
1-1

Mordecai Golin

A Generic Top-Down

Dynamic-Programming Approach

to Prefix-Free Coding

Hong Kong UST

Xiaoming XU

Jiajin YU

Fudan Univ

Fudan Univ

2-1

The Short Version
Prefix-Free coding is easy, isn’t it?
Solvable by the O(n) (greedy) Huffman algorithm.

2-2

The Short Version
Prefix-Free coding is easy, isn’t it?
Solvable by the O(n) (greedy) Huffman algorithm.

True for plain vanilla Huffman coding
But, add any restriction on the codes, e.g.,

Length Limited, One-Ended, Mixed-Radix,
Limit on # of distinct code lengths,
Limit on # of 1’s used (Sound of Silence), etc.,

and Huffman algorithm fails.
Variants often approached using Dynamic Programming.

2-3

The Short Version
Prefix-Free coding is easy, isn’t it?
Solvable by the O(n) (greedy) Huffman algorithm.

True for plain vanilla Huffman coding
But, add any restriction on the codes, e.g.,

Length Limited, One-Ended, Mixed-Radix,
Limit on # of distinct code lengths,
Limit on # of 1’s used (Sound of Silence), etc.,

and Huffman algorithm fails.
Variants often approached using Dynamic Programming.

This talk: a simple technique for speeding up
the DP for many prefix-free coding variants.

3-1

• Introduction
- A Quick Review of Prefix-Free Coding
- New Results

• Conclusion & Comments

• The Basic Top-Down Dynamic Programming Technique

• The Speedup

4-1

A Quick Review

4-2

A Quick Review

• Code W = {w1, w2, . . . , wn} is a set of codewords in Σ∗.

Given alphabet Σ.

4-3

A Quick Review

• Code W = {w1, w2, . . . , wn} is a set of codewords in Σ∗.

Given alphabet Σ.

• Length of w is |w|; e.g. |010| = 3.

4-4

A Quick Review

• Code W = {w1, w2, . . . , wn} is a set of codewords in Σ∗.

Given alphabet Σ.

• w is a prefix of w′, if w is the start of w′

e.g., 010 is a prefix of 01011001

• Length of w is |w|; e.g. |010| = 3.

4-5

A Quick Review

• Code W = {w1, w2, . . . , wn} is a set of codewords in Σ∗.

Given alphabet Σ.

• w is a prefix of w′, if w is the start of w′

e.g., 010 is a prefix of 01011001

• W is prefix-free if ∀w, w′ ∈W , w is not a prefix of w′.

10
11
01

is prefix free;E.g., is not prefix-free;1
11
01

• Length of w is |w|; e.g. |010| = 3.

5-1

A Quick Review (II)
• W is prefix-free if ∀w, w′ ∈W , w is not a prefix of w′.

5-2

A Quick Review (II)
• W is prefix-free if ∀w, w′ ∈W , w is not a prefix of w′.

The Prefix Free Coding Problem

5-3

A Quick Review (II)
• W is prefix-free if ∀w, w′ ∈W , w is not a prefix of w′.

The Prefix Free Coding Problem

• Given weights P = {p1, p2, . . . , pn}.

5-4

A Quick Review (II)
• W is prefix-free if ∀w, w′ ∈W , w is not a prefix of w′.

The Prefix Free Coding Problem

• Given weights P = {p1, p2, . . . , pn}.

• Create prefix-free code W = {w1, . . . , wn} that minimizes

Cost(W, P) =
∑n

i=1 pi|wi|.

5-5

A Quick Review (II)
• W is prefix-free if ∀w, w′ ∈W , w is not a prefix of w′.

The Prefix Free Coding Problem

• Given weights P = {p1, p2, . . . , pn}.

• Create prefix-free code W = {w1, . . . , wn} that minimizes

Cost(W, P) =
∑n

i=1 pi|wi|.

• Same problem as finding a tree with n leaves weighted by
P that minimizes weighted external path length.

6-1

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

6-2

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

6-3

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

w1 = 00
w2 = 10
w3 = 11
w4 = 010
w5 = 011

6-4

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

w1 = 00
w2 = 10
w3 = 11
w4 = 010
w5 = 011

0 1

11

1

0

0

0

6-5

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

w1 = 00
w2 = 10
w3 = 11
w4 = 010
w5 = 011

0 1

11

1

0

0

0

00

010 011

10 11

6-6

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

w1 = 00
w2 = 10
w3 = 11
w4 = 010
w5 = 011

0 1

11

1

0

0

0

00

010 011

10 11

|wi| is depth of leaf i in tree.

