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• Knuth [1971] gave algorithm for constructing Optimal Binary 

Search Trees

• Known:  n keys K1, K2, …., Kn.

• Preprocess keys to create binary tree. Tree query compares query 
value Q to keys. and returns appropriate response from  

• i  such that Q = Ki 

• i such that     Ki < Q  <  Ki+1 

• Q  <  K1    or       Kn <  Q

• Input: probability of successful and unsuccessful searches
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Knuth’s Optimal BSTs 
• Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

• Input was probability of successful and unsuccessful searches 

• Cost of tree was  average path length

• Dynamic Programming Algorithm 

• Constructed O(n^2) DP table 

• Knuth reduced O(n^3) running time to O(n^2)  

• Technique later generalized as Quadrangle Inequality method by F. Yao 
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(�1,�2,�3) = (.5, .1, .2)

↵i ⌘ .05
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• Knuth constructed  
optimal binary search trees
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Q=B

Q<B B<Q

Q<B
Q=B

Q<B B<Q

B

• Trees structure was  binary  but nodes 
used ternary comparisons.  Each node 
needed two binary comparisons to 
implement the search

• In a binary comparison search tree, 
each internal node performs only 
one comparison.  Searches all 
terminate at leaves. 

• First such trees constructed by  
Hu-Tucker, also in 1971.  O(n log n)
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D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.  
Addison-Wesley, 2nd edition, 1998.  [§6.2.2 ex. 33],
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• AKKL trees are min cost trees with more power. 
 instead of being restricted to be <, comparisons can be  =  OR  < 

• AKKL trees include HT Trees
• AKKL trees can be cheaper than HT Trees if some βi much larger  

than others
• AKKL trees more difficult to construct
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• AKKL algorithm  runs in O(n4) time.
• AKKL note this improves running time of O(n5) claimed by Spuler [1994] 

in his thesis
• Spuler only states O(n5) algorithm but doesn’t prove that it produces 

optimal tree, so AKKL is really first polynomial time algorithm

• Reason problem is difficult is that equality nodes can create holes in 
ranges. This could dramatically (exponentially?) increase search space, 
destroying DP approach
• AKKL show that if equality comparison exists, then it is always largest 

probability in range. Allows recovering DP approach with ranges of 
description size O(n3) (compared to Knuth’s O(n2))
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Adding Equality Comparisons: AKKL[2001] 
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• Comment 1 : Other problem in AKKL is how to deal with repeated weights 
     This was hardest part. 

• Comment 2: Both Hu-Tucker and AKKL only work when failures don’t occur. 
I.e., only  βi are allowed and not αi.
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• Input: 
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• C = {=,<}:   O(n4)       AKKL

�i = Pr(Q = Ki); ↵i = Pr(Ki�1 < Q < Ki)

�i = Pr(Q = Ki); failures not allowed

• Obvious Questions 
• Can we build OBCSTs that allow failures? 

• If yes, for which sets of comparisons? 
• Answer is yes, (for all sets  of comparisons)  

but first need to define problem models
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• Allows Failures  (βi and αi). 
• Call this complete input. HT has restricted input.

• Tree for n keys has 2n+1 leaves
• Distinguishing between Q==Ki and Ki < Q < Ki+1   

 always requires querying (Q=Ki)
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Using Different Types of Comparisons

Q=D

Q<D

D<QD

C<Q<D

y n

ny

Q<B

Q=A

A<Q<B

A

y n

n

n

y

y

Q=C

Q≤C 

C

y

y

n

n

Q=BQ<A

Q<A B B<Q<C
α0 α1 α2

α3

α4β1

β2

β3

β4

y n

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4



19

Using Different Types of Comparisons

• Left Tree uses {<,=}.  Right Tree uses {<, ≤, =}  
• Minimum cost BCST is minimum taken over all trees using 
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Using Different Types of Comparisons

• Left Tree uses {<,=}.  Right Tree uses {<, ≤, =}  
• Minimum cost BCST is minimum taken over all trees using 

given  set of comparisons C, e.g., C={<,=}  or  C={<, ≤, =}
• C is input to the problem. 

• Algorithm is different for different Cs.
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How Much Information is Needed for Failure?  
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• Tree on left shows Explicit Failure 
• every failure leaf reports unique failure interval, Ki < Q < Ki+1. 
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• Tree on left shows Explicit Failure 
• every failure leaf reports unique failure interval, Ki < Q < Ki+1. 

