
Polynomial Time Algorithms
for Constructing Optimal AIFV Codes

Version of January 27, 2019

Mordecai Golin and Elfarouk Harb
Hong Kong UST

To appear in DCC’19

Short Summary

Huffman encoding is an “optimal” lossless compression algorithm.

Optimality implicitly uses two unstated conditions:
(i) only one encoding (tree node) per source letter and
(ii) encoding is instantaneous.

i.e., can decode a letter as soon as its final bit is seen.

Relaxing those two conditions permits constructing Almost
Instantaneous Fixed to Variable (AIFV) code that beat Huffman.

Construction techniques are complicated:
using ellipsoid methods to find finite-state Markov Chains that have
“optimal” steady state distributions.

Lots of open problems remaining.
Finding better AIFV codes.
Finding faster algorithms.
Finding strongly polynomial algorithms.

Outline

• AIFV-2 codes: cost and algorithm

• Introduction

• AIFV-2 codes: cost and algorithm

• A Geometric Interpretation of the old algorithm

• A New Binary Search Algorithm

• An Ellipsoid Algorithm

• Extensions to AIFV-k codes (skip)

• Summing up and open questions

• Huffman coding is a lossless data compression algorithm.

• Huffman coding is a lossless data compression algorithm.

• Let X be finite alphabet of size n (e.g X = {a, b, c, d})

• Huffman coding is a lossless data compression algorithm.

• Let X be finite alphabet of size n (e.g X = {a, b, c, d})

• ∀x ∈ X , let px = pX (x) be probability of source letter x
occuring, e.g.,
pa = 0.5, pb = 0.3, pc = 0.15, pd = 0.05.

• Huffman coding is a lossless data compression algorithm.

• Let X be finite alphabet of size n (e.g X = {a, b, c, d})

• ∀x ∈ X , let px = pX (x) be probability of source letter x
occuring, e.g.,
pa = 0.5, pb = 0.3, pc = 0.15, pd = 0.05.

• c ∈ {0, 1}∗ is a codeword, e.g., c = 0111.
|c| denotes the length of the codeword, e.g., |0111| = 4.

• Huffman coding is a lossless data compression algorithm.

• Let X be finite alphabet of size n (e.g X = {a, b, c, d})

• ∀x ∈ X , let px = pX (x) be probability of source letter x
occuring, e.g.,
pa = 0.5, pb = 0.3, pc = 0.15, pd = 0.05.

• c ∈ {0, 1}∗ is a codeword, e.g., c = 0111.
|c| denotes the length of the codeword, e.g., |0111| = 4.

• A code is a mapping C of source letters to codewords,
e.g C(a) = 01, C(b) = 0010, C(c) = 1001, C(d) = 001.

• Average code length of code C over source X is

L(C) =
∑
x∈X
|C(x)|px

• Average code length of code C over source X is

L(C) =
∑
x∈X
|C(x)|px

• Example: if X = {a, b, c, d}

pa = 0.5, pb = 0.3, pc = 0.15, pd = 0.05

C(a) = 01, C(b) = 001, C(c) = 0001, C(d) = 0000

• Average code length of code C over source X is

L(C) =
∑
x∈X
|C(x)|px

• Example: if X = {a, b, c, d}

pa = 0.5, pb = 0.3, pc = 0.15, pd = 0.05

C(a) = 01, C(b) = 001, C(c) = 0001, C(d) = 0000

• ⇒ the average code length is

L(C) = |C(a)|pa + |C(b)|pb + |C(c)|pc + |C(d)|pd

= 2× 0.5 + 3× 0.3 + 4× 0.15 + 4× 0.05 = 2.7

• Given Source alphabet X and its probability distribution,
find prefix-free code C that minimizes average code
length L(C).

• Given Source alphabet X and its probability distribution,
find prefix-free code C that minimizes average code
length L(C).

• Huffman Coding does this.

0 1

0 1

0 1

a

b

c d

• Given Source alphabet X and its probability distribution,
find prefix-free code C that minimizes average code
length L(C).

• Huffman Coding does this.

0 1

0 1

0 1

• Each leaf in tree corresponds to
source letter x ∈ X

a

b

c d

C(a) = 0

C(b) = 10

C(c) = 110

C(d) = 111

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to encode daba ?

• Concatenate codewords for
d, a, b, a

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to encode daba ?

• Concatenate codewords for
d, a, b, a

• C(a) = 0

• C(b) = 10

• C(d) = 111

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to encode daba ?

