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Short Summary

Huffman encoding is an “optimal” lossless compression algorithm.

Optimality implicitly uses two unstated conditions:
(i) only one encoding (tree node) per source letter and
(ii) encoding is instantaneous.

i.e., can decode a letter as soon as its final bit is seen.

Relaxing those two conditions permits constructing Almost
Instantaneous Fixed to Variable (AIFV) code that beat Huffman.

Construction techniques are complicated:
using ellipsoid methods to find finite-state Markov Chains that have
“optimal” steady state distributions.

Lots of open problems remaining.
Finding better AIFV codes.
Finding faster algorithms.
Finding strongly polynomial algorithms.
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• Huffman coding is a lossless data compression algorithm.

• Let X be finite alphabet of size n (e.g X = {a, b, c, d})

• ∀x ∈ X , let px = pX (x) be probability of source letter x
occuring, e.g.,
pa = 0.5, pb = 0.3, pc = 0.15, pd = 0.05.

• c ∈ {0, 1}∗ is a codeword, e.g., c = 0111.
|c| denotes the length of the codeword, e.g., |0111| = 4.

• A code is a mapping C of source letters to codewords,
e.g C(a) = 01, C(b) = 0010, C(c) = 1001, C(d) = 001.
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• Average code length of code C over source X is

L(C) =
∑
x∈X
|C(x)|px

• Example: if X = {a, b, c, d}

pa = 0.5, pb = 0.3, pc = 0.15, pd = 0.05

C(a) = 01, C(b) = 001, C(c) = 0001, C(d) = 0000

• ⇒ the average code length is

L(C) = |C(a)|pa + |C(b)|pb + |C(c)|pc + |C(d)|pd

= 2× 0.5 + 3× 0.3 + 4× 0.15 + 4× 0.05 = 2.7
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• Given Source alphabet X and its probability distribution,
find prefix-free code C that minimizes average code
length L(C).

• Huffman Coding does this.
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source letter x ∈ X
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C(a) = 0

C(b) = 10

C(c) = 110

C(d) = 111
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How to encode daba ?

• Concatenate codewords for
d, a, b, a

• C(a) = 0

• C(b) = 10

daba is encoded as 1110100

• C(d) = 111
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Given a Huffman Code, recall how to encode/decode.

0 1
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a

b

c d

How to decode 111110110 ?

Trace the code word bit-by-bit until
reaching a leaf. Then restart.

111110110

Similarly, next 110 is also
decoded as c.

Hence, 111110110 is decoded as dcc

d c c
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• Huffman Coding optimality proof uses two implicit assumptions.

The decoding procedure is instantaneous

Any code can be represented as a single code tree.

• Instantaneous means that immediately after reading the
last bit in a codeword, the source character is known.

• Assumptions are a bit restrictive.

Can Huffman Coding compression rate be beaten if the
assumptions are relaxed?

• Yes !

No decoding delay is allowed once a bit is read.
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• An Almost Instantaneous Code might require a bounded
decoding delay.

• An AIFV-2 Code is an Almost Instantaneous Code that has
a decoding delay at most 2, i.e., might need to read 2 bits
after codeword ends before recognizing codeword.
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Each x ∈ X is represented by two codewords: one in each tree.

• C0(a) = 0, C1(a) = 01

a

a



• An Almost Instantaneous Code might require a bounded
decoding delay.

• An AIFV-2 Code is an Almost Instantaneous Code that has
a decoding delay at most 2, i.e., might need to read 2 bits
after codeword ends before recognizing codeword.
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• Each AIFV-2 code is represented by two code trees T0, T1.
Each x ∈ X is represented by two codewords: one in each tree.

• C0(a) = 0, C1(a) = 01

a
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• C0(b) = 10, C1(b) = 10

• C0(c) = 11, C1(c) = 11

• C0(d) = 1000,
C1(d) = 1100
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Slave nodes and complete internal nodes are not codewords.

Root of T1 is complete.
0 child of root only has a 1 child.

Incomplete internal nodes (with
exception above) have only a 0
child.

Incomplete nodes are labelled
as either master or slave nodes

Master nodes are incomplete
nodes with incomplete children.
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slave nodes

Encode s1 with tree T0

For i = 2 to k
if si−1 was encoded

using a master node
encode si with tree T1

else:
encode si with tree T0

Master nodes are internal node codewords.
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• Optimal AIFV-2 Codes compress at least as well as
Huffman coding. There are examples (such as the last
example, calculation later) that can be shown to beat
Huffman compression.

