New Results on Binary Comparison Search Trees

Marek Chrobak, Neal Young Mordecai Golin UC Riverside HKUST

Ian Munro
U Waterloo

Early version of paper at arxiv.org

Optimal search trees with 2-way comparisons

Marek Chrobak, Mordecai Golin, J. Ian Munro, Neal E. Young
arXiv:1505.00357

Main Result

Constructing Min-Cost Binary Comparison Search Trees

Main Result

Constructing Min-Cost Binary Comparison Search Trees

Wasn't this completely understood 45 years ago??!!

Main Result

Constructing Min-Cost Binary Comparison Search Trees

Wasn't this completely understood 45 years ago??!!

Yes and No ...

Outline

- History
- Binary Search Trees
- Hu-Tucker Trees
- AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
- Problem Models
- List of New Results
- New Results
- The Main Lemma
- Structural Properties of OBCSTs
- Dynamic Programming for OBCSTs
- Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

Knuth's Optimal BSTs

Knuth's Optimal BSTs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

Knuth's Optimal BSTs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Known: n keys $K_{1}, K_{2}, \ldots, K_{n}$.

Knuth's Optimal BETs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Known: n keys $K_{1}, K_{2}, \ldots, K_{n}$
- Preprocess keys to create binary tree. Tree query compares query value Q to keys. and returns appropriate response from
- i such that $\mathrm{Q}=\mathrm{K}_{\mathrm{i}}$
- i such that $K_{i}<Q<K_{i+1}$
- $Q<K_{1}$ or $K_{n}<Q$

Knuth's Optimal BSTs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Known: n keys $\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots, \mathrm{~K}_{\mathrm{n}}$
- Preprocess keys to create binary tree. Tree query compares query value Q to keys. and returns appropriate response from
- i such that $\mathrm{Q}=\mathrm{K}_{\mathrm{i}}$
- i such that $\mathrm{K}_{\mathrm{i}}<\mathrm{Q}<\mathrm{K}_{\mathrm{i}+1}$
- $Q<K_{1}$ or $K_{n}<Q$
- Input: probability of successful and unsuccessful searches

$$
\begin{array}{ll}
\beta_{1}, \beta_{2}, \ldots, \beta_{n} \quad \text { and } \quad \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \\
\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) & \alpha_{i}=\operatorname{Pr}\left(K_{i}<Q<K_{i+1}\right)
\end{array}
$$

Knuth's Optimal BSTs

Knuth's Optimal BSTs

Knuth's Optimal BSTs

$$
\begin{array}{ll}
\beta_{1}, \beta_{2}, \ldots, \beta_{n} & \text { and } \\
\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) & \alpha_{1}, \ldots, \alpha_{n} \\
\alpha_{i}=\operatorname{Pr}\left(K_{i}<Q<K_{i+1}\right)
\end{array}
$$

Knuth's Optimal BSTs

Knuth's Optimal BSTs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

Knuth's Optimal BSTs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$
\beta_{1}, \beta_{2}, \ldots, \beta_{n} \quad \text { and } \quad \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}
$$

Knuth's Optimal BSTs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$
\begin{array}{rll}
\beta_{1}, \beta_{2}, \ldots, \beta_{n} & \text { and } & \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \\
\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) & & \alpha_{i}=\operatorname{Pr}\left(K_{i}<Q<K_{i+1}\right)
\end{array}
$$

Knuth's Optimal BSTs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$
\begin{array}{ll}
\beta_{1}, \beta_{2}, \ldots, \beta_{n} \quad \text { and } \quad & \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \\
\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) & \alpha_{i}=\operatorname{Pr}\left(K_{i}<Q<K_{i+1}\right)
\end{array}
$$

- Cost of tree was average path length

Knuth's Optimal BSTs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$
\begin{array}{ll}
\beta_{1}, \beta_{2}, \ldots, \beta_{n} \quad \text { and } \quad & \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \\
\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) & \alpha_{i}=\operatorname{Pr}\left(K_{i}<Q<K_{i+1}\right)
\end{array}
$$

- Cost of tree was average path length

$$
\sum_{i=1}^{n} \beta_{i} \operatorname{depth}\left(\beta_{i}\right)+\sum_{i=0}^{n} \alpha_{i} \operatorname{depth}\left(\alpha_{i}\right)
$$

Knuth's Optimal BSTs

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$
\begin{array}{ll}
\beta_{1}, \beta_{2}, \ldots, \beta_{n} \quad \text { and } \quad & \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \\
\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) & \alpha_{i}=\operatorname{Pr}\left(K_{i}<Q<K_{i+1}\right)
\end{array}
$$

- Cost of tree was average path length

$$
\sum_{i=1}^{n} \beta_{i} \operatorname{depth}\left(\beta_{i}\right)+\sum_{i=0}^{n} \alpha_{i} \operatorname{depth}\left(\alpha_{i}\right)
$$

- Dynamic Programming Algorithm
- Constructed $O\left(n^{\wedge} 2\right)$ DP table
- Knuth reduced $O\left(n^{\wedge} 3\right)$ running time to $O\left(n^{\wedge} 2\right)$
- Technique later generalized as Quadrangle Inequality method by F. Yao

Knuth's Optimal BSTs

Knuth's Optimal BSTs

Knuth's Optimal BSTs

$$
\left(\alpha_{0}+\beta_{3}\right)+2\left(\beta_{2}+\alpha_{3}\right)+3\left(\alpha_{1}+\alpha_{2}\right)
$$

$$
\left(\beta_{1}+\beta_{3}\right)+2\left(\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}\right)
$$

Knuth's Optimal BSTs

$$
\left(\alpha_{0}+\beta_{3}\right)+2\left(\beta_{2}+\alpha_{3}\right)+3\left(\alpha_{1}+\alpha_{2}\right)
$$

$$
\left(\beta_{1}+\beta_{3}\right)+2\left(\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}\right)
$$

$$
\begin{aligned}
\left(\beta_{1}, \beta_{2}, \beta_{3}\right) & =(.5, .1, .2) \\
\alpha_{i} & \equiv .05
\end{aligned}
$$

Cost $=0.85$
Cost $=1.10$

Knuth's Optimal BSTs

$$
\left(\alpha_{0}+\beta_{3}\right)+2\left(\beta_{2}+\alpha_{3}\right)+3\left(\alpha_{1}+\alpha_{2}\right)
$$

$\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=(0.7,0.1,0.1,0.1)$
Cost $=1.05$

$$
\begin{aligned}
\left(\beta_{1}, \beta_{2}, \beta_{3}\right) & =(.5, .1, .2) \\
\alpha_{i} & \equiv .05
\end{aligned}
$$

$\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=(.3, .3, .3)$

Cost $=0.85$
Cost $=1.10$
Cost $=0.80$

$$
\left(\beta_{1}+\beta_{3}\right)+2\left(\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}\right)
$$

Hu-Tucker Binary Comparison Search Trees

Hu-Tucker Binary Comparison Search Trees

- Knuth constructed optimal binary search trees

Hu-Tucker Binary Comparison Search Trees

- Knuth constructed optimal binary search trees
- Trees structure was binary but nodes used ternary comparisons. Each node
 needed two binary comparisons to implement the search

Hu-Tucker Binary Comparison Search Trees

- Knuth constructed optimal binary search trees
- Trees structure was binary but nodes used ternary comparisons. Each node
 needed two binary comparisons to implement the search
- In a binary comparison search tree, each internal node performs only one comparison. Searches all
 terminate at leaves.
- First such trees constructed by Hu-Tucker, also in 1971. O(n log n)

Hu-Tucker Binary Comparison Search Trees

Hu-Tucker Binary Comparison Search Trees

Hu-Tucker Binary Comparison Search Trees

- Hu Tucker (1971) \& Garsia-Wachs (1977)
- Assumes all searches are successful; no failures allowed. Input is only $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$, with no $a_{i} s$.