• Concatenate codewords for
d, a, b, a

• C(a) = 0

• C(b) = 10

daba is encoded as 1110100

• C(d) = 111

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Stop! Reached leaf corresponding
to d, so we decode as d.

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Stop! Reached leaf corresponding
to d, so we decode as d.

d

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Stop! Reached leaf corresponding
to c so decode as c.

d

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Stop! Reached leaf corresponding
to c so decode as c.

d c

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Similarly, next 110 is also
decoded as c.

d c

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Similarly, next 110 is also
decoded as c.

d c c

Given a Huffman Code, recall how to encode/decode.

0 1

0 1

0 1

a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Similarly, next 110 is also
decoded as c.

Hence, 111110110 is decoded as dcc

d c c

• Huffman Coding optimality proof uses two implicit assumptions.

The decoding procedure is instantaneous

Any code can be represented as a single code tree.

• Huffman Coding optimality proof uses two implicit assumptions.

The decoding procedure is instantaneous

Any code can be represented as a single code tree.

• Instantaneous means that immediately after reading the
last bit in a codeword, the source character is known.

No decoding delay is allowed once a bit is read.

• Huffman Coding optimality proof uses two implicit assumptions.

The decoding procedure is instantaneous

Any code can be represented as a single code tree.

• Instantaneous means that immediately after reading the
last bit in a codeword, the source character is known.

• Assumptions are a bit restrictive.

Can Huffman Coding compression rate be beaten if the
assumptions are relaxed?

No decoding delay is allowed once a bit is read.

• Huffman Coding optimality proof uses two implicit assumptions.

The decoding procedure is instantaneous

Any code can be represented as a single code tree.

• Instantaneous means that immediately after reading the
last bit in a codeword, the source character is known.

• Assumptions are a bit restrictive.

Can Huffman Coding compression rate be beaten if the
assumptions are relaxed?

• Yes !

No decoding delay is allowed once a bit is read.

• An Almost Instantaneous Code might require a bounded
decoding delay.

• An Almost Instantaneous Code might require a bounded
decoding delay.

• An AIFV-2 Code is an Almost Instantaneous Code that has
a decoding delay at most 2, i.e., might need to read 2 bits
after codeword ends before recognizing codeword.

• An Almost Instantaneous Code might require a bounded
decoding delay.

• An AIFV-2 Code is an Almost Instantaneous Code that has
a decoding delay at most 2, i.e., might need to read 2 bits
after codeword ends before recognizing codeword.

• Each AIFV-2 code is represented by two code trees T0, T1.
Each x ∈ X is represented by two codewords: one in each tree.

• An Almost Instantaneous Code might require a bounded
decoding delay.

• An AIFV-2 Code is an Almost Instantaneous Code that has
a decoding delay at most 2, i.e., might need to read 2 bits
after codeword ends before recognizing codeword.

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

• Each AIFV-2 code is represented by two code trees T0, T1.
Each x ∈ X is represented by two codewords: one in each tree.

• An Almost Instantaneous Code might require a bounded
decoding delay.

• An AIFV-2 Code is an Almost Instantaneous Code that has
a decoding delay at most 2, i.e., might need to read 2 bits
after codeword ends before recognizing codeword.

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

• Each AIFV-2 code is represented by two code trees T0, T1.
Each x ∈ X is represented by two codewords: one in each tree.

• C0(a) = 0, C1(a) = 01

a

a

• An Almost Instantaneous Code might require a bounded
decoding delay.

• An AIFV-2 Code is an Almost Instantaneous Code that has
a decoding delay at most 2, i.e., might need to read 2 bits
after codeword ends before recognizing codeword.

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

• Each AIFV-2 code is represented by two code trees T0, T1.
Each x ∈ X is represented by two codewords: one in each tree.

• C0(a) = 0, C1(a) = 01

a

a

• C0(b) = 10, C1(b) = 10

• C0(c) = 11, C1(c) = 11

• C0(d) = 1000,
C1(d) = 1100

Defintion of AIFV-2 Code T0, T1

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Defintion of AIFV-2 Code T0, T1

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Root of T1 is complete.
0 child of root only has a 1 child.

Incomplete internal nodes (with
exception above) have only a 0
child.

Defintion of AIFV-2 Code T0, T1

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

master nodes

slave nodes

Root of T1 is complete.
0 child of root only has a 1 child.

Incomplete internal nodes (with
exception above) have only a 0
child.

Incomplete nodes are labelled
as either master or slave nodes

Master nodes are incomplete
nodes with incomplete children.

