
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Hence we can comput(| X s, r, »|) if we can calculateE(|YBl B2, |) for arbitrarys, i andj. We start by
showing thatvs, i, j, E(|YBl B2, 1) = O(1) (this will be needed later) and then proceed to a more delicate
analysis based on taklng the relatlonshlp between thieand j values into account.
Fors,i €{0,1,...,|Ly/n]},m >0, let
Ut = {u eI |uis on some circle (¢, @) With g € B ;, a € I,
and Dy, (g, @) N Sk ppn = @}.
Let S be a Voronoi sphere i1 B . As in the proof of Lemma 6, we have that there exisin’ such
that the two defining points of must belong taUt, U U? Again as in Lemma 6}Y BLB2, | is

s,i,m s,jm'"

bounded by the number of all possible 4-tuples of p0|nt§[.?fpz » such that for arbitraryz, m’, 2 pomts
are fromSg, g, , N U » and 2 points are from§g, g, , N U?

s, j,m'"
Thus
o No. of 4 tuples(wl, w3, w2, w3)
< whwles 2N U .
RN Z such tha< Pz ) @
m’=0 wl’wzeSFl,FZ’anSJm

Forfixedm, m’, the number of such 4 tuples is equal to
2
|SF1,F2nmUl | X |SFl,FanWI]2 |

s l m \) j m
Following Eqg. (23) we have
E(lyBii,BijD < Z E(’SFLFZ n N lel m‘ ‘SFl Fa,n N UY j.m’ 2)
m,m'=0
< Z E(|SF1,F2,H N UsJ:i,m|2) X E(|SF1,F2 n U2j m’ | )
m,m’'=0
< |:ZE(|SFLF2" N lel m| )i| X |: Z E(|SFLF2" N Uv2] m’ )i| (28)
m=0 m'=0
Applying Lemma 8 to both factors of the right-hand side then proves that
Vs, i, J, E(|YB.&[’B.§I/|) =0(). (29)

Plugging this into (26) yields tha (| X g, .0 |) = O(n%). To prove thatE (| X g, p,.»|) = O(n), requires
a more delicate analysis. In (28) we fixed, j and then summed ovell possible values oh, m’. We
now take advantage of the fact that Property 2 will enable us to restrict the rangeladt we have to
sum over for fixed, i, j, m.
Let
u is on some circleC 7, (q', B) s.t. Dy, (q", B) N Sk =0
whereq’, 8 satisfy that
2 () ¢’ € B2,
Vsijm = 4 € 112 (ii) there exists a spher®= S(p, r) with [
SNIl,= Dnl(q, a)andSNIl, = Dp,(q', B)

for someg € B!

ael,

s,0°
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Then, using the same type of argument as before,

~ { No. of4tup|es(w1,w2,w1, )

Y < whwles 2N U . 30
RN 2;) such tha( przm R ) (30)
" wl’wZESFlenanjm
Note that we now sum over only one indexrather than two indices:, m’. This is at the expense of
pushing the restricted range af into the definition ofV?, ; .
Vfl _j.m Only depends on the valuesi, j, m and the point se§r, r, , N IT2. Itis thereforendependent

of Sk NUY, .. Thus,

00
|YBl B2 Z E |SF1,F2J1 N Us]:i,m|2 X |SF1,F2JI N Vsz,i,j,m|2)
m=0
= 2
ZE |SF1F2"mUY1m| )XE(|SF1»F2’1va2z]m| ) (31)

By definition S¢, £, , N I1; has the same distribution &, ,. Thus we can apply Lemma 8. Since
L > Diamete(Fy), part (c) of Lemma 8 says that fer > \/n L + 1, E(|Sg, . N U, 1% = 0. Part (a)
of the lemma says thatn, E(|Sr, r,. N UL, ,1%) = O(m®). Thus,

LVA(L+1)] ,
E(Yt,p2,1) = 0( > mE(|Sr a0Vl ))- (32)
m=0
It remains to calculat& (|Sr,, ryn N V7 0l