Hu-Tucker Binary Comparison Search Trees

- Hu Tucker (1971) \& Garsia-Wachs (1977)
- Assumes all searches are successful; no failures allowed. Input is only $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$, with no $a_{i} s$.
- Internal nodes are < comparisons. Searches all terminate at leaves

Hu-Tucker Binary Comparison Search Trees

- Hu Tucker (1971) \& Garsia-Wachs (1977)
- Assumes all searches are successful; no failures allowed. Input is only $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$, with no $a_{i} s$.
- Internal nodes are < comparisons. Searches all terminate at leaves
- Problem is to find tree with minimum weighted (average) external path length

Hu-Tucker Binary Comparison Search Trees

- Hu Tucker (1971) \& Garsia-Wachs (1977)
- Assumes all searches are successful; no failures allowed. Input is only $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$, with no $a_{i} s$.
- Internal nodes are < comparisons. Searches all terminate at leaves
- Problem is to find tree with minimum weighted (average) external path length
- $O(n \log n)$ algorithm

Outline

- History
- Binary Search Trees
- Hu-Tucker Trees
- AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
- Problem Models
- List of New Results
- New Results
- The Main Lemma
- Structural Properties of OBCSTs
- Dynamic Programming for OBCSTs
- Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

Adding Equality Comparisons

Adding Equality Comparisons

The Knuth trees use three-way comparisons at each node. These are implemented in modern machines using two two-way comparisons (one < and one =).
Hu-Tucker trees use only one two-way comparison ($\mathrm{a}<$) at each node.

Adding Equality Comparisons

The Knuth trees use three-way comparisons at each node.
These are implemented in modern machines using two two-way comparisons (one < and one =).
Hu-Tucker trees use only one two-way comparison ($\mathrm{a}<$) at each node.
. . . machines that cannot make three-way comparisons at once. . . will have to make two comparisons. . . it may well be best to have a binary tree whose internal nodes specify either an equality test or a less-than test but not both.

Adding Equality Comparisons

The Knuth trees use three-way comparisons at each node.
These are implemented in modern machines using two two-way comparisons (one < and one =).
Hu-Tucker trees use only one two-way comparison ($\mathrm{a}<$) at each node.
. . . machines that cannot make three-way comparisons at once. . . will have to make two comparisons. . . it may well be best to have a binary tree whose internal nodes specify either an equality test or a less-than test but not both.
D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley, 2nd edition, 1998. [§6.2.2 ex. 33],

Adding Equality Comparisons: AKKL[2001]

Adding Equality Comparisons: AKKL[2001]

Hu-Tucker Tree

AKKL Tree

- AKKL trees are min cost trees with more power. instead of being restricted to be <, comparisons can be = OR <

Adding Equality Comparisons: AKKL[2001]

Hu-Tucker Tree

AKKL Tree

- AKKL trees are min cost trees with more power. instead of being restricted to be <, comparisons can be = OR <
- AKKL trees include HT Trees

Adding Equality Comparisons: AKKL[2001]

Hu-Tucker Tree

AKKL Tree

- AKKL trees are min cost trees with more power. instead of being restricted to be <, comparisons can be = OR <
- AKKL trees include HT Trees
- AKKL trees can be cheaper than HT Trees if some β_{i} much larger than others

Adding Equality Comparisons: AKKL[2001]

Hu-Tucker Tree

AKKL Tree

- AKKL trees are min cost trees with more power. instead of being restricted to be <, comparisons can be = OR <
- AKKL trees include HT Trees
- AKKL trees can be cheaper than HT Trees if some β_{i} much larger than others
- AKKL trees more difficult to construct

Adding Equality Comparisons: AKKL[2001]

Adding Equality Comparisons: AKKL[2001]

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing $=$ comparisons. AKKL find min-cost tree when the $n-1$ internal node comparisons are allowed to be in $\{=,<\}$.

Adding Equality Comparisons: AKKL[2001]

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing $=$ comparisons. AKKL find min-cost tree when the $n-1$ internal node comparisons are allowed to be in $\{=,<\}$.
- Useful when some β_{i} are very large (relatively)

Adding Equality Comparisons: AKKL[2001]

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing $=$ comparisons. AKKL find min-cost tree when the $n-1$ internal node comparisons are allowed to be in $\{=,<\}$.
- Useful when some β_{i} are very large (relatively)
- AKKL algorithm runs in $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time.

Adding Equality Comparisons: AKKL[2001]

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing $=$ comparisons. AKKL find min-cost tree when the $n-1$ internal node comparisons are allowed to be in $\{=,<\}$.
- Useful when some β_{i} are very large (relatively)
- AKKL algorithm runs in $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time.
- AKKL note this improves running time of $O\left(n^{5}\right)$ claimed by Spuler [1994] in his thesis

Adding Equality Comparisons: AKKL[2001]

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing $=$ comparisons. AKKL find min-cost tree when the $n-1$ internal node comparisons are allowed to be in $\{=,<\}$.
- Useful when some β_{i} are very large (relatively)
- AKKL algorithm runs in $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time.
- AKKL note this improves running time of $O\left(n^{5}\right)$ claimed by Spuler [1994] in his thesis
- Spuler only states $O\left(n^{5}\right)$ algorithm but doesn't prove that it produces optimal tree, so AKKL is really first polynomial time algorithm

Adding Equality Comparisons: AKKL[2001]

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing $=$ comparisons. AKKL find min-cost tree when the $n-1$ internal node comparisons are allowed to be in $\{=,<\}$.
- Useful when some β_{i} are very large (relatively)
- AKKL algorithm runs in $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time.
- AKKL note this improves running time of $O\left(n^{5}\right)$ claimed by Spuler [1994] in his thesis
- Spuler only states $O\left(n^{5}\right)$ algorithm but doesn't prove that it produces optimal tree, so AKKL is really first polynomial time algorithm
- Reason problem is difficult is that equality nodes can create holes in ranges. This could dramatically (exponentially?) increase search space, destroying DP approach

Adding Equality Comparisons: AKKL[2001]

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing $=$ comparisons. AKKL find min-cost tree when the $n-1$ internal node comparisons are allowed to be in $\{=,<\}$.
- Useful when some β_{i} are very large (relatively)
- AKKL algorithm runs in $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time.
- AKKL note this improves running time of $O\left(n^{5}\right)$ claimed by Spuler [1994] in his thesis
- Spuler only states $O\left(n^{5}\right)$ algorithm but doesn't prove that it produces optimal tree, so AKKL is really first polynomial time algorithm
- Reason problem is difficult is that equality nodes can create holes in ranges. This could dramatically (exponentially?) increase search space, destroying DP approach
- AKKL show that if equality comparison exists, then it is always largest probability in range. Allows recovering DP approach with ranges of description size $O\left(n^{3}\right)$ (compared to Knuth's $O\left(n^{2}\right)$)

Adding Equality Comparisons: AKKL[2001]

Hu-Tucker Tree

AKKL Tree

- Comment 1 : Other problem in AKKL is how to deal with repeated weights This was hardest part.
- Comment 2: Both Hu-Tucker and AKKL only work when failures don't occur. l.e., only β_{i} are allowed and not a_{i}.

