
1-1

Shannon Coding for the Discrete Noiseless
Channel and Related Problems

Sept 16, 2009

Man DU Mordecai GOLIN Qin ZHANG

Barcelona

HKUST

2-1

This talk’s punchline: Shannon Coding can be
algorithmically useful

Shannon Coding was introduced by Shan-
non as a proof technique in his noiseless
coding theorem

Shannon-Fano coding is what’s primarily
used for algorithm design

Overview

3-1

Outline

Huffman Coding and Generalizations

A “Counterexample”

New Work

Previous Work & Background

Open Problems

4-1

Prefix-free coding

Let Σ = {σ1, σ2, . . . , σr} be an encoding alphabet.
Word w ∈ Σ∗ is a prefix of word w′ ∈ Σ∗ if w′ = wu
where u ∈ Σ∗ is a non-empty word. A Code over Σ
is a collection of words C = {w1, . . . , wn}.

4-2

Prefix-free coding

Let Σ = {σ1, σ2, . . . , σr} be an encoding alphabet.
Word w ∈ Σ∗ is a prefix of word w′ ∈ Σ∗ if w′ = wu
where u ∈ Σ∗ is a non-empty word. A Code over Σ
is a collection of words C = {w1, . . . , wn}.

Code C is prefix-free if for all i 6= j wi is not a prefix of wj .

{0, 10, 11} is prefix-free. {0, 00, 11} isn’t.

4-3

Prefix-free coding

Let Σ = {σ1, σ2, . . . , σr} be an encoding alphabet.
Word w ∈ Σ∗ is a prefix of word w′ ∈ Σ∗ if w′ = wu
where u ∈ Σ∗ is a non-empty word. A Code over Σ
is a collection of words C = {w1, . . . , wn}.

Code C is prefix-free if for all i 6= j wi is not a prefix of wj .

{0, 10, 11} is prefix-free. {0, 00, 11} isn’t.

0 1

0 0

0 0

1

11

1

w1

w2 w3

w4

w5 w6

w1 = 00
w2 = 010
w3 = 011

w4 = 10
w5 = 110
w6 = 111

A prefix-free code can be modelled as (leaves of) a tree

5-1

The prefix coding problem

Define cost(C) =
∑n
i=1 cost(wi)pi

Let cost(w) be the length or number of characters
in w. Let P = {p1, p2, . . . , pn} be a fixed discrete
probability distribution (P.D.).

5-2

The prefix coding problem

Define cost(C) =
∑n
i=1 cost(wi)pi

Let cost(w) be the length or number of characters
in w. Let P = {p1, p2, . . . , pn} be a fixed discrete
probability distribution (P.D.).

The prefix coding problem, sometimes known as the
Huffman encoding problem is to find a prefix-free code
over Σ of minimum cost.

5-3

The prefix coding problem

Define cost(C) =
∑n
i=1 cost(wi)pi

Let cost(w) be the length or number of characters
in w. Let P = {p1, p2, . . . , pn} be a fixed discrete
probability distribution (P.D.).

The prefix coding problem, sometimes known as the
Huffman encoding problem is to find a prefix-free code
over Σ of minimum cost.

0 1

0 0

0 0

1

11

1

1
4

1
8

1
8

1
4

1
8

1
8

Equivalent to finding tree with
minimum external path-length

5-4

The prefix coding problem

Define cost(C) =
∑n
i=1 cost(wi)pi

Let cost(w) be the length or number of characters
in w. Let P = {p1, p2, . . . , pn} be a fixed discrete
probability distribution (P.D.).

The prefix coding problem, sometimes known as the
Huffman encoding problem is to find a prefix-free code
over Σ of minimum cost.

0 1

0 0

0 0

1

11

1

1
4

1
8

1
8

1
4

1
8

1
8

Equivalent to finding tree with
minimum external path-length

2×
[
1
4

+ 1
4

]
+ 3×

[
1
8

+ 1
8

+ 1
8

+ 1
8

]

6-1

The prefix coding problem

Useful for Data transmission/storage.

Modelling search problems

Very well studied

7-1

What’s known

Sub-optimal codes

Shannon coding: (from noiseless coding theorem)
There exists a prefix-free code with word lengths
`i = d− logr pie, i = 1, 2, . . . , n.

Shannon-Fano coding: probability splitting
Try to put ∼ 1

r of the probability in each node.

7-2

What’s known

Sub-optimal codes

Shannon coding: (from noiseless coding theorem)
There exists a prefix-free code with word lengths
`i = d− logr pie, i = 1, 2, . . . , n.

Shannon-Fano coding: probability splitting
Try to put ∼ 1

r of the probability in each node.

Both methods have cost within 1 of optimal

7-3

What’s known

Huffman 1952: a well-know O(rn log n)-time greedy-
algorithm (O(rn)-time if the pi are sorted in non-
decreasing order)

Optimal codes

Sub-optimal codes

Shannon coding: (from noiseless coding theorem)
There exists a prefix-free code with word lengths
`i = d− logr pie, i = 1, 2, . . . , n.

Shannon-Fano coding: probability splitting
Try to put ∼ 1

r of the probability in each node.

Both methods have cost within 1 of optimal

8-1

What’s not as well known

• The fact that the greedy Huffman algorithm “works”
is quite amazing

• Almost any possible modification or generalization to
the original problem causes greedy to fail

• For some simple modifications, we don’t even have
polynomial time algorithms.

9-1

Generalizations: Min cost prefix coding

Unequal-cost coding

Allow letters to have different costs, say, c(σj) = cj .

Discrete Noiseless Channels (in Shannon’s original paper)

This can be viewed as a strongly connected aperiodic directed
graph with k vertices (states).

1. Each edge leaving a vertex is labelled by an encoding letter
σ ∈ Σ, with at most one σ-edge leaving each vertex.

2. An edge labelled by σ leaving vertex i has cost ci,σ.

Language restrictions

Require all codewords to be contained in some given Language L

10-1

Generalizations: Prefix-free coding

With Unequal-cost letters

a,1

a,1
a,1

b,2
b,2

b,2

2/6, aaa, 3

1/6, aab, 4
1/6, ab, 3

2/6, b, 2
c1 = 1; c2 = 2. pi, wi, c(wi)

10-2

Generalizations: Prefix-free coding

With Unequal-cost letters

a,1

a,1
a,1

b,2
b,2

b,2

2/6, aaa, 3

1/6, aab, 4
1/6, ab, 3

2/6, b, 2
c1 = 1; c2 = 2.