6-7

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

w1 = 00
w2 = 10
w3 = 11
w4 = 010
w5 = 011

0 1

11

1

0

0

0

|wi| is depth of leaf i in tree.

Assign weight pi to leaf i.

p1 p2 p3

p4 p5

6-8

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

w1 = 00
w2 = 10
w3 = 11
w4 = 010
w5 = 011

0 1

11

1

0

0

0

|wi| is depth of leaf i in tree.

Assign weight pi to leaf i.

Weighted external path length is∑n

i=1
|wi|pi

which is Cost(W, P).

p1 p2 p3

p4 p5

6-9

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

w1 = 00
w2 = 10
w3 = 11
w4 = 010
w5 = 011

0 1

11

1

0

0

0

|wi| is depth of leaf i in tree.

Assign weight pi to leaf i.

Weighted external path length is∑n

i=1
|wi|pi

which is Cost(W, P).

p1 p2 p3

p4 p5

Cost = 2(p1 + p2 + p3) + 3(p4 + p5)

6-10

A Quick Review (III)
Correspondence between codes on Σ = {0, 1} and binary trees.

(or codes on general Σ and |Σ|-ary trees)

Let 0 denote a left edge and 1 a right edge.

Codewords are leaves; Create paths to all codewords.

w1 = 00
w2 = 10
w3 = 11
w4 = 010
w5 = 011

0 1

11

1

0

0

0

|wi| is depth of leaf i in tree.

Assign weight pi to leaf i.

Weighted external path length is∑n

i=1
|wi|pi

which is Cost(W, P).

p1 p2 p3

p4 p5

Change problem to

Given P ,
Find Min-Cost Tree

Cost = 2(p1 + p2 + p3) + 3(p4 + p5)

7-1

• Introduction
- A Quick Review of Prefix-Free Coding
- New Results

• Conclusion & Comments

• The Basic Top-Down Dynamic Programming Technique

• The Speedup

8-1

Some Variants

8-2

Some Variants
• Length-Limited Coding:

Find min-cost tree with height at most D.

8-3

Some Variants

• One-Ended Coding:
Only use codewords that end with a 1,

e.g., only count cost of right-leaves

• Length-Limited Coding:
Find min-cost tree with height at most D.

8-4

Some Variants

• One-Ended Coding:
Only use codewords that end with a 1,

e.g., only count cost of right-leaves

• Length-Limited Coding:
Find min-cost tree with height at most D.

• The Sound of Silence:
Find min-cost code containing at most U 1’s in each codeword,

e.g., no tree path contains more than U right edges

8-5

Some Variants

• One-Ended Coding:
Only use codewords that end with a 1,

e.g., only count cost of right-leaves

• Length-Limited Coding:
Find min-cost tree with height at most D.

• The Sound of Silence:
Find min-cost code containing at most U 1’s in each codeword,

e.g., no tree path contains more than U right edges

• Reserved Length Coding:
(i) leaves can only occur on g specified levels of the tree or

(ii) leaves can only appear on g levels (you can choose the levels)

8-6

Some Variants

• One-Ended Coding:
Only use codewords that end with a 1,

e.g., only count cost of right-leaves

• Length-Limited Coding:
Find min-cost tree with height at most D.

• The Sound of Silence:
Find min-cost code containing at most U 1’s in each codeword,

e.g., no tree path contains more than U right edges

• Reserved Length Coding:
(i) leaves can only occur on g specified levels of the tree or

(ii) leaves can only appear on g levels (you can choose the levels)

• Mixed-Radix Coding:
Size of alphabet depends upon position of character within codeword,

e.g., arity of node depends upon level in the tree.

9-1

New Results
With exception of Length-Limited Coding (which takes advantage of

Schieber’s (1998) min-cost length-limited paths in Monge-graphs result) we
improve the DP-based algorithms for all problems on previous page.

9-2

New Results
With exception of Length-Limited Coding (which takes advantage of

Schieber’s (1998) min-cost length-limited paths in Monge-graphs result) we
improve the DP-based algorithms for all problems on previous page.

Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

[1]: Chu and Gill (1992)
[2]: Baer (2008)
[3]: Chan and Golin (2000)
[4]: Dolev, Korach and Yukelson (1999)

10-1

New Results (II)
Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

10-2

New Results (II)
Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

Previous results were all based on Dynamic Programming.
DP creates a search space and calculates optimal cost

for every item in the search space.
Optimal cost of larger items is based on optimal cost of smaller items.
Running time of DP algorithm, is time required to calculate all costs.

10-3

New Results (II)
Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

Previous results were all based on Dynamic Programming.
DP creates a search space and calculates optimal cost

for every item in the search space.
Optimal cost of larger items is based on optimal cost of smaller items.
Running time of DP algorithm, is time required to calculate all costs.

Our speedups come from batching cost calculations.

10-4

New Results (II)
Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

Previous results were all based on Dynamic Programming.
DP creates a search space and calculates optimal cost

for every item in the search space.
Optimal cost of larger items is based on optimal cost of smaller items.
Running time of DP algorithm, is time required to calculate all costs.

Our speedups come from batching cost calculations.

Instead of calculating optimal-cost of each item individually,

10-5

New Results (II)
Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

Previous results were all based on Dynamic Programming.
DP creates a search space and calculates optimal cost

for every item in the search space.
Optimal cost of larger items is based on optimal cost of smaller items.
Running time of DP algorithm, is time required to calculate all costs.

Our speedups come from batching cost calculations.

Instead of calculating optimal-cost of each item individually,

we group sets of items together and calculate all of their
optimal-costs together at the same time.

10-6

New Results (II)
Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

Previous results were all based on Dynamic Programming.
DP creates a search space and calculates optimal cost

for every item in the search space.
Optimal cost of larger items is based on optimal cost of smaller items.
Running time of DP algorithm, is time required to calculate all costs.

Our speedups come from batching cost calculations.

Instead of calculating optimal-cost of each item individually,

we group sets of items together and calculate all of their
optimal-costs together at the same time.

This leads to lower amortized time per optimal-cost calculation.

11-1

• Introduction
- A Quick Review of Prefix-Free Coding
- New Results

• Conclusion & Comments

• The Basic Top-Down Dynamic Programming Technique

• The Speedup

12-1

The Technique

12-2

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

12-3

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

12-4

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

Nodes on level i− 1, have arity ≤ ri.

r1 = 3

r2 = 2

r3 = 4

r4 = 3

12-5

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

Nodes on level i− 1, have arity ≤ ri.

r1 = 3

r2 = 2

r3 = 4

r4 = 3

Want to find tree satisfying R with
minimum cost

∑n

i=1
pid(vi).

p1 p2p3 p4

p5 p6 p7 p8

p9
p11p10 p12

p13
p14

p15

12-6

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

Nodes on level i− 1, have arity ≤ ri.

r1 = 3

r2 = 2

r3 = 4

r4 = 3

Want to find tree satisfying R with
minimum cost

∑n

i=1
pid(vi).

W.L.O.G. assume that the pi are sorted in non-increasing order

p1 p2p3 p4

p5 p6 p7 p8

p9
p11p10 p12

p13
p14

p15

12-7

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

Nodes on level i− 1, have arity ≤ ri.

r1 = 3

r2 = 2

r3 = 4

r4 = 3

Want to find tree satisfying R with
minimum cost

∑n

i=1
pid(vi).

W.L.O.G. assume that the pi are sorted in non-increasing order

9 9 7 7

7 6 3 3

2 2 1 1 1 11

12-8

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

Nodes on level i− 1, have arity ≤ ri.

r1 = 3

r2 = 2

r3 = 4

r4 = 3

Want to find tree satisfying R with
minimum cost

∑n

i=1
pid(vi).

W.L.O.G. assume that the pi are sorted in non-increasing order

9 9 7 7

7 6 3 3

2 2 1 1 1 1

W.L.O.G. also assume that all internal nodes have exactly ri children.

1

12-9

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

Nodes on level i− 1, have arity ≤ ri.

r1 = 3

r2 = 2

r3 = 4

r4 = 3

Want to find tree satisfying R with
minimum cost

∑n

i=1
pid(vi).

W.L.O.G. assume that the pi are sorted in non-increasing order

9 9 7 7

7 6 3 3

2 2 1 1 1 1

W.L.O.G. also assume that all internal nodes have exactly ri children.