So Far + Obvious Open Problem

So Far + Obvious Open Problem

- Optimal Binary Search Trees
- Input: $\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) ; \alpha_{i}=\operatorname{Pr}\left(K_{i-1}<Q<K_{i}\right)$
- $O\left(n^{2}\right)$ Knuth
- Optimal Binary Comparison Search Trees
- Input: $\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) ;$ failures not allowed
- $\mathrm{C}=\{<\}: \quad O(n$ logn) Hu-Tucker \& Garsia-Wachs
- $\mathrm{C}=\{=,<\}: O\left(n^{4}\right) \quad \mathrm{AKKL}$

So Far + Obvious Open Problem

- Optimal Binary Search Trees
- Input: $\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) ; \alpha_{i}=\operatorname{Pr}\left(K_{i-1}<Q<K_{i}\right)$
- $O\left(n^{2}\right)$ Knuth
- Optimal Binary Comparison Search Trees
- Input: $\beta_{i}=\operatorname{Pr}\left(Q=K_{i}\right) ;$ failures not allowed
- $\mathrm{C}=\{<\}: \quad O(n \log n)$ Hu-Tucker \& Garsia-Wachs
- $C=\{=,<\}: O\left(n^{4}\right) \quad$ AKKL
- Obvious Questions
- Can we build OBCSTs that allow failures?
- If yes, for which sets of comparisons?
- Answer is yes, (for all sets of comparisons) but first need to define problem models

Outline

- History
- Binary Search Trees
- Hu-Tucker Trees
- AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
- Problem Models
- List of New Results
- New Results
- The Main Lemma
- Structural Properties of OBCSTs
- Dynamic Programming for OBCSTs
- Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

BCSTs with Failure Probabilities

BCSTs with Failure Probabilities

- Allows Failures (β_{i} and a_{i}).
- Call this complete input. HT has restricted input.

BCSTs with Failure Probabilities

- Allows Failures (β_{i} and a_{i}).
- Call this complete input. HT has restricted input.
- Tree for n keys has $2 n+1$ leaves

BCSTs with Failure Probabilities

- Allows Failures (β_{i} and a_{i}).
- Call this complete input. HT has restricted input.
- Tree for n keys has $2 n+1$ leaves
- Distinguishing between $Q==K_{i}$ and $K_{i}<Q<K_{i+1}$ always requires querying ($\mathrm{Q}=K_{i}$)

Using Different Types of Comparisons

Using Different Types of Comparisons

- Left Tree uses $\{<,=\}$. Right Tree uses $\{<, \leq,=\}$
- Minimum cost BCST is minimum taken over all trees using given set of comparisons C, e.g., $\mathrm{C}=\{<,=\}$ or $\mathrm{C}=\{<, \leq,=\}$

Using Different Types of Comparisons

- Left Tree uses $\{<,=\}$. Right Tree uses $\{<, \leq,=\}$
- Minimum cost BCST is minimum taken over all trees using given set of comparisons C, e.g., $\mathrm{C}=\{<,=\}$ or $\mathrm{C}=\{<, \leq,=\}$
- C is input to the problem.
- Algorithm is different for different Cs.

How Much Information is Needed for Failure?

How Much Information is Needed for Failure?

- Tree on left shows Explicit Failure
- every failure leaf reports unique failure interval, $K_{i}<Q<K_{i+1}$.

How Much Information is Needed for Failure?

- Tree on left shows Explicit Failure
- every failure leaf reports unique failure interval, $K_{i}<Q<K_{i+1}$.
- Tree on right shows Non-Explicit Failure:
- Failure leaves only report failure. Don't need to specify exact interval. Leaf can be concatenation of successive failure intervals .

New Algorithms: OBCSTs with Failures

Permitted Comparisons	Failure Type	Time	Comments
$\mathcal{C}=\{=\}$	Explicit	-	Can not occur
	Non-Explicit	$O(n \log n)$	Trivial. Similar to Linked List
$\mathcal{C}=\{<, \leq\}$	Explicit	$O(n \log n)$	$O(n)$ Reduction to Hu-Tucker
	Non-Explicit	-	Can not occur
$\mathcal{C}=\{=,<\}, \mathcal{C}=\{=, \leq\}$	Explicit	$O\left(n^{4}\right)$	Follows from Main Lemma
	Non-Explicit	$O\left(n^{4}\right)$	$"$
$\mathcal{C}=\{=,<, \leq\}$	Explicit	$O\left(n^{4}\right)$	""
	Non-Explicit	$O\left(n^{4}\right)$	$"$

- DP Algorithms for last 4 cases are very similar
- Differ slightly in
- Design of Recurrence Relations
- $\{=,<\}$ and $\{=,<, \leq$) yield slightly different recurrences
- Initial conditions
- Explicit and Non-Explicit Failures force different I.C.s

Outline

- History
- Binary Search Trees
- Hu-Tucker Trees
- AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
- Problem Models
- List of New Results
- New Results
- The Main Lemma
- Structural Properties of OBCSTs
- Dynamic Programming for OBCSTs
- Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

Main Lemma:

Lemma

Let T be a Optimal BCST. If $\left(Q=K_{k}\right)$ is a Descendant of $\left(Q=K_{i}\right)$ Then $\beta_{k} \leq \beta_{i}$

Main Lemma:

Lemma

Let T be a Optimal BCST. If $\left(Q=K_{k}\right)$ is a Descendant of $\left(Q=K_{i}\right)$ Then $\beta_{k} \leq \beta_{i}$

Note: This is true regardless of which inequality comparisons are used and which model BCST is used

Main Lemma:

Lemma

Let T be a Optimal BCST.
If $\left(Q=K_{k}\right)$ is a Descendant of $\left(Q=K_{i}\right)$ Then $\beta_{k} \leq \beta_{i}$

Note: This is true regardless of which inequality comparisons are used and which model BCST is used

Corollary: If T is an OBCST and ($\mathrm{Q}=\mathrm{K}_{\mathrm{k}}$) an internal node in T , then $\beta_{k} \leq \beta_{j}$ for all $\left(Q=K_{j}\right)$ on the path from the root to $\left(Q=K_{k}\right)$, i.e., equality weights decrease walking down the tree

Outline

- History
- Binary Search Trees
- Hu-Tucker Trees
- AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
- Problem Models
- List of New Results
- New Results
- The Main Lemma
- Structural Properties of OBCSTs
- Dynamic Programming for OBCSTs
- Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

Structural Properties of BCSTs

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[K_{0}, K_{n+1}\right)$ (where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[K_{0}, K_{n+1}\right)$
(where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)
- Comparisons cuts ranges
- $A\left(Q<K_{i}\right)$ splits $\left[K_{i}, K_{j}\right)$ into $\left[K_{i}, K_{k}\right)$ and $\left[K_{k}, K_{i}\right)$
- $A\left(Q=K_{i}\right)$ removing K_{i} from range,

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[\mathrm{K}_{0}, \mathrm{~K}_{n+1}\right)$ (where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)
- Comparisons cuts ranges
- $A\left(Q<K_{i}\right)$ splits $\left[K_{i}, K_{j}\right)$ into $\left[K_{i}, K_{k}\right)$ and $\left[K_{k}, K_{i}\right)$
- $A\left(Q=K_{i}\right)$ removing K_{i} from range,
- Range of subtree rooted at N is some $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$
 with some keys removed

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[\mathrm{K}_{0}, \mathrm{~K}_{n+1}\right)$ (where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)
- Comparisons cuts ranges
- $A\left(Q<K_{i}\right)$ splits $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$ into $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{k}}\right)$ and $\left[\mathrm{K}_{\mathrm{k},}, \mathrm{K}_{\mathrm{i}}\right)$
- $A\left(Q=K_{i}\right)$ removing K_{i} from range,
- Range of subtree rooted at N is some $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$
 with some keys removed
- Keys removed (holes) are K_{k} s.t. $\left(Q=K_{k}\right)$ is on the path from N to the root of T .