• Tree on right shows Non-Explicit Failure:  
• Failure leaves only report failure.  Don’t need to specify exact  

interval. Leaf can be concatenation of successive failure intervals .
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Permitted Comparisons Failure Type Time Comments
C = {=} Explicit — Can not occur

Non-Explicit O(n log n) Trivial. Similar to Linked List
C = {<,} Explicit O(n log n) O(n) Reduction to Hu-Tucker

Non-Explicit — Can not occur
C = {=, <}, C = {=,} Explicit O(n4) Follows from Main Lemma

Non-Explicit O(n4) ”
C = {=, <,} Explicit O(n4) ”

Non-Explicit O(n4) ”

• DP Algorithms for last 4 cases are very similar 
• Differ slightly in 

• Design of Recurrence Relations 
• {=,<} and {=,<, ≤)  yield slightly different recurrences 

• Initial conditions  
• Explicit and Non-Explicit Failures force different I.C.s

New Algorithms:  OBCSTs with Failures 
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Main Lemma: 

Lemma 
Let T be a Optimal BCST. 
If (Q=Kk) is a Descendant  of (Q=Ki)  
Then  βk ≤βi
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Lemma 
Let T be a Optimal BCST. 
If (Q=Kk) is a Descendant  of (Q=Ki)  
Then  βk ≤βi

Note: This is true regardless of which  
inequality comparisons are used and  
which model BCST is used

Corollary: If T is an OBCST and (Q=Kk) an internal node in T, 
then βk  ≤  βj for all (Q=Kj) on the path from the root to (Q=Kk), 
i.e.,  equality weights decrease walking down the tree
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Structural Properties of BCSTs 
Henceforth assume distinct key weights, 
         i.e.,  all of the  β1, β2, …, βn  are different 
Also assume C={<,=}
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Every tree node N corresponds to search range  
of subtree rooted at N
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         i.e.,  all of the  β1, β2, …, βn  are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
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         i.e.,  all of the  β1, β2, …, βn  are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts  ranges 

• A (Q<Ki) splits [Ki,Kj)  into [Ki,Kk) and [Kk,Ki) 
• A (Q=Ki) removing Ki  from range,   
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• Range of subtree rooted at N  is some [Ki,Kj) 
with some keys removed

• Keys removed (holes) are Kk s.t. (Q=Kk) is on 
the path from N to the root of T.  
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Structural Properties of OBCSTs 
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Structural Properties of OBCSTs 
• Range associated with Node N is   

[Ki,Kj) with some (h)  keys Kk removed. 

• Kk removed are s.t. (Q=Kk)  are  equality nodes  
on path from N to root  (that fall within [Ki,Kj))

• From previous Lemma, if T is an OBCST,  βi  of nodes 
path to N are larger than βi of all equality nodes in T’.

• ∀k, (Q=Kk)   appears somewhere in T.  
Immediately implies that the h missing keys must be 
the largest weighted keys in [Ki,Kj)

• Define punctured range  [i,j: h) to be range [Ki,Kj) 
with the h highest weighted keys in [Ki,Kj) removed

•  =>  every range associated with an internal node 
of an OBCST is a punctured range  
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Structural Properties of OBCSTs 
• [i,j: h) is  range [Ki,Kj) with the h highest 

weighted keys in [Ki,Kj) removed

• Range associated with an internal node of an 
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Structural Properties of OBCSTs 
• [i,j: h) is  range [Ki,Kj) with the h highest 

weighted keys in [Ki,Kj) removed

• Range associated with an internal node of an 
OBCST is some [i,j: h) 

• Define OPT(i,j: h) to be the cost of an 
optimal BCST for  range [i,j: h)

• Goal is to find  OPT(0,n+1: 0)  
 and associated tree

• Will use Dynamic programming to fill in table. 
Table has size  O(n3) 
We will (recursively) evaluate OPT(i,j: h) in 
O(j-i) time, yielding  a O(n4) algorithm.