Defintion of AIFV-2 Code T0, T1

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

master nodes

slave nodes

Codewords are leaves and master nodes.
Slave nodes and complete internal nodes are not codewords.

Root of T1 is complete.
0 child of root only has a 1 child.

Incomplete internal nodes (with
exception above) have only a 0
child.

Incomplete nodes are labelled
as either master or slave nodes

Master nodes are incomplete
nodes with incomplete children.

Encoding/Decoding with AIFV-2 Codes T0, T1

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Encoding S = s1, s2, . . . sk ∈ X k

Encoding/Decoding with AIFV-2 Codes T0, T1

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Encoding S = s1, s2, . . . sk ∈ X k

master nodes

slave nodes

Master nodes are internal node codewords.

Encoding/Decoding with AIFV-2 Codes T0, T1

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Encoding S = s1, s2, . . . sk ∈ X k

master nodes

slave nodes

Encode s1 with tree T0

For i = 2 to k
if si−1 was encoded

using a master node
encode si with tree T1

else:
encode si with tree T0

Master nodes are internal node codewords.

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

dabcab

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

dabcab

Start in T0.
Encode d as C0(d) = 1000

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

dabcab

Start in T0.
Encode d as C0(d) = 1000

1000

d

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

dabcab

Start in T0.
Encode d as C0(d) = 1000

d is not master ⇒ stay in T0

1000

d

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

dabcab

Start in T0.
Encode a as C0(a) = 0

a is not master ⇒ stay in T0

1000

d

0

a

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

dabcab

Start in T0.
Encode b as C0(b) = 10

b is a master ⇒ switch to T1

1000

d

0

a

10

b

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

dabcab

Start in T1.
Encode c as C1(c) = 11

c is a master ⇒ stay in T1

1000

d

0

a

10

b

11

c

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

dabcab

Start in T1.
Encode a as C1(a) = 01

a is not a master⇒ switch to T0

1000

d

0

a

10

b

11

c

01

a

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

dabcab

Start in T0.
Encode b as C0(b) = 10

1000

d

0

a

10

b

11

c

01

a

10

b

Example: Encoding dabcab

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Encoding of dabcab1000

d

0

a

10

b

11

c

01

a

10

b

The Decoding Procedure

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Start at T0 and trace codeword
through tree.

The Decoding Procedure

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Start at T0 and trace codeword
through tree.

If a leaf is reached, decode using
that word.

If decoding is “blocked” due to
missing ”1” edge, go back to
last master seen and use it as
decoded letter.

The Decoding Procedure

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Start at T0 and trace codeword
through tree.

If a leaf is reached, decode using
that word.

If decoding is “blocked” due to
missing ”1” edge, go back to
last master seen and use it as
decoded letter.

Similar to encoding,
if last symbol decoded used
master, use T1 for next symbol;
otherwise use T0

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
10000101101101000010110110

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Decode d.
Since d is not master,
remain in T0

d

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Decode a.
Since a is not master,
remain in T0

d a

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Trace is blocked.
Codeword has 1, but code
tree only has 0 edge.
Must use master node b.

d a

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Trace is blocked.
Codeword has 1, but code
tree only has 0 edge.
Must use master node b.

d a b

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Since b is a master node,
switch to T1.

d a b

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a b

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a b

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a b

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Trace is blocked again.
Code word has 1 but tree
only has 0 edge.
Must use master node c.

d a b

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Trace is blocked again.
Code word has 1 but tree
only has 0 edge.
Must use master node c.

d a b c

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a b c

Since c is a master node,
remain in T1.

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a b c

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a b c

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Decode a.
Since a is not master,
switch to T0

d a b c a

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a b c a

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

d a b c a

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

Decode b

d a b c a b

Example: Decoding 1000010110110

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1
1000010110110

The final decoded word is
dabcab

d a b c a b

• Optimal AIFV-2 Codes compress at least as well as
Huffman coding. There are examples (such as the last
example, calculation later) that can be shown to beat
Huffman compression.

• Allowing a decoding delay of 2 bits, and 2 trees permits
improving the compression.

• Optimal AIFV-2 Codes compress at least as well as
Huffman coding. There are examples (such as the last
example, calculation later) that can be shown to beat
Huffman compression.

• Constructing Optimal Huffman Codes is O(n log n), or
O(n) if the probabilities are sorted.

• Constructing Optimal AIFV-2 codes is much more
difficult. State of the art had no polynomial algorithm.

• Allowing a decoding delay of 2 bits, and 2 trees permits
improving the compression.