Corresponds to different letter transmission/storage costs, e.g.,
the Telegraph Channel.
Also, to different costs for evaluating test outcomes in, e.g.,
group testing.

pi, wi, c(wi)

10-3

Generalizations: Prefix-free coding

With Unequal-cost letters

a,1

a,1
a,1

b,2
b,2

b,2

2/6, aaa, 3

1/6, aab, 4
1/6, ab, 3

2/6, b, 2
c1 = 1; c2 = 2.

Corresponds to different letter transmission/storage costs, e.g.,
the Telegraph Channel.
Also, to different costs for evaluating test outcomes in, e.g.,
group testing.

Size of encoding alphabet, Σ, could be countably infinite!

pi, wi, c(wi)

11-1

Generalizations: Prefix-free coding

In a Discrete Noiseless Channel

S2

S1
S3

a, 1
b, 2

b, 3

b, 3

a, 2

a, 1

start

S1

S2

S3

S3

S1

S2

S3

S2

S3

a, 1

a, 1

a, 1

b, 2
a, 2

b, 3 b, 3

b, 3

1/6, aaa, 4

2/6, b, 3

1/6, abb, 51/6, aab, 5

1/6, aba, 4

11-2

Generalizations: Prefix-free coding

In a Discrete Noiseless Channel

S2

S1
S3

a, 1
b, 2

b, 3

b, 3

a, 2

a, 1

start

S1

S2

S3

S3

S1

S2

S3

S2

S3

a, 1

a, 1

a, 1

b, 2
a, 2

b, 3 b, 3

b, 3

1/6, aaa, 4

2/6, b, 3

1/6, abb, 51/6, aab, 5

1/6, aba, 4

Cost of letter depends upon current state.
In Shannon’s original paper, k = # states and |Σ| are both finite

11-3

Generalizations: Prefix-free coding

In a Discrete Noiseless Channel

S2

S1
S3

a, 1
b, 2

b, 3

b, 3

a, 2

a, 1

start

S1

S2

S3

S3

S1

S2

S3

S2

S3

a, 1

a, 1

a, 1

b, 2
a, 2

b, 3 b, 3

b, 3

1/6, aaa, 4

2/6, b, 3

1/6, abb, 51/6, aab, 5

1/6, aba, 4

Cost of letter depends upon current state.
In Shannon’s original paper, k = # states and |Σ| are both finite

A codeword has both start and end states. In coded message,
new codeword must start from final state of preceeding one.

11-4

Generalizations: Prefix-free coding

In a Discrete Noiseless Channel

S2

S1
S3

a, 1
b, 2

b, 3

b, 3

a, 2

a, 1

start

S1

S2

S3

S3

S1

S2

S3

S2

S3

a, 1

a, 1

a, 1

b, 2
a, 2

b, 3 b, 3

b, 3

1/6, aaa, 4

2/6, b, 3

1/6, abb, 51/6, aab, 5

1/6, aba, 4

Cost of letter depends upon current state.
In Shannon’s original paper, k = # states and |Σ| are both finite

A codeword has both start and end states. In coded message,
new codeword must start from final state of preceeding one.

⇒ Need k code trees; each one rooted with different state

12-1

Generalizations: Prefix-free coding

With Language Restrictions

12-2

Generalizations: Prefix-free coding

With Language Restrictions

Find min-cost prefix code in which all words belong to given
language L.

12-3

Generalizations: Prefix-free coding

With Language Restrictions

Find min-cost prefix code in which all words belong to given
language L.

Example: L = 0∗1, all binary words ending in ’1’.
Used in constructing self-synchronizing codes.

12-4

Generalizations: Prefix-free coding

With Language Restrictions

Find min-cost prefix code in which all words belong to given
language L.

Example: L = 0∗1, all binary words ending in ’1’.
Used in constructing self-synchronizing codes.

One of the problems that motivated this research.
Let L be the set of all binary words that do not contain a given
pattern, e.g., 010.
No previous good way of finding min cost prefix code with such

restrictions.

13-1

Generalizations: Prefix-free coding

With Regular Language Restrictions

13-2

Generalizations: Prefix-free coding

With Regular Language Restrictions

In this case, there is a DFA M accepting Language L.

13-3

Generalizations: Prefix-free coding

With Regular Language Restrictions

In this case, there is a DFA M accepting Language L.

S1 S4

1

1

1

1

0 00
0

S2 S3

L = ((0 + 1)∗000)C

= binary strings not ending in 000

13-4

Generalizations: Prefix-free coding

With Regular Language Restrictions

In this case, there is a DFA M accepting Language L.

Erasing the nonaccepting states, M can be drawn with a finite #
of states but a countably infinite encoding alphabet.

S1 S4

1

1

1

1

0 00
0

S2 S3

L = ((0 + 1)∗000)C

= binary strings not ending in 000

S1

1 1

1

0 0

01

0∗1

S2 S3

13-5

Generalizations: Prefix-free coding

With Regular Language Restrictions

In this case, there is a DFA M accepting Language L.

Erasing the nonaccepting states, M can be drawn with a finite #
of states but a countably infinite encoding alphabet.

S1 S4

1

1

1

1

0 00
0

S2 S3

L = ((0 + 1)∗000)C

= binary strings not ending in 000

S1

1 1

1

0 0

01

0∗1

S2 S3
Note: graph doesn’t need to
strongly connected. It might even
have sinks!

14-1

Generalizations: Prefix-free coding

With Regular Language Restrictions

14-2

Generalizations: Prefix-free coding

With Regular Language Restrictions

S1

1 1

1

0 0

01

0∗1

S2 S3

14-3

Generalizations: Prefix-free coding

With Regular Language Restrictions

S1

1 1

1

0 0

01

0∗1

S2 S3

Can still be rewritten as a
min-cost tree problem

S1

S2 S1

0 1

S1

1

S3

0

S1

1

S2

0

S1

1

S1

001

S1

01

S1

. . .