Can ensure this by padding P with arbitrarily many 0s.

1

12-10

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

Nodes on level i− 1, have arity ≤ ri.

r1 = 3

r2 = 2

r3 = 4

r4 = 3

Want to find tree satisfying R with
minimum cost

∑n

i=1
pid(vi).

W.L.O.G. assume that the pi are sorted in non-increasing order

9 9 7 7

7 6 3 3

2 2 1 1 1 1

W.L.O.G. also assume that all internal nodes have exactly ri children.

Can ensure this by padding P with arbitrarily many 0s.

0

00 1

12-11

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

Nodes on level i− 1, have arity ≤ ri.

r1 = 3

r2 = 2

r3 = 4

r4 = 3

Want to find tree satisfying R with
minimum cost

∑n

i=1
pid(vi).

W.L.O.G. assume that the pi are sorted in non-increasing order

9 9 7 7

7 6 3 3

2 2 1 1 1 1

W.L.O.G. also assume that all internal nodes have exactly ri children.

Can ensure this by padding P with arbitrarily many 0s.

0

00

(might require moving some pi’s up the tree)

1

12-12

The Technique

We illustrate the technique by showing how to speed up mixed-radix
coding from O(n4) down to O(n3). The same technique, with various
bells and whistles added, speeds up all of the other problems.

In mixed -radix coding, input is weight
set P = {p1, . . . , pn} and arity list
R = {r1, r2, r3 . . .}.

Nodes on level i− 1, have arity ≤ ri.

r1 = 3

r2 = 2

r3 = 4

r4 = 3

Want to find tree satisfying R with
minimum cost

∑n

i=1
pid(vi).

W.L.O.G. assume that the pi are sorted in non-increasing order

W.L.O.G. also assume that all internal nodes have exactly ri children.

Can ensure this by padding P with arbitrarily many 0s.

(might require moving some pi’s up the tree)

9 9 7 7

7 6 33 2

2 1 1 11 01 0 0

13-1

The Technique

13-2

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

13-3

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

13-4

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

13-5

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3

13-6

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

13-7

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

13-8

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

4 18 0

13-9

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

4 18 0

Will also keep track of cost “so far”.∑m
t=1 pidi + i

∑
t>m pt

13-10

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

4 18 0

Will also keep track of cost “so far”.∑m
t=1 pidi + i

∑
t>m pt

Ex: P = {3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, . . .}

13-11

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

4 18 0

Will also keep track of cost “so far”.∑m
t=1 pidi + i

∑
t>m pt

Ex: P = {3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, . . .}

c

0

13-12

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

4 18 0

Will also keep track of cost “so far”.∑m
t=1 pidi + i

∑
t>m pt

Ex: P = {3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, . . .}

c

0

30

X1

13-13

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

4 18 0

Will also keep track of cost “so far”.∑m
t=1 pidi + i

∑
t>m pt

Ex: P = {3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, . . .}

c

0

30

60
3 33 3

X2

13-14

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

4 18 0

Will also keep track of cost “so far”.∑m
t=1 pidi + i

∑
t>m pt

Ex: P = {3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, . . .}

c

0

30

60

78
3 33 3

3 2 2 2 2

X3

13-15

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

4 18 0

Will also keep track of cost “so far”.∑m
t=1 pidi + i

∑
t>m pt

Ex: P = {3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, . . .}

c

0

30

60

78

84

3 33 3

3 2 2 2 2

2 1 1 1 1 1 0 0 0

13-16

The Technique
Build the tree top-down, level-by-level, using DP.

Standard technique: e.g., Golin & Rote ’98, Dolev, Korach & Yukelson ’99, Chan & Golin ’00, Baer ’08

Idea is to keep track, at depth i, of

m : # of leaves so far

b: # of “ internal” depth i nodes.
These are nodes that will be
“expanded” at next step

d m b

0 0 1

1 0 3
2 4 2

3 9 3

4 18 0

Will also keep track of cost “so far”.∑m
t=1 pidi + i

∑
t>m pt

c

0

30

60

84

If m ≥ n, then “cost so far” is real cost of tree

3 33 3

2 1 1 1 1 1 0 0 0

14-1

The Technique

T is an i-level tree if d(T) ≤ i.