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[\mathrm{K}_{0}, \mathrm{~K}_{n+1}\right)$ (where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)
- Comparisons cuts ranges
- $A\left(Q<K_{i}\right)$ splits $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$ into $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{k}}\right)$ and $\left[\mathrm{K}_{\mathrm{k},}, \mathrm{K}_{\mathrm{i}}\right)$
- $A\left(Q=K_{i}\right)$ removing K_{i} from range,
- Range of subtree rooted at N is some $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$
 with some keys removed
- Keys removed (holes) are K_{k} s.t. $\left(Q=K_{k}\right)$ is on the path from N to the root of T .

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[K_{0}, K_{n+1}\right)$ (where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)
- Comparisons cuts ranges
- $A\left(Q<K_{i}\right)$ splits $\left[K_{i}, K_{j}\right)$ into $\left[K_{i}, K_{k}\right)$ and $\left[K_{k}, K_{i}\right)$
- $A\left(Q=K_{i}\right)$ removing K_{i} from range,
- Range of subtree rooted at N is some $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right]$
 with some keys removed
- Keys removed (holes) are K_{k} s.t. $\left(Q=K_{k}\right)$ is on the path from N to the root of T.

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[\mathrm{K}_{0}, \mathrm{~K}_{n+1}\right]$ (where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)
- Comparisons cuts ranges
- $A\left(Q<K_{i}\right)$ splits $\left[K_{i}, K_{j}\right)$ into $\left[K_{i}, K_{k}\right)$ and $\left[K_{k}, K_{i}\right)$
- $A\left(Q=K_{i}\right)$ removing K_{i} from range,
- Range of subtree rooted at N is some $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$
 with some keys removed
- Keys removed (holes) are K_{k} s.t. $\left(Q=K_{k}\right)$ is on the path from N to the root of T.

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[\mathrm{K}_{0}, \mathrm{~K}_{n+1}\right]$ (where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)
- Comparisons cuts ranges
- $A\left(Q<K_{i}\right)$ splits $\left[K_{i}, K_{j}\right)$ into $\left[K_{i}, K_{k}\right)$ and $\left[K_{k}, K_{i}\right)$
- $A\left(Q=K_{i}\right)$ removing K_{i} from range,
- Range of subtree rooted at N is some $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right]$
 with some keys removed
- Keys removed (holes) are K_{k} s.t. $\left(Q=K_{k}\right)$ is on the path from N to the root of T.

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[\mathrm{K}_{0}, \mathrm{~K}_{n+1}\right)$ (where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)
- Comparisons cuts ranges
- $A\left(Q<K_{i}\right)$ splits $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$ into $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{k}}\right)$ and $\left[\mathrm{K}_{\mathrm{k},}, \mathrm{K}_{\mathrm{i}}\right)$
- $A\left(Q=K_{i}\right)$ removing K_{i} from range,
- Range of subtree rooted at N is some $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$
 with some keys removed
- Keys removed (holes) are K_{k} s.t. $\left(\mathrm{Q}=\mathrm{K}_{\mathrm{k}}\right)$ is on the path from N to the root of T .

Structural Properties of BCSTs

Henceforth assume distinct key weights, i.e., all of the $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are different Also assume $\mathrm{C}=\{<,=\}$

Every tree node N corresponds to search range of subtree rooted at N

- Root of BSCT is search range $\left[\mathrm{K}_{0}, \mathrm{~K}_{n+1}\right]$ (where $\mathrm{K}_{0}=-\infty$ and $\mathrm{K}_{\mathrm{n}+1}=\infty$)
- Comparisons cuts ranges
- $A\left(Q<K_{i}\right)$ splits $\left[K_{i}, K_{j}\right)$ into $\left[K_{i}, K_{k}\right)$ and $\left[K_{k}, K_{i}\right)$
- $A\left(Q=K_{i}\right)$ removing K_{i} from range,
- Range of subtree rooted at N is some $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right]$
 with some keys removed
- Keys removed (holes) are K_{k} s.t. $\left(Q=K_{k}\right)$ is on the path from N to the root of T.

Structural Properties of OBCSTs

Structural Properties of OBCSTs

- Range associated with Node N is $\left[K_{i}, K_{j}\right.$) with some (h) keys K_{k} removed.
- K_{k} removed are s.t. $\left(Q=K_{k}\right)$ are equality nodes on path from N to root (that fall within $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$)

Structural Properties of OBCSTs

- Range associated with Node N is $\left[K_{i}, K_{j}\right.$) with some (h) keys K_{k} removed.
- K_{k} removed are s.t. $\left(Q=K_{k}\right)$ are equality nodes on path from N to root (that fall within $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$)
- From previous Lemma, if T is an OBCST, β_{i} of nodes path to N are larger than β_{i} of all equality nodes in T^{\prime}.
- $\forall \mathrm{k},\left(\mathrm{Q}=\mathrm{K}_{\mathrm{k}}\right)$ appears somewhere in T .

Immediately implies that the h missing keys must be the largest weighted keys in $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right.$)

Structural Properties of OBCSTs

- Range associated with Node N is $\left[K_{i}, K_{j}\right.$) with some (h) keys K_{k} removed.
- K_{k} removed are s.t. $\left(Q=K_{k}\right)$ are equality nodes on path from N to root (that fall within $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$)
- From previous Lemma, if T is an OBCST, β_{i} of nodes path to N are larger than β_{i} of all equality nodes in T^{\prime}.
- $\forall \mathrm{k},\left(\mathrm{Q}=\mathrm{K}_{\mathrm{k}}\right)$ appears somewhere in T .

Immediately implies that the h missing keys must be the largest weighted keys in $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right.$)

- Define punctured range [i,j: h) to be range $\left[K_{i}, K_{j}\right)$
 with the h highest weighted keys in $\left[K_{i}, K_{j}\right.$) removed

Structural Properties of OBCSTs

- Range associated with Node N is $\left[K_{i}, K_{j}\right.$) with some (h) keys K_{k} removed.
- K_{k} removed are s.t. $\left(Q=K_{k}\right)$ are equality nodes on path from N to root (that fall within $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right)$)
- From previous Lemma, if T is an OBCST, β_{i} of nodes path to N are larger than β_{i} of all equality nodes in T^{\prime}.
- $\forall \mathrm{k},\left(\mathrm{Q}=\mathrm{K}_{\mathrm{k}}\right)$ appears somewhere in T .