• Allowing a decoding delay of 2 bits, and 2 trees permits
improving the compression.



• Optimal AIFV-2 Codes compress at least as well as
Huffman coding. There are examples (such as the last
example, calculation later) that can be shown to beat
Huffman compression.

• Constructing Optimal Huffman Codes is O(n log n), or
O(n) if the probabilities are sorted.

• Constructing Optimal AIFV-2 codes is much more
difficult. State of the art had no polynomial algorithm.

• Allowing a decoding delay of 2 bits, and 2 trees permits
improving the compression.



References and Extensions

General AIFV References
(1) H. Yamamoto and X. Wei,

“ Almost instantaneous FV codes,” 2013 IEEE ISIT

(2) W. Hu, H. Yamamoto, and J. Honda,
“Worst-case redundancy of optimal binary AIFV codes and their
extended codes,” IEEE Transactions on Information Theory, 2017

(3) H. Yamamoto, M. Tsuchihashi, and J. Honda,
“ Almost instantaneous Fixed-to-variable length codes,
IEEE Transactions on Information Theory. 2015

AIFV-m Codes (a generalization to m coding trees )

(4) H. Yamamoto and K. Iwata,
“An iterative algorithm to construct optimal binary AIFV-m codes,”
IEEE ITW’17

(5) K. Iwata and H. Yamamoto, “A dynamic programming algorithm to
construct optimal code trees of AIFV codes,” ISITA’16,



Outline

• AIFV-2 codes: cost and algorithm

• Introduction

• AIFV-2 codes: cost and algorithm

• A Geometric Interpretation of the old algorithm

• A New Binary Search Algorithm

• An Ellipsoid Algorithm

• Extensions to AIFV-k codes (skip)

• Summing up and open questions



Calculating average code length LAIFV (T0, T1)

T0

a

b
c

d

0

0

0

0

1

1

T1

a b
c

0

0

1

1

d

0

0

1

∀x ∈ X , let cs(x) be the code
word representing x in Ts.

The average length of
individual code tree Ts is

L(Ts) =
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the stationary probability of using Ts is given by
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Markov Chain.

LAIFV (T0, T1) = P (0|T0, T1)L(T0) + P (1|T0, T1)L(T1)

stat. prob of
being in T0
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Problem: Find T0, T1 that
minimize LAIFV (T0, T1)
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< 1.72 < 1.75 = L(HuffmanX )



AIFV-2 Construction Algorithm

• Yamamoto et al. proved
that this Algorithm
constructs optimal
AIFV-2 Codes.

Algorithm [Yamamoto et al]
m← 0
C(0) = 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
T

(m)
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{L(T1)− C(m−1)q0(T1)}
Update cost as

C(m) =
L(T

(m)
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(m)
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q1(T
(m)
0 ) + q0(T

(m)
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until C(m) = C(m−1)
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AIFV-2 Construction Algorithm

• Yamamoto et al. proved
that this Algorithm
constructs optimal
AIFV-2 Codes.

Algorithm [Yamamoto et al]
m← 0
C(0) = 2− log2(3)
repeat
m← m+ 1
T

(m)
0 = argminT0

{L(T0) + C(m−1)q1(T0)}
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1 = argminT1
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Update cost as
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(m)
1 )− L(T

(m)
0 )
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(m)
0 ) + q0(T

(m)
1 )

until C(m) = C(m−1)

• At each step, algorithm
creates two new
improved code trees.

• Originally solved using
ILP; later replaced by
O(n5) DP algorithm.
Parameterizes trees by
“cost” C.

They proved that Algorithm terminates after finite number of iterations,
but no bound on number of iterations was known.
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A Geometric Interpretation of the old algorithm
Algorithm [Yamamoto et al]
m,C(0) ← 0, 2− log2(3)
repeat
m← m+ 1
T
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0 = argminT0

{L(T0) + C(m−1)q1(T0)}
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0 ) + q0(T
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until C(m) = C(m−1)

• Original proof of termination was algebraic.

Eqn for
x-coord of
intersection of
the 2 lines

• We replace algebraic viewpoint with a geometric one.

