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Abstract

It is well known that the complexity, i.e. the number of vertices, edges and faces, of the 3-dimensional V
diagram ofn points can be as bad as�(n2). It is also known that if the points are chosen Independently Identic
Distributed uniformly from a 3-dimensional region such as a cube or sphere, then theexpectedcomplexity falls to
O(n). In this paper we introduce the problem of analyzing what occurs if the points are chosen from a 2-dime
region in 3-dimensional space. As an example, we examine the situation when the points are drawn from a
distribution with raten on thesurfaceof a convex polytope. We prove that, in this case, the expected comp
of the resulting Voronoi diagram is O(n).
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a setSn = {p1,p2, . . . , pn} ⊆ Rk of n points in k-dimensional Euclidean space, theVoronoi
Diagram, VD(Sn), of Sn is a very well understood subdivision ofRk. For each pointpi ∈ Sn there is an
associated (convex) cell

Ci =
{
x ∈ Rk: ∀j �= i, d(x,pi) � d(x,pj )

}
,

whered(·, ·) is the Euclidean distance function. By definition these cells partitionRk . Thecomplexityof
VD(Sn) is the number of lower dimensional pieces that compose VD(Sn). For example, in the planar cas
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k = 2, VD(Sn) contains edgesE and verticesV . The complexity of VD(Sn) will be |VD(Sn)| = |E |+|V|.
Since it is also known that the 2-dimensional Voronoi Diagram is a planar graph, Euler’s theorem
immediately implies that|VD(Sn)| =�(n) [11].
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If k = 3 then VD(Sn) is composed not only of edgesE and verticesV but also of the facesF of the
convex cells. The complexity of VD(Sn) will then be|VD(Sn)| = |E | + |V| + |F |. In three dimensions
it can be proven that|VD(Sn)| = O(n2). For some cases, such as when all of the points inSn are on
the moment curve{(t, t2, t3): t ∈ R}, it can be easily proven that|V| = �(n2) so |VD(Sn)| = �(n2)

[7]. Another well known example of this worst-case behavior is built around two line segmentsL1 =
{(x,0,0): x ∈ [0, 1

2]} and L2 = {(1, y,1): y ∈ [1
2,1]}; given anyn1 points onL1 and anyn2 points

onL2, |V| =�(n1n2). In particular ifn1 = n2 = n
2 then|V| =�(n2).

Moving away from worst-case behavior to average-case behavior it has been shown that ifn points
of Sn are independently identically distributed (IID) chosen from the uniform distribution ov
“reasonably” smooth full dimensional bounded regionP such as a cube or sphere thenE(|VD(Sn)|) =
�(n) [4–6].1

Dropping the condition thatP has full dimensionality dramatically changes the situation. For exam
if we setP = L1 ∪L2 to be the union of the two 1-dimensional segments previously defined and c
n pointsSn uniformly at ‘random’ fromP thenn1 = |Sn ∩L1|, the number of points onL1, is a binomial
random variable with parametersn, 1

2, soE(n1)= n
2 andE(n2

1)∼ n2

4 . Sincen2 = |Sn ∩L2| = n− n1 and
V =�(n1n2) we have that

E
(|V|)=�

(
E
(
n1(n− n1)

))=�
(
n2)

andE(|VD(Sn)|)=�(n2).
Combining the two previous paragraphs we see that, in 3-dimensional space, ifn pointsSn are chosen

IID uniformly from P whereP is a reasonably smooth 3-dimensional region thenE(|VD(Sn)|)=�(n)

while for some 1-dimensionalPs, E(|VD(Sn)|) = �(n2). The obvious question then is what happe
if P is a 2-dimensionalsurface in 3-dimensional space andn pointsSn are chosen IID uniformly from
it. What will be the expected complexityE(|VD(Sn)|) of the 3-dimensional Voronoi diagram of tho
points?�(n2)?�(n)? Something in between?

The problem of understanding the structure of the 3-dimensional Voronoi diagram of point set
2-dimensional surfaces has started to be of interest in recent years. This is because, as describ
and [8], Voronoi diagrams and their duals, the Delaunay triangulation, are of use in several ge
problems, e.g. surface reconstruction, mesh generation and surface modeling. In these pro
2-dimensional surface is often sampled and then modeled, at least initially, by the Delaunay triang
of the sample. Many parameters of such algorithms such as their running times and the compl
their representations, then depend upon the complexity of the Delaunay triangulation (which is th
as that of the Voronoi diagram).

The two results [1] and [8] mentioned above seem to be the first to try and formally analy
complexity of such Voronoi diagrams. In [1] Attali and Boissonnat prove that ifn “well-sampled” points

1 These references don’t exactly state this fact but it can be inferred from the general techniques developed there
behind the proof is that pointspi insideP only have a constant number of Voronoineighborsso their Voronoi cellsCi will
have constant complexity. Points near the boundary ofP might have Voronoi cells with high complexity but there are onl
small number of such boundary cells.
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are chosen from a “smooth” closed surface then the complexity of their Voronoi diagram is O(n7/4) where
“well-sampled” is defined using the concept of local feature size.2

In [8] Erickson proves that there is a set ofn “well-sampled” points from the cylinder with Voronoi
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There does not, though, seem to be any previous work on analyzing theexpectedcomplexity of

the Voronoi Diagram when the points are chosen randomly from some 2-dimensional surface.
paper we make a first step towards answering this question by looking at random points chosen
boundary of a convex polytope inR3. More specifically we prove

Theorem 1. LetP be the boundary of a convex polytope inR3. LetSn be a set of points drawn from th
standard2-dimensional Poisson distribution onP with raten. ThenE(|VD(Sn)|)=�(n).

The Poisson distribution onP with raten [9] is the one that has the properties

• If M ⊆ P is any measurable region letN(M) be the random variable signifying the number of poi
the process generates inM (the dependence uponn is implicit). Then

Pr
(
N(M) = k

)= (nArea(M))ke−(nArea(M))

k! (1)

(soE(N(M)) = nArea(M)).
• If M1 and M2 are non-overlapping regions, thenN(M1) and N(M2) are independent rando

variables.

We note that we have restricted ourselves to proving Theorem 1 for a Poisson distribution b
its mathematics are a bit cleaner (it allows us to assume that points in various regions are
independently of each other) but standard modifications allow the proof to also work forn points chosen
IID from the uniform distribution overP and show, in this case as well, thatE(|VD(Sn)|)=�(n).

To get a feeling for the type of problem we are analyzing, consider the boxB with diagonal corners
(0,0,0) and(3,3,1). In Fig. 1 we see 9000 points chosen randomly IID from the uniform distribu
over the surface of the box and the 24943 Voronoi vertices that correspond to them (we do not d
full Voronoi diagram since such a large diagram would be impossible to view properly). Note tha
of the Voronoi vertices areinsideB with only a small fraction being outside the box. In our proof
Theorem 1 we will see why this happens.3

In Section 2 we sketch the idea behind our proof and show how solving two smaller more s
subproblems would prove Theorem 1. In Section 3 we introduce definitions and utility lemmas th
be used throughout the rest of the paper. In Sections 4 and 5 we solve the two smaller subp
introduced in Section 2. In Section 6 we review our work and discuss extensions and open proble

2 Just prior to submission we learned of new work [2] by Attali and Boissonnat that proves a linear bound on the com
of the Delaunay Triangulation ofn points well-sampled from a polyhedral surface (using a different definition of well-samp

3 Essentially, as can be seen in the middle figures of Fig. 1, the vast majority of the Voronoi vertices cluster “ne
Medial axisof B. This observation provides good intuition as to what is occurring. The reason that we did not use this a
explicitly in our analysis is that it is quite difficult to formalize a good definition of “near”. We discuss medial axis appro
in greater detail in the concluding section of this paper.
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Fig. 1. Top-Left: 9000 random points chosen from the surface of boxB. Top-Right: the 24943 Voronoi vertices of the poin
Middle: the 23455 Voronoi vertices insideB viewed from different view points; Bottom: the 1488 Voronoi vertices outsideB.
Note that the scales on the different figures are not the same.

Note. Two of the proofs of lemmas in Section 5 require relatively straightforward but quite long cas
case analyses of the different ways in which spheres can intersect the boundaries of convex po
These analyses, while necessary to validate the results, are quite intuitive and do not provide a
new in the way of techniques or ideas and have therefore been omitted from this paper. They are a
in their entirety, though, in [10].

2. A sketch of the proof

In what followsP will be the boundary of a given convex polytope andSn will be a set of points drawn
from the 2-dimensional Poisson distribution onP with raten.

For a pointp ∈ R3 and any closed or finite setX ⊆ R3, we extend the Euclidean distance function
thatd(p,X)= minq∈X d(p, q). Now define
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Fig. 2. Notations:p is outside polytopeP . q is a defining point of the Voronoi sphereS(p, r). Note thatq = NN(p,Sn) is
different fromp′ = NN(p,P) and fromp′′ = NN(p,Π).

Definition 1. Let p ∈ R3, X ⊆ R3 andr � 0:

• S(p, r)= {q ∈ R3: d(q,p) � r} is the closed ball of radiusr aroundp. We call this asphere.
• For pointp ∈ R3, NN(p,X) will denote a nearest neighborq to p in X, i.e., aq ∈X such that

∀q ′ ∈X, d(p, q) � d(p, q ′).

In this paper all of the setsX used will either be finite or closed. Thus such aq will always exist
although it might not always be unique.

• S = S(p, r) is calledVoronoi sphereof Sn if it contains no points ofSn in the interior and at leas
one point ofSn, e.g. NN(p,Sn), on its boundary. We will call the points ofSn on S ’s boundary the
definingpoints ofS. See Fig. 2.

Every vertex/edge/face/region of VD(Sn) corresponds to at least one Voronoi sphere with at l
4/3/2/1 defining points ofSn on its boundary. Since the event of points in aSn chosen from the Poisso
distribution being in general position has probability 1, we can assume that every vertex/edge/face
of VD(Sn) corresponds to Voronoi sphereS with 4/3/2/1 defining points ofSn on its boundary. Two
Voronoi spheres will correspond to the same vertex/edge/face/region of VD(Sn) if they have the exac
same set of defining points. Therefore our strategy for bounding the complexity of VD(Sn) will be to
bound the number ofcombinatorially differentVoronoi spheres.

Furthermore, as recently pointed out by Attali and Boissonnat [2], Euler’s relations imply th
number of tetrahedra and faces in the 3-D Delaunay triangulation ofn sites are linear in the number
edges in this triangulation; by taking the dual we have that the number of Voronoi vertices and e
the 3-D Voronoi diagram are actually linear in the number of Voronoi faces. So, the size of VD(Pn) is
bounded by the number of Voronoi spheres defining Voronoi faces, i.e. the Voronoi spheres defi
exactly two points.