T’

N

Root

Q = Kk

Q = Kk’

[i,j:h)

[0,n+1:0)
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• Right subtree missing h+1 largest weights  
   in [i,j) so right subtree is OPT(i,j: h+1)

Cost of full tree is sum of  
• cost of left subtree    0   
• cost of right subtree    OPT(i,j: h+1)  
• Total weight of left + right subtree  Wi,j:h  

 where Wi,j:h  = sum of all βi,αi in (i,j: h]

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)
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   [i,k: h1(k)) and  [k,j: h2(k)) 
• Cost of tree is Wi,j:h  + OPT(i,k: h1(k)+ OPT(k,j: h2(k))

2. Root of OPT(i,j: h) is a (Q<Kk) 

Don’t know what k is, so minimize over all possible k 
SPLIT (i, j : h) = min
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�
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Set initial conditions for ranges OPT(i,i+1,*)
OPT(i,i+1,1)=0 Ki<Q<Ki+1 αi

Ki<Q<Ki+1 αiKi=Qβi

Q=KiOPT(i,i+1,0)= βi + αi

Comments
• Must restrict h ≤ j-i  (can’t have more holes than keys in interval) 
• Need to fill in table in proper order, e.g.,  

    (a) d= 0 to n,      (b) i=0 to n-d,  j=i+d+1,  (c) h =(j-i) downto  0
•  Need O(1) method for computing hi(k) 

• => O(j-i) to calculate OPT(i,j: h) 
• => O(n^4) to fill in complete table

• OPT(0,n+1:0) is optimal cost. Use standard DP backtracking to construct 
corresponding optimal tree
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• (A) Addition is pairwise-addition  
• (x1,x2) + (y1,y2)  =  (x1+y1, x2+y2)

• (C) Comparison is lexicographic-comparison  
• (x1,x2) < (y1,y2)       iff     x1<y1  or    x1=y1  and  x2=<y2

• Both (A) and (C) can be implemented in O(1) time without knowing 𝝐
• Perturbed algorithm has same asymptotic running time as regular one  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   when C={<,=} and need to report Exact Failures

• Strongly used assumption βi  are all distinct 
• Assumption can be removed using perturbation argument 

• To solve problem  C={<,=}  with Non-Exact failures  
• only need to modify initial conditions

• Symmetry argument gives algorithms for C={≤, =}

• Algorithms for C={<, ≤, =} requires only slight  modifications of SPLIT(i,j: h)

• If C={<, ≤},  ranges have no holes and problem can  be solved in O(n log n) 
similar to Hu-Tucker 
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Let T be an OBCST. Assume
• y<x  (x>y is symmetric)
• (Q=x) is above (Q=y)
• => βx < βy  will show contradiction
• => βx ≥ βy and Thm correct

• All comparisons between  
(Q=x) and (Q=y) are inequalities 
• otherwise ∃ (Q=w) on path with either  

βx < βw or   βw < βy  and can show  
contradiction with (x,w) or (w,y)

• x,y ∈ Range((Q=x)) by definition 
If x,y ∈ Range((Q=y))  
then could swap (Q=X) and (Q=y)  
to get cheaper tree.
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Proof of Main Lemma
Let T be an OBCST. Assume
• y<x  (x>y is symmetric)
• (Q=x) is above (Q=y)
• => βx < βy  will show contradiction 

• All comparisons between  
(Q=x) and (Q=y) are inequalities

• Since x∉ Range((Q=y)  
=> Path (Q=x) to (Q=y) contains (Q<z)  
s.t  z’s children’s ranges  are [i,z,h’), [z,j,h’’)  
where y∈ [i,z) and x ∈[z,j).  
z is called splitter.  

• P’ is (red) path from (Q=x) to (Q=y)
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y∈A => Weight(A) ≥ βy > βx  
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subtree in T yields new BCST T’  
with lower cost than T,  
contradicting T being OBCST 
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• P is path in T from (Q=x) to (Q=y).  y<x.  z is x-y splitter on P 
• P’ is path from (Q=x) to (Q=z)

Case 2: P’ is two edges ≠≮ 

y∈A => Weight(A) ≥ βy > βx  

=> again replacing left tree by  
right tree in T yields new BCST T’  
with lower cost than T,  
contradicting T being OBCST 
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Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y).  y<x.  z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)
• Proof will be case analysis of structure of P’

• Already saw first two cases of P’ 
• Showed for each that assumptions allow replacing subtree  

rooted at (Q=x) with cheaper subtree for some range.   
Replacement leads to cheaper BCST, contradicting optimality 
of T

• The full proof splits P’ into 7 cases. 
• For each, can show replacement with cheaper subtree,  

contradicting optimality of T.
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Extensions & Open Problems
• If the βi,αi are probabilities (sum to 1) can show an O(n) 

algorithm that  constructs  BCST within additive error 3 
of optimal for Exact Failure Case 
• Modification of similar algorithm for Hu-Tucker case. 

• O(n4) is quite high for worst case. 
• Can we do better? 