15-1

Outline

Huffman Coding and Generalizations

A “Counterexample”

New Work

Previous Work & Background

Open Problems

16-1

Previous Work: Unequal Cost Coding

Letters in Σ have different costs c1 ≤ c2 ≤ c3 ≤ · · · ≤ cr.
Models different transmission/storage costs

16-2

Previous Work: Unequal Cost Coding

Letters in Σ have different costs c1 ≤ c2 ≤ c3 ≤ · · · ≤ cr.
Models different transmission/storage costs

Karp (1961) – Integer Linear Programming Solution

Blachman (1954), Marcus (1957), Gilbert (1995) – Heuristics

G., Rote (1998) – O(ncr+2) DP solution

Bradford, et. al. (2002), Dumitrescu(2006) – O(ncr)

G., Kenyon, Young (2002) – A PTAS

16-3

Previous Work: Unequal Cost Coding

Letters in Σ have different costs c1 ≤ c2 ≤ c3 ≤ · · · ≤ cr.

Still don’t know if it’s NP-Hard, in P or something between.

Models different transmission/storage costs

Karp (1961) – Integer Linear Programming Solution

Blachman (1954), Marcus (1957), Gilbert (1995) – Heuristics

G., Rote (1998) – O(ncr+2) DP solution

Bradford, et. al. (2002), Dumitrescu(2006) – O(ncr)

G., Kenyon, Young (2002) – A PTAS

Big Open Question

16-4

Previous Work: Unequal Cost Coding

Letters in Σ have different costs c1 ≤ c2 ≤ c3 ≤ · · · ≤ cr.

Still don’t know if it’s NP-Hard, in P or something between.

Models different transmission/storage costs

Karp (1961) – Integer Linear Programming Solution

Blachman (1954), Marcus (1957), Gilbert (1995) – Heuristics

G., Rote (1998) – O(ncr+2) DP solution

Bradford, et. al. (2002), Dumitrescu(2006) – O(ncr)

G., Kenyon, Young (2002) – A PTAS

Big Open Question

Most Practical Solutions are arithmetic error approximations

17-1

Previous Work: Unequal Cost Coding

17-2

Previous Work: Unequal Cost Coding

Efficient algorithms (O(n log n) or O(n)) that create
codes which are within an additive error of optimal.

COST ≤ OPT +K

17-3

Previous Work: Unequal Cost Coding

Efficient algorithms (O(n log n) or O(n)) that create
codes which are within an additive error of optimal.

COST ≤ OPT +K

• Krause (1962)

• Csiszar (1969)

• Cott (1977)

• Altenkamp and Mehlhorn (1980)

• Mehlhorn (1980)

• G. and Li (2007)

17-4

Previous Work: Unequal Cost Coding

Efficient algorithms (O(n log n) or O(n)) that create
codes which are within an additive error of optimal.

COST ≤ OPT +K

• Krause (1962)

• Csiszar (1969)

• Cott (1977)

• Altenkamp and Mehlhorn (1980)

• Mehlhorn (1980)

• G. and Li (2007)

K is a function of letter costs c1, c2, c3, . . .

K(c1, c2, c3, . . .) are incomparable between different algorithms

K is often function of longest letter length cr, problem when r =∞.

17-5

Previous Work: Unequal Cost Coding

Efficient algorithms (O(n log n) or O(n)) that create
codes which are within an additive error of optimal.

COST ≤ OPT +K

• Krause (1962)

• Csiszar (1969)

• Cott (1977)

• Altenkamp and Mehlhorn (1980)

• Mehlhorn (1980)

• G. and Li (2007)

K is a function of letter costs c1, c2, c3, . . .

K(c1, c2, c3, . . .) are incomparable between different algorithms

All algorithms above are Shannon-Fano type codes; differ in how they
define “approximate” split

18-1

Previous Work:

The Discrete Noiseless Channel: Only previous result seems to
be Csiszar (1969) who gives additive approximation to optimal
code, again using a generalization of Shannon-Fano splitting.

18-2

Previous Work:

The Discrete Noiseless Channel: Only previous result seems to
be Csiszar (1969) who gives additive approximation to optimal
code, again using a generalization of Shannon-Fano splitting.

Language Constraints

“1”-ended codes:

Capocelli, et.al., (1994) Berger, Yeung(1990) – Exponential Search

Chan, G. (2000) – O(n3) DP algorithm

Sound of Silence – Binary Codes with at most k zeros

Dolev, et. al. (1999) – nO(k) DP algorithm

General Regular Language Constraint
Folk theorem: If ∃ a DFA with m states accepting L, optimal code
can be built in nO(m) time. (O(m) ≤ 3m.)

18-3

Previous Work:

The Discrete Noiseless Channel: Only previous result seems to
be Csiszar (1969) who gives additive approximation to optimal
code, again using a generalization of Shannon-Fano splitting.

Language Constraints

“1”-ended codes:

Capocelli, et.al., (1994) Berger, Yeung(1990) – Exponential Search

Chan, G. (2000) – O(n3) DP algorithm

Sound of Silence – Binary Codes with at most k zeros

Dolev, et. al. (1999) – nO(k) DP algorithm

General Regular Language Constraint
Folk theorem: If ∃ a DFA with m states accepting L, optimal code
can be built in nO(m) time. (O(m) ≤ 3m.)

No good efficient algorithm known

19-1

Previous Work:

Pre-Huffman there were two Sub-optimal construc-
tions for basic case

19-2

Previous Work:

Pre-Huffman there were two Sub-optimal construc-
tions for basic case

Shannon coding: (from noiseless coding theorem)
There exists a prefix-free code with word lengths
`i = d− logr pie, i = 1, 2, . . . , n.

Shannon-Fano coding: probability splitting
Try to put ∼ 1

r of the probability in each node.

20-1

l2

Shannon Coding vs. Shannon-Fano Coding

Shannon Coding

l1 li = d− logr pie

20-2

l2

Shannon Coding vs. Shannon-Fano Coding

Shannon Coding

l1 li = d− logr pie

Given depths li, can build tree via
top-down “linear” scan. When
moving down a level, expand all
non-used leaves to be parents.

20-3

l2

Shannon Coding vs. Shannon-Fano Coding

Shannon Coding

l1 li = d− logr pie

Shannon-Fano Coding

p1, p2, . . . , pn

p1, p2, . . . , pi1 pi1+1, . . . , pi2 pir−1+1, . . . , pn

1/r 1/r 1/r

Given depths li, can build tree via
top-down “linear” scan. When
moving down a level, expand all
non-used leaves to be parents.