To simplify matters, in the rest of this paper, we will therefore assume that VD(Sn) is not the full set
of Voronoi spheres but only those corresponding to Voronoi faces, i.e. those defined by two pointSn.
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We now make explicit the connections between physical (Voronoi) spheres and combinatorial
(Voronoi) spheres.

e

re
ly
Definition 2. Let p1,p2 ∈ R3. Set

X (p1,p2)=
{
S(p, r): p ∈ R3, r ∈ R+, d(p,p1)= d(p,p2)= r

}
to be the set of all physical spheres withp1,p2 on their boundaries. We refer toX (p1,p2) as a
combinatorial sphere. Now set

F(p1,p2)=
{
S(p, r): S(p, r) ∈X (p1,p2) andS(p, r)’s interior contains no points inSn

}
.

Forp1,p2 ∈ Sn, X (p1,p2) is a combinatorialVoronoi sphereif F(p1,p2) �= ∅, i.e., if there exists som
physical Voronoi sphereS(p, r) with p1,p2 on its boundary whose interior contains no points inSn.

We will also need the following definition:

Definition 3. Let P be the boundary of a convex polytope. A physical sphereS in R3 is x-bad (with
respect toP) if

Area(S ∩P) � x2.

A physical sphereS in R3 is x-good(with respect toP) if it is not x-bad.

We now extend this definition to combinatorial spheres:

Definition 4. Let p1,p2 ∈ Sn. X (p1,p2) is anx-bad combinatorial sphere (with respect toP) if every
physical sphereS(p, r) ∈X (p1,p2) is anx-badsphere.

X (p1,p2) is anx-goodcombinatorial sphere (with respect toP) if it is not anx-bad.
Now assume thatX (p1,p2) is acombinatorialVoronoi sphere.X (p1,p2) is anx-bad combinatorial

Voronoi sphere (with respect toP) if everyphysical sphereS(p, r) ∈ F(p1,p2) is x-bad, i.e., every
empty sphere withp1,p2 on its boundary isx-bad.

X (p1,p2) is an x-good combinatorial Voronoi sphere (with respect toP) if it is not an x-bad
combinatorial Voronoi sphere.

The intuition here is thatX (p1,p2) is anx-good combinatorial Voronoi sphere if and only if the
exists somex-goodphysical Voronoi sphere withp1,p2 on its boundary. Note that the definitions imp
that if X (p1,p2) is anx-goodcombinatorial Voronoi sphere then it is anx-goodcombinatorial sphere
(but not vice-versa).

The reason for introducing these definitions is the following lemma:

Lemma 1. Let Sn be a set of points chosen from the standard2-dimensional Poisson distribution onP
with raten. Then

Pr
(
there exists alogn√

n
-badcombinatorial Voronoi sphere ofSn

)= n−�(logn).

The proof of this lemma can be found in Appendix A.
We need one more set of definitions before presenting our sketch proof of Theorem 1.
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with
(a)p is outsideP (b) p is insideP

Fig. 3. Type-I spheres.

Fig. 4. An example of a Type-II sphere.p, the center of the sphere, is inside polytopeP (for clarity many of the faces ofP
have been left out of the diagram). For all the facesFi of P that the sphere intersects, the center of the intersection disk
the supporting planeΠi is onFi .

Definition 5. Let P be a convex polytope andS = S(p, r) a physical sphere.S will be a Type-I, Type-II
or Type-III sphere ifS contains at least one point ofSn on its boundary and:

• S is aType-Isphere if∃ a faceF of P such thatS ∩P ⊆ F (Fig. 3).
• S is aType-II sphere if (i) it is not a Type-I sphere, (ii)p is insideP and (iii) for every faceFi of P

with corresponding supporting planeΠi , if S ∩ Fi �= ∅ then NN(p,Πi) ∈ Fi (Fig. 4).
• If S is not a Type-I or Type-II sphere thenS is aType-III sphere.

(Thesupporting planeof a faceF is the infinite planeΠ that containsF .)



204 M.J. Golin, H.-S. Na / Computational Geometry 25 (2003) 197–231

Type-I spheres are easily understood. Ifp is insideP andS is not a Type-I sphere, thenS is a Type-II
sphere if, for every faceFi of P thatS intersects, the center of the disk formed byS∩Πi is inFi . Type-III
spheres are catch-alls that cover every other case.
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We will say that a combinatorial sphereX (p1,p2) is a Type-α sphere (α ∈ {I, II , III }) if there is
some physicalS(p, r) ∈ X (p1,p2) such thatS(p, r) is a Type-α sphere. Note that, by this definitio
a combinatorial sphereX (p1,p2) is not restricted to being of only one type. It can simultaneously b
two, or even all three, types.

Similarly, we will say that a combinatorial sphereX (p1,p2) is a Type-α Voronoi sphere if there is
some physical Voronoi sphereS(p, r) ∈ F(p1,p2) such thatS(p, r) is a Type-α sphere. Note that
Type-α combinatorial Voronoi sphere is a Type-α combinatorial sphere.

We will now sketch the proof technique; it is to count the number ofcombinatorialVoronoi spheres
Splitting cases we find (until otherwise stated “sphere” denotes a combinatorial sphere)

No. of Voronoi spheres

= No. of logn√
n

-bad Voronoi spheres+ No. of logn√
n

-good Voronoi spheres

� No. of logn√
n

-bad V. spheres+ No. of logn√
n

-good Type-I V. spheres

+ No. of logn√
n

-good Type-II V. spheres+ No. of logn√
n

-good Type-III V. spheres

� No. of logn√
n

-bad V. spheres+ No. of Type-I V. spheres

+ No. of Type-II V. spheres+ No. of logn√
n

-good Type-III spheres. (2)

The remaining sections of this paper are devoted to proving:

E(No. of logn√
n

-bad Voronoi spheres)= o(1). (3)

E(No. of Type-I Voronoi spheres)= O(n). (4)

E(No. of Type-II Voronoi spheres)= O(n). (5)

E(No. of logn√
n

-good Type-III spheres)= o(n). (6)

Now, taking expectations of Eq. (2) gives

E(Number of Voronoi spheres) � E
(
No. of logn√

n
-bad Voronoi spheres

)
+E(No. of Type-I Voronoi spheres)

+E(No. of Type-II Voronoi spheres)

+E
(
No. of logn√

n
-good Type-III spheres

)
. (7)

Plugging in (3)–(6) will then prove Theorem 1, that the expected number of Voronoi spheres, w
the same as the expected complexity of the Voronoi Diagram, will be O(n). The main reason that we u
this decomposition into good and bad spheres is that it permits us to bound from above the nu
logn√

n
-good Type-IIIVoronoispheres by the number oflogn√

n
-good Type-III spheres. Bounding the numb

of suchVoronoi spheres would be quite difficult since assuming that a sphere is Voronoi, i.e. e
requires conditioning that skews the rest of the point distribution, making it very difficult to coun
number of other Voronoi spheres. Bounding the number ofgood spheres is much easier since it on
requires calculating how many points could feasibly fall within a particular volume or area.
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Proving (3) will be quite simple and we do that below; proving (5) and (6) will be more complicated
and will require the remainder of this paper.

To prove (3) letA =∑i Area(Fi) be the total surface area ofP . Then Pr(|Sn| = k)= (An)k

k! e−An. SetX
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-bad Voronoi spheres. Recall that, in the worst case, point setSn defines at mos

O(|Sn|2) Voronoi spheres. Thus

E(XI{|Sn|>2An}) �
∑

k>2An

O
(
k2
) (An)k

k! e−An = n−�(logn) (8)

whereIB is the indicator random variable for eventB, i.e, IB = 1 if B occurs and 0 otherwise. On th
other hand, Lemma 1 states that the probability that there is alogn√

n
-bad Voronoi sphere isn−�(logn), so

E(XI{|Sn|�2An}) � O
(|2An|2)Pr(X > 0) = n−�(logn). (9)

Combining (8) and (9) proves

E
(
No. of logn√

n
-bad Voronoi spheres

) = E(X)

= E(XI{|Sn|>2An})+E(XI{|Sn|�2An})
= n−�(logn),

and thus we have shown (3).
The proofs of (4), (5) and (6) will be based on the following idea: suppose we want to enumera

instance, the number of Type-II Voronoi spheres. LetX (p1,p2) be a Type-II Voronoi sphere. Then b
the definition of Type-II combinatorial Voronoi sphere,∃ physical sphereS = S(p, r) ∈ X (p1,p2) such
thatS is a Type-II physical Voronoi sphere withp1,p2 on its boundary. This means that the numbe
Type-II Voronoi spheres is bounded by the number ofcombinatorially different physicalType-II Voronoi
spheres where two physical spheres are considered combinatorially different if and only if the
different set of defining pointsp1,p2 ∈ Sn.

So, in the proofs of (4), (5) and (6), we will now always deal with those specified physical sp
and will study how many combinatorially different physical spheres can exist. From now on, a “sp
can denote either a combinatorial sphere or a physical sphere belonging to a combinatorial sp
not obvious from context we will specify which is which). “Counting spheres” will mean coun
combinatorially different physical spheres.

Proving (4) is quite easy. From the definition of Type-I spheres we have thatSn ∩ S ⊆ Fi for some
face Fi of P . This means thatS will be a Voronoi sphere of theplanar Voronoi diagram of the
points Sn ∩ Fi on the supporting planeΠi of Fi . Since planar Voronoi diagrams ofm points have
complexity O(m), we immediately have that the total number of combinatorially different Type-I Vor
spheresS intersecting faceFi (we no longer have to restrict ourselves to good ones), is O(|Sn ∩ Fi |).
Summing over all facesFi gives that the total number of combinatorially different Type-I Voro
spheres is O(

∑
i |Sn ∩ Fi|) = O(|Sn|). The expected number of Type-I Voronoi spheres is there

O(E(|Sn|))= O(An)= O(n) proving (4).
The remainder of this paper is devoted to proving (5) (in Section 4) and (6) (in Section 5) whic

both require tedious case-by-case analysis:
To prove (5) the intuition is that for each Type-II Voronoi sphereS = S(p, r), there exist two face

F1,F2 of P with corresponding supporting planeΠ1,Π2 such that∀i = 1,2,S ∩Fi �= ∅. Moreover, from
the definition of Type-II sphere, we have that NN(p,Π1) ∈ F1 and NN(p,Π2) ∈ F2.
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Therefore, given two facesFi1,Fi2 with corresponding supporting planesΠi1,Πi2, we essentially
partition Fi1 up into small squares, each with area1

n
. For each such squareB ⊆ Fi1, we calculate the

expected number of combinatorially different Type-II Voronoi spheresS = S(p, r) such that∀j =

h

rest of

hem in

on

e

on
1,2, S ∩ Fij �= ∅ and NN(p,Πi1) ∈ B and prove that this is O(1). Since there are only O(n) squares
in the partition and O(1) pair of faces, this will prove (5).

To prove (6) the intuition is that we show that for any Type-IIIlogn√
n

-good sphere centered atp there
exists an associated region around the nearest pointp′ on the skeleton ofP to p, call it M(p′), with area
O(log3n/n) such that the points in thelogn√

n
-good sphere must be inM(p′). Thus the number of suc

spheres can be bounded by the number of pairs of points inSn ∩M(p′) for the samep′. Summing this
number over every segment of skeleton ofP will prove (6).