References and Extensions

General AIFV References
(1) H. Yamamoto and X. Wei,

“ Almost instantaneous FV codes,” 2013 IEEE ISIT

(2) W. Hu, H. Yamamoto, and J. Honda,
“Worst-case redundancy of optimal binary AIFV codes and their
extended codes,” IEEE Transactions on Information Theory, 2017

(3) H. Yamamoto, M. Tsuchihashi, and J. Honda,
“ Almost instantaneous Fixed-to-variable length codes,
IEEE Transactions on Information Theory. 2015

AIFV-m Codes (a generalization to m coding trees)

(4) H. Yamamoto and K. Iwata,
“An iterative algorithm to construct optimal binary AIFV-m codes,”
IEEE ITW’17

(5) K. Iwata and H. Yamamoto, “A dynamic programming algorithm to
construct optimal code trees of AIFV codes,” ISITA’16,

Outline

• AIFV-2 codes: cost and algorithm

• Introduction

• AIFV-2 codes: cost and algorithm

• A Geometric Interpretation of the old algorithm

• A New Binary Search Algorithm

• An Ellipsoid Algorithm

• Extensions to AIFV-k codes (skip)

• Summing up and open questions

Calculating average code length LAIFV (T0, T1)

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

∀x ∈ X , let cs(x) be the code
word representing x in Ts.

The average length of
individual code tree Ts is

L(Ts) =
∑
x∈X
|cs(x)|px

Calculating average code length LAIFV (T0, T1)
T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Fix T0, T1.
Consider randomly generated
string S = s1, s2, . . . ,∈ X ∗.
The tree used to encode si is
modelled by a two state ergodic
Markov Chain.

Calculating average code length LAIFV (T0, T1)
T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Fix T0, T1.
Consider randomly generated
string S = s1, s2, . . . ,∈ X ∗.
The tree used to encode si is
modelled by a two state ergodic
Markov Chain.

Let q0(T1) be sum of leaf
weights in T1; q1(T0) the
sum of master weights in T0

Calculating average code length LAIFV (T0, T1)
T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Fix T0, T1.
Consider randomly generated
string S = s1, s2, . . . ,∈ X ∗.

Let s, ŝ ∈ {0, 1}, s 6= ŝ. Working through the details,
the stationary probability of using Ts is given by

P (s|T0, T1) =
qs(Tŝ)

q0(T1) + q1(T0)

The tree used to encode si is
modelled by a two state ergodic
Markov Chain.

Let q0(T1) be sum of leaf
weights in T1; q1(T0) the
sum of master weights in T0

Calculating average code length LAIFV (T0, T1)
T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Fix T0, T1.
Consider randomly generated
string S = s1, s2, . . . ,∈ X ∗.
The tree used to encode si is
modelled by a two state ergodic
Markov Chain.

LAIFV (T0, T1) = P (0|T0, T1)L(T0) + P (1|T0, T1)L(T1)

stat. prob of
being in T0

stat. prob of
being in T1

cost of
T0

cost of
T1

Calculating average code length LAIFV (T0, T1)
T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

Fix T0, T1.
Consider randomly generated
string S = s1, s2, . . . ,∈ X ∗.
The tree used to encode si is
modelled by a two state ergodic
Markov Chain.

LAIFV (T0, T1) = P (0|T0, T1)L(T0) + P (1|T0, T1)L(T1)

stat. prob of
being in T0

stat. prob of
being in T1

cost of
T0

cost of
T1

Problem: Find T0, T1 that
minimize LAIFV (T0, T1)

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

pX(a) = 0.5 pX(b) = 0.25

pX(c) = 0.2 pX(d) = 0.05

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

pX(a) = 0.5 pX(b) = 0.25

pX(c) = 0.2 pX(d) = 0.05

L(T0) = 1 · 0.5 + 2 · 0.25 + 2 · 0.2
+4 · 0.05 = 1.6

L(T1) = 2 · 0.5 + 2 · 0.25 + 2 · 0.2
+4 · 0.05 = 2.1

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

pX(a) = 0.5 pX(b) = 0.25

pX(c) = 0.2 pX(d) = 0.05

L(T0) = 1 · 0.5 + 2 · 0.25 + 2 · 0.2
+4 · 0.05 = 1.6

L(T1) = 2 · 0.5 + 2 · 0.25 + 2 · 0.2
+4 · 0.05 = 2.1

q1(T0) = 0.25

q0(T1) = 0.5 + 0.25 + 0.05 = 0.8

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

pX(a) = 0.5 pX(b) = 0.25

pX(c) = 0.2 pX(d) = 0.05

L(T0) = 1 · 0.5 + 2 · 0.25 + 2 · 0.2
+4 · 0.05 = 1.6

L(T1) = 2 · 0.5 + 2 · 0.25 + 2 · 0.2
+4 · 0.05 = 2.1

q1(T0) = 0.25

q0(T1) = 0.5 + 0.25 + 0.05 = 0.8

LAIFV (T0, T1) =
1.6 · 0.8 + 2.1 · 0.25

0.25 + 0.8
< 1.72 < 1.75 = L(HuffmanX)