Immediately implies that the h missing keys must be the largest weighted keys in $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right.$)

- Define punctured range [i,j: h) to be range $\left[K_{i}, K_{j}\right)$
 with the h highest weighted keys in $\left[K_{i}, K_{j}\right)$ removed
- => every range associated with an internal node of an OBCST is a punctured range

Structural Properties of OBCSTs

Structural Properties of OBCSTs

- $[\mathbf{i}, \mathbf{j}: \mathbf{h})$ is range $\left[K_{i}, K_{j}\right)$ with the h highest weighted keys in $\left[K_{i}, K_{j}\right.$) removed
- Range associated with an internal node of an OBCST is some $[\mathbf{i}, \mathbf{j}: \mathbf{h}$)

Structural Properties of OBCSTs

- $[\mathbf{i}, \mathbf{j}: \mathbf{h})$ is range $\left[K_{i}, K_{j}\right)$ with the h highest weighted keys in $\left[K_{i}, K_{j}\right)$ removed
- Range associated with an internal node of an OBCST is some $[\mathbf{i}, \mathbf{j}: \mathbf{h}$)
- Define OPT(i,j: $\mathbf{h})$ to be the cost of an optimal BCST for range [i,j: h)
- Goal is to find OPT(0,n+1: 0) and associated tree

- Will use Dynamic programming to fill in table.

Table has size $O\left(n^{3}\right)$
We will (recursively) evaluate OPT(i,j: \mathbf{h}) in
$O(j-i)$ time, yielding a $O\left(n^{4}\right)$ algorithm.

Outline

- History
- Binary Search Trees
- Hu-Tucker Trees
- AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
- Problem Models
- List of New Results
- New Results
- The Main Lemma
- Structural Properties of OBCSTs
- Dynamic Programming for OBCSTs
- Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

Dynamic programming for OBCSTs

Dynamic programming for OBCSTs

-Let T be an OBCST for [i,j: h)
-T Has two possible structures

Dynamic programming for OBCSTs

-Let T be an OBCST for [i,j: h)
-T Has two possible structures

1. Root is a $\left(Q=K_{k}\right)$

Dynamic programming for OBCSTs

-Let T be an OBCST for [i,j: h)
-T Has two possible structures

1. Root is a $\left(Q=K_{k}\right)$

2. Root is a $\left(Q<K_{k}\right)$

Dynamic programing for OBCSTs

1. Root of OPT $\left(i, j\right.$: h) is a $\left(Q=K_{k}\right)$

Dynamic programing for OBCSTs

1. Root of OPT $(i, j: h)$ is a $\left(Q=K_{k}\right)$

- K_{k} must be largest key weight in [i,j: h) which is $(h+1)^{\text {st }}$ largest key weight in $[i, j)$
- Right subtree missing h+1 largest weights in $[i, j)$ so right subtree is OPT(i,j: $h+1$)

Dynamic programing for OBCSTs

1. Root of OPT $(i, j: h)$ is a $\left(Q=K_{k}\right)$

- K_{k} must be largest key weight in [i,j: h) which is $(h+1)^{\text {st }}$ largest key weight in $[i, j)$
- Right subtree missing h+1 largest weights in $[i, j)$ so right subtree is OPT(i,j: $h+1$)

Cost of full tree is sum of

- cost of left subtree 0
- cost of right subtree OPT(i,j: h+1)
- Total weight of left + right subtree $W_{i, j: h}$ where $W_{i, j, h}=$ sum of all β_{i}, a_{i} in (i, j : h]

Dynamic programing for OBCSTs

1. Root of OPT $(i, j: h)$ is a $\left(Q=K_{k}\right)$

- K_{k} must be largest key weight in [i,j: h) which is $(h+1)^{\text {st }}$ largest key weight in $[i, j)$
- Right subtree missing h+1 largest weights in $[i, j)$ so right subtree is OPT(i,j: $h+1$)

Cost of full tree is sum of

- cost of left subtree 0
- cost of right subtree OPT(i,j: h+1)
- Total weight of left + right subtree $W_{i, j: h}$ where $W_{i, j}$:h $=$ sum of all β_{i}, a_{i} in (i, j : h]
$E Q(i, j: h)=W_{i, j: h}+O P T(i, j: h+1)$

Dynamic programing for OBCSTs

2. Root of $\operatorname{OPT}(i, j: h)$ is a $\left(Q<K_{k}\right)$

Dynamic programing for OBCSTs

2. Root of $\operatorname{OPT}(i, j: h)$ is a $\left(Q<K_{k}\right)$

- Range is split into $<k$ and $\geq k$
- h holes (largest keys) in [i,j) are split, with $h_{1}(k)$ on left and $h_{2}(k)=h-h_{1}(k)$ on right

Dynamic programing for OBCSTs

2. Root of OPT $(i, j: h)$ is a $\left(Q<K_{k}\right)$

- Range is split into $<k$ and $\geq k$
- h holes (largest keys) in [i,j) are split, with $h_{1}(k)$ on left and $h_{2}(k)=h-h_{1}(k)$ on right

- $h_{1}(k)$ keys must be heaviest in $[i, k)$ $h_{2}(k)$ keys must be heaviest in [k,j)
- So left and right subtrees are OBCSTs for [i,k: $\left.h_{1}(k)\right)$ and $\left[k, j: h_{2}(k)\right.$)

Dynamic programing for OBCSTs

2. Root of OPT $(i, j: h)$ is a $\left(Q<K_{k}\right)$

- Range is split into $<k$ and $\geq k$
- h holes (largest keys) in [i,j) are split, with $h_{1}(k)$ on left and $h_{2}(k)=h-h_{1}(k)$ on right

- $h_{1}(k)$ keys must be heaviest in $[i, k)$ $h_{2}(k)$ keys must be heaviest in [k,j)
- So left and right subtrees are OBCSTs for $\left[i, k: h_{1}(k)\right)$ and $\left[k, j: h_{2}(k)\right)$
- Cost of tree is $W_{i, j, h}+\operatorname{OPT}\left(i, k: h_{1}(k)+\operatorname{OPT}\left(k, j\right.\right.$: $\left.h_{2}(k)\right)$

Dynamic programing for OBCSTs

2. Root of OPT $(i, j: h)$ is a $\left(Q<K_{k}\right)$

- Range is split into $<k$ and $\geq k$
- h holes (largest keys) in [i,j) are split, with $h_{1}(k)$ on left and $h_{2}(k)=h-h_{1}(k)$ on right

- $h_{1}(k)$ keys must be heaviest in $[i, k)$ $h_{2}(k)$ keys must be heaviest in [k,j)
- So left and right subtrees are OBCSTs for $\left[i, k: h_{1}(k)\right)$ and $\left[k, j: h_{2}(k)\right)$
- Cost of tree is $W_{i, j, h}+\operatorname{OPT}\left(i, k: h_{1}(k)+\operatorname{OPT}\left(k, j\right.\right.$: $\left.h_{2}(k)\right)$

Don't know what k is, so minimize over all possible k $\operatorname{SPLIT}(i, j: h)=\min _{i<k<j}\left\{W_{i, j: h}+O P T\left(i, k: h_{1}(k)\right)+O P T\left(k, j: h_{2}(k)\right)\right\}$