Let!/ be the line of intersectioh= IT; N IT, and note that, by Property 2,
Br=d(q . 1)*+a®—d(q,1)%
Since-- <d(q',1) < ”l, ~ <d(q,]) < ’+1 and 2L <a < m+1 it follows that

i i
JjZ+m?—(i+1)? (J+1>2+(m+1>2—z2
\/ <B< (33)
n n
Forvue VZ ;.

d(g2;.u) < d(2;.q') +d(q' )
G+D2+m+12-i2  J+D2+m+D2—i2+1
" - Vi

< = by (33),

andifj >i 4+ 3, then

d(EZ, u) > |d(&2,.q)) —du.q)|=du.q') —d(&;.q') byj>i+3

ViZAm?—G(+D2 1 2 m?—(+12-1
g N v 7 by (33).

Hencevj >i + 3,
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G+D?+m+12-i?+1 JPAm?—(i+1)%-1
Vsz,i,j,m - Dnz(gsz,j’ \/ \Dﬂz 52 \/ P

vn 0 NG
(34)
ie., Vsz,i,j’m is contained in the given annulus. Also note that
j24m?—(i+12-1 . / o
D, ('SYZ»J’ Y Jn C Dj,(¢'.B). Vq' € B?,. VB satisfying (33) (35)
Let
, , ViR+mr—(i+12-1
.A m = DHZ (é:s,j’ ﬁ
and
5 —po (2 YUADH A DI-Z41\\ | [, ViPm? -+ D1
m — Iy SS,j’ ﬁ \ 13 Ss,j’ \/ﬁ .

Using (34) and (35), we can write analogs of (17), (18) and (19).
E(|SF1’F2’" n VSZ,I‘JJ" |2) E(|SF1,F2,n N B/mlz) X Pr(SFl,Fz,n N A;n =0)

(E(1Skpon N B'ml))? X PUSEy pyn N AL = 1)

= c(n AreaB’,, N Fz))2 « @ A A NFy) (36)

To evaluate the right-hand side of the bottom term, we will first need to calculatea(3’,, N Fy).
Noting that

<
<

Va,b,c>0, va?+b?—2<a2+b2+c2<(a+b+c),
we see that

Area(B,, N Fy) = %((\/(j+1)2+(m+1)2—i2+1)2— (V2 +m? =i +D? - 1))
= %(Zi+21+2m+3+2\/(j+1)2+(H1+1)2—i2+2\/j2+m2—(i+1)2)
< %(21’+2j+2m+3+2(j+1+m+1+i)—|—2(j—l—m+i—|—1))
< %6(i+j+m+2).
Thus we have
n AreaB,, N F) gnG”(i+jn+m+2) —O(i+j+m+2). 37)

Next note that from Lemma 4, there existK dependent only upoh, such that if

(ViZ+m2 =G+ 02— 1)/ <K,

then

Vi m? = (i +1)2 - 1>2

nArea A, N F») > no ( T
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while if (\/j2+m?2— (i +1)2—1)//n > K, then
nArea A, N F,) >0 K?n.

If we restrict ourselves tg > i + 3 and take a slightly smaller, then we have that
O(e—oUP+m?=i?)  if @_l <K

O(e k™), if @ >K

Assuming;j > i + 3 we can use Lemma 8, (36), (37) and (38) to evaluate (32). Set

T= min<L\/(K\/E+l)2+ (i + 1)2—]'2J, I/nL +1J>.
Then

—nArea(A’,,NF) —

e (38)

E(|Yg p2 1) = <Zm (i+j+m+2)% "(12+m2—12))

s8]
m=0

JnL+1
+O( Z m (l+]+m+2)2 —crl(zn)

m=T+1

Noting that Vi, j.m, (i + j +m +2) < (i + )(m + 2), Yo" m*(m + 2)2e°" = O(1), and
Z,ﬂg*l 4(m + 2)2e~°K*1/2 = O(1), we find that forj > i + 3,