21-1

Shannon Coding vs. Shannon-Fano Coding

Example: p1 = p2 = 1
3 , p3 = p4 = p5 = p6 = 1

12

21-2

Shannon Coding vs. Shannon-Fano Coding

Example: p1 = p2 = 1
3 , p3 = p4 = p5 = p6 = 1

12

Shannon coding

1
3

1
3

1
12

1
12

1
12

1
12

l1 = l2 = 2 = d− log2
1
3
e

l3 = l4 = l5 = l6 = 4 =
⌈
− log2

1
12

⌉
Has empty “slots”
can be improved

21-3

Shannon Coding vs. Shannon-Fano Coding

Example: p1 = p2 = 1
3 , p3 = p4 = p5 = p6 = 1

12

Shannon coding

1
3

1
3

1
12

1
12

1
12

1
12

Shannon-Fano coding

1
3

1
3

1
12

1
12

1
12

1
12

22-1

Shannon Coding vs. Shannon-Fano Coding
Example: p1 = p2 = 1

3
, p3 = p4 = p5 = p6 = 1

12

Shannon-Fano: First, sort items and insert at root.
While a node contains more than 1 item, split its items’ weights
as evenly as possible. At most 1/2 node’s weight in left child.

22-2

Shannon Coding vs. Shannon-Fano Coding
Example: p1 = p2 = 1

3
, p3 = p4 = p5 = p6 = 1

12

1
3

1
3 ,

1
12 ,

1
12 ,

1
12 ,

1
12

Shannon-Fano: First, sort items and insert at root.
While a node contains more than 1 item, split its items’ weights
as evenly as possible. At most 1/2 node’s weight in left child.

22-3

Shannon Coding vs. Shannon-Fano Coding
Example: p1 = p2 = 1

3
, p3 = p4 = p5 = p6 = 1

12

1
3

1
3 ,

1
12 ,

1
12 ,

1
12 ,

1
12

⇒
1
3

1
12

, 1
12

, 1
12

, 1
12

1
3

Shannon-Fano: First, sort items and insert at root.
While a node contains more than 1 item, split its items’ weights
as evenly as possible. At most 1/2 node’s weight in left child.

22-4

Shannon Coding vs. Shannon-Fano Coding
Example: p1 = p2 = 1

3
, p3 = p4 = p5 = p6 = 1

12

1
3

1
3 ,

1
12 ,

1
12 ,

1
12 ,

1
12

⇒
1
3

1
12

, 1
12

, 1
12

, 1
12

1
3

⇒
1
3

1
12

, 1
12

1
3

1
12

, 1
12

Shannon-Fano: First, sort items and insert at root.
While a node contains more than 1 item, split its items’ weights
as evenly as possible. At most 1/2 node’s weight in left child.

22-5

Shannon Coding vs. Shannon-Fano Coding
Example: p1 = p2 = 1

3
, p3 = p4 = p5 = p6 = 1

12

1
3

1
3 ,

1
12 ,

1
12 ,

1
12 ,

1
12

⇒
1
3

1
12

, 1
12

, 1
12

, 1
12

1
3

⇒
1
3

1
12

, 1
12

1
3

1
12

, 1
12

⇒
1
3

1
3

1
12

1
12

1
12

1
12

Shannon-Fano: First, sort items and insert at root.
While a node contains more than 1 item, split its items’ weights
as evenly as possible. At most 1/2 node’s weight in left child.

23-1

Shannon Fano coding for unequal cost codes

p1, p2, . . . , pn

p1, p2, . . . , pi1

pi1+1, . . . , pi2

pik−1+1, . . . , pn

φ−c1

φ−c2 φ−ck

Previous Work. Unequal Cost Codes

c1

c2 ck

φ: unique positive
root of

∑
φ−ci = 1

23-2

Shannon Fano coding for unequal cost codes

p1, p2, . . . , pn

p1, p2, . . . , pi1

pi1+1, . . . , pi2

pik−1+1, . . . , pn

φ−c1

φ−c2 φ−ck

Previous Work. Unequal Cost Codes

c1

c2 ck

Split probabilities so “approximately” φ−ci of the probability in a

node is put into its ith child.

φ: unique positive
root of

∑
φ−ci = 1

23-3

Shannon Fano coding for unequal cost codes

p1, p2, . . . , pn

p1, p2, . . . , pi1

pi1+1, . . . , pi2

pik−1+1, . . . , pn

φ−c1

φ−c2 φ−ck

Previous Work. Unequal Cost Codes

c1

c2 ck

Split probabilities so “approximately” φ−ci of the probability in a

node is put into its ith child.

φ: unique positive
root of

∑
φ−ci = 1

Note: This “can” work for infinite alphabets, as long as φ exists.

23-4

Shannon Fano coding for unequal cost codes

p1, p2, . . . , pn

p1, p2, . . . , pi1

pi1+1, . . . , pi2

pik−1+1, . . . , pn

φ−c1

φ−c2 φ−ck

Previous Work. Unequal Cost Codes

c1

c2 ck

Split probabilities so “approximately” φ−ci of the probability in a

node is put into its ith child.

φ: unique positive
root of

∑
φ−ci = 1

All previous algorithms were Shannon-Fano like.
They differed in how they implemented “approximate split”.

24-1

Shannon-Fano coding for unequal cost codes

φ: unique positive root of
∑
φ−ci = 1

Split probabilities so “approximately” φ−ci of the probability in a

node is put into its ith child.

24-2

Shannon-Fano coding for unequal cost codes

φ: unique positive root of
∑
φ−ci = 1

Split probabilities so “approximately” φ−ci of the probability in a

node is put into its ith child.

Example: Telegraph Channel: c1 = 1, c2 = 2

φ−1 =
√

5−1
2

W

W/φ

W/φ2
Put ∼ φ−1 of the root’s weight
in the left subtree and ∼ φ−2 of
the weight in the right

25-1

Shannon-Fano coding for unequal cost codes

φ: unique positive root of
∑
φ−ci = 1

Split probabilities so “approximately” φ−ci of the probability in a

node is put into its ith child.

25-2

Shannon-Fano coding for unequal cost codes

φ: unique positive root of
∑
φ−ci = 1

Split probabilities so “approximately” φ−ci of the probability in a

node is put into its ith child.