Dynamic programing for OBCSTs

Dynamic programing for OBCSTs

OPT(i,j: h) has two possible structures

Dynamic programing for OBCSTs

OPT(i,j: h) has two possible structures

1. Root is a $\left(Q=K_{k}\right)$

2. Root is a $\left(Q<K_{k}\right)$

Dynamic programing for OBCSTs

OPT(i,j: h) has two possible structures

1. Root is a $\left(Q=K_{k}\right)$

$$
E Q(i, j: h)=W_{i, j: h}+O P T(i, j: h+1)
$$

2. Root is a $\left(Q<K_{k}\right)$

$\operatorname{SPLIT}(i, j: h)=\min _{i<k<j}\left\{W_{i, j: h}+O P T\left(i, k: h_{1}(k)\right)+O P T\left(k, j: h_{2}(k)\right)\right\}$

Dynamic programing for OBCSTs

OPT(i,j: h) has two possible structures

1. Root is a $\left(Q=K_{k}\right)$

$$
E Q(i, j: h)=W_{i, j: h}+O P T(i, j: h+1)
$$

2. Root is a $\left(Q<K_{k}\right)$

$\operatorname{SPLIT}(i, j: h)=\min _{i<k<j}\left\{W_{i, j: h}+O P T\left(i, k: h_{1}(k)\right)+O P T\left(k, j: h_{2}(k)\right)\right\}$
This immediately implies

$O P T(i, j: h) \geq \min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h))$

Dynamic programing for OBCSTs

OPT(i,j: h) has two possible structures

1. Root is a $\left(Q=K_{k}\right)$

$$
E Q(i, j: h)=W_{i, j: h}+O P T(i, j: h+1)
$$

2. Root is a $\left(Q<K_{k}\right)$
$\operatorname{SPLIT}(i, j: h)=\min _{i<k<j}\left\{W_{i, j, h}+\operatorname{OPT}\left(i, k: h_{1}(k)\right)+O P T\left(k, j: h_{2}(k)\right)\right\}$
This immediately implies

$\operatorname{OPT}(i, j: h) \geq \min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h))$
But every case seen can construct a BCST with that cost, so
$\operatorname{OPT}(i, j: h)=\min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h))$

Dynamic programing for OBCSTs

$\operatorname{OPT}(i, j: h)=\min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h))$

$$
\begin{aligned}
E Q(i, j: h) & =W_{i, j: h}+O P T(i, j: h+1) \\
\operatorname{SPLIT}(i, j: h) & =\min _{i<k<j}\left\{W_{i, j: h}+O P T\left(i, k: h_{1}(k)\right)+O P T\left(k, j: h_{2}(k)\right)\right\}
\end{aligned}
$$

Dynamic programing for OBCSTs

$$
\begin{aligned}
O P T(i, j: h)= & \min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h)) \\
& E Q(i, j: h)=W_{i, j}: h+O P T(i, j: h+1) \\
& \operatorname{SPLIT}(i, j: h)=\min _{i<k<j}\left\{W_{i, j: h}+\operatorname{OPT}\left(i, k: h_{1}(k)\right)+\operatorname{OPT}\left(k, j: h_{2}(k)\right)\right\}
\end{aligned}
$$

Set initial conditions for ranges $\operatorname{OPT}\left(\mathrm{i}, \mathrm{i}+1,{ }^{*}\right)$

Dynamic programing for OBCSTs

$$
\begin{aligned}
O P T(i, j: h)= & \min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h)) \\
& E Q(i, j: h)=W_{i, j: h}+O P T(i, j: h+1) \\
& \operatorname{SPLIT}(i, j: h)=\min _{i<k<j}\left\{W_{i, j}: h+\operatorname{OPT}\left(i, k: h_{1}(k)\right)+\operatorname{OPT}\left(k, j: h_{2}(k)\right)\right\}
\end{aligned}
$$

Set initial conditions for ranges OPT $\left(i, i+1,{ }^{*}\right)$

$$
\operatorname{OPT}(i, i+1,1)=0 \quad \begin{array}{|c|c|c|c|}
K_{i}<Q<K_{i+1}
\end{array} a_{i} \quad \operatorname{OPT}(i, i+1,0)=\beta_{i}+a_{i}
$$

Dynamic programing for OBCSTs

$$
\begin{aligned}
O P T(i, j: h)= & \min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h)) \\
& E Q(i, j: h)=W_{i, j: h}+O P T(i, j: h+1) \\
& \operatorname{SPLIT}(i, j: h)=\min _{i<k<j}\left\{W_{i, j}: h+\operatorname{OPT}\left(i, k: h_{1}(k)\right)+\operatorname{OPT}\left(k, j: h_{2}(k)\right)\right\}
\end{aligned}
$$

Set initial conditions for ranges OPT $\left(i, i+1,{ }^{*}\right)$
$\operatorname{OPT}(i, i+1,1)=0$
$\stackrel{K_{i} \lll \ll K_{i+1}}{ }$
a_{i}
$\operatorname{OPT}(i, i+1,0)=\beta_{i}+a_{i}$
$\beta_{1} K_{K_{i}=Q}^{K_{i}<Q<K_{i+1}}$
Comments

Dynamic programing for OBCSTs

$$
\begin{aligned}
O P T(i, j: h)= & \min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h)) \\
& E Q(i, j: h)=W_{i, j: h}+O P T(i, j: h+1) \\
& \operatorname{SPLIT}(i, j: h)=\min _{i<k<j}\left\{W_{i, j}: h+\operatorname{OPT}\left(i, k: h_{1}(k)\right)+\operatorname{OPT}\left(k, j: h_{2}(k)\right)\right\}
\end{aligned}
$$

Set initial conditions for ranges $\operatorname{OPT}\left(\mathrm{i}, \mathrm{i}+1,{ }^{*}\right)$
$\operatorname{OPT}(\mathrm{i}, \mathrm{i}+1,1)=0$

$\operatorname{OPT}(i, i+1,0)=\beta_{i}+a_{i}$

Comments

- Must restrict $\mathrm{h} \leq \mathrm{j}$-i (can't have more holes than keys in interval)

Dynamic programing for OBCSTs

$\operatorname{OPT}(i, j: h)=\min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h))$

$$
\begin{aligned}
E Q(i, j: h) & =W_{i, j: h}+O P T(i, j: h+1) \\
\operatorname{SPLIT}(i, j: h) & =\min _{i<k<j}\left\{W_{i, j: h}+O P T\left(i, k: h_{1}(k)\right)+O P T\left(k, j: h_{2}(k)\right)\right\}
\end{aligned}
$$

Set initial conditions for ranges OPT $\left(i, i+1,{ }^{*}\right)$
$\operatorname{OPT}(i, i+1,1)=0$
$K_{i} \lll<K_{i+1}<a_{i}$
$\operatorname{OPT}(i, i+1,0)=\beta_{i}+a_{i}$
$\beta_{i} \quad K_{i}=Q \quad K_{i}<Q<K_{i+1}$

Comments

- Must restrict $\mathrm{h} \leq \mathrm{j}$-i (can't have more holes than keys in interval)
- Need to fill in table in proper order, e.g.,
(a) $d=0$ to n,
(b) $i=0$ to $n-d, j=i+d+1$,
(c) $\mathrm{h}=(\mathrm{j}-\mathrm{i})$ downto 0

Dynamic programing for OBCSTs

$O P T(i, j: h)=\min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h))$

$$
\begin{aligned}
E Q(i, j: h) & =W_{i, j: h}+O P T(i, j: h+1) \\
\operatorname{SPLIT}(i, j: h) & =\min _{i<k<j}\left\{W_{i, j: h}+O P T\left(i, k: h_{1}(k)\right)+O P T\left(k, j: h_{2}(k)\right)\right\}
\end{aligned}
$$