E(1Yg g2 [)=0((i + )% e U ) £ O((i + j)%e oK), (39)

Now we will prove that

\L/n) |Ly/n)

s 20 > E(Ygy, g2 1) =0(Vn):

i=0 j=0

From (29) and (39), we have

LL/n] | L/n] [Ly/n] i+2 [Ly/n] [Ly/n]
YooY E(Ye w)l) = > ZE(|YB(1PBZ + > Y E(1p ey
i=0 j2i i=0 j=i h i=0 j>i+3
L/n] |Ly/n]
= O(vn) + ( > ) e >) +0()
i=0 j>i+3
= O(ﬁ) (40)

The last equality comes from the fact that

>3 G+t =o.

i=0 j>i+3
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Now note that in the proof so far we have arbitrarily chosen which faég end which face ig. If we
swapF; and F; in the proof and also swajpand j we would derive

|Ly/n] |Ly/n]

Z > E(Yg g1 1) =0(Vn). (41)

j=0 i>j

ButYz: g2 =Yg g1, S0 this just says
$,0°7s, 8§,j°70s,0

L) [L/n)
Z Z |Y31 Bz =O(«/E).
i=0 j<i
Thus
L) [L/n) \L/n) |Ly/n) \Ly/n) |Ly/n)
202 EWe s ) < X X E(Way s )+ D0 > E(Ye g2 1)
i=0 j=0 i=0 j>i i=0 j<i

= (/) +0(v) =O(yn).

Therefore (26) can be rewritten as

LL/n] |L/n] |L/n) LLV/n)
(W) Z Y 2 E(Ws 2 )= ) O(Vn)=0Mm). (42)
=0 i=0 ;=0 s=0

and we are done. O

Iogn

5. Bounding the number of -good Type-l 11 spheres

In this section we prove (6), i.e.,
E(No. of "’J‘-‘E” -good Type-lIl sphergs= o(n).

We do this by splitting it into two cases. In Section 5.1 we show that the expected nuﬂ%ﬁ'—gbod
Type-lll sphereswhose centers are outside or @¢his o(n). In Section 5.2 we show that the expected
number of i’%’ -good Type-lll spherew/hose centers are inside is o(n). Combining these two results
will prove (6).

Before starting we note again that we are only coun%—good Type-lll spheres in this section, i.e.,
we are not assuming that the spheres\@m®noispheres.

The reason for setting up our analysis to allow us to dispense with the assumption of ‘Voronoiness’ is
that this makes the analysis much easier. This was the motivation for introducing the conoeptsodf
andx-bad spheres.

5.1. Sphere centep outside or orP

If p is outside or onP, let p’ = NN(p, P). The convexity ofP guarantees thgt’ is unique. Let
S=S(p,r)be a"’%-good Type-IIl sphere with two points ¢f, on its boundary. Fop’ ¢ SkekP), let F
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—

p

Fig. 9. Case 1 fox-good Type-lll spheres witlp outside or oriP. Notice that the intersection ¢fwith P is a disk completely
contained inF'. If the intersection contains a part of some other face then the intersection diskvonld have to grow to be
S0 big thatS would no longer be-good. This is a consequence @fbeing at least distanagx from the border.

be the unique face @? such thatp’ € F andIT is F’s supporting plane. Note that in this caBe= SN IT
is a closed disk oI with centerp’ € F; letr’ be the radius of this disk. TheB = Dy (p’, ).
Now setc, = # wherec; is the constant defined in Lemma 5. #f ¢ Bd(czlogn/4/n), then

d(p’, SkekP)) > c,logn//n. Thus Lemma 5 states thatSfintersects any other face #fthen
D ( , 1 logn
m\p. ﬁ \/ﬁ

Since

, 1 logn log®n
A D — =
e onr ) =

this implies that ifp’ ¢ Bd(czlogn//n) and S intersects some other face Bf besidesF thensS is a

logn _
W bad sphere.

Our approach is to divide the problem into three cases.

Jesne.