14-2

The Technique

T is an i-level tree if d(T) ≤ i.

sigi(T) = (m, b)

m = # leaves at depth ≤ i.
b = # internals at depth i.

14-3

The Technique

T is an i-level tree if d(T) ≤ i.

sigi(T) = (m, b)

m = # leaves at depth ≤ i.
b = # internals at depth i. sig2(T) = (9, 3)

14-4

The Technique

T is an i-level tree if d(T) ≤ i.

sigi(T) = (m, b)

m = # leaves at depth ≤ i.
b = # internals at depth i. sig2(T) = (9, 3)

OPT i[m, b] = min [costi(T) | sigi(T) = (m, b)] .

14-5

The Technique

T is an i-level tree if d(T) ≤ i.

sigi(T) = (m, b)

m = # leaves at depth ≤ i.
b = # internals at depth i. sig2(T) = (9, 3)

OPT i[m, b] = min [costi(T) | sigi(T) = (m, b)] .

minm≥n

(
OPT i(m, 0)

)
is cost of min-cost tree with at least n leaves and depth ≤ i.

14-6

The Technique

T is an i-level tree if d(T) ≤ i.

sigi(T) = (m, b)

m = # leaves at depth ≤ i.
b = # internals at depth i. sig2(T) = (9, 3)

OPT i[m, b] = min [costi(T) | sigi(T) = (m, b)] .

minm≥n

(
OPT i(m, 0)

)
is cost of min-cost tree with at least n leaves and depth ≤ i.

Goal: Find minm≥n (OPTn(m, 0)) and tree that achieves it

15-1

Let T ′ be an (i − 1)-level tree with
sigi−1(T) = (m′, b′).

sig2(T ′) = (4, 2)

15-2

Let T ′ be an (i − 1)-level tree with
sigi−1(T) = (m′, b′).

sig2(T ′) = (4, 2)

T ′ is expanded to an i level tree T by
adding the rib

′ children on level i and
choosing b of them to be internal.

15-3

Let T ′ be an (i − 1)-level tree with
sigi−1(T) = (m′, b′).

sig2(T ′) = (4, 2)

T ′ is expanded to an i level tree T by
adding the rib

′ children on level i and
choosing b of them to be internal.

sig2(T) = (9, 3)

15-4

Let T ′ be an (i − 1)-level tree with
sigi−1(T) = (m′, b′).

sig2(T ′) = (4, 2)

T ′ is expanded to an i level tree T by
adding the rib

′ children on level i and
choosing b of them to be internal.

sig2(T) = (9, 3)

Lemma: m = m′ + b′ri − b and costi(T) = costi−1(T ′) +
∑

t>m′ pt.

15-5

Let T ′ be an (i − 1)-level tree with
sigi−1(T) = (m′, b′).

sig2(T ′) = (4, 2)

T ′ is expanded to an i level tree T by
adding the rib

′ children on level i and
choosing b of them to be internal.

sig2(T) = (9, 3)

Lemma: m = m′ + b′ri − b and costi(T) = costi−1(T ′) +
∑

t>m′ pt.

We say that (m′, b′) i→(m, b) if ∃T ′, T as above.

15-6

Let T ′ be an (i − 1)-level tree with
sigi−1(T) = (m′, b′).

sig2(T ′) = (4, 2)

T ′ is expanded to an i level tree T by
adding the rib

′ children on level i and
choosing b of them to be internal.

sig2(T) = (9, 3)

Lemma: m = m′ + b′ri − b and costi(T) = costi−1(T ′) +
∑

t>m′ pt.

We say that (m′, b′) i→(m, b) if ∃T ′, T as above.
Wm′

15-7

Let T ′ be an (i − 1)-level tree with
sigi−1(T) = (m′, b′).

sig2(T ′) = (4, 2)

T ′ is expanded to an i level tree T by
adding the rib

′ children on level i and
choosing b of them to be internal.

sig2(T) = (9, 3)

Lemma: m = m′ + b′ri − b and costi(T) = costi−1(T ′) +
∑

t>m′ pt.

We say that (m′, b′) i→(m, b) if ∃T ′, T as above.

The DP recurrence is thus

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

with initial condition OPT 0[0, 1] = 0.

Wm′

16-1

• Introduction
- A Quick Review of Prefix-Free Coding
- New Results

• Conclusion & Comments

• The Basic Top-Down Dynamic Programming Technique

• The Speedup

17-1

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

17-2

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

So, only need to check O(m) entries to calculate given OPT i[m, b].