3. Definitions and utility lemmas

In this section we introduce some basic definitions and utility lemmas that will be used in the
the paper.

We will often use the following basic properties of the Poisson distribution so we encapsulate t
two lemmas.

Lemma 2.

• LetM,M ′ be measurable regions withM ′ ⊆M , X a set of points drawn from the Poisson distributi
with raten overM andX′ a set drawn from the Poisson distribution with raten overM ′. ThenX′
has the same distribution asX ∩M ′.

• Let F be a convex polygon andSn a set of points drawn from the Poisson distribution with ratn
overF . The probability that four points inSn are cocircular is0.

• LetP be the boundary of a convex polytope andSn a set of points drawn from the Poisson distributi
with raten overP . The probability that five points inSn are cospherical is0.

Lemma 3. Let Z be any discrete Poisson distribution with any rateλ, i.e.,∀k � 0, Pr(Z = k) = λk e−λ

k! .
ThenE(Z)= λ and∀k > 1, ∃dk independent ofλ such thatE(Zk) � dkλ

k . That is,E(Zk) � dk(E(Z))k.

We also strongly use the following geometric definitions:

Definition 6. Let Π be a plane inR3; CΠ , D◦
Π andDΠ are the circle, open and closed disks

CΠ(p, r) = {q ∈Π : d(q,p)= r
}
.

D◦
Π(p, r) = {q ∈Π : d(q,p) < r

}
.

DΠ(p, r) = {q ∈Π : d(q,p) � r
}= CΠ(p, r)∪D◦

Π(p, r).

Definition 7. Let F ⊆ R3 be a planar object inR3. Its supporting planeis the unique planeΠ ⊂ R3 such
thatF ⊆Π .

Definition 8. We also define theskeletonandr-boundaryof P :
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Skel(P) = {u ∈P: u is on some edge ofP}
Bd(r) = {u ∈P: ∃point v ∈ Skel(P) such thatd(u, v) < r}.

in the

t

t

Thus Bd(r) is the set of points onP within distancer of an edge or vertex ofP .
Finally, we will need the following basic geometric lemmas and definition in various places

paper, so we state them here at the beginning:

Lemma 4. Let F be a convex polygon andΠ its supporting plane. Then there exist some constanσ ,
K � 0 dependent uponF such that

• ∀r � K, ∀p ∈ F, Area(F ∩DΠ(p, r)) � σr2.
• ∀r � K, ∀p ∈ F, Area(F ∩DΠ(p, r)) � σK2.

The lemma permits us to introduce the following definition:

Definition 9. LetP be a convex polytope,Fi, i = 1, . . . , k, its faces andΠi, i = 1, . . . , k, their respective
supporting planes. Letσi andKi be theσ andK associated withFi in Lemma 4. Set

c0 = 1√
mini σi

andK0 = mini Ki . We note that this directly implies that ifp ∈ Fi for someFi then

∀c0r � K0, Area
(
Fi ∩DΠi

(p, c0r)
)
� r2.

Lemma 5.

(1) LetP be the boundary of a convex polytope. There existsc1, with 0< c1 < 1, depending only upon
P such that the following property holds for allp′ ∈ P \ Skel(P): LetF be the face ofP such that
p′ ∈ F , Π its supporting plane andr ′ = d(p′,Skel(P)). Then

S(p′, c1r
′)∩P ⊆ F.

Equivalently, the distance fromp′ to any other face ofP is greater thanc1r
′.

(2) Let p′ ∈ P \ Skel(P), F , Π and r ′ as defined above. Letp be any point outsideP such that
NN(p,P) = p′. Also let r � d(p,p′). Then the following is true: If S(p, r) ∩ P � F then

DΠ(p′, c1r
′

2 )⊆ S(p, r)∩ F .

Proof. The proof of (1) is straightforward from the convexity ofP . To prove (2) suppose tha
S(p, r)∩P � F butDΠ(p′, c1r

′
2 ) � S(p, r)∩Π .

Sincep′ /∈ Skel(P) andp′ = NN(p,P), we have thatp′ = NN(p,Π) andS(p, r) ∩Π = DΠ(p′, β)

for someβ. ThusDΠ(p′, c1r
′

2 ) � S(p, r)∩Π means thatc1r
′

2 > β.
Also, sinceS(p, r) ∩ P � F, ∃q ∈ S(p, r) ∩ P such thatq /∈ F . By the convexity ofP and the

fact that NN(p,P) ∈ Π , we have that line segmentpq intersectsΠ at some point, denotedq ′. Then
q ′ ∈ S(p, r)∩Π =DΠ(p′, β). In particular, this means thatd(p′, q ′) � β < c1r

′
2 .
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We will now also see thatd(q, q ′) � c1r
′

2 . Suppose in contradiction thatd(q, q ′) > c1r
′

2 . First note that
becausep, q andq ′ are collinear andp′ = NN(p,Π),

c r ′

ill be

s we
r � d(p, q)= d(p, q ′)+ d(q ′, q) > d(p,p′)+ 1

2
.

This then implies that

DΠ

(
p′,

c1r
′

2

)
⊆ S(p, r)∩Π =DΠ(p′, β),

contradictingc1r
′

2 > β. Sod(q, q ′) � c1r
′

2 .

Combining this with the previously provend(p′, q ′) � c1r
′

2 yields that

d(p′, q) � d(p′, q ′)+ d(q ′, q) � 2
c1r

′

2
= c1r

′.

But now part 1 of the lemma tells us that for suchq, if q ∈ P thenq must be onF , contradicting our
assumption thatq /∈ F . Thus our original assumption must be incorrect and

DΠ

(
p′,

c1r
′

2

)
⊆ S(p, r)∩Π.

Since part 1 also tells us thatDΠ(p′, c1r
′)⊆ F , we have

DΠ

(
p′,

c1r
′

2

)
⊆ S(p, r)∩ F

and are done. ✷

4. Bounding the number of Type-II Voronoi spheres

In this section we will investigate the expected number of Type-II Voronoi spheres. Our goal w
to prove (5):

E(Number of Type-II Voronoi spheres)= O(n).

Recall that a Voronoi sphereS = S(p, r) of point setSn has no points ofSn in its interior and two
points on its boundary.S is Type-II if (i) p is insideP and (ii) for all facesFi of P , if S ∩ Fi �= ∅ then
NN(p,Πi) ∈ Fi whereΠi is the supporting plane ofFi . (See Fig. 4.)

Our proof will require flipping back and forth between different related distributions. To do thi
will need to introduce some new definitions that generalize our old ones:

Definition 10. Let F1,F2 be two faces ofP andΠ1,Π2 their corresponding supporting planes.

(1) A Voronoi sphereS(p, r) for a point setX ⊂ P is Type-II overF1,F2, if (i) p is insideP and (ii)
∀i = 1,2, S ∩ Fi �= ∅ and NN(p,Πi) ∈ Fi .

(2) SF1,F2,n is a set of points drawn from the 2-dimensional Poisson distribution with raten onF1 ∪ F2.
(3) XF1,F2,n is the set of Type-II Voronoi spheres forSF1,F2,n overF1,F2.
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If S(p, r) ∈ X (p1,p2) is a Type-II Voronoi sphere, thenp1,p2 ∈ Sn are on the boundary ofS(p, r) and
S(p, r) contains no points ofSn in its interior. Thus, for every subsetS ′ ⊂ Sn with p1,p2 ∈ S ′, S(p, r)

is also a Voronoi sphere forS ′. Furthermore, ifF1 andF2 are the faces ofP such thatp1 ∈ F1,p2 ∈ F2,
is
at
-II

t set

that if

s.

s.

lowing

e
any

.

then S(p, r) is a Type-II Voronoi sphere overF1,F2 for Sn ∩ (F1 ∪ F2). (Note that the converse
not necessarily true;S(p, r) being a Voronoi sphere forSn ∩ (F1 ∪ F2) does not necessarily imply th
S(p, r) is a Voronoi sphere forSn, and being Type-II overF1,F2 does not necessarily imply being Type
overP .)

By the standard property of the Poisson distribution (Lemma 2), the set of pointsSn ∩ (F1 ∪ F2) has
the same distributionasSF1,F2,n, so the expected number of Type-II Voronoi spheres for the poin
Sn ∩ (F1 ∪ F2) is equal to the expected number of Type-II Voronoi spheres forSF1,F2,n.

Combining these observations and using linearity of expectation, we have just shown
F1,F2, . . . , Fk is the set of faces ofP then

E(Number of Type-II Voronoi spheres) �
∑

1�i1<i2�k

E
(|XFi1 ,Fi2,n

|). (10)

The remainder of this section will be devoted to proving the following two lemmas.

Lemma 6. LetF1 andF2 be two convex polygons inR3 andΠ1 ‖Π2 their respective supporting plane
ThenE(|XF1,F2,n|)= O(n).

Lemma 7. LetF1 andF2 be two convex polygons inR3 andΠ1 ∦ Π2 their respective supporting plane
ThenE(|XF1,F2,n|)= O(n).

Note that applying these two lemmas to Eq. (10) proves (5) with some constant in the O() depending
on the number of faces ofP .

In the next subsection we introduce some properties and prove a utility lemma. In the one fol
we return and prove Lemmas 6 and 7.

4.1. Useful properties and a utility lemma

We start with a definition and some properties:

Definition 11.

Σ(p, r)= {q ∈ R3: d(q,p)= r
}

is thesphereof radiusr around pointp (to be distinguished from theball S(p, r) defined previously).

Property 1 [3]. Thepower of a pointξ(x, y, z) with respect to a sphereΣ = Σ(p, r) is defined as the
quantityρ(ξ,Σ)= d(ξ,p)2 − r2. As its2-dimensional analog, the power of a pointξ(x, y) with respect
to a circleC = C(p, r) is defined byρ(ξ,C) = d(ξ,p)2 − r2. The power ofξ with respect to a spher
Σ(p, r) is equal to the power ofξ with respect to any circle obtained by intersecting the sphere with
plane containingξ .

Let Π1 andΠ2 be planes such thatΠ1 ∦ Π2. Given a sphereΣ = Σ(p, r) with Σ ∩ Π1 �= ∅ and
Σ ∩ Π2 �= ∅, let q,α, q ′, β be such thatCΠ1(q,α) = Σ ∩Π1 andCΠ2(q

′, β) = Σ ∩Π2. See Fig. 5(a)
By Property 1, we have∀ξ ∈Π1 ∩Π2,
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n

(a)ρ(ξ,Σ(p, r))= ρ(ξ,CΠ1(q,α))= ρ(ξ,CΠ2(q
′, β)) (b) For the perpendicularh dropped fromq onto Π1 ∩

Π2, q′h⊥ (Π1 ∩Π2).

Fig. 5. Properties of the circlesCΠ1(q,α) andCΠ2(q
′, β), having a sphereΣ = Σ(p, r) such thatΣ ∩ Π1 = CΠ1(q,α) and

Σ ∩Π2 = CΠ2(q
′, β).

ρ
(
ξ,Σ(p, r)

) = ρ
(
ξ,CΠ1(q,α)

)= ρ
(
ξ,CΠ2(q

′, β)
)

= d(ξ, q)2 − α2 = d(ξ, q ′)2 − β2.