Casel.p' ¢ Bd(q'%) (Fig. 9).
Case2. p’ € Bd(2) but p’ ¢ SkekP) (Fig. 10).
Case3. p’ € SkelP) (Fig. 11).

We now work through the cases.

Casel. p' ¢ Bd(cz'%).

Let p’ ¢ Bd(czlogn/\/n). Since we are only counting good spheres, the discussion above shows that
SNPC F,ie.,S does notintersect any other facefofBut thenS is a Type-I sphere and does not need
to be examined here.

Case2. p’ € Bd(cplogn//n) but p’ ¢ SkelP).

This case is illustrated by Fig. 10. The analysis is based on the following lemma:
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Fig. 10. Case 2 far-good Type-Ill spheres witjp outside or orP. In this casep’ € Bd(cox) but p’ ¢ SkekP). Letg € SkelP)
be a nearest neighbor 8 on Ske[P). Notice that, in this example, the center of the disk formed by the intersecti®mvih
the supporting plane of the second face (i.e. the face not contgin)rig not on that face.

NSV o~

(@) p’ =NN(p, P) is on an edge (b) p’ =NN(p, P) is a vertexv

Fig. 11. Case 3 for-good Type-lll spheres witlp outside or orP.

Lemma9. If p’ € Bd(calogn/+/n) but p’ ¢ SkelP), thendg on some edge d®, ¢ dependent upop,
such that ifu € SNP thend(u, q) < C3":/9’}§’ where c3 = ¢g + ¢2 (cq is the constant introduced in

Definition 9).

Proof. Let r andr’ be, respectively, the radii f and B. The IO%—goodne:ss ofS impliesr’ < co":/g’é’

since otherwise, from Definition 9,

2
Area(S N'P) > Area(Dp (p',r)NF) > (Ic:/g;) ,
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contradicting the definition of a good sphere. et Ske(P) be a nearest neighbor g on Ske(P).
Sincep’ € Bd(czlogn//n),d(p', q) < czl?/g;.

We will now show that for: € S NP, d(u, p’) < r’. Then the lemma will follow since
logn logn

=63ﬁ,

lo
d(u, q) <d(u, p) +d(p',q) <r' + cz% <Cotedt

wherecs = ¢g + ¢5.
First note that since is outsideP, the convexity ofP and p’ = NN(p, P) together imply/ pp'u >
90°. The law of cosines states
d(p',u)*+d(p., p)* —d(p,u)*=2d(p',u)d(p, p') cos’pp'u.
Thus, using the fact that(p, p’)? + (r')2 =r?,

d(p',u)? = d(p,u)* —d(p, p))? +2d(p',u)d(p, p') cos.pp'u
< r?—d(p, p)?+2d(p',wyd(p, p") cos.pp'u
= (N2 +2d(p',w)d(p, p') cos.pp'u < (r')?,
sod(u, p') <r’ and we are done. O

We can use this lemma to show that the expected total number of combinatorially diﬁf%ifegbod

Type-lll spheresS(p, r) with p’ € Bd(calogn//n) but p’ ¢ SkelP) is o(n):
Let L be the total length of all of the edges Bt We partition up the edges df into O(L/"’g”) line

Iogn

segments each of length ==, e.g., all segments will have Iengﬁ% except for, possibly, one segment
per edge (which contains one of that edge’s endpoints).

Now let s be any edge segment ands) = {u € P: d(u,s) < 03k3?ll} be the set of all points of®

within distancecs of s. For any sphere centgr let g be the corresponding edge point defined by
Lemma 9 and the segment that belongs to. From Lemma 9 and the definitionMofs), the two points
of S, that define a=*= 'og” a—-good sphereS(p, r) must be inN(s) so thetotal number of combinatorially
logn

Iogn

different —good sphere§(p, r) such thatp correspond to some poigte s is bounded from above

byIN(s)ﬂS .
Now

logn\®> ,log?n
_— = Cq—————
Vn *on
for some constant; dependent only upof®. Plugging into the Poisson distribution (with ratg we
find from Lemma 3 thatE(|N(s) N S,|%) = Olog*n). Thus, for a fixed segment on SkelP), the
expected total number d?%—good Type-lll spheres(p, r) such that NNp, P) = p’ ¢ Ske’P) and
NN(p’, SkekP)) € s is O(log* n).