Set initial conditions for ranges $\operatorname{OPT}\left(\mathrm{i}, \mathrm{i}+1,{ }^{*}\right)$

$$
\operatorname{OPT}(i, i+1,1)=0 \quad \sqrt{\kappa_{i}, e_{i}+x_{i+1}} \quad a_{i} \quad \operatorname{OPT}(i, i+1,0)=\beta_{i}+a_{i}
$$

Comments

- Must restrict h $\leq \mathrm{j}$-i (can't have more holes than keys in interval)
- Need to fill in table in proper order, e.g.,
(a) $\mathrm{d}=0$ to n ,
(b) $i=0$ to $n-d, j=i+d+1$,
(c) $\mathrm{h}=(\mathrm{j}-\mathrm{i})$ downto 0
- Need O(1) method for computing hi(k)
- $=>O(j-i)$ to calculate OPT(i,j: h)
- $=>O\left(\mathrm{n}^{\wedge} 4\right)$ to fill in complete table

Dynamic programing for OBCSTs

$O P T(i, j: h)=\min (E Q(i, j: h), \operatorname{SPLIT}(i, j: h))$

$$
\begin{aligned}
E Q(i, j: h) & =W_{i, j: h}+O P T(i, j: h+1) \\
\operatorname{SPLIT}(i, j: h) & =\min _{i<k<j}\left\{W_{i, j: h}+O P T\left(i, k: h_{1}(k)\right)+O P T\left(k, j: h_{2}(k)\right)\right\}
\end{aligned}
$$

Set initial conditions for ranges $\operatorname{OPT}\left(\mathrm{i}, \mathrm{i}+1,{ }^{*}\right)$
$\operatorname{OPT}(\mathrm{i}, \mathrm{i}+1,1)=0 \quad \quad \kappa_{i}, e_{i+1}+\operatorname{OPT}(i, i+1,0)=\beta_{i}+a_{i}$
$\beta_{i} \quad K_{i}=Q$
$K_{i}<Q<K_{i+1}$

Comments

- Must restrict h $\leq \mathrm{j}$-i (can't have more holes than keys in interval)
- Need to fill in table in proper order, e.g.,
(a) $d=0$ to n,
(b) $i=0$ to $n-d, j=i+d+1$,
(c) $\mathrm{h}=(\mathrm{j}-\mathrm{i})$ downto 0
- Need O(1) method for computing hi(k)
- => O(j-i) to calculate OPT(i,j: h)
- $=>\mathrm{O}\left(\mathrm{n}^{\wedge 4)}\right.$ to fill in complete table
- OPT(0,n+1:0) is optimal cost. Use standard DP backtracking to construct corresponding optimal tree

Perturbing for Key Weight Uniqueness (I)

Perturbing for Key Weight Uniqueness (I)

- Strongly used assumption $\boldsymbol{\beta}_{\mathrm{i}}$ are all distinct to find 'weightiest' keys - Assumption can be removed using perturbation argument

Perturbing for Key Weight Uniqueness (I)

- Strongly used assumption $\boldsymbol{\beta}_{\mathrm{i}}$ are all distinct to find 'weightiest' keys - Assumption can be removed using perturbation argument
- All values constructed/compared in algorithm are subtree costs
- in form $\sum a_{i} a_{i}+\sum b_{i} \beta_{i}$ where $0 \leq a_{i}, b_{i} \leq 2 n$ are integral node depths

Perturbing for Key Weight Uniqueness (I)

- Strongly used assumption $\boldsymbol{\beta}_{\mathbf{i}}$ are all distinct to find 'weightiest' keys
- Assumption can be removed using perturbation argument
- All values constructed/compared in algorithm are subtree costs
- in form $\sum a_{i} a_{i}+\sum b_{i} \beta_{i}$ where $0 \leq a_{i}, b_{i} \leq 2 n$ are integral node depths
- Perturb input by setting $a^{\prime}{ }_{i}=a_{i}, \beta^{\prime}{ }_{i}=\beta_{i}+\mathbf{i} \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is very small - => β^{\prime} are all distinct

Perturbing for Key Weight Uniqueness (I)

- Strongly used assumption $\boldsymbol{\beta}_{\mathbf{i}}$ are all distinct to find 'weightiest' keys
- Assumption can be removed using perturbation argument
- All values constructed/compared in algorithm are subtree costs
- in form $\sum a_{i} a_{i}+\sum b_{i} \beta_{i}$ where $0 \leq a_{i}, b_{i} \leq 2 n$ are integral node depths
- Perturb input by setting $\boldsymbol{a}_{\mathrm{i}}{ }^{\prime}=\mathbf{a}_{\mathrm{i}}, \beta^{\prime}{ }_{i}=\beta_{i}+\mathbf{i} \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is very small
- => β^{\prime} are all distinct
- Since β_{i}^{\prime} are all distinct, algorithm gives correct result for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$
- Easy to prove that optimum tree for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ is optimum for a_{i}, β_{i}
- => resulting tree is optimum for original $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$

Perturbing for Key Weight Uniqueness (I)

- Strongly used assumption $\boldsymbol{\beta}_{\mathrm{i}}$ are all distinct to find 'weightiest' keys
- Assumption can be removed using perturbation argument
- All values constructed/compared in algorithm are subtree costs
- in form $\sum a_{i} a_{i}+\sum b_{i} \beta_{i}$ where $0 \leq a_{i}, b_{i} \leq 2 n$ are integral node depths
- Perturb input by setting $\boldsymbol{a}^{\prime}{ }_{i}=\boldsymbol{a}_{\mathrm{i}}, \beta^{\prime}{ }_{i}=\boldsymbol{\beta}_{\boldsymbol{i}}+\mathbf{i} \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is very small
- => β^{\prime} are all distinct
- Since β_{i}^{\prime} are all distinct, algorithm gives correct result for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$
- Easy to prove that optimum tree for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ is optimum for a_{i}, β_{i}
- => resulting tree is optimum for original $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$
- In fact don't actually need to know value of $\boldsymbol{\epsilon}$

Perturbing for Key Weight Uniqueness (II)

Perturbing for Key Weight Uniqueness (II)

- Perturb input: $a_{i=a_{i}}^{\prime}, \beta_{i}^{\prime}=\beta_{i}+i \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is very small
- Need to find optimum tree for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ (which is also optimum for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$)

Perturbing for Key Weight Uniqueness (II)

- Perturb input: $a_{i=a_{i}}^{\prime}, \beta_{i}^{\prime}=\beta_{i}+i \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is very small
- Need to find optimum tree for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ (which is also optimum for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$)
- Recall that algorithm only performs additions/comparisons
- All values are subtree costs $\sum a_{i} a_{i}+\sum b_{i} \beta_{i}$ where $0 \leq a_{i}, b_{i} \leq 2 n$ are integral

Perturbing for Key Weight Uniqueness (II)

- Perturb input: $a_{i=a_{i}}^{\prime}, \beta_{i}^{\prime}=\beta_{i}+i \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is very small
- Need to find optimum tree for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ (which is also optimum for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$)
- Recall that algorithm only performs additions/comparisons
- All values are subtree costs $\sum a_{i} a_{i}+\sum b_{i} \beta_{i}$ where $0 \leq a_{i}, b_{i} \leq 2 n$ are integral
- Don't actually need to know or store value of $\boldsymbol{\epsilon}$