Now letCΠ1(q,α) be given. LetΣ =Σ(p, r) be any sphere withΣ ∩Π1 = CΠ1(q,α) andq ′, β such
thatΣ ∩Π2 = CΠ2(q

′, β). Leth be the perpendicular fromq onto the lineΠ1 ∩Π2. Sincepq ⊥Π1 and
qh ⊥ (Π1 ∩Π2), ph⊥ (Π1 ∩Π2). Alsopq ′ ⊥Π2, soph⊥ (Π1 ∩Π2) yielding q ′h⊥ (Π1 ∩Π2), which
means thatq ′ must lie on the line ofΠ2, passing throughh and perpendicular toΠ1 ∩Π2. See Fig. 5(b).
Moreover, Property 1 yields the following condition for the radius, denotedβ, of the diskS ∩Π2:

β2 = d(h, q ′)2 − d(h, q)2 + α2. (11)

As a consequence, we have

Property 2. Given a circle CΠ1(q,α) and a sphereΣ with Σ ∩ Π1 = CΠ1(q,α), let h be the
perpendicular fromq onto the lineΠ1 ∩ Π2. If Σ ∩ Π2 �= ∅, then the centerq ′ of the circleΣ ∩ Π2

must be on the line ofΠ2 which passes throughh and is perpendicular toΠ1 ∩Π2, and the radiusβ of
the circleΣ ∩Π2 must satisfyβ2 = d(h, q ′)2 − d(h, q)2 + α2.

Finally, we prove a utility lemma that will be useful in the proof of Lemma 6 and Lemma 7.

Definition 12. ∀m � 0, setIm = {r ∈ R |m/
√

n � r � (m+ 1)/
√

n }.
Lemma 8. LetF be a convex polygon inR3 andΠ its supporting plane. LetSF,n be a set of points draw
from a Poisson distribution of raten overF . LetB be a square with centerξ and sides of length1√

n
. Let

UB,m = {u ∈Π | u is on some circleCΠ(q,α) with q ∈ B, α ∈ Im andD◦
Π(q,α)∩ SF,n = ∅}.

Then(all constants implicit in theO() notation depend only uponF )
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(a) ∀m � 0, E(|SF,n ∩UB,m|2)= O(m4).
(b) ∀m: 2� m � K

√
n+ 1, E(|SF,n ∩UB,m|2)= O(m2e−σ(m−1)2

).
(c) If m � √

n Diameter(F )+ 1, then|SF,n ∩UB,m| = 0.

oisson

rsal

viewed

n

(d)
∑∞

m=0 E(|SF,n ∩UB,m|2)= O(1).

Proof. Since this is the first time that we do such a calculation we explicitly recall two facts about P
processes that we are using. The first is that ifA⊆Π is some region, then|SF,n∩A|, the number of points
of SF,n in A, satisfies a Poisson distribution with raten. The second fact is that there exists some unive
constantc, such that ifZ is any discrete Poisson distribution thenE(|Z|2) � c(E(|Z|))2 (c = d2 from
Lemma 3).

To computeE(|SF,n ∩ UB,m|2) exactly would be quite complicated because by definition,SF,n and
UB,m are not independent of each other so|SF,n ∩UB,m| is not Poisson distributed with raten. Instead,
we will bound|SF,n ∩UB,m| from above with something whose expectation is easier to calculate.

To do this first notice that,∀u ∈UB,m,

d(ξ, u) � d(ξ, q)+ d(q,u) � 1√
n
+ m+ 1√

n
= m+ 2√

n
. (12)

Thus, we immediately have thatUB,m ⊆DΠ(ξ, (m+ 2)/
√

n) so

|SF,n ∩UB,m| �
∣∣∣∣SF,n ∩DΠ

(
ξ,

m+ 2√
n

)∣∣∣∣.
SinceDΠ(ξ, (m+2)/

√
n) is independent ofSF,n, we have that|SF,n∩DΠ(ξ, (m+2)/

√
n)| is a Poisson

distributed random variable with raten. So

E

(∣∣∣∣SF,n ∩DΠ

(
ξ,

m+ 2√
n

)∣∣∣∣
)

= nArea

(
DΠ

(
ξ,

m+ 2√
n

)
∩ F

)

� nπ
(m+ 2)2

n
= O

(
m2
)
.

Part (a) then follows directly from the standard properties of the Poisson distribution that were re
at the beginning of the proof.

If m � 2, then we can also boundd(ξ, u) from below for allu ∈UB,m:

d(ξ, u) �
∣∣d(ξ, q)− d(u, q)

∣∣= d(u, q)− d(ξ, q) >
m√
n
− 1√

n
= m− 1√

n
. (13)

Thus∀m � 2,

UB,m ⊂DΠ

(
ξ,

m+ 2√
n

)∖
DΠ

(
ξ,

m− 1√
n

)
, (14)

i.e.,UB,m is contained in an annulus with centerξ and width 3√
n
. See Fig. 6(a). Similarly it can be show

that

∀q ∈ B, ∀α ∈ Im, DΠ

(
ξ,

m− 1√
n

)
⊆D◦

Π(q,α). (15)

See Fig. 6(b).
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.

m
ng
(a) Dotted circles areCΠ(q, (m+1)/
√

n) for q
the four corner points ofB. Note that all circles
are contained inBm.

(b) Dotted circles areCΠ(q,m/
√

n) for q the
four corner points ofB. Note that all circles
containAm.

Fig. 6. Let Am = DΠ(ξ, (m − 1)/
√

n) and Bm = DΠ(ξ, (m + 2)/
√

n) \ DΠ(ξ, (m − 1)/
√

n). If m � 2, then
∀q ∈ B, ∀α ∈ Im, Am ⊆D◦

Π(q,α) andUB,m ⊂ Bm.

We can now prove part (b) of the lemma. LetSF,n be given, and for notational simplicity, set

Am =DΠ

(
ξ,

m− 1√
n

)
and Bm =DΠ

(
ξ,

m+ 2√
n

)∖
DΠ

(
ξ,

m− 1√
n

)
.

If SF,n ∩Am �= ∅, then by (15),

∀q ∈ B, ∀α ∈ Im, SF,n ∩D◦
Π(q,α) �= ∅.

Thus by definition,UB,m = ∅, so |SF,n ∩ UB,m| = 0. If SF,n ∩Am = ∅, thenUB,m might not be empty
However using (14), we know that|SF,n ∩UB,m| � |SF,n ∩Bm|. Therefore for∀m � 2

|SF,n ∩UB,m| �
{

0, if SF,n ∩Am �= ∅,
|SF,n ∩Bm|, if SF,n ∩Am = ∅, (16)

which yields

E
(|SF,n ∩UB,m|2

)
� E

(|SF,n ∩Bm|2 | SF,n ∩Am = ∅)× Pr(SF,n ∩Am = ∅)
= E

(|SF,n ∩Bm|2
)× Pr(SF,n ∩Am = ∅) (17)

� c
(
E
(|SF,n ∩ Bm|

))2 × Pr(SF,n ∩Am =∅) (18)

� c
(
nArea(Bm ∩ F)

)2 × e−nArea(Am∩F) (19)

= O
(
m2e−σ(m−1)2)

for 2� m � K
√

n+ 1, (20)

wherec is a universal constant andσ,K are some constants of Lemma 4.
Equality (17) follows from the fact thatAm andBm are disjoint soSF,n ∩ Am and SF,n ∩ Bm are

independent. (18) comes from the previously noted fact that there is a universal constantc such that if
Z is any Poisson random variable thenE(Z2) � c(E(Z))2, (19) from the definition of Poisson rando
variables, (20) from the fact that Area(Bm ∩ F) = O(m/n) and Lemma 4; the reason for restricti
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m � K
√

n + 1 is to guarantee thatm−1√
n

� K so that Lemma 4 can be applied to bound Area(Am ∩ F)

from below byσ ((m− 1)/
√

n )2. We have thus proven part (b).
To prove part (c), letL = Diameter(F ). Form � √

nL+ 1, we haveF ⊆ Am soSF,n ∩Am = SF,n.

a

Eq. (16) and the definition ofBm then give|SF,n ∩UB,m| = 0.
Combining (a) and (b) proves that

�K√
n+1�∑

m=0

E(|SF,n ∩UB,m|2)= O(1).

Part (c) gives∑
m� √nL+1!

E(|SF,n ∩UB,m|2)=
∑

m� √nL+1!
0= 0.

Thus, to prove part (d) it only remains to show that
�√nL+1�∑

m= K√
n+1!

E
(|SF,n ∩UB,m|2

)= O(1).

Returning to (19) we see that∀m �  K√
n+ 1!

E
(|SF,n ∩UB,m|2

)
� c
(
nArea(Bm ∩ F)

)2 · e−nArea(Am∩F) = O
(
n2 · e−nArea(DΠ(ξ,K)∩F)

)
since∀m, Area(Bm ∩ F) � Area(F ) and

∀m �  K√
n+ 1!, Area(Am ∩ F) � Area

(
DΠ(ξ,K)∩ F

)
.

Lemma 4 tells us that Area(DΠ(ξ,K)∩ F) � σK2, so
�√nL+1�∑

m= K√
n+1!

E
(|SF,n ∩UB,m|2

)= O
(
(
√

nL+ 1) · n2 · e−σnK2)= O(1),

and we are done. ✷
4.2. Proofs of Lemmas 6 and 7

We now have the tools to prove Lemma 6.

Proof of Lemma 6. In this lemma we assume that we are using a coordinate system ofΠ1 and its
associated orthogonal projection ontoΠ2 such that that every point ofF1 andF2 have positivex- and
y-coordinates in this system. See Fig. 7.

Now let k = 1,2. We partition planeΠk into axis parallel squares

Bk
s,i =

{
(x, y) ∈Πk

∣∣∣∣ s√
n

� x � s + 1√
n

,
i√
n

� y � i + 1√
n

}
.

Let L be such that fork = 1,2, Fk ⊂ {(x, y) ∈ Πk | 0 � x � L, 0 � y � L}. L is a constant that is
function ofF1 andF2. By the definition ofL,

for k = 1,2, Fk ⊆
�L√

n�⋃
s,i=0

Bk
s,i .
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Fig. 7. Coordinate system ofΠ1 andΠ2 whenΠ1 ‖Π2.

Let YB1
s,i ,B

2
t,j

be the set of Voronoi spheresS(p, r) ∈XF1,F2,n such that

NN(p,Π1) ∈ B1
s,i and NN(p,Π2) ∈ B2

t,j .

Recall that by definition, for any sphereS(p, r) ∈ XF1,F2,n, NN(p,Π1) ∈ F1 and NN(p,Π2) ∈ F2. This
means that

XF1,F2,n =
�L√

n�⋃
s,i=0

�L√
n�⋃

t,j=0

YB1
s,i ,B

2
t,j
.