But every"\’/g; -good Type-Ill spher&(p, r) with NN(p, P) = p’ ¢ Ske’P) must havesomentervals’
such that NNp’, SkelP)) € s’. So the total expected number of spheres of this type is bounded from
above by the number of such segments timédeg3n). Thatis, C(L/'Og”) x O(log*n) = O(/nlog®n) =
o(n). This shows that the expected total numbe%-good Type-lll sphereS‘( p,r) with p’ ¢ SkelP)
is o(n) and we have completed Case 2.

Area(N(s)) < (
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supporting
plane T1

Fig. 12. Good Type-IIl spherg with p outsideP. In this case no matter how large the radius @, the area of the intersection
of S with P can be arbitrarily small. This means that ever§ ifs a good sphere, it is quite possible that the point§ im F
are very far away fromp”, the center of the disB = S N I7. For example, in this figure, we are not able to boudiig’, u) for
ue BNF.

Case3. p’ € SkelP) (Fig. 11).

Note that this case differs in a major way from that of Case 2. This is because, unlike in Case 2, the
line pp’ here is not necessarily perpendicular to the plaheThis means that N, IT) # p’ sop’ is
not the center of the disB = S N I7. Consequently, even § is IO%-good it is quite possible that the
points inS N F are very far away fronp”, the center ofB. This can occur because, everBifis quite
large, the intersectio® N F can be quite small. This, for example, means that we can not use the triangle
inequality in the same way as we did in Case 2, since we will not be able to lakgpnd:) foru € BN F.
See Fig. 12.

To sidestep the difficulties caused by these differences we introduce the following definition:

Definition 13. For p’ € SkelP) define

logn
N
such thatp is outside andp’ = NN(p, P)}.

Fors a segment of an edge in SKBJ),

M(s) = M(p).

p'es

M(p) = {q e P: g € S(p, r) for some==-good sphereS(p, r)

These definitions will be useful since they will permit us to restrict the number of Voronoi spheres
associated with a segment; by partitioning $Rglinto a small number of appropriately sized segments
we will be able to bound the expected number of spheres in Case 3.

Our goal will be to prove that Arg3/ (s)) is small. If we can do this then we will be able to use
the technique at the end of Case 2 to show that the expected num'%%—gbod Type-lll spheres with
p’ € SkekP) is small. The important thing to keep in mind when reading the lemmas and proofs is that
points in M (s) might actually be quite far from. We will therefore need something stronger than the
triangle inequality to reach our goal. This will be:
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Lemma 10. Lets be a segment of an edgen SkelP) with length(s) < "\’%’. Then

log®n

Area(M(s)) < ca
for somec, dependent only upoR.

The proof of this lemma is a relatively straightforward but quite long case-by-case analysis that
examines the different possible ways in which a spltteseS(p, r) with p outside? and NN p, P) €
SkelP) can intersecP. The complete proof can be found in [10].

Using an analysis very similar to that performed at the end of Case 2 we will now see why this lemma
implies that the expected number@ﬁﬁ—good Type-Ill spheres(p, r) with p’ = NN(p, P) € SkelP)
is o(n).

Let L be the total length of all of the edges Bt We partition up the edges df into O(L/"’g”) line

Iogn

segments each of length ==, e.g., all segments will have Iengﬁ% except for, possibly, one segment
per edge (which contains one of that edge’s endpoints).

For any sphere center, let p’ = NN(p, P) € SkelP) and lets be the segment such thate s. By
the definition of M (s), the two points ofS, that define a== '09” a——-good sphereS(p, r) must be inM(s),

logn

v -good spheres(p, r) such that NNp, P) = p’ is bounded from above by

so thetotal number of
|M(s) NS, 2.