AIFV-2 Construction Algorithm

• Yamamoto et al. proved
that this Algorithm
constructs optimal
AIFV-2 Codes.

Algorithm [Yamamoto et al]
m← 0
C(0) = 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
T

(m)
1 = argminT1

{L(T1)− C(m−1)q0(T1)}
Update cost as

C(m) =
L(T

(m)
1)− L(T

(m)
0)

q1(T
(m)
0) + q0(T

(m)
1)

until C(m) = C(m−1)

AIFV-2 Construction Algorithm

• Yamamoto et al. proved
that this Algorithm
constructs optimal
AIFV-2 Codes.

Algorithm [Yamamoto et al]
m← 0
C(0) = 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
T

(m)
1 = argminT1

{L(T1)− C(m−1)q0(T1)}
Update cost as

C(m) =
L(T

(m)
1)− L(T

(m)
0)

q1(T
(m)
0) + q0(T

(m)
1)

until C(m) = C(m−1)

• At each step, algorithm
creates two new
improved code trees.

AIFV-2 Construction Algorithm

• Yamamoto et al. proved
that this Algorithm
constructs optimal
AIFV-2 Codes.

Algorithm [Yamamoto et al]
m← 0
C(0) = 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
T

(m)
1 = argminT1

{L(T1)− C(m−1)q0(T1)}
Update cost as

C(m) =
L(T

(m)
1)− L(T

(m)
0)

q1(T
(m)
0) + q0(T

(m)
1)

until C(m) = C(m−1)

• At each step, algorithm
creates two new
improved code trees.

• Originally solved using
ILP; later replaced by
O(n5) DP algorithm.
Parameterizes trees by
“cost” C.

AIFV-2 Construction Algorithm

• Yamamoto et al. proved
that this Algorithm
constructs optimal
AIFV-2 Codes.

Algorithm [Yamamoto et al]
m← 0
C(0) = 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
T

(m)
1 = argminT1

{L(T1)− C(m−1)q0(T1)}
Update cost as

C(m) =
L(T

(m)
1)− L(T

(m)
0)

q1(T
(m)
0) + q0(T

(m)
1)

until C(m) = C(m−1)

• At each step, algorithm
creates two new
improved code trees.

• Originally solved using
ILP; later replaced by
O(n5) DP algorithm.
Parameterizes trees by
“cost” C.

They proved that Algorithm terminates after finite number of iterations,
but no bound on number of iterations was known.

Outline

• AIFV-2 codes: cost and algorithm

• Introduction

• AIFV-2 codes: cost and algorithm

• A Geometric Interpretation of the old algorithm

• A New Binary Search Algorithm

• An Ellipsoid Algorithm

• Extensions to AIFV-k codes (skip)

• Summing up and open questions

A Geometric Interpretation of the old algorithm
Algorithm [Yamamoto et al]
m,C(0) ← 0, 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
T

(m)
1 = argminT1

{L(T1)− C(m−1)q0(T1)}

C(m) =
L(T

(m)
1)− L(T

(m)
0)

q1(T
(m)
0) + q0(T

(m)
1)

until C(m) = C(m−1)

A Geometric Interpretation of the old algorithm
Algorithm [Yamamoto et al]
m,C(0) ← 0, 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
T

(m)
1 = argminT1

{L(T1)− C(m−1)q0(T1)}

C(m) =
L(T

(m)
1)− L(T

(m)
0)

q1(T
(m)
0) + q0(T

(m)
1)

until C(m) = C(m−1)

• Original proof of termination was algebraic.

A Geometric Interpretation of the old algorithm
Algorithm [Yamamoto et al]
m,C(0) ← 0, 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
T

(m)
1 = argminT1

{L(T1)− C(m−1)q0(T1)}

C(m) =
L(T

(m)
1)− L(T

(m)
0)

q1(T
(m)
0) + q0(T

(m)
1)

until C(m) = C(m−1)

• Original proof of termination was algebraic.

• We replace algebraic viewpoint with a geometric one.