However, from the construction ofB1
s,i andB2

t,j and the fact thatΠ1 ‖ Π2, we have that if NN(p,Π1) ∈
B1

s,i then NN(p,Π2) ∈ B2
s,i and vice-versa. Thus,

XF1,F2,n =
�L√

n�⋃
s,i=0

YB1
s,i ,B

2
s,i

and

E
(|XF1,F2,n|

)
�

�L√
n�∑

s=0

�L√
n�∑

i=0

E
(|YB1

s,i ,B
2
s,i
|). (21)

For s, i ∈ {0,1, . . . , �L√
n�}, m � 0, let

Uk
s,i,m = {

u ∈Πk | u is on some circleCΠk
(q,α) with q ∈ Bk

s,i, α ∈ Im

andD◦
Πk

(q,α)∩ SF1,F2,n = ∅}.
Let S = S(p, r) be a Voronoi sphere inYB1

s,i ,B
2
s,i

. Then by the definition ofYB1
s,i ,B

2
s,i

, S ∩Π1 = DΠ1(q,α)

for q = NN(p,Π1) ∈ B1
s,i andα � 0. Furthermore,D◦

Π1
(q,α)∩ SF1,F2,n = ∅ and one defining point ofS

is onCΠ1(q,α). Lettingm be such thatα ∈ Im, we see thatSF1,F2,n ∩ (S ∩Π1)= SF1,F2,n ∩CΠ1(q,α)⊆
SF1,F2,n ∩ U1

s,i,m. Similarly there existsm′ such thatSF1,F2,n ∩ (S ∩ Π2) ⊆ SF1,F2,n ∩ U2
s,i,m′ . This means

that∀w ∈ SF1,F2,n ∩ S,{
if w ∈Π1, thenw ∈ SF1,F2,n ∩U1

s,i,m and
if w ∈Π2, thenw ∈ SF1,F2,n ∩U2

s,i,m′ .
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Recall that a Voronoi sphere forSF1,F2,n is determined by two defining points and by the discussion
above, these two defining points must be inU1

s,i,m ∪U2
s,i,m′ for somem,m′. Hence the number of these

spheres, i.e.|YB1
s,i ,B

2
s,i
|, is bounded by the number of all possible 4-tuples of points ofSF1,F2,n such that

t

e

for arbitrarym,m′, 2 points are fromSF1,F2,n ∩U1
s,i,m and 2 points are fromSF1,F2,n ∩U2

s,i,m′ . This leads
automatically to

|YB1
s,i ,B

2
s,i
| �

∞∑
m,m′=0




No. of 4 tuples(w1
1,w

1
2,w

2
1,w

2
2)

such that

(
w1

1,w
1
2 ∈ SF1,F2,n ∩U1

s,i,m

w2
1,w

2
2 ∈ SF1,F2,n ∩U2

s,i,m′

)

 . (22)

For fixedm,m′, the number of such 4 tuples is equal to∣∣SF1,F2,n ∩U1
s,i,m

∣∣2 × ∣∣SF1,F2,n ∩U2
s,i,m′

∣∣2.
Also, sinceSF1,F2,n is distributed by a Poisson process, the distribution of|SF1,F2,n ∩ F1| is independen
of that of |SF1,F2,n ∩ F2|. Hence taking expectations over (22) yields

E
(|YB1

s,i ,B
2
s,i
|) �

∞∑
m,m′=0

E
(∣∣SF1,F2,n ∩U1

s,i,m

∣∣2 × ∣∣SF1,F2,n ∩U2
s,i,m′

∣∣2)

�
∞∑

m,m′=0

E
(∣∣SF1,F2,n ∩U1

s,i,m

∣∣2)×E
(∣∣SF1,F2,n ∩U2

s,i,m′
∣∣2)

�
[ ∞∑

m=0

E
(∣∣SF1,F2,n ∩U1

s,i,m

∣∣2)]×
[ ∞∑

m′=0

E
(∣∣SF1,F2,n ∩U2

s,i,m′
∣∣2)]. (23)

By Lemma 8, we have
∑∞

m=0 E(|SF1,F2,n ∩ U1
s,i,m|2) and

∑∞
m′=0 E(|SF1,F2,n ∩ U2

s,i,m′ |2) are both O(1),
automatically yielding

E
(|YB1

s,i ,B
2
s,j
|)= O(1). (24)

Plugging this into (21) we get

E
(|XF1,F2,n|

)= O(n), (25)

and are done. ✷
We now prove Lemma 7.

Proof of Lemma 7. We assume that we are given coordinate systems forΠk, k = 1,2, that satisfy the
following conditions (see Fig. 8(a)):

(i) the x-axis of Πk is Π1 ∩ Π2. It is oriented so thatF1 lies on the right-hand side of the positiv
direction ofΠ1 ∩ Π2. The origin is chosen so that every point ofF1 ∪ F2 has positivex-coordinate.
(ii) Among the two half planes ofΠk separated byΠ1 ∩ Π2, the one containingFk corresponds to
positivey-coordinate. Such a pair of coordinate systems can be chosen becauseΠ1 ∦ Π2 and the facts
thatF1 is totally contained in one of the closed halfspaces bounded byΠ2 andF2 is totally contained in
one of the closed halfspaces bounded byΠ1.
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the
(a) Coordinate system ofΠ1 andΠ2 (b) The boxesB1
s,i ⊂Π1 andB2

s,j ⊂Π2

Fig. 8. The case thatΠ1 ∦ Π2.

We partitionΠk into axis parallel squares

Bk
s,i =

{
(x, y) ∈Πk

∣∣∣∣ s√
n

� x � s + 1√
n

,
i√
n

� y � i + 1√
n

}
.

See Fig. 8(b). Setξ k
s,i to be the center of

Bk
s,i: ξ k

s,i =
{(

2s + 1

2
√

n
,

2i + 1

2
√

n

)
∈Πk

}
.

Let L be a constant large enough so thatL � max(Diameter(F1),Diameter(F2)) and for k = 1,2,
Fk ⊂ {(x, y) ∈Πk | 0� x � L, 0 � y � L}. In particular, this last implies that

for k = 1,2, Fk ⊆
�L√

n�⋃
s,i=0

Bk
s,i .

Note that for anyS(p, r) ∈ XF1,F2,n, NN(p,Π1) ∈ F1 and NN(p,Π2) ∈ F2. As in the proof of
Lemma 6, we analyzeXF1,F2,n by partitioning it into smaller sets indexed by the squares in which
NN(p,Πk) are located. LetYB1

s,i ,B
2
t,j

be the set of Voronoi spheresS(p, r) ∈XF1,F2,n such that

NN(p,Π1) ∈ B1
s,i and NN(p,Π2) ∈ B2

t,j .

In the proof of Lemma 6, whereΠ1 ‖ Π2, we strongly used the fact thatYB1
s,i ,B

2
t,j

=∅ unlesss = t and

i = j . Now thatΠ1 ∦ Π2, this is no longer true. Instead we use something weaker. Letp1 = NN(p,Π1)

andp2 = NN(p,Π2). Expressp1 = (x1, y1),p2 = (x2, y2) using the respective coordinate systems forΠ1

andΠ2 that were described above. In this notation, Property 2 states thatx1 = x2. Thus, by the definition
of theBk

s,i, we have that∀i, j , if s �= t thenYB1
s,i ,B

2
t,j

= ∅. This means that

E
(|XF1,F2,n|

)
�

�L√
n�∑

s=0

�L√
n�∑

i=0

�L√
n�∑

j=0

E
(|YB1

s,i ,B
2
s,j
|). (26)
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Hence we can computeE(|XF1,F2,n|) if we can calculateE(|YB1
s,i ,B

2
s,j
|) for arbitrarys, i andj . We start by

showing that∀s, i, j,E(|YB1
s,i ,B

2
s,j
|)= O(1) (this will be needed later) and then proceed to a more delicate

analysis based on taking the relationship between thes, i andj values into account.

For s, i ∈ {0,1, . . . , �L√

n�}, m � 0, let

Uk
s,i,m = {

u ∈Πk | u is on some circleCΠk
(q,α) with q ∈ Bk

s,i, α ∈ Im

andD◦
Πk

(q,α)∩ SF1,F2,n = ∅}.
Let S be a Voronoi sphere inYB1

s,i ,B
2
s,j

. As in the proof of Lemma 6, we have that there existm,m′ such

that the two defining points ofS must belong toU1
s,i,m ∪ U2

s,j,m′. Again as in Lemma 6,|YB1
s,i ,B

2
s,j
| is

bounded by the number of all possible 4-tuples of points ofSF1,F2,n such that for arbitrarym,m′, 2 points
are fromSF1,F2,n ∩U1

s,i,m and 2 points are fromSF1,F2,n ∩U2
s,j,m′ .

Thus

|YB1
s,i ,B

2
s,j
| �

∞∑
m,m′=0




No. of 4 tuples(w1
1,w

1
2,w

2
1,w

2
2)

such that

(
w1

1,w
1
2 ∈ SF1,F2,n ∩U1

s,i,m

w2
1,w

2
2 ∈ SF1,F2,n ∩U2

s,j,m′

)

 . (27)

For fixedm,m′, the number of such 4 tuples is equal to∣∣SF1,F2,n ∩U1
s,i,m

∣∣2 × ∣∣SF1,F2,n ∩U2
s,j,m′

∣∣2.
Following Eq. (23) we have

E
(|YB1

s,i ,B
2
s,j
|) �

∞∑
m,m′=0

E
(∣∣SF1,F2,n ∩U1

s,i,m

∣∣2 × ∣∣SF1,F2,n ∩U2
s,j,m′

∣∣2)

�
∞∑

m,m′=0

E
(∣∣SF1,F2,n ∩U1

s,i,m

∣∣2)×E
(∣∣SF1,F2,n ∩U2

s,j,m′
∣∣2)

�
[ ∞∑

m=0

E
(∣∣SF1,F2,n ∩U1

s,i,m

∣∣2)]×
[ ∞∑

m′=0

E
(∣∣SF1,F2,n ∩U2

s,j,m′
∣∣2)]. (28)

Applying Lemma 8 to both factors of the right-hand side then proves that

∀s, i, j, E
(|YB1

s,i ,B
2
s,j
|)= O(1). (29)

Plugging this into (26) yields thatE(|XF1,F2,n|)= O(n
3
2 ). To prove thatE(|XF1,F2,n|)= O(n), requires

a more delicate analysis. In (28) we fixeds, i, j and then summed overall possible values ofm,m′. We
now take advantage of the fact that Property 2 will enable us to restrict the range ofm′ that we have to
sum over for fixeds, i, j,m.