Lemma 10 tells us that Aréad (s)) < ca 'Og = for some constant, dependent only upo®. Plugging
into the Poisson distribution (with ratd we flnd from Lemma 3 thak (| M (s) N S, |2 = O(log® n). Thus,
for a fixed segment on SkelP), the expected total number Qﬁ-good Type-Illl spheres§(p, r) such
that NN(p, P) = p’ € s is O(log®n).

But every"z% -good Type-Ill sphereS(p, r) with NN(p, P) € Skek’P) must have NNp, P) e s’ for
someinterval s’, so the total expected number of spheres of this type is bounded from above by the
number of such segments timesl@® ). That is, C(L/'Og” x O(log®n) = O(/nlog®n) = o(n). This
shows that the expected total number of comblnatorlally diffe‘%ﬂt—good Type-Ill spheres(p, r)

with NN(p, P) € SkekP) is o(n). This concludes the analyses of Case 3.
Combining the proven @) bounds for Case 1, Case 2 and Case 3, we see that the expected total

number of"’j‘z” -good Type-lll spheres(p, r) with p outside or onP is o(n) and we are done with this
part.

5.2. Sphere centey inside’P

We have just analyzed the number'é%—good Type-lll spheres = S(p, r) when p is outsideor
on P. In this subsection we analyze the case wipeis inside P. In this case, from the definition of
Type-Ill spheres, we know tha a faceF of P, such thatF' N S # ¢ but p” = NN(p, IT) is not in F,
wherelT is the supporting plane df.

The lemma we use here is
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0 /@

N/

(8)g =NN(p, F) is on the edge (b) g =NN(p, F) is a vertex

Fig. 13. Type-Ill spheres§ = S(p, r) with p insideP. Note that the nearest neighbor @in F is g which is on the boundary
of F. The line segmenpgq is not perpendicular t& which implies that the center of the intersection diskSofvith the
supporting plane of is notin F.

Lemma 11. Let S = S(p, r) be a'oj‘;” -good sphere withp inside P. Furthermore, suppose a face F

of P, such thatF N S # @ but p” = NN(p, IT) is not in F, where[T is the supporting plane af. Then

dg on the boundary of such thatvu € S(p,r), d(g,u) < q"\’j’é’, wherecs is dependent only updR.

The proof of this lemma involves showing thaSifp, r) satisfies the given conditions thers actually
some small multiple of%, so the distance between the nearest point tp on F, and any point in
S(p,r)is < q"\’%’. As in the proof of Lemma 10, the proof of Lemma 11 is a relatively straightforward
but quite long case-by-case analysis that examines the different possible ways in which a sphere of the
given type can interse@. The complete proof can again be found in [10].

Now, given Lemma 11, we can usxactlythe same type of segment partitioning analysis as was
employed at the end of Case 2 of Section 5.1 (note the similarity of Lemma 11 to Lemma 9) to show
that the expected number Bi%-good Type-lll spheres(p, r) with p insideP is o(rn). Combined with

the previous subsection this shows that total expected number of all combinatorially diﬁ%}egbod
Type-lll spheres is @) and we are done.

6. Review and open problems

In this paper we proved that if poin% were chosen from the surface of a convex polytépeith a
Poisson process of ratethen the expected complexity of the Voronoi diagransgfi.e., the expected
number of Voronoi vertices, edges and faces, (8)OEquivalently, the expected complexity of the dual
of the Voronoi diagram, the Delaunay triangulation, i&:9 This means that the expected number of
Delaunay tetrahedra, faces and edges(is) O

As stated in the first section, for reasons of mathematical simplicity we proved our result for the
Poisson distribution but the result will still hold if the points are chosen 1ID from the uniform
distribution over the surface @. That is, forn points chosen IID from the uniform distribution over
the expected complexity of their Voronoi diagram is als@©O
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To the best of our knowledge this is the first analysis of the expected complexity of the 3-dimensional
Delaunay triangulation of points chosen from any 2-dimensional surface. In fact, the problem of
analyzing the complexity in average or worst case for such points, seems quite a new problem with the
only known results being the very recent ones of Attali and Boissonnat [1] and Erickson [8] who discuss
the worst case complexity whenpoints are ‘well-sampled’ from certain types of surfaces. Attali and
Boissonnat show that in their case the complexity & @). Erickson proves that there is a setrof
points on the cylinder with Voronoi complexit@ (n%/?).