17-3

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

So, only need to check O(m) entries to calculate given OPT i[m, b].

Not hard to prove that
if b > 0 then m + b ≤ n and
if b = 0 then m < n + ri.

So, only need to fill in O
(
n2
)

entries.

Note: paper shows how to make O(n2) independent of ri

⇒ Total time to fill in OPT i[,] table is O(n3).

17-4

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

So, only need to check O(m) entries to calculate given OPT i[m, b].

Not hard to prove that
if b > 0 then m + b ≤ n and
if b = 0 then m < n + ri.

So, only need to fill in O
(
n2
)

entries.

Note: paper shows how to make O(n2) independent of ri

⇒ Total time to fill in OPT i[,] table is O(n3).

We now (finally) see how to reduce this down to O(n2).

17-5

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

So, only need to check O(m) entries to calculate given OPT i[m, b].

Not hard to prove that
if b > 0 then m + b ≤ n and
if b = 0 then m < n + ri.

So, only need to fill in O
(
n2
)

entries.

Note: paper shows how to make O(n2) independent of ri

⇒ Total time to fill in OPT i[,] table is O(n3).

We now (finally) see how to reduce this down to O(n2).
Filling in all of the tables and solving the entire problem in O(n3) time.

18-1

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

18-2

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

X[m′, b′]

18-3

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

X[m′, b′]

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

For fixed d ≥ 1 set

18-4

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

X[m′, b′]

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

For fixed d ≥ 1 set

Then, ∀(m, b) ∈ I(d),

“(m′, b′) i→(m, b)” ⇔ “(m′, b′) ∈ I ′i(d) with b ≤ b′ri”.

18-5

OPT i[m, b] = min
{(m′,b′) | (m′,b′)

i→(m,b)}

{
OPT i−1[m′, b′] + Wm′

}
.

where m = m′ + b′ri − b and b ≤ b′ri.

X[m′, b′]

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

For fixed d ≥ 1 set

Then, ∀(m, b) ∈ I(d),

“(m′, b′) i→(m, b)” ⇔ “(m′, b′) ∈ I ′i(d) with b ≤ b′ri”.

In particular

OPT i[m, b] = min{X[m′, b′] : (m′, b′) ∈ I ′i(d), b/ri ≤ b′}

19-1

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

OPT i[m, b] = min{X[m′, b′] : (m′, b′) ∈ I ′i(d), b/ri ≤ b′}

19-2

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

OPT i[m, b] = min{X[m′, b′] : (m′, b′) ∈ I ′i(d), b/ri ≤ b′}

m b (m′, b′) to minimize over
0 12 (0, 4)
1 11 (0, 4)
2 10 (0, 4)
3 9 (0, 4), (3, 3)
4 8 (0, 4), (3, 3)
5 7 (0, 4), (3, 3)
6 6 (0, 4), (3, 3), (6, 2)
7 5 (0, 4), (3, 3), (6, 2)
8 4 (0, 4), (3, 3), (6, 2)
9 3 (0, 4), (3, 3), (6, 2), (9, 1)
10 2 (0, 4), (3, 3), (6, 2), (9, 1)
11 1 (0, 4), (3, 3), (6, 2), (9, 1)
12 0 (0, 4), (3, 3), (6, 2), (9, 1), (12, 0)

EX: ri = 3, d = 12

19-3

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

OPT i[m, b] = min{X[m′, b′] : (m′, b′) ∈ I ′i(d), b/ri ≤ b′}

m b (m′, b′) to minimize over
0 12 (0, 4)
1 11 (0, 4)
2 10 (0, 4)
3 9 (0, 4), (3, 3)
4 8 (0, 4), (3, 3)
5 7 (0, 4), (3, 3)
6 6 (0, 4), (3, 3), (6, 2)
7 5 (0, 4), (3, 3), (6, 2)
8 4 (0, 4), (3, 3), (6, 2)
9 3 (0, 4), (3, 3), (6, 2), (9, 1)
10 2 (0, 4), (3, 3), (6, 2), (9, 1)
11 1 (0, 4), (3, 3), (6, 2), (9, 1)
12 0 (0, 4), (3, 3), (6, 2), (9, 1), (12, 0)