A Geometric Interpretation of the old algorithm
Algorithm [Yamamoto et al]
m,C(0) ← 0, 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
T

(m)
1 = argminT1

{L(T1)− C(m−1)q0(T1)}

C(m) =
L(T

(m)
1)− L(T

(m)
0)

q1(T
(m)
0) + q0(T

(m)
1)

until C(m) = C(m−1)

• Original proof of termination was algebraic.

Eqn for
x-coord of
intersection of
the 2 lines

• We replace algebraic viewpoint with a geometric one.

For fixed T0, T1,
these look like
eqns of a line.

• Let T0 be the set of all possible code trees T0. Then for all T0 ∈ T0,
the equation yT0

(x) = L(T0) + xq1(T0) is a line with positive slope.

• Let T0 be the set of all possible code trees T0. Then for all T0 ∈ T0,
the equation yT0

(x) = L(T0) + xq1(T0) is a line with positive slope.

• Let T0 be the set of all possible code trees T0. Then for all T0 ∈ T0,
the equation yT0

(x) = L(T0) + xq1(T0) is a line with positive slope.

• Let T0 be the set of all possible code trees T0. Then for all T0 ∈ T0,
the equation yT0

(x) = L(T0) + xq1(T0) is a line with positive slope.

• Let T0 be the set of all possible code trees T0. Then for all T0 ∈ T0,
the equation yT0

(x) = L(T0) + xq1(T0) is a line with positive slope.

• Let T0 be the set of all possible code trees T0. Then for all T0 ∈ T0,
the equation yT0

(x) = L(T0) + xq1(T0) is a line with positive slope.

• Let T0 be the set of all possible code trees T0. Then for all T0 ∈ T0,
the equation yT0

(x) = L(T0) + xq1(T0) is a line with positive slope.

Construct the lower envelope E0 of these lines.
The optimization argminT0

{L(T0) + C(m−1)q1(T0)} in the algorithm

finds the line yT0
(x) that corresponds to E0

(
C(m−1)) .

E0

• Let T0 be the set of all possible code trees T0. Then for all T0 ∈ T0,
the equation yT0

(x) = L(T0) + xq1(T0) is a line with positive slope.

Construct the lower envelope E0 of these lines.
The optimization argminT0

{L(T0) + C(m−1)q1(T0)} in the algorithm

finds the line yT0
(x) that corresponds to E0

(
C(m−1)) .

E0

x

yT0
(x)

• Similarly, let T1 be the set of all possible code trees T1. Then for ∀T1 ∈ T1,
the expression yT1

(x) = L(T1)− xq0(T1) is a line with negative slope.

• Similarly, let T1 be the set of all possible code trees T1. Then for ∀T1 ∈ T1,
the expression yT1

(x) = L(T1)− xq0(T1) is a line with negative slope.

• Similarly, let T1 be the set of all possible code trees T1. Then for ∀T1 ∈ T1,
the expression yT1

(x) = L(T1)− xq0(T1) is a line with negative slope.

• Similarly, let T1 be the set of all possible code trees T1. Then for ∀T1 ∈ T1,
the expression yT1

(x) = L(T1)− xq0(T1) is a line with negative slope.

• Similarly, let T1 be the set of all possible code trees T1. Then for ∀T1 ∈ T1,
the expression yT1

(x) = L(T1)− xq0(T1) is a line with negative slope.

• Similarly, let T1 be the set of all possible code trees T1. Then for ∀T1 ∈ T1,
the expression yT1

(x) = L(T1)− xq0(T1) is a line with negative slope.

• Similarly, let T1 be the set of all possible code trees T1. Then for ∀T1 ∈ T1,
the expression yT1

(x) = L(T1)− xq0(T1) is a line with negative slope.

• Similarly, let T1 be the set of all possible code trees T1. Then for ∀T1 ∈ T1,
the expression yT1

(x) = L(T1)− xq0(T1) is a line with negative slope.

E1

Construct the lower envelope E1 of these lines.
The optimization argminT1

{L(T1) + C(m−1)q0(T1)} in the algorithm

finds the yT1
(x) line that corresponds to E1

(
C(m−1)) .

• Because E0(x) has positive slope and E1(x) negative slope they
intersect at a unique point q with x-coordinate x = C∗.

C(0)

E0(x)

E1(x)

C∗

y

x

q

Geometric Interpretation of Algorithm

C(i)

y

x

E0(x)

E1(x)

Geometric Interpretation of Algorithm

At each step it uses DP algorithm to find the two lines `0(x) and `1(x)
defining E0(x) and E1(x) at x = C(i).