Example: 1-ended coding. ∀i > 0, ci = i.

∑
φ−ci = 1 gives φ−1 = 1

2

Put ∼ 2−i of a node’s weight
into its i′th subtree

i′th encoding letter denotes string 0i−11.

0001

0001

001

001

01

01

1

1

26-1

Given coding letter lengths C = {c1, c2, c3, . . .}, gcd(ci) = 1,
let φ be the unique positive root of g(z) = 1−

∑
j φ
−cj

Previous Work. Well Known Lower Bound

26-2

Given coding letter lengths C = {c1, c2, c3, . . .}, gcd(ci) = 1,
let φ be the unique positive root of g(z) = 1−

∑
j φ
−cj

Note: φ sometimes called the “capacity”

Previous Work. Well Known Lower Bound

26-3

Given coding letter lengths C = {c1, c2, c3, . . .}, gcd(ci) = 1,
let φ be the unique positive root of g(z) = 1−

∑
j φ
−cj

Note: φ sometimes called the “capacity”

For given P.D. set Hφ = −
∑
pi logφ pi.

Previous Work. Well Known Lower Bound

26-4

Given coding letter lengths C = {c1, c2, c3, . . .}, gcd(ci) = 1,
let φ be the unique positive root of g(z) = 1−

∑
j φ
−cj

Note: φ sometimes called the “capacity”

For given P.D. set Hφ = −
∑
pi logφ pi.

Note: If c1 = c2 = 1 then φ = 2 and Hφ is standard entropy

Previous Work. Well Known Lower Bound

26-5

Given coding letter lengths C = {c1, c2, c3, . . .}, gcd(ci) = 1,
let φ be the unique positive root of g(z) = 1−

∑
j φ
−cj

Note: φ sometimes called the “capacity”

For given P.D. set Hφ = −
∑
pi logφ pi.

Note: If c1 = c2 = 1 then φ = 2 and Hφ is standard entropy

Theorem:
Let OPT be cost of min-cost code for given P.D. and letter
costs. Then

Hφ ≤ OPT

Previous Work. Well Known Lower Bound

26-6

Given coding letter lengths C = {c1, c2, c3, . . .}, gcd(ci) = 1,
let φ be the unique positive root of g(z) = 1−

∑
j φ
−cj

Note: φ sometimes called the “capacity”

For given P.D. set Hφ = −
∑
pi logφ pi.

Note: If c1 = c2 = 1 then φ = 2 and Hφ is standard entropy

Theorem:
Let OPT be cost of min-cost code for given P.D. and letter
costs. Then

Hφ ≤ OPT

Note: If c1 = c2 = 1 then φ = 2 and this is classic
“Shannon Information Theoretic Lower Bound”

Previous Work. Well Known Lower Bound

27-1

Outline

Huffman Coding and Generalizations

A “Counterexample”

New Work

Previous Work & Background

Open Problems

28-1

Shannon coding only seems to have been used in the proof of
the noiseless coding theorem. It never seems to have actually
been used as an algorithmic tool.

28-2

Shannon coding only seems to have been used in the proof of
the noiseless coding theorem. It never seems to have actually
been used as an algorithmic tool.

All of the (additive-error) approximation algoritms for unequal
cost coding and Csiszar’s (1969) approximation algorithm for
coding in a Discrete Noiseless Channel, were variations of
Shannon-Fano coding

28-3

The main idea behind our new results is that
Shannon-Fano splitting is not necessary;
Shannon-coding suffices

Shannon coding only seems to have been used in the proof of
the noiseless coding theorem. It never seems to have actually
been used as an algorithmic tool.

All of the (additive-error) approximation algoritms for unequal
cost coding and Csiszar’s (1969) approximation algorithm for
coding in a Discrete Noiseless Channel, were variations of
Shannon-Fano coding

28-4

The main idea behind our new results is that
Shannon-Fano splitting is not necessary;
Shannon-coding suffices

Shannon coding only seems to have been used in the proof of
the noiseless coding theorem. It never seems to have actually
been used as an algorithmic tool.

All of the (additive-error) approximation algoritms for unequal
cost coding and Csiszar’s (1969) approximation algorithm for
coding in a Discrete Noiseless Channel, were variations of
Shannon-Fano coding

Yields efficient additive-error approximation algorithms for un-
equal cost coding and the Discrete Noiseless Channel, as well as
for regular language constraints.

29-1

New Results for Unequal Cost Coding

29-2

New Results for Unequal Cost Coding

Given coding letter lengths C, let φ be capacity.
Then ∃K > 0, depending only upon C, such that if

1. P = {p1, p2, . . . , pn} is any P.D., and

2. `1, `2, . . . , `n any set of integers such that
∀i, `i ≥ K + d− logφ pie,

then there exists a prefix free code for which the `i are
the word lengths.

29-3

New Results for Unequal Cost Coding

Given coding letter lengths C, let φ be capacity.
Then ∃K > 0, depending only upon C, such that if

1. P = {p1, p2, . . . , pn} is any P.D., and

2. `1, `2, . . . , `n any set of integers such that
∀i, `i ≥ K + d− logφ pie,

then there exists a prefix free code for which the `i are
the word lengths.

⇒ ∑
i

pi`i ≤ K + 1 +Hφ(P) ≤ OPT +K + 1

29-4

New Results for Unequal Cost Coding

Given coding letter lengths C, let φ be capacity.
Then ∃K > 0, depending only upon C, such that if

1. P = {p1, p2, . . . , pn} is any P.D., and

2. `1, `2, . . . , `n any set of integers such that
∀i, `i ≥ K + d− logφ pie,

then there exists a prefix free code for which the `i are
the word lengths.

⇒ ∑
i

pi`i ≤ K + 1 +Hφ(P) ≤ OPT +K + 1

This gives an additive approximation of same type as Shannon-
Fano splitting without the splitting (same time complexity but
many fewer operations on reals).

29-5

New Results for Unequal Cost Coding

Given coding letter lengths C, let φ be capacity.
Then ∃K > 0, depending only upon C, such that if

1. P = {p1, p2, . . . , pn} is any P.D., and

2. `1, `2, . . . , `n any set of integers such that
∀i, `i ≥ K + d− logφ pie,

then there exists a prefix free code for which the `i are
the word lengths.