This paucity of research is probably due to the fact that it is only relatively recently that the practical
problem of constructing Voronoi diagrams for such point sets has become important in the general
geometric community, e.g. for surface reconstruction and modelling. The lack of work in this area
means that most problems remain open. One very general problem wogigdreM, a 2-dimensional
manifold in3-dimensional space, choose a set of points from the Poisson distribution with osts M
or a set ofn points IID from the uniform distribution ovek1. Give an expression for how the complexity
of the Voronoi diagram grows as a functionof Of course, this growth would depend upon the particular
manifold M; an interesting problem would be to attack this problem for different class#4.dh this
paper we solved this problem for the clad$ of boundaries of convex polytope. Another extension
would be to fix M, and do the analysis for different distributions ovet that are not uniform but
depend somehow on features/of, e.g., its curvature.

We end with a few more comments on our results. Our analysis was only ekpleeteccomplexity
of the Voronoi diagram. It said nothing about hoancentratedhe complexity is around its @) mean.

We state without proof the fact that it is possible to straightforwardly modify our results to show that if
points are chosen from the Poisson distribution with rateer convex polytopé thenthe probability

that the complexity of the Voronoi diagram is greater thaing?n is n=%19"_ (Thenlog?n is quite

loose and it is very possible that it can be improved. We do not prove this concentration theorem here
because this paper is already quite long and introducing this new analysis would not introduce any new
techniques or ideas, just many new long equations.)

Finally, we discuss a possible different approach towards solving our problem. An upper level view
of our analysis is that we bounded the complexity of the Voronoi diagram of poiis}, $8t partitioning
the Voronoi spheres into two parts and bounding each part separately. The first part consisted of sphere:
whose centers are outside the polytope or inside the polytope but very close to the edges. We showed tha
the expected number of such spheres(is) oi.e. very small. The second part consisted of those spheres
whose centers were inside the polytope and not that close to the edges. The number of such spheres we
the dominant term. We analyzed this number by working backwards, and identifying where such spheres
could intersect the polytope on a particular face. Given the intersection region we then identified which
points, both on that face and other faces, could be on the border of a sphere without causing the sphere™
intersection withP to be so large that it must contain some points and therefore not be a Voronoi sphere.

Although we did not mention it at the time, there is another way of attempting to attack the enumeration
of the second type of Voronoi spheres. lxebe a point inside o andr, =d(p, P). TheMedial Axis
of polytopeP is the set of pointgp inside P such that the spherg&(p, r,) touches at least two points
of P. Intuitively, if a point p is very far from the medial axis then any sphéig, r) that intersects two
or more faces ofP would have to intersect at least one of them in a large area and therefore is likely
to contain points frons, so the sphere is not a Voronoi sphere. Thus, at least intuitively, the centers of
Voronoi spheres should be concentrated along the medial axis. This phenomenon is actually observable
in Fig. 1.
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Another way of attempting to enumerate the second type of Voronoi spheres might be to use the above
observation as follows: (i) prove that the probability of a Voronoi sphere center being far from the medial
axis is negligible. Then (i) identify the medial axis ®f, partition it into small regions, and for each
region enumerate the expected number of Voronoi spheres whose centers are near that region and (iii
add up all of these values. While we did not employ this approach in this paper it might be useful in
extensions in which the manifold1 is smooth and our techniques can not be used. We note that Attali
and Boissonnat have already used a Medial axis based approach in [1] to achieveihéirdund.
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Appendix A. Proof of Lemma 1

In this appendix we sketch the proof of Lemma 1 which states tt#tig a set of points chosen from
the standard 2-dimensional Poisson distributionPomwith raten then

Pr(there exists é‘%”-bad combinatorial Voronoi sphere &f,) = n~2(°9", (43)

Recall that in this equatioNoronoi spheraefers to a combinatorial sphefé(s, r) and not a physical
sphere.