C(i)

y

x

E0(x)

E1(x)

`0(x)

`1(x)

Geometric Interpretation of Algorithm

At each step it uses DP algorithm to find the two lines `0(x) and `1(x)
defining E0(x) and E1(x) at x = C(i).

C(i) C(i+1)

y

x

E0(x)

E1(x)

`0(x)

`1(x)

It then finds the intersection point p of `0(x) and `1(x) and sets C(i+1)

to be the x-coordinate of that intersection point.

p

Geometric Interpretation of Algorithm

At each step it uses DP algorithm to find the two lines `0(x) and `1(x)
defining E0(x) and E1(x) at x = C(i).

C(i) C(i+1)

y

x

E0(x)

E1(x)

`0(x)

`1(x)

It then finds the intersection point p of `0(x) and `1(x) and sets C(i+1)

to be the x-coordinate of that intersection point.

p

Unless p = q, the unique intersection of E0(x) and E1(x), this process
will continue, so it can only terminate if C(i+1) = C∗.

q

A New Binary Search Algorithm

• This geometric view permits replacing the iterative process with a
simple binary search to find C∗.

A New Binary Search Algorithm

• This geometric view permits replacing the iterative process with a
simple binary search to find C∗.

• Works only for AIFV-2 (Not AIFV-m) but is very simple to understand.

A New Binary Search Algorithm

• This geometric view permits replacing the iterative process with a
simple binary search to find C∗.

• Works only for AIFV-2 (Not AIFV-m) but is very simple to understand.

E0(x)

E1(x)

y

x

A New Binary Search Algorithm

• This geometric view permits replacing the iterative process with a
simple binary search to find C∗.

• Works only for AIFV-2 (Not AIFV-m) but is very simple to understand.

E0(x)

E1(x)

y

x

• Observation, C∗ ∈ [0, 1] and
C∗ ∈ [l, r] ⇔ E0(l) < E1(l) and E1(r) < E0(r)

A New Binary Search Algorithm

• This geometric view permits replacing the iterative process with a
simple binary search to find C∗.

• Works only for AIFV-2 (Not AIFV-m) but is very simple to understand.

E0(x)

E1(x)

y

x

• Observation, C∗ ∈ [0, 1] and
C∗ ∈ [l, r] ⇔ E0(l) < E1(l) and E1(r) < E0(r)

rl

A New Binary Search Algorithm

• This geometric view permits replacing the iterative process with a
simple binary search to find C∗.

• Works only for AIFV-2 (Not AIFV-m) but is very simple to understand.

E0(x)

E1(x)

y

x

• Observation, C∗ ∈ [0, 1] and
C∗ ∈ [l, r] ⇔ E0(l) < E1(l) and E1(r) < E0(r)

rmidl

A New Binary Search Algorithm

• This geometric view permits replacing the iterative process with a
simple binary search to find C∗.

• Works only for AIFV-2 (Not AIFV-m) but is very simple to understand.

E0(x)

E1(x)

y

x

• Observation, C∗ ∈ [0, 1] and
C∗ ∈ [l, r] ⇔ E0(l) < E1(l) and E1(r) < E0(r)

l r

A New Binary Search Algorithm

• This geometric view permits replacing the iterative process with a
simple binary search to find C∗.

• Works only for AIFV-2 (Not AIFV-m) but is very simple to understand.

E0(x)

E1(x)

y

x

• Observation, C∗ ∈ [0, 1] and
C∗ ∈ [l, r] ⇔ E0(l) < E1(l) and E1(r) < E0(r)

l rmid

A New Binary Search Algorithm

• This geometric view permits replacing the iterative process with a
simple binary search to find C∗.

• Works only for AIFV-2 (Not AIFV-m) but is very simple to understand.

E0(x)

E1(x)

y

x

• Observation, C∗ ∈ [0, 1] and
C∗ ∈ [l, r] ⇔ E0(l) < E1(l) and E1(r) < E0(r)

l r

• Theorem: If every probability pi is represented by at most b bits,
then if r− l ≤ 2−2b the optimal solution C∗ can be found using with
one more “query”.

• Theorem: If every probability pi is represented by at most b bits,
then if r− l ≤ 2−2b the optimal solution C∗ can be found using with
one more “query”.

• Proof in paper (standard techniques).

• Theorem: If every probability pi is represented by at most b bits,
then if r− l ≤ 2−2b the optimal solution C∗ can be found using with
one more “query”.

• Proof in paper (standard techniques).