Let

V 2
s,i,j,m =



u ∈Π2

∣∣∣∣∣∣∣∣∣∣∣∣

u is on some circleCΠ2(q
′, β) s.t.D◦

Π2
(q ′, β)∩ SF1,F2,n = ∅

whereq ′, β satisfy that
(i) q ′ ∈ B2

s,j

(ii) there exists a sphereS = S(p, r) with
S ∩Π1 =DΠ1(q,α) andS ∩Π2 =DΠ2(q

′, β)

for someq ∈ B1
s,i, α ∈ Im




.
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Then, using the same type of argument as before,

∞∑
No. of 4 tuples(w1

1,w
1
2,w

2
1,w

2
2)( 1 1 1 )




f

t

ce
|YB1
s,i ,B

2
s,j
| �

m=0


such that

w1,w2 ∈ SF1,F2,n ∩Us,i,m

w2
1,w

2
2 ∈ SF1,F2,n ∩ V 2

s,i,j,m

 . (30)

Note that we now sum over only one indexm rather than two indicesm,m′. This is at the expense o
pushing the restricted range ofm′ into the definition ofV 2

s,i,j,m.
V 2

s,i,j,m only depends on the valuess, i, j,m and the point setSF1,F2,n ∩Π2. It is thereforeindependen
of SF1,F2,n ∩U1

s,i,m. Thus,

E
(|YB1

s,i ,B
2
s,j
|) �

∞∑
m=0

E
(∣∣SF1,F2,n ∩U1

s,i,m

∣∣2 × ∣∣SF1,F2,n ∩ V 2
s,i,j,m

∣∣2)

�
∞∑

m=0

E
(∣∣SF1,F2,n ∩U1

s,i,m

∣∣2)×E
(∣∣SF1,F2,n ∩ V 2

s,i,j,m

∣∣2). (31)

By definition SF1,F2,n ∩ Π1 has the same distribution asSF1,n. Thus we can apply Lemma 8. Sin
L > Diameter(F1), part (c) of Lemma 8 says that form >

√
nL+ 1, E(|SF1,F2,n ∩U1

s,i,m|2)= 0. Part (a)
of the lemma says that∀m, E(|SF1,F2,n ∩U1

s,i,m|2)= O(m4). Thus,

E
(|YB1

s,i ,B
2
s,j
|)= O

( �√n(L+1)�∑
m=0

m4E
(∣∣SF1,F2,n ∩ V 2

s,i,j,m

∣∣2)). (32)

It remains to calculateE(|SF1,F2,n ∩ V 2
s,i,j,m|2).

Let l be the line of intersectionl =Π1 ∩Π2 and note that, by Property 2,

β2 = d(q ′, l)2 + α2 − d(q, l)2.

Since j√
n

� d(q ′, l) � j+1√
n

, i√
n

� d(q, l) � i+1√
n

and m√
n

� α � m+1√
n

, it follows that√
j2 +m2 − (i + 1)2

n
� β �

√
(j + 1)2 + (m+ 1)2 − i2

n
. (33)

For∀u ∈ V 2
s,i,j,m,

d
(
ξ2
s,j , u

)
� d

(
ξ2
s,j , q

′)+ d(q ′, u)

� 1√
n
+
√

(j + 1)2 + (m+ 1)2 − i2

n
=
√

(j + 1)2 + (m+ 1)2 − i2 + 1√
n

by (33),

and if j � i + 3, then

d
(
ξ2
s,j , u

)
�
∣∣d(ξ2

s,j , q
′)− d(u, q ′)

∣∣= d(u, q ′)− d
(
ξ2
s,j , q

′) by j � i + 3,

>

√
j2 +m2 − (i + 1)2

√
n

− 1√
n
=
√
j2 +m2 − (i + 1)2 − 1√

n
by (33).

Hence∀j � i + 3,
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V 2
s,i,j,m ⊆DΠ2

(
ξ2
s,j ,

√
(j + 1)2 + (m+ 1)2 − i2 + 1√

n

)∖
DΠ2

(
ξ2
s,j ,

√
j2 +m2 − (i + 1)2 − 1√

n

)
,

(34)
i.e.,V 2
s,i,j,m is contained in the given annulus. Also note that

DΠ2

(
ξ2
s,j ,

√
j2 +m2 − (i + 1)2 − 1√

n

)
⊆D◦

Π2
(q ′, β), ∀q ′ ∈ B2

s,j , ∀β satisfying (33). (35)

Let

A′
m =DΠ2

(
ξ2
s,j ,

√
j2 +m2 − (i + 1)2 − 1√

n

)
and

B′
m =DΠ2

(
ξ2
s,j ,

√
(j + 1)2 + (m+ 1)2 − i2 + 1√

n

)∖
DΠ2

(
ξ2
s,j ,

√
j2 +m2 − (i + 1)2 − 1√

n

)
.

Using (34) and (35), we can write analogs of (17), (18) and (19).

E
(∣∣SF1,F2,n ∩ V 2

s,i,j,m

∣∣2) � E
(|SF1,F2,n ∩ B′

m|2
)× Pr(SF1,F2,n ∩A′

m = ∅)
� c
(
E
(|SF1,F2,n ∩ B′

m|
))2 × Pr(SF1,F2,n ∩A′

m = ∅)
= c
(
nArea(B′

m ∩ F2)
)2 × e−nArea(A′

m∩F2). (36)

To evaluate the right-hand side of the bottom term, we will first need to calculatenArea(B′
m ∩ F2).

Noting that

∀a, b, c > 0,
√
a2 + b2 − c2 �

√
a2 + b2 + c2 � (a + b + c),

we see that

Area(B′
m ∩ F2) = π

n

((√
(j + 1)2 + (m+ 1)2 − i2 + 1

)2 − (√j2 +m2 − (i + 1)2 − 1
)2)

= π

n

(
2i + 2j + 2m+ 3+ 2

√
(j + 1)2 + (m+ 1)2 − i2 + 2

√
j2 +m2 − (i + 1)2

)
� π

n

(
2i + 2j + 2m+ 3+ 2(j + 1+m+ 1+ i)+ 2(j +m+ i + 1)

)
� π

n
6(i + j +m+ 2).

Thus we have

nArea(B′
m ∩ F2) � n

6π(i + j +m+ 2)

n
= O(i + j +m+ 2). (37)

Next note that from Lemma 4, there existσ,K dependent only uponF2 such that if(√
j2 +m2 − (i + 1)2 − 1

)
/
√

n � K,

then

nArea(A′
m ∩ F2) � nσ

(√
j2 +m2 − (i + 1)2 − 1√

n

)2

,
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while if (
√

j2 +m2 − (i + 1)2 − 1)/
√

n � K , then

nArea(A′
m ∩ F2) � σK2n.
If we restrict ourselves toj � i + 3 and take a slightly smallerσ , then we have that

e−nArea(A′
m∩F2) =




O(e−σ(j2+m2−i2)), if
√

j2+m2−(i+1)2−1√
n

� K,

O(e−σK2n), if
√

j2+m2−(i+1)2−1√
n

� K.

(38)

Assumingj � i + 3 we can use Lemma 8, (36), (37) and (38) to evaluate (32). Set

T = min
(⌊√

(K
√

n+ 1)2 + (i + 1)2 − j2
⌋
, �√nL+ 1�

)
.

Then

E
(|YB1

s,i ,B
2
s,j
|) = O

(
T∑

m=0

m4(i + j +m+ 2)2e−σ(j2+m2−i2)

)

+ O

( √
nL+1∑

m=T+1

m4(i + j +m+ 2)2e−σK2n

)
.

Noting that ∀i, j,m, (i + j + m + 2) � (i + j)(m + 2),
∑∞

m=0 m
4(m + 2)2e−σm2 = O(1), and∑√

nL+1
m=0 m4(m+ 2)2e−σK2n/2 = O(1), we find that forj � i + 3,

E
(|YB1

s,i ,B
2
s,j
|)= O

(
(i + j)2e−σ(j2−i2)

)+ O
(
(i + j)2e−σK2n/2). (39)

Now we will prove that

∀s,
�L√

n�∑
i=0

�L√
n�∑

j=0

E
(|YB1

s,i ,B
2
s,j
|)= O

(√
n
)
:

From (29) and (39), we have

�L√
n�∑

i=0

�L√
n�∑

j�i

E
(|YB1

s,i ,B
2
s,j
|) =

�L√
n�∑

i=0

i+2∑
j=i

E
(|YB1

s,i ,B
2
s,j
|)+ �L√

n�∑
i=0

�L√
n�∑

j�i+3

E
(|YB1

s,i ,B
2
s,j
|)

= O
(√

n
)+ O

( �L√
n�∑

i=0

�L√
n�∑

j�i+3

(i + j)2e−σ(j2−i2)

)
+ O(1)

= O
(√

n
)
. (40)

The last equality comes from the fact that

∞∑
i=0

∞∑
j�i+3

(i + j)2e−σ(j2−i2) = O(1).



M.J. Golin, H.-S. Na / Computational Geometry 25 (2003) 197–231 221

Now note that in the proof so far we have arbitrarily chosen which face isF1 and which face isF2. If we
swapF1 andF2 in the proof and also swapi andj we would derive

�L√
n� �L√

n�

ed
ts

.,

ess’ is
∑
j=0

∑
i�j

E
(|YB2

s,j ,B
1
s,i
|)= O

(√
n
)
. (41)

But YB1
s,i ,B

2
s,j

= YB2
s,j ,B

1
s,i

, so this just says

�L√
n�∑

i=0

�L√
n�∑

j�i

E
(|YB1

s,i ,B
2
s,j
|)= O

(√
n
)
.

Thus

�L√
n�∑

i=0

�L√
n�∑

j=0

E
(|YB1

s,i ,B
2
s,j
|) �

�L√
n�∑

i=0

�L√
n�∑

j�i

E
(|YB1

s,i ,B
2
s,j
|)+ �L√

n�∑
i=0

�L√
n�∑

j�i

E
(|YB1

s,i ,B
2
s,j
|)

= O
(√

n
)+ O

(√
n
)= O

(√
n
)
.

Therefore (26) can be rewritten as

E
(|XF1,F2,n|

)
�

�L√
n�∑

s=0

�L√
n�∑

i=0

�L√
n�∑

j=0

E
(|YB1

s,i ,B
2
s,j
|)= �L√

n�∑
s=0

O
(√

n
)= O(n), (42)

and we are done. ✷

5. Bounding the number of logn√
n

-good Type-III spheres

In this section we prove (6), i.e.,

E
(
No. of logn√

n
-good Type-III spheres

)= o(n).

We do this by splitting it into two cases. In Section 5.1 we show that the expected number oflogn√
n

-good
Type-III sphereswhose centers are outside or onP is o(n). In Section 5.2 we show that the expect
number oflogn√

n
-good Type-III sphereswhose centers are insideP is o(n). Combining these two resul

will prove (6).
Before starting we note again that we are only countinglogn√

n
-good Type-III spheres in this section, i.e

we are not assuming that the spheres areVoronoispheres.
The reason for setting up our analysis to allow us to dispense with the assumption of ‘Voronoin

that this makes the analysis much easier. This was the motivation for introducing the concepts ofx-good
andx-bad spheres.