EX: ri = 3, d = 12

19-4

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

OPT i[m, b] = min{X[m′, b′] : (m′, b′) ∈ I ′i(d), b/ri ≤ b′}

m b (m′, b′) to minimize over
0 12 (0, 4)
1 11 (0, 4)
2 10 (0, 4)
3 9 (0, 4), (3, 3)
4 8 (0, 4), (3, 3)
5 7 (0, 4), (3, 3)
6 6 (0, 4), (3, 3), (6, 2)
7 5 (0, 4), (3, 3), (6, 2)
8 4 (0, 4), (3, 3), (6, 2)
9 3 (0, 4), (3, 3), (6, 2), (9, 1)
10 2 (0, 4), (3, 3), (6, 2), (9, 1)
11 1 (0, 4), (3, 3), (6, 2), (9, 1)
12 0 (0, 4), (3, 3), (6, 2), (9, 1), (12, 0)

EX: ri = 3, d = 12

19-5

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

OPT i[m, b] = min{X[m′, b′] : (m′, b′) ∈ I ′i(d), b/ri ≤ b′}

m b (m′, b′) to minimize over
0 12 (0, 4)
1 11 (0, 4)
2 10 (0, 4)
3 9 (0, 4), (3, 3)
4 8 (0, 4), (3, 3)
5 7 (0, 4), (3, 3)
6 6 (0, 4), (3, 3), (6, 2)
7 5 (0, 4), (3, 3), (6, 2)
8 4 (0, 4), (3, 3), (6, 2)
9 3 (0, 4), (3, 3), (6, 2), (9, 1)
10 2 (0, 4), (3, 3), (6, 2), (9, 1)
11 1 (0, 4), (3, 3), (6, 2), (9, 1)
12 0 (0, 4), (3, 3), (6, 2), (9, 1), (12, 0)

EX: ri = 3, d = 12

19-6

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

OPT i[m, b] = min{X[m′, b′] : (m′, b′) ∈ I ′i(d), b/ri ≤ b′}

m b (m′, b′) to minimize over
0 12 (0, 4)
1 11 (0, 4)
2 10 (0, 4)
3 9 (0, 4), (3, 3)
4 8 (0, 4), (3, 3)
5 7 (0, 4), (3, 3)
6 6 (0, 4), (3, 3), (6, 2)
7 5 (0, 4), (3, 3), (6, 2)
8 4 (0, 4), (3, 3), (6, 2)
9 3 (0, 4), (3, 3), (6, 2), (9, 1)
10 2 (0, 4), (3, 3), (6, 2), (9, 1)
11 1 (0, 4), (3, 3), (6, 2), (9, 1)
12 0 (0, 4), (3, 3), (6, 2), (9, 1), (12, 0)

EX: ri = 3, d = 12

19-7

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

OPT i[m, b] = min{X[m′, b′] : (m′, b′) ∈ I ′i(d), b/ri ≤ b′}

m b (m′, b′) to minimize over
0 12 (0, 4)
1 11 (0, 4)
2 10 (0, 4)
3 9 (0, 4), (3, 3)
4 8 (0, 4), (3, 3)
5 7 (0, 4), (3, 3)
6 6 (0, 4), (3, 3), (6, 2)
7 5 (0, 4), (3, 3), (6, 2)
8 4 (0, 4), (3, 3), (6, 2)
9 3 (0, 4), (3, 3), (6, 2), (9, 1)
10 2 (0, 4), (3, 3), (6, 2), (9, 1)
11 1 (0, 4), (3, 3), (6, 2), (9, 1)
12 0 (0, 4), (3, 3), (6, 2), (9, 1), (12, 0)

EX: ri = 3, d = 12

For fixed d,
time needed to calculate

all OPT i[m, b]
with (m, b) ∈ I(d) is

O(|I(d)|+ |I ′d|) = O(d)

19-8

I(d) = {(m, b) | m + b = d} , I′i(d) =
{

(m′, b′) | m′ + b′ri = d
}

.