⇒ ∑
i

pi`i ≤ K + 1 +Hφ(P) ≤ OPT +K + 1

Same result holds for DNC and regular language restrictions.
φ is a function of the DNC or L-accepting automaton graph

30-1

Proof of the Theorem

We first prove the following lemma.

Given C and corresponding φ then
∃β > 0 depending only upon C such that if

n∑
i=1

φ−`i ≤ β,

then there exists a prefix-free code with word lengths
`1, `2, . . . , `n.

30-2

Proof of the Theorem

We first prove the following lemma.

Given C and corresponding φ then
∃β > 0 depending only upon C such that if

n∑
i=1

φ−`i ≤ β,

then there exists a prefix-free code with word lengths
`1, `2, . . . , `n.

Note: if c1 = c2 = 1 then φ = 2. Let β = 1 and condition
becomes

∑
2−`i ≤ 1.

Lemma then becomes one direction of Kraft Inequality.

31-1

Proof of the Lemma

Let L(n) be the number of nodes on level n of the
infinite tree corresponding to C

Can show ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn.

31-2

Proof of the Lemma

Let L(n) be the number of nodes on level n of the
infinite tree corresponding to C

Can show ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn.

l1

31-3

Proof of the Lemma

Let L(n) be the number of nodes on level n of the
infinite tree corresponding to C

Can show ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn.

l1

l2

31-4

Proof of the Lemma

Let L(n) be the number of nodes on level n of the
infinite tree corresponding to C

Can show ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn.

l1

l2

Grey regions are parts
of infinite tree that are
erased when node k on `k
becomes leaf.

31-5

Proof of the Lemma

Let L(n) be the number of nodes on level n of the
infinite tree corresponding to C

Can show ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn.

l1

l2

Grey regions are parts
of infinite tree that are
erased when node k on `k
becomes leaf.

Node on `k has L(`i− `k)
descendents on `i

li

31-6

Proof of the Lemma

Let L(n) be the number of nodes on level n of the
infinite tree corresponding to C

Can show ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn.

l1

l2

Grey regions are parts
of infinite tree that are
erased when node k on `k
becomes leaf.

Node on `i can become
leaf iff grey regions do not
cover all nodes on level `i

Node on `k has L(`i− `k)
descendents on `i

li

31-7

Proof of the Lemma

Let L(n) be the number of nodes on level n of the
infinite tree corresponding to C

Can show ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn.

l1

l2

Grey regions are parts
of infinite tree that are
erased when node k on `k
becomes leaf.

Node on `i can become
leaf iff grey regions do not
cover all nodes on level `i

Node on `k has L(`i− `k)
descendents on `i

∑i−1
k=1 L(`− `k) < L(`i)

li

32-1

Just need to show that 0 < L(`i)−
∑i−1
k=1 L(`− `k).

Proof of the Lemma

32-2

Just need to show that 0 < L(`i)−
∑i−1
k=1 L(`− `k).

Proof of the Lemma

L(`i)−
i−1∑
k=1

L(`− `k) ≥ t1φ
` − t2

i−1∑
k=1

φ`−`k

≥ φ`

(
t1 − t2

i−1∑
k=1

φ−`k

)
≥ φ`(t1 − t2β)

32-3

Just need to show that 0 < L(`i)−
∑i−1
k=1 L(`− `k).

Proof of the Lemma

L(`i)−
i−1∑
k=1

L(`− `k) ≥ t1φ
` − t2

i−1∑
k=1

φ`−`k

≥ φ`

(
t1 − t2

i−1∑
k=1

φ−`k

)
≥ φ`(t1 − t2β)

Choose β < t1
t2

32-4

Just need to show that 0 < L(`i)−
∑i−1
k=1 L(`− `k).

Proof of the Lemma

L(`i)−
i−1∑
k=1

L(`− `k) ≥ t1φ
` − t2

i−1∑
k=1

φ`−`k

≥ φ`

(
t1 − t2

i−1∑
k=1

φ−`k

)
≥ φ`(t1 − t2β)

Choose β < t1
t2 > 0

33-1

Proof of the Main Theorem

Set K = − logφ β. (Recall li ≥ K + d− logφ pie)
Then

n∑
i=1

φ−`i ≤
n∑
i=1

φ−K−d− logφ pie

≤ β
n∑
i=1

φlogφ pi = β
n∑
i=1

pi = β

33-2

Proof of the Main Theorem

Set K = − logφ β. (Recall li ≥ K + d− logφ pie)
Then

n∑
i=1

φ−`i ≤
n∑
i=1

φ−K−d− logφ pie

≤ β
n∑
i=1

φlogφ pi = β
n∑
i=1

pi = β

From previous lemma, a prefix free code with those word
lengths `1, `2, . . . , `n exists, and we are done

34-1

Example: c1 = 1, c2 = 2

34-2

Example: c1 = 1, c2 = 2

⇒ φ =
√

5+1
2 , K = 1

34-3

Example: c1 = 1, c2 = 2

⇒ φ =
√

5+1
2 , K = 1

Consider p1 = p2 = p3 = p4 = 1
4

34-4

Example: c1 = 1, c2 = 2

⇒ φ =
√

5+1
2 , K = 1

Consider p1 = p2 = p3 = p4 = 1
4

Note that
⌈
− logφ pi

⌉
= 3.

34-5

Example: c1 = 1, c2 = 2

⇒ φ =
√

5+1
2 , K = 1

Consider p1 = p2 = p3 = p4 = 1
4

Note that
⌈
− logφ pi

⌉
= 3.

No tree with li = 3 exists.
But, a tree with li = d− logφ pie+ 1 = 4 does!

1
4

1
4

1
4

1
4

35-1

The Algorithm

A valid K could be found by working through the
proof of Theorem. Technically, O(1) but, practically,
this would require some complicated operations on
reals.

35-2

The Algorithm

A valid K could be found by working through the
proof of Theorem. Technically, O(1) but, practically,
this would require some complicated operations on
reals.

Alternatively, perform doubling search for K,
the smallest K for which theorem is valid.

Set K = 1, 2, 22, 23
Test if `i = K + d− logφ pie has valid code (can be done efficiently)

until K is good but K/2 is not.

35-3

The Algorithm

A valid K could be found by working through the
proof of Theorem. Technically, O(1) but, practically,
this would require some complicated operations on
reals.

Alternatively, perform doubling search for K,
the smallest K for which theorem is valid.