• After O(log(1
2−2b)) = O(b) queries, binary search can terminate.

• Theorem: If every probability pi is represented by at most b bits,
then if r− l ≤ 2−2b the optimal solution C∗ can be found using with
one more “query”.

• Proof in paper (standard techniques).

• After O(log(1
2−2b)) = O(b) queries, binary search can terminate.

• Algorithm takes O(n5b) time.
This is first (weakly) polynomial algorithm for constructing AIFV-2
Codes.

• In each query , the algorithm uses O(n5) time dynamic programming
to find the trees (lines) on the lower envelopes for current value of C.

An Ellipsoid Algorithm

• Although the binary search algorithm works for AIFV-2 codes, it does
not generalize to AIFV-m codes.

An Ellipsoid Algorithm

• Although the binary search algorithm works for AIFV-2 codes, it does
not generalize to AIFV-m codes.

• Need a stronger result from Convex Optimization due to Grotschel,
Lovasz and Schrijver; the ellipsoid method.

An Ellipsoid Algorithm

• Although the binary search algorithm works for AIFV-2 codes, it does
not generalize to AIFV-m codes.

• Need a stronger result from Convex Optimization due to Grotschel,
Lovasz and Schrijver; the ellipsoid method.

• Let K be a convex set in Rm. A separation oracle for K is a
procedure that, for any x ∈ Rm either reports that x ∈ K or, if
x 6∈ K, returns a hyperplane that separates x from K.

An Ellipsoid Algorithm

• Although the binary search algorithm works for AIFV-2 codes, it does
not generalize to AIFV-m codes.

• Need a stronger result from Convex Optimization due to Grotschel,
Lovasz and Schrijver; the ellipsoid method.

• Let K be a convex set in Rm. A separation oracle for K is a
procedure that, for any x ∈ Rm either reports that x ∈ K or, if
x 6∈ K, returns a hyperplane that separates x from K.

• Ellipsoid Method: Let K ∈ Rm be a closed convex set and c ∈ Qm.
Assume that we have a separation oracle for K. Also assume we know
positive numbers R and ε such that K ⊂ B(0, R) and V ol(K) > ε.
Then with the ellipsoid method, in time polynomial in
m, log ε, logR, and log ∆ , we get a solution x0 ∈ K such that

cTx0 ≥ max{cTx|x ∈ K} −∆|c|

The LP setup

• Where is the convex set K?

The LP setup

• Where is the convex set K?

E0(x)

E1(x)

y

x

K

q

K is everything below both E0(x) and E1(x).
Want to find q, highest point in K.

• Where is the Separation Oracle?

• Where is the Separation Oracle?

• Known Dynamic Programming Algorithm!
Returns the supporting lines of E0 and E1.
Lower line either separates p from K, or proves that p ∈ K.

E0(x)

E1(x)

y

x

K

Supporting line
found by DP
separates point
p from K.

p

• Together the DP and the ellipsoid method lead to an O(n5b) time
algorithm

• Together the DP and the ellipsoid method lead to an O(n5b) time
algorithm

• For m = 2, run time no better than the binary search algorithm.

• Together the DP and the ellipsoid method lead to an O(n5b) time
algorithm

• For m = 2, run time no better than the binary search algorithm.

• However, algorithm works for constructing optimal AIFV-m codes
(that use m coding trees).

• Together the DP and the ellipsoid method lead to an O(n5b) time
algorithm

• For m = 2, run time no better than the binary search algorithm.

• However, algorithm works for constructing optimal AIFV-m codes
(that use m coding trees).

• Details in the paper.

In m-ary case, AIFV-m codes construct m coding trees.
Encoding/decoding switches between trees.
Iterative algorithm for m = 2 case extends to general m case.
Similar to m = 2, it was unknown how many iterations were needed.

Binary searching technique can not be applied but ellipsoid
technique can. Leads to O(n2m+1b) time algorithm.

Outline

• AIFV-2 codes: cost and algorithm

• Introduction

• AIFV-2 codes: cost and algorithm

• A Geometric Interpretation of the old algorithm

• A New Binary Search Algorithm

• An Ellipsoid Algorithm

• Extensions to AIFV-k codes (skip)

• Summing up and open questions

Summing up and open questions.

• Introduced idea of AIFV codes

• O(n5b) for AIFV-2 codes is still high.
Can this be improved?
Best known so far is O(n4b)

• Are there strongly polynomial algorithms?

• Are there better AIFV codes?
What is the tradeoff between number of coding trees used and
compression? Everything known so far is empirical.