5.1. Sphere centerp outside or onP

If p is outside or onP , let p′ = NN(p,P). The convexity ofP guarantees thatp′ is unique. Let
S = S(p, r) be alogn√

n
-good Type-III sphere with two points ofSn on its boundary. Forp′ /∈ Skel(P), letF
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s that
ed
Fig. 9. Case 1 forx-good Type-III spheres withp outside or onP . Notice that the intersection ofS with P is a disk completely
contained inF . If the intersection contains a part of some other face then the intersection disk onF would have to grow to be
so big thatS would no longer bex-good. This is a consequence ofp′ being at least distancec2x from the border.

be the unique face ofP such thatp′ ∈ F andΠ is F ’s supporting plane. Note that in this caseB = S ∩Π

is a closed disk onΠ with centerp′ ∈ F ; let r ′ be the radius of this disk. ThenB =DΠ(p′, r ′).
Now set c2 = 2

c1
√

π
where c1 is the constant defined in Lemma 5. Ifp′ /∈ Bd(c2 logn/

√
n), then

d(p′,Skel(P)) > c2 logn/
√

n. Thus Lemma 5 states that ifS intersects any other face ofP then

DΠ

(
p′,

1√
π

logn√
n

)
⊆ S ∩P.

Since

Area

(
DΠ

(
p′,

1√
π

logn√
n

))
= log2n

n
,

this implies that ifp′ /∈ Bd(c2 logn/
√

n ) andS intersects some other face ofP besidesF thenS is a
logn√

n
-bad sphere.

Our approach is to divide the problem into three cases.

Case1.p′ /∈ Bd( c2 logn√
n

) (Fig. 9).

Case2.p′ ∈ Bd( c2 logn√
n

) butp′ /∈ Skel(P) (Fig. 10).
Case3.p′ ∈ Skel(P) (Fig. 11).

We now work through the cases.
Case1.p′ /∈ Bd( c2 logn√

n
).

Let p′ /∈ Bd(c2 logn/
√

n). Since we are only counting good spheres, the discussion above show
S ∩P ⊆ F , i.e.,S does not intersect any other face ofP . But thenS is a Type-I sphere and does not ne
to be examined here.

Case2.p′ ∈ Bd(c2 logn/
√

n) butp′ /∈ Skel(P).
This case is illustrated by Fig. 10. The analysis is based on the following lemma:
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n

Fig. 10. Case 2 forx-good Type-III spheres withp outside or onP . In this case,p′ ∈ Bd(c2x) butp′ /∈ Skel(P). Letq ∈ Skel(P)

be a nearest neighbor top′ on Skel(P). Notice that, in this example, the center of the disk formed by the intersection ofS with
the supporting plane of the second face (i.e. the face not containingp′) is not on that face.

(a)p′ = NN(p,P) is on an edgee (b) p′ = NN(p,P) is a vertexv

Fig. 11. Case 3 forx-good Type-III spheres withp outside or onP .

Lemma 9. If p′ ∈ Bd(c2 logn/
√

n) but p′ /∈ Skel(P), then∃q on some edge ofP , q dependent uponp,
such that ifu ∈ S ∩ P then d(u, q) � c3

logn√
n

where c3 = c0 + c2 (c0 is the constant introduced i
Definition9).

Proof. Let r andr ′ be, respectively, the radii ofS andB. The logn√
n

-goodness ofS implies r ′ < c0
logn√

n

since otherwise, from Definition 9,

Area(S ∩P) � Area
(
DΠ(p′, r ′)∩ F

)
�
(

logn√
n

)2

,
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contradicting the definition of a good sphere. Letq ∈ Skel(P) be a nearest neighbor top′ on Skel(P).
Sincep′ ∈ Bd(c2 logn/

√
n), d(p′, q) � c2

logn√
n

.
We will now show that foru ∈ S ∩P , d(u,p′) � r ′. Then the lemma will follow since

nt

by

e

from
d(u, q) � d(u,p′)+ d(p′, q) � r ′ + c2
logn√

n
� (c0 + c2)

logn√
n

= c3
logn√

n
,

wherec3 = c0 + c2.
First note that sincep is outsideP , the convexity ofP andp′ = NN(p,P) together imply� pp′u �

90◦. The law of cosines states

d(p′, u)2 + d(p,p′)2 − d(p,u)2 = 2d(p′, u)d(p,p′)cos� pp′u.

Thus, using the fact thatd(p,p′)2 + (r ′)2 = r2,

d(p′, u)2 = d(p,u)2 − d(p,p′)2 + 2d(p′, u)d(p,p′)cos� pp′u
� r2 − d(p,p′)2 + 2d(p′, u)d(p,p′)cos� pp′u
= (r ′)2 + 2d(p′, u)d(p,p′)cos� pp′u � (r ′)2,

sod(u,p′) � r ′ and we are done. ✷
We can use this lemma to show that the expected total number of combinatorially differentlogn√

n
-good

Type-III spheresS(p, r) with p′ ∈ Bd(c2 logn/
√

n ) butp′ /∈ Skel(P) is o(n):
Let L be the total length of all of the edges ofP . We partition up the edges ofP into O(L/

logn√
n
) line

segments each of length� logn√
n

, e.g., all segments will have lengthlogn√
n

except for, possibly, one segme
per edge (which contains one of that edge’s endpoints).

Now let s be any edge segment andN(s) = {u ∈ P: d(u, s) � c3
logn√

n
} be the set of all points onP

within distancec3
logn√

n
of s. For any sphere centerp let q be the corresponding edge point defined

Lemma 9 ands the segment thatq belongs to. From Lemma 9 and the definition ofN(s), the two points
of Sn that define alogn√

n
-good sphereS(p, r) must be inN(s) so thetotal number of combinatorially

different logn√
n

-good spheresS(p, r) such thatp correspond to some pointq ∈ s is bounded from abov

by |N(s) ∩ Sn|2.
Now

Area(N(s)) � c′3

(
logn√

n

)2

= c′3
log2 n

n

for some constantc′3 dependent only uponP . Plugging into the Poisson distribution (with raten) we
find from Lemma 3 thatE(|N(s) ∩ Sn|2) = O(log4n). Thus, for a fixed segments on Skel(P), the
expected total number oflogn√

n
-good Type-III spheresS(p, r) such that NN(p,P) = p′ /∈ Skel(P) and

NN(p′,Skel(P)) ∈ s is O(log4n).
But everylogn√

n
-good Type-III sphereS(p, r) with NN(p,P)= p′ /∈ Skel(P) must havesomeintervals′

such that NN(p′,Skel(P)) ∈ s′. So the total expected number of spheres of this type is bounded
above by the number of such segments times O(log4n). That is, O(L/

logn√
n
)×O(log4 n)= O(

√
n log3n)=

o(n). This shows that the expected total number oflogn√
n

-good Type-III spheresS(p, r) with p′ /∈ Skel(P)

is o(n) and we have completed Case 2.
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Fig. 12. Good Type-III sphereS with p outsideP . In this case no matter how large the radius ofS is, the area of the intersectio
of S with P can be arbitrarily small. This means that even ifS is a good sphere, it is quite possible that the points inS ∩ F

are very far away fromp′′, the center of the diskB = S ∩Π . For example, in this figure, we are not able to boundd(p′, u) for
u ∈ B ∩ F .

Case3.p′ ∈ Skel(P) (Fig. 11).
Note that this case differs in a major way from that of Case 2. This is because, unlike in Case

line pp′ here is not necessarily perpendicular to the planeΠ . This means that NN(p,Π) �= p′ sop′ is
not the center of the diskB = S ∩ Π . Consequently, even ifS is logn√

n
-good it is quite possible that th

points inS ∩ F are very far away fromp′′, the center ofB. This can occur because, even ifB is quite
large, the intersectionB∩F can be quite small. This, for example, means that we can not use the tr
inequality in the same way as we did in Case 2, since we will not be able to boundd(p′, u) for u ∈ B∩F .
See Fig. 12.

To sidestep the difficulties caused by these differences we introduce the following definition:

Definition 13. Forp′ ∈ Skel(P) define

M(p′) = {q ∈P: q ∈ S(p, r) for somelogn√
n

-good sphereS(p, r)

such thatp is outsideP andp′ = NN(p,P)
}
.

For s a segment of an edge in Skel(P),

M(s) =
⋃
p′∈s

M(p′).

These definitions will be useful since they will permit us to restrict the number of Voronoi sp
associated with a segment; by partitioning Skel(P) into a small number of appropriately sized segme
we will be able to bound the expected number of spheres in Case 3.

Our goal will be to prove that Area(M(s)) is small. If we can do this then we will be able to u
the technique at the end of Case 2 to show that the expected number oflogn√

n
-good Type-III spheres with

p′ ∈ Skel(P) is small. The important thing to keep in mind when reading the lemmas and proofs
points inM(s) might actually be quite far froms. We will therefore need something stronger than
triangle inequality to reach our goal. This will be:
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Lemma 10. Let s be a segment of an edgee in Skel(P) with length(s) � logn√
n

. Then

( ) log3n

is that

lemma

nt

y

by the

d total
s

f

Area M(s) � c4
n

for somec4 dependent only uponP .

The proof of this lemma is a relatively straightforward but quite long case-by-case analys
examines the different possible ways in which a sphereS = S(p, r) with p outsideP and NN(p,P) ∈
Skel(P) can intersectP . The complete proof can be found in [10].

Using an analysis very similar to that performed at the end of Case 2 we will now see why this
implies that the expected number oflogn√

n
-good Type-III spheresS(p, r) with p′ = NN(p,P) ∈ Skel(P)

is o(n).
Let L be the total length of all of the edges ofP . We partition up the edges ofP into O(L/

logn√
n
) line

segments each of length� logn√
n

, e.g., all segments will have lengthlogn√
n

except for, possibly, one segme
per edge (which contains one of that edge’s endpoints).

For any sphere centerp, let p′ = NN(p,P) ∈ Skel(P) and lets be the segment such thatp′ ∈ s. By
the definition ofM(s), the two points ofSn that define alogn√

n
-good sphereS(p, r) must be inM(s),

so thetotal number of logn√
n

-good spheresS(p, r) such that NN(p,P) = p′ is bounded from above b

|M(s) ∩ Sn|2.
Lemma 10 tells us that Area(M(s)) � c4

log3 n

n
for some constantc4 dependent only uponP . Plugging

into the Poisson distribution (with raten) we find from Lemma 3 thatE(|M(s)∩Sn|2)= O(log6n). Thus,
for a fixed segments on Skel(P), the expected total number oflogn√

n
-good Type-III spheresS(p, r) such

that NN(p,P)= p′ ∈ s is O(log6n).
But every logn√

n
-good Type-III sphereS(p, r) with NN(p,P) ∈ Skel(P) must have NN(p,P) ∈ s′ for

someinterval s′, so the total expected number of spheres of this type is bounded from above
number of such segments times O(log6n). That is, O(L/

logn√
n
)× O(log6 n)= O(

√
n log5 n)= o(n). This

shows that the expected total number of combinatorially differentlogn√
n

-good Type-III spheresS(p, r)

with NN(p,P) ∈ Skel(P) is o(n). This concludes the analyses of Case 3.
Combining the proven o(n) bounds for Case 1, Case 2 and Case 3, we see that the expecte

number oflogn√
n

-good Type-III spheresS(p, r) with p outside or onP is o(n) and we are done with thi
part.