Set K = 1, 2, 22, 23
Test if `i = K + d− logφ pie has valid code (can be done efficiently)

until K is good but K/2 is not.

Note that K/2 < K ≤ K

35-4

The Algorithm

A valid K could be found by working through the
proof of Theorem. Technically, O(1) but, practically,
this would require some complicated operations on
reals.

Alternatively, perform doubling search for K,
the smallest K for which theorem is valid.

Set K = 1, 2, 22, 23
Test if `i = K + d− logφ pie has valid code (can be done efficiently)

until K is good but K/2 is not.

Now set a = K/2, b = K, and binary search for K in [a,b].

Note that K/2 < K ≤ K

35-5

The Algorithm

A valid K could be found by working through the
proof of Theorem. Technically, O(1) but, practically,
this would require some complicated operations on
reals.

Alternatively, perform doubling search for K,
the smallest K for which theorem is valid.

Set K = 1, 2, 22, 23
Test if `i = K + d− logφ pie has valid code (can be done efficiently)

until K is good but K/2 is not.

Now set a = K/2, b = K, and binary search for K in [a,b].

Note that K/2 < K ≤ K

Subtle point: Search will find K′ ≤ K for which code exists.

35-6

The Algorithm

A valid K could be found by working through the
proof of Theorem. Technically, O(1) but, practically,
this would require some complicated operations on
reals.

Time complexity O(n · logK).

Alternatively, perform doubling search for K,
the smallest K for which theorem is valid.

Set K = 1, 2, 22, 23
Test if `i = K + d− logφ pie has valid code (can be done efficiently)

until K is good but K/2 is not.

Now set a = K/2, b = K, and binary search for K in [a,b].

Note that K/2 < K ≤ K

Subtle point: Search will find K′ ≤ K for which code exists.

36-1

The Algorithm for infinite encoding alphabets

(i) Root of
∑
φ−ci = 1 exists

Proof assumed two things.

(ii) ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

L(n) is number of nodes on level n of infinite tree

36-2

The Algorithm for infinite encoding alphabets

(i) Root of
∑
φ−ci = 1 exists

Proof assumed two things.

(ii) ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

L(n) is number of nodes on level n of infinite tree

This is always true for finite encoding alphabet

36-3

The Algorithm for infinite encoding alphabets

(i) Root of
∑
φ−ci = 1 exists

Proof assumed two things.

(ii) ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

L(n) is number of nodes on level n of infinite tree

This is always true for finite encoding alphabet

Not necessarily true for infinite encoding alphabets
Will see simple example in next section

36-4

The Algorithm for infinite encoding alphabets

(i) Root of
∑
φ−ci = 1 exists

Proof assumed two things.

(ii) ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

L(n) is number of nodes on level n of infinite tree

This is always true for finite encoding alphabet

Not necessarily true for infinite encoding alphabets
Will see simple example in next section

But, if (i) and (ii) are true for an infinite alphabet

⇒ Theorem/algorithm hold

36-5

The Algorithm for infinite encoding alphabets

(i) Root of
∑
φ−ci = 1 exists

Proof assumed two things.

(ii) ∃t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

L(n) is number of nodes on level n of infinite tree

This is always true for finite encoding alphabet

Not necessarily true for infinite encoding alphabets
Will see simple example in next section

But, if (i) and (ii) are true for an infinite alphabet

Example: ’1’-Ended codes. ci = i.

⇒ φ = 1
2 and (ii) is true ⇒ Theorem/algorithm hold

⇒ Theorem/algorithm hold

37-1

Extensions to DNC and Regular Language Restrictions

Discrete Noiseless Channels

S2

S1
S3

a, 1
b, 2

b, 3

b, 3

a, 2

a, 1

start

S1

S2

S3

S3

S1

S2

S3

S2

S3

a, 1

a, 1

a, 1

b, 2
a, 2

b, 3 b, 3

b, 3

37-2

Extensions to DNC and Regular Language Restrictions

Discrete Noiseless Channels

S2

S1
S3

a, 1
b, 2

b, 3

b, 3

a, 2

a, 1

start

S1

S2

S3

S3

S1

S2

S3

S2

S3

a, 1

a, 1

a, 1

b, 2
a, 2

b, 3 b, 3

b, 3

∃, φ, t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

Let L(n) be number of nodes on level n of infinite tree

Fact that graph is biconnected and “aperiodic” implies that

37-3

Extensions to DNC and Regular Language Restrictions

Discrete Noiseless Channels

S2

S1
S3

a, 1
b, 2

b, 3

b, 3

a, 2

a, 1

start

S1

S2

S3

S3

S1

S2

S3

S2

S3

a, 1

a, 1

a, 1

b, 2
a, 2

b, 3 b, 3

b, 3

∃, φ, t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

Let L(n) be number of nodes on level n of infinite tree

Fact that graph is biconnected and “aperiodic” implies that

Algorithm will still work for `i ≥ K + d− logφ pie,

37-4

Extensions to DNC and Regular Language Restrictions

Discrete Noiseless Channels

S2

S1
S3

a, 1
b, 2

b, 3

b, 3

a, 2

a, 1

start

S1

S2

S3

S3

S1

S2

S3

S2

S3

a, 1

a, 1

a, 1

b, 2
a, 2

b, 3 b, 3

b, 3

∃, φ, t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

Let L(n) be number of nodes on level n of infinite tree

Fact that graph is biconnected and “aperiodic” implies that

Algorithm will still work for `i ≥ K + d− logφ pie,

Note: Algorithm must construct k different coding trees. One for each
state (tree root).

37-5

Extensions to DNC and Regular Language Restrictions

Discrete Noiseless Channels

S2

S1
S3

a, 1
b, 2

b, 3

b, 3

a, 2

a, 1

start

S1

S2

S3

S3

S1

S2

S3

S2

S3

a, 1

a, 1

a, 1

b, 2
a, 2

b, 3 b, 3

b, 3

∃, φ, t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

Let L(n) be number of nodes on level n of infinite tree

Fact that graph is biconnected and “aperiodic” implies that

Algorithm will still work for `i ≥ K + d− logφ pie,

Subtle point is that any node on level li can be chosen for pi, independent
of its state! Algorithm still works.