We will assume that Argd®) = 1; if not, then scalingP so that its area is 1 will enable us to prove
the lemma.

Until stated otherwise we will change our distribution and assume$hat {p1, p2, ..., p.} aren
points chosen IID from the uniform distribution over For distinct 4-tuples,, iz, iz, is € {1,2, ..., n},
let S(pi,, pi,» Pis» Piy) D€ the unique sphere that has gheon its boundary. Then set

A(piy. Pigs Pig» Pig) = Area(S(piy. piy» Pis» piy) N P).
The probability of 5 points from this distribution being cospherical is 0 so, with probability 1, sphere
S(Pirs Pirs Pis» Piy) 1S @ Voronoi sphere if and only 8(pi,, piy» pis, Pis) 0 (Su \ {Pirs Pis: Pig» Pia}) = 9.
Note that the everd (p;,, pi,, Dis» Pis) = log®n js measurable so

n

. . 2,
P(S(Piy. Pis» Pis» Pie) IS @ Voronoi sphere and(pi,, piy. pigs pig) > °2%)

n

| 2
= Pr(A(p117 piza pia’ pi4) > O?Z n)

. . 2
X PI(S(Pis, Pi» Pis» Pia) IS @ VOronoi Spher@ A (pi,, piy, piss pig) = 222)

. . 2,
Pr(S(pis» Piys Pis» Pis) IS @ VOronoi spher@A(pi,, pi,. pis, Piy) = '0?1 )
(l . Io?fn)n—4 — p—S(ogn).

<
<
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Let A be the event thaliy, iy, i3, is € {1, 2, ..., n} such thatS(p,,, pi,, pis» Pi,) 1S @ Voronoi sphere

2 . . .
and A(piy, Pip» Pig» Pia) > 22", Summing overall (;) possible choices op,, pi,, pis, pis, We have

proven that

Pr(A) < (Z)n—ﬂ(logm _ ,,—ogn)

Now supposehere exists d%-bad combinatorial Voronoi sphere of,, i.e., 3s,t € S, such that

X(s,t)is a"’%-bad combinatorial Voronoi sphere. By the definition of (combinatorial) Voronoi spheres
X (s, t) corresponds to some face in the Voronoi diagram ofS,. Let v be some vertex ofF in
the Voronoi diagram (at least one suchmust exist) and set = d(v, s) = d(v, t). By the definition
of Voronoi vertices there must be two other pointst’ € S, such thatd(v,s’) =d(v,t) =r and
S(s,t,s',t') = S(v,r) is a physical Voronoi sphere, i.e., does not contain any points,oin its

interior? ThenS(v, r) € F(s,t). SinceX (s, t) is a"\’%-bad combinatorial Voronoi sphere, this implies

-bad Voronoi sphere, i.eS(s, ¢, s’, t') is a Voronoi sphere and

'ogn
; N
A(s, t,s', 1) > mng This then implies that eved is true.

We have just shown that the evahere exists éﬁ’%—f-badcombinatorial Voronoi sphere o, implies

that eventA is true. Since Rtd) = n=20°9" we have therefore just proven (43) fepoints chosen 11D
from the uniform distribution ovepP.

To prove (43) forS, chosen from the Poisson process with ratever P we note that, conditioned
on the eventS, = m, S, has the same distribution aspoints chosen IID from the uniform distribution
overP. This means that, witl§,, chosen from the Poisson process we have

S(s,t,s',t") = S(v,r) is a physica

Pr(there exists é‘%”—bad combinatorial Voronoi sphere df,)

— Z Pr(S, = m)m—Q(logm) — n—Q(Iogn)’
m>=0

where the last equality comes from the fact that
PI’(|Sn — f’l| > ’;21) =n—9(|0gn)‘

The proof is completed. O
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