OPT i[m, b] = min{X[m′, b′] : (m′, b′) ∈ I ′i(d), b/ri ≤ b′}

m b (m′, b′) to minimize over
0 12 (0, 4)
1 11 (0, 4)
2 10 (0, 4)
3 9 (0, 4), (3, 3)
4 8 (0, 4), (3, 3)
5 7 (0, 4), (3, 3)
6 6 (0, 4), (3, 3), (6, 2)
7 5 (0, 4), (3, 3), (6, 2)
8 4 (0, 4), (3, 3), (6, 2)
9 3 (0, 4), (3, 3), (6, 2), (9, 1)
10 2 (0, 4), (3, 3), (6, 2), (9, 1)
11 1 (0, 4), (3, 3), (6, 2), (9, 1)
12 0 (0, 4), (3, 3), (6, 2), (9, 1), (12, 0)

EX: ri = 3, d = 12

For fixed d,
time needed to calculate

all OPT i[m, b]
with (m, b) ∈ I(d) is

O(|I(d)|+ |I ′d|) = O(d)

20-1

We just saw how to calculate OPT i[m, b] for all

(m, b) ∈ I(d) = {(m, b) : m + b = d}

in O(d) time.

20-2

We just saw how to calculate OPT i[m, b] for all

(m, b) ∈ I(d) = {(m, b) : m + b = d}

in O(d) time.

Since m + b = O(n), the entire OPT i[m, b] table can be
partitioned into the I(d) sets and filled in in time

O (
∑

d d) = O(n2).

20-3

We just saw how to calculate OPT i[m, b] for all

(m, b) ∈ I(d) = {(m, b) : m + b = d}

in O(d) time.

Since m + b = O(n), the entire OPT i[m, b] table can be
partitioned into the I(d) sets and filled in in time

O (
∑

d d) = O(n2).

To fully solve the problem, we must fill in,
OPT 1[m, b], OPT 2[m, b], . . . , OPTn[m, b].

From above this takes only O(n3) time,
improving upon the old bound of O(n4 log n).

21-1

• Introduction
- A Quick Review of Prefix-Free Coding
- New Results

• Conclusion & Comments

• The Basic Top-Down Dynamic Programming Technique

• The Speedup

22-1

Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

22-2

Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

We just showed how to use batching of dynamic program entries to
reduce the running time of mixed-radix coding.

22-3

Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

We just showed how to use batching of dynamic program entries to
reduce the running time of mixed-radix coding.

Mixed-Radix coding seems like a very special case.
In reality, all of the above problems can be solved using a top-down
DP very similar to the one for mixed-radix coding. The major problem-
specific change is in the definition of signature.

22-4

Problem Previous Best Result This paper

Mixed Radix Coding O(n4 log n) [1] O(n3)

Reserved Length Coding (i) O(gn3) [2] O(gn2)

Reserved Length Coding (ii) O(g3n3 logg n) [2] O(gn2 log n)

One-ended Coding O(n3) [3] O(n2)

The Sound of Silence O(nU+2) [4] O(nU+1)

We just showed how to use batching of dynamic program entries to
reduce the running time of mixed-radix coding.

Mixed-Radix coding seems like a very special case.
In reality, all of the above problems can be solved using a top-down
DP very similar to the one for mixed-radix coding. The major problem-
specific change is in the definition of signature.

Furthermore, almost the same type of batching technique, e.g., defining
similar I(d) and I′(d) and showing that OPT [m, b] for(m, b) ∈ I(d) only
depend upon values in I′(d), holds for all of these problems.

23-1

A Final Comment

23-2

A Final Comment
Literature contains two standard techniques for speeding up
dynamic programs;

(i) The Knuth-Yao quadrangle inequality and
(ii) Monge property technques (SMAWK) .

23-3

A Final Comment
Literature contains two standard techniques for speeding up
dynamic programs;

(i) The Knuth-Yao quadrangle inequality and
(ii) Monge property technques (SMAWK) .

Our original approach was to search for a Monge property in the
DP. We found one in Mixed-Radix coding, immediately implying
a speedup. The batching technique can be thought of as a
simpler speedup.

23-4

A Final Comment
Literature contains two standard techniques for speeding up
dynamic programs;

(i) The Knuth-Yao quadrangle inequality and
(ii) Monge property technques (SMAWK) .

Our original approach was to search for a Monge property in the
DP. We found one in Mixed-Radix coding, immediately implying
a speedup. The batching technique can be thought of as a
simpler speedup.

The batching technique was later shown to be applicable to
other coding problems, such as 1-ended coding, that do not (at
least obviously) possess the Monge property.

What other problems can this type of batching speed up?