38-1

Extensions to DNC and Regular Language Restrictions

Regular Language Restrictions
Assumption: Language is ’aperiodic’, i.e., ∃N, such that ∀n > N
there is at least one word of length n

S1 S4

1
1

1

1

0 00
0

S2 S3

S1

S2 S1

0 1

S1

1
S3

0
S1

1
S2

0

S1

1

S1

001

S1

01

S1

. . .

Let L(n) be number of nodes on level n of infinite tree

∃, φ, t1, t2 s.t., t1φ
n ≤ L(n) ≤ t2φn

Fact that language is “aperiodic” implies that

Algorithm will still work for `i ≥ K + d− logφ pie,
φ is largest dominant ’eigenvalue’ of a conn component of the DFA.

Again, any node at level li can be labelled with pi, independent of state

39-1

Outline

Huffman Coding and Generalizations

A “Counterexample”

New Work

Previous Work & Background

Conclusion and Open Problems

40-1

A “Counterexample”

Let C be the countably infinite set defined by

|{j | cj = i}| = 2Ci−1

where Ci = 1
i+1

(
2i
i

)
is the i-th Catalan number.

Constructing prefix-free codes with these C can be shown
to be equivalent to constructing balanced binary prefix-free
codes in which, for every word, the number of ‘0’s equals the
number of ‘1’s.

40-2

A “Counterexample”

Let C be the countably infinite set defined by

|{j | cj = i}| = 2Ci−1

where Ci = 1
i+1

(
2i
i

)
is the i-th Catalan number.

Constructing prefix-free codes with these C can be shown
to be equivalent to constructing balanced binary prefix-free
codes in which, for every word, the number of ‘0’s equals the
number of ‘1’s.

No efficient additive-error approximation known.

40-3

A “Counterexample”

Let C be the countably infinite set defined by

|{j | cj = i}| = 2Ci−1

where Ci = 1
i+1

(
2i
i

)
is the i-th Catalan number.

Constructing prefix-free codes with these C can be shown
to be equivalent to constructing balanced binary prefix-free
codes in which, for every word, the number of ‘0’s equals the
number of ‘1’s.

For this problem, the length of a balanced word = # of ’0’s in word.

e.g., |10| = 1, |001110| = 3.

No efficient additive-error approximation known.

41-1

A “Counterexample”

Let L be the set of all balanced binary words.
Set Q = {01, 10, 0011, 1100, 000111, . . .},
the language of all balanced binary words without a balanced prefix.

Then L = Q∗ and every word in L can be uniquely decomposed
into concatenation of words in Q.

41-2

A “Counterexample”

Let L be the set of all balanced binary words.
Set Q = {01, 10, 0011, 1100, 000111, . . .},
the language of all balanced binary words without a balanced prefix.

Then L = Q∗ and every word in L can be uniquely decomposed
into concatenation of words in Q.

words of length i in Q is 2Ci−1.

41-3

A “Counterexample”

Let L be the set of all balanced binary words.
Set Q = {01, 10, 0011, 1100, 000111, . . .},
the language of all balanced binary words without a balanced prefix.

Then L = Q∗ and every word in L can be uniquely decomposed
into concatenation of words in Q.

words of length i in Q is 2Ci−1.

Prefix coding in L is equivalent to prefix coding with infinite alphabet Q.

01

10
0011

1100

01

10

0011 1100

42-1

A “Counterexample”

Note: the characteristic equation is

g(z) = 1−
∑
j

φ−cj = 1−
∑
i

2Ci−1φ
−i =

√
1− 4/φ

for which root does not exist (φ = 4 is an algebraic
singularity).

Can prove that for ∀ψ,K, we can always find
p1, p2, . . . , pn s.t. there is no prefix code with length

li = K + dlogψ pie

43-1

A “Counterexample”

φ = 4 is algebraic singularity of characteristic equation

43-2

A “Counterexample”

φ = 4 is algebraic singularity of characteristic equation

Can prove that for ∀ψ ≥ 4,K, we can always find
p1, p2, . . . , pn s.t. there is no prefix code with length

li = K + dlogψ pie

43-3

A “Counterexample”

φ = 4 is algebraic singularity of characteristic equation

Can prove that for ∀ψ ≥ 4,K, we can always find
p1, p2, . . . , pn s.t. there is no prefix code with length

li = K + dlogψ pie

Can also prove that for ∀ψ < 4,K,∆, we can always
find p1, p2, . . . , pn s.t. if prefix code with lengths
li ≥ K + dlogψ pie exists, then∑

i lipi −OPT > ∆.

43-4

A “Counterexample”

φ = 4 is algebraic singularity of characteristic equation

Can prove that for ∀ψ ≥ 4,K, we can always find
p1, p2, . . . , pn s.t. there is no prefix code with length

li = K + dlogψ pie

Can also prove that for ∀ψ < 4,K,∆, we can always
find p1, p2, . . . , pn s.t. if prefix code with lengths
li ≥ K + dlogψ pie exists, then∑

i lipi −OPT > ∆.

⇒ No Shannon-Coding type algorithm can guarantee an
additive-error approximation for a balanced prefix code.

44-1

Outline

Huffman Coding and Generalizations

A “Counterexample”

New Work

Previous Work & Background

Conclusion and Open Problems

45-1

Conclusion and Open Problems

We saw how to use Shannon Coding to develop efficient
approximation algorithms for prefix-coding variants, e.g.,
unequal cost cost coding, coding in the Discrete Noiseless
Channel and coding with regular language constraints.

45-2

Conclusion and Open Problems

We saw how to use Shannon Coding to develop efficient
approximation algorithms for prefix-coding variants, e.g.,
unequal cost cost coding, coding in the Discrete Noiseless
Channel and coding with regular language constraints.

Old Open Question: “is unequal-cost coding NP-complete?”

45-3

Conclusion and Open Problems

We saw how to use Shannon Coding to develop efficient
approximation algorithms for prefix-coding variants, e.g.,
unequal cost cost coding, coding in the Discrete Noiseless
Channel and coding with regular language constraints.

Old Open Question: “is unequal-cost coding NP-complete?”

New Open Question: “is there an additive-error approximation
algorithm for prefix coding using balanced strings?”

We just saw that Shannon Coding doesn’t work.
G. & Li (2007) proved that (variant of) Shannon-Fano doesn’t work.
Perhaps no such algorithm exists.

46-1

The End

T HANK YOU
Q and A