For fixed T0, T1,
these look like
eqns of a line.
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(x) that corresponds to E0
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• Similarly, let T1 be the set of all possible code trees T1. Then for ∀T1 ∈ T1,
the expression yT1

(x) = L(T1)− xq0(T1) is a line with negative slope.

E1

Construct the lower envelope E1 of these lines.
The optimization argminT1

{L(T1) + C(m−1)q0(T1)} in the algorithm

finds the yT1
(x) line that corresponds to E1

(
C(m−1)) .



• Because E0(x) has positive slope and E1(x) negative slope they
intersect at a unique point q with x-coordinate x = C∗.

C(0)

E0(x)

E1(x)

C∗

y

x

q



Geometric Interpretation of Algorithm

C(i)

y

x

E0(x)

E1(x)



Geometric Interpretation of Algorithm

At each step it uses DP algorithm to find the two lines `0(x) and `1(x)
defining E0(x) and E1(x) at x = C(i).
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to be the x-coordinate of that intersection point.
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Geometric Interpretation of Algorithm

At each step it uses DP algorithm to find the two lines `0(x) and `1(x)
defining E0(x) and E1(x) at x = C(i).

C(i) C(i+1)

y

x

E0(x)

E1(x)

`0(x)

`1(x)

It then finds the intersection point p of `0(x) and `1(x) and sets C(i+1)

to be the x-coordinate of that intersection point.

p

Unless p = q, the unique intersection of E0(x) and E1(x), this process
will continue, so it can only terminate if C(i+1) = C∗.

q
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• Theorem: If every probability pi is represented by at most b bits,
then if r− l ≤ 2−2b the optimal solution C∗ can be found using with
one more “query”.

• Proof in paper (standard techniques).

• After O(log( 1
2−2b )) = O(b) queries, binary search can terminate.

• Algorithm takes O(n5b) time.
This is first (weakly) polynomial algorithm for constructing AIFV-2
Codes.

• In each query , the algorithm uses O(n5) time dynamic programming
to find the trees (lines) on the lower envelopes for current value of C.
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An Ellipsoid Algorithm

• Although the binary search algorithm works for AIFV-2 codes, it does
not generalize to AIFV-m codes.

• Need a stronger result from Convex Optimization due to Grotschel,
Lovasz and Schrijver; the ellipsoid method.

• Let K be a convex set in Rm. A separation oracle for K is a
procedure that, for any x ∈ Rm either reports that x ∈ K or, if
x 6∈ K, returns a hyperplane that separates x from K.

• Ellipsoid Method: Let K ∈ Rm be a closed convex set and c ∈ Qm.
Assume that we have a separation oracle for K. Also assume we know
positive numbers R and ε such that K ⊂ B(0, R) and V ol(K) > ε.
Then with the ellipsoid method, in time polynomial in
m, log ε, logR, and log ∆ , we get a solution x0 ∈ K such that

cTx0 ≥ max{cTx|x ∈ K} −∆|c|
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The LP setup

• Where is the convex set K?

E0(x)

E1(x)

y

x

K

q

K is everything below both E0(x) and E1(x).
Want to find q, highest point in K.
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• Where is the Separation Oracle?

• Known Dynamic Programming Algorithm!
Returns the supporting lines of E0 and E1.
Lower line either separates p from K, or proves that p ∈ K.

E0(x)

E1(x)

y

x

K

Supporting line
found by DP
separates point
p from K.

p
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• Together the DP and the ellipsoid method lead to an O(n5b) time
algorithm

• For m = 2, run time no better than the binary search algorithm.

• However, algorithm works for constructing optimal AIFV-m codes
(that use m coding trees).

• Details in the paper.

In m-ary case, AIFV-m codes construct m coding trees.
Encoding/decoding switches between trees.
Iterative algorithm for m = 2 case extends to general m case.
Similar to m = 2, it was unknown how many iterations were needed.

Binary searching technique can not be applied but ellipsoid
technique can. Leads to O(n2m+1b) time algorithm.
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Summing up and open questions.

• Introduced idea of AIFV codes

• O(n5b) for AIFV-2 codes is still high.
Can this be improved?
Best known so far is O(n4b)

• Are there strongly polynomial algorithms?

• Are there better AIFV codes?
What is the tradeoff between number of coding trees used and
compression? Everything known so far is empirical.