5.2. Sphere centerp insideP

We have just analyzed the number oflogn√
n

-good Type-III spheresS = S(p, r) whenp is outsideor
on P . In this subsection we analyze the case whenp is insideP . In this case, from the definition o
Type-III spheres, we know that∃ a faceF of P , such thatF ∩ S �= ∅ but p′′ = NN(p,Π) is not inF ,
whereΠ is the supporting plane ofF .

The lemma we use here is
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(a)q = NN(p,F) is on the edgee (b) q = NN(p,F) is a vertex

Fig. 13. Type-III spheresS = S(p, r) with p insideP . Note that the nearest neighbor ofp in F is q which is on the boundary
of F . The line segmentpq is not perpendicular toF which implies that the center of the intersection disk ofS with the
supporting plane ofF is not inF .

Lemma 11. Let S = S(p, r) be a logn√
n

-good sphere withp insideP . Furthermore, suppose∃ a faceF

of P , such thatF ∩ S �= ∅ butp′′ = NN(p,Π) is not inF , whereΠ is the supporting plane ofF . Then
∃q on the boundary ofF such that,∀u ∈ S(p, r), d(q, u) � c5

logn√
n

, wherec5 is dependent only uponP .

The proof of this lemma involves showing that ifS(p, r) satisfies the given conditions thenr is actually
some small multiple oflogn√

n
, so the distance betweenq, the nearest point top on F , and any point in

S(p, r) is � c5
logn√

n
. As in the proof of Lemma 10, the proof of Lemma 11 is a relatively straightforw

but quite long case-by-case analysis that examines the different possible ways in which a sphe
given type can intersectP . The complete proof can again be found in [10].

Now, given Lemma 11, we can useexactly the same type of segment partitioning analysis as
employed at the end of Case 2 of Section 5.1 (note the similarity of Lemma 11 to Lemma 9) to
that the expected number oflogn√

n
-good Type-III spheresS(p, r) with p insideP is o(n). Combined with

the previous subsection this shows that total expected number of all combinatorially differentlogn√
n

-good
Type-III spheres is o(n) and we are done.

6. Review and open problems

In this paper we proved that if pointsSn were chosen from the surface of a convex polytopeP with a
Poisson process of raten then the expected complexity of the Voronoi diagram ofSn, i.e., the expected
number of Voronoi vertices, edges and faces, is O(n). Equivalently, the expected complexity of the du
of the Voronoi diagram, the Delaunay triangulation, is O(n). This means that the expected number
Delaunay tetrahedra, faces and edges is O(n).

As stated in the first section, for reasons of mathematical simplicity we proved our result f
Poisson distribution but the result will still hold if then points are chosen IID from the uniform
distribution over the surface ofP . That is, forn points chosen IID from the uniform distribution overP
the expected complexity of their Voronoi diagram is also O(n).



228 M.J. Golin, H.-S. Na / Computational Geometry 25 (2003) 197–231

To the best of our knowledge this is the first analysis of the expected complexity of the 3-dimensional
Delaunay triangulation of points chosen from any 2-dimensional surface. In fact, the problem of
analyzing the complexity in average or worst case for such points, seems quite a new problem with the
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only known results being the very recent ones of Attali and Boissonnat [1] and Erickson [8] who d
the worst case complexity whenn points are ‘well-sampled’ from certain types of surfaces. Attali
Boissonnat show that in their case the complexity is O(n7/4). Erickson proves that there is a set ofn

points on the cylinder with Voronoi complexity�(n3/2).
This paucity of research is probably due to the fact that it is only relatively recently that the pra

problem of constructing Voronoi diagrams for such point sets has become important in the g
geometric community, e.g. for surface reconstruction and modelling. The lack of work in this
means that most problems remain open. One very general problem would be,givenM, a 2-dimensional
manifold in3-dimensional space, choose a set of points from the Poisson distribution with raten overM
or a set ofn points IID from the uniform distribution overM. Give an expression for how the complex
of the Voronoi diagram grows as a function ofn. Of course, this growth would depend upon the particu
manifoldM; an interesting problem would be to attack this problem for different classes ofM. In this
paper we solved this problem for the classM of boundaries of convex polytope. Another extens
would be to fixM, and do the analysis for different distributions overM that are not uniform bu
depend somehow on features ofM, e.g., its curvature.

We end with a few more comments on our results. Our analysis was only of theexpectedcomplexity
of the Voronoi diagram. It said nothing about howconcentratedthe complexity is around its O(n) mean.
We state without proof the fact that it is possible to straightforwardly modify our results to show
points are chosen from the Poisson distribution with raten over convex polytopeP thenthe probability
that the complexity of the Voronoi diagram is greater thann log2n is n−�(logn). (The n log2n is quite
loose and it is very possible that it can be improved. We do not prove this concentration theore
because this paper is already quite long and introducing this new analysis would not introduce a
techniques or ideas, just many new long equations.)

Finally, we discuss a possible different approach towards solving our problem. An upper leve
of our analysis is that we bounded the complexity of the Voronoi diagram of point setSn by partitioning
the Voronoi spheres into two parts and bounding each part separately. The first part consisted of
whose centers are outside the polytope or inside the polytope but very close to the edges. We sho
the expected number of such spheres is o(n), i.e. very small. The second part consisted of those sph
whose centers were inside the polytope and not that close to the edges. The number of such sph
the dominant term. We analyzed this number by working backwards, and identifying where such
could intersect the polytope on a particular face. Given the intersection region we then identified
points, both on that face and other faces, could be on the border of a sphere without causing the
intersection withP to be so large that it must contain some points and therefore not be a Voronoi s

Although we did not mention it at the time, there is another way of attempting to attack the enum
of the second type of Voronoi spheres. Letp be a point inside ofP andrp = d(p,P). TheMedial Axis
of polytopeP is the set of pointsp insideP such that the sphereS(p, rp) touches at least two poin
of P . Intuitively, if a pointp is very far from the medial axis then any sphereS(p, r) that intersects two
or more faces ofP would have to intersect at least one of them in a large area and therefore is
to contain points fromSn so the sphere is not a Voronoi sphere. Thus, at least intuitively, the cent
Voronoi spheres should be concentrated along the medial axis. This phenomenon is actually ob
in Fig. 1.
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Another way of attempting to enumerate the second type of Voronoi spheres might be to use the above
observation as follows: (i) prove that the probability of a Voronoi sphere center being far from the medial
axis is negligible. Then (ii) identify the medial axis ofP , partition it into small regions, and for each

and (iii)
eful in
Attali

ry that
nnat,

neron,
nk the

l

ve

here
region enumerate the expected number of Voronoi spheres whose centers are near that region
add up all of these values. While we did not employ this approach in this paper it might be us
extensions in which the manifoldM is smooth and our techniques can not be used. We note that
and Boissonnat have already used a Medial axis based approach in [1] to achieve their O(n7/4) bound.
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Appendix A. Proof of Lemma 1

In this appendix we sketch the proof of Lemma 1 which states that ifSn is a set of points chosen from
the standard 2-dimensional Poisson distribution onP with raten then

Pr
(
there exists alogn√

n
-badcombinatorial Voronoi sphere ofSn

)= n−�(logn). (43)

Recall that in this equationVoronoi sphererefers to a combinatorial sphereX (s, t) and not a physica
sphere.

We will assume that Area(P) = 1; if not, then scalingP so that its area is 1 will enable us to pro
the lemma.

Until stated otherwise we will change our distribution and assume thatSn = {p1,p2, . . . , pn} aren

points chosen IID from the uniform distribution overP . For distinct 4-tuplesi1, i2, i3, i4 ∈ {1,2, . . . , n},
let S(pi1,pi2,pi3,pi4) be the unique sphere that has thepij on its boundary. Then set

A(pi1,pi2,pi3,pi4)= Area
(
S(pi1,pi2,pi3,pi4)∩P

)
.

The probability of 5 points from this distribution being cospherical is 0 so, with probability 1, sp
S(pi1,pi2,pi3,pi4) is a Voronoi sphere if and only ifS(pi1,pi2,pi3,pi4)∩ (Sn \ {pi1,pi2,pi3,pi4})= ∅.

Note that the eventA(pi1,pi2,pi3,pi4) � log2 n

n
is measurable so

Pr
(
S(pi1,pi2,pi3,pi4) is a Voronoi sphere andA(pi1,pi2,pi3,pi4) � log2 n

n

)
= Pr

(
A(pi1,pi2,pi3,pi4) � log2 n

n

)
× Pr

(
S(pi1,pi2,pi3,pi4) is a Voronoi sphere|A(pi1,pi2,pi3,pi4) � log2 n

n

)
� Pr

(
S(pi1,pi2,pi3,pi4) is a Voronoi sphere|A(pi1,pi2,pi3,pi4) � log2 n

n

)
�
(
1− log2 n

n

)n−4 = n−�(logn).
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Let A be the event that∃i1, i2, i3, i4 ∈ {1,2, . . . , n} such thatS(pi1,pi2,pi3,pi4) is a Voronoi sphere

and A(pi1,pi2,pi3,pi4) � log2 n

n
. Summing overall

(
n

4

)
possible choices ofpi1,pi2,pi3,pi4, we have

proven that

eres

es

d

d
n

anuary

edral
nnat/.
.

Pr(A) �
(
n

4

)
n−�(logn) = n−�(logn).

Now supposethere exists alogn√
n

-bad combinatorial Voronoi sphere ofSn, i.e., ∃s, t ∈ Sn such that

X (s, t) is a logn√
n

-bad combinatorial Voronoi sphere. By the definition of (combinatorial) Voronoi sph
X (s, t) corresponds to some faceF in the Voronoi diagram ofSn. Let v be some vertex ofF in
the Voronoi diagram (at least one suchv must exist) and setr = d(v, s) = d(v, t). By the definition
of Voronoi vertices there must be two other pointss′, t ′ ∈ Sn such thatd(v, s′) = d(v, t ′) = r and
S(s, t, s′, t ′) = S(v, r) is a physical Voronoi sphere, i.e., does not contain any points ofSn in its
interior.4 ThenS(v, r) ∈ F(s, t). SinceX (s, t) is a logn√

n
-bad combinatorial Voronoi sphere, this impli

S(s, t, s′, t ′) = S(v, r) is a physicallogn√
n

-bad Voronoi sphere, i.e.,S(s, t, s′, t ′) is a Voronoi sphere an

A(s, t, s′, t ′) � log2 n

n
. This then implies that eventA is true.

We have just shown that the eventthere exists alogn√
n

-badcombinatorial Voronoi sphere ofSn implies

that eventA is true. Since Pr(A)= n−�(logn) we have therefore just proven (43) forn points chosen IID
from the uniform distribution overP .

To prove (43) forSn chosen from the Poisson process with raten overP we note that, conditione
on the eventSn = m, Sn has the same distribution asm points chosen IID from the uniform distributio
overP . This means that, withSn chosen from the Poisson process we have

Pr
(
there exists alogn√

n
-badcombinatorial Voronoi sphere ofSn

)
=
∑
m�0

Pr(Sn =m)m−�(logm) = n−�(logn),

where the last equality comes from the fact that

Pr

(
|Sn − n| � n

2

)
= n−�(logn).

The proof is completed. ✷
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