Perturbing for Key Weight Uniqueness (II)

- Perturb input: $a_{i}^{\prime}=a_{i}, \beta_{i}^{\prime}=\beta_{i}+i \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is very small
- Need to find optimum tree for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ (which is also optimum for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$)
- Recall that algorithm only performs additions/comparisons
- All values are subtree costs $\sum a_{i} a_{i}+\sum b_{i} \beta_{i}$ where $0 \leq a_{i}, b_{i} \leq 2 n$ are integral
- Don't actually need to know or store value of $\boldsymbol{\epsilon}$
- Every value in algorithm is in form $x=x_{1}+x_{2} \boldsymbol{\epsilon}$, where $\mathrm{x}_{2}=\mathrm{O}\left(\mathrm{n}^{3}\right)$ is an integer - Forget $\boldsymbol{\epsilon}$. Store pair ($\mathrm{x}_{1}, \mathrm{x}_{2}$)

Perturbing for Key Weight Uniqueness (II)

- Perturb input: $a_{i=a_{i}}^{\prime}, \beta_{i}^{\prime}=\beta_{i}+i \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is very small
- Need to find optimum tree for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ (which is also optimum for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$)
- Recall that algorithm only performs additions/comparisons
- All values are subtree costs $\sum a_{i} a_{i}+\sum b_{i} \beta_{i}$ where $0 \leq a_{i}, b_{i} \leq 2 n$ are integral
- Don't actually need to know or store value of $\boldsymbol{\epsilon}$
- Every value in algorithm is in form $x=x_{1}+x_{2} \boldsymbol{\epsilon}$, where $\mathrm{x}_{2}=\mathrm{O}\left(\mathrm{n}^{3}\right)$ is an integer
- Forget $\boldsymbol{\epsilon}$. Store pair ($\mathrm{x}_{1}, \mathrm{x}_{2}$)
- (A) Addition is pairwise-addition
- $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
- (C) Comparison is lexicographic-comparison
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)<\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ iff $\mathrm{x}_{1}<\mathrm{y}_{1}$ or $\mathrm{x}_{1}=\mathrm{y}_{1}$ and $\mathrm{x}_{2}=<\mathrm{y}_{2}$

Perturbing for Key Weight Uniqueness (II)

- Perturb input: $a_{i=a_{i}}^{\prime}, \beta_{i}^{\prime}=\beta_{i}+i \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is very small
- Need to find optimum tree for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ (which is also optimum for $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$)
- Recall that algorithm only performs additions/comparisons
- All values are subtree costs $\sum a_{i} a_{i}+\sum b_{i} \beta_{i}$ where $0 \leq a_{i}, b_{i} \leq 2 n$ are integral
- Don't actually need to know or store value of $\boldsymbol{\epsilon}$
- Every value in algorithm is in form $x=x_{1}+x_{2} \boldsymbol{\epsilon}$, where $x_{2}=O\left(n^{3}\right)$ is an integer
- Forget $\boldsymbol{\epsilon}$. Store pair ($\mathrm{x}_{1}, \mathrm{x}_{2}$)
- (A) Addition is pairwise-addition
- $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
- (C) Comparison is lexicographic-comparison
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)<\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ iff $\mathrm{x}_{1}<\mathrm{y}_{1}$ or $\mathrm{x}_{1}=\mathrm{y}_{1}$ and $\mathrm{x}_{2}=<\mathrm{y}_{2}$
- Both (A) and (C) can be implemented in $\mathrm{O}(1)$ time without knowing ϵ - Perturbed algorithm has same asymptotic running time as regular one

Odds and Ends

Odds and Ends

- Designed $O\left(n^{4}\right)$ algorithm for constructing OBCSTs when $\mathrm{C}=\{<,=\}$ and need to report Exact Failures

Odds and Ends

- Designed $\mathrm{O}\left(\mathrm{n}^{4}\right)$ algorithm for constructing OBCSTs when $\mathrm{C}=\{<,=\}$ and need to report Exact Failures
- Strongly used assumption β_{i} are all distinct
- Assumption can be removed using perturbation argument

Odds and Ends

- Designed $O\left(n^{4}\right)$ algorithm for constructing OBCSTs when $\mathrm{C}=\{<,=\}$ and need to report Exact Failures
- Strongly used assumption β_{i} are all distinct
- Assumption can be removed using perturbation argument
- To solve problem $\mathrm{C}=\{<,=\}$ with Non-Exact failures
- only need to modify initial conditions

Odds and Ends

- Designed $O\left(n^{4}\right)$ algorithm for constructing OBCSTs when $\mathrm{C}=\{<,=\}$ and need to report Exact Failures
- Strongly used assumption β_{i} are all distinct
- Assumption can be removed using perturbation argument
- To solve problem $\mathrm{C}=\{<,=\}$ with Non-Exact failures
- only need to modify initial conditions
- Symmetry argument gives algorithms for $\mathrm{C}=\{\leq,=\}$

Odds and Ends

- Designed $O\left(n^{4}\right)$ algorithm for constructing OBCSTs when $\mathrm{C}=\{<,=\}$ and need to report Exact Failures
- Strongly used assumption β_{i} are all distinct
- Assumption can be removed using perturbation argument
- To solve problem $\mathrm{C}=\{<,=\}$ with Non-Exact failures
- only need to modify initial conditions
- Symmetry argument gives algorithms for $\mathrm{C}=\{\leq,=\}$
- Algorithms for $\mathrm{C}=\{<, \leq,=\}$ requires only slight modifications of $\operatorname{SPLIT}(\mathrm{i}, \mathrm{j}: ~ h)$

Odds and Ends

- Designed $O\left(n^{4}\right)$ algorithm for constructing OBCSTs when $\mathrm{C}=\{<,=\}$ and need to report Exact Failures
- Strongly used assumption β_{i} are all distinct
- Assumption can be removed using perturbation argument
- To solve problem $\mathrm{C}=\{<,=\}$ with Non-Exact failures
- only need to modify initial conditions
- Symmetry argument gives algorithms for $\mathrm{C}=\{\leq,=\}$
- Algorithms for $\mathrm{C}=\{<, \leq,=\}$ requires only slight modifications of $\operatorname{SPLIT}(\mathrm{i}, \mathrm{j}: ~ h)$
- If $\mathrm{C}=\{<, \leq\}$, ranges have no holes and problem can be solved in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ similar to Hu-Tucker

Outline

- History
- Binary Search Trees
- Hu-Tucker Trees
- AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
- Problem Models
- List of New Results
- New Results
- The Main Lemma
- Structural Properties of OBCSTs
- Dynamic Programming for OBCSTs
- Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

Proof of Main Lemma

Proof of Main Lemma

Let T be an OBCST. Assume

Proof of Main Lemma

Let T be an OBCST. Assume

- $\mathrm{y}<\mathrm{x}$ ($\mathrm{x}>\mathrm{y}$ is symmetric)

Proof of Main Lemma

Let T be an OBCST. Assume

- $y<x$ ($x>y$ is symmetric)
- $(Q=x)$ is above $(Q=y)$

Proof of Main Lemma

Let T be an OBCST. Assume

- $y<x \quad(x>y$ is symmetric)
- $(Q=x)$ is above $(Q=y)$
- $=>\beta_{x}<\beta_{y}$ will show contradiction

Proof of Main Lemma

Let T be an OBCST. Assume

- $\mathrm{y}<\mathrm{x}(\mathrm{x}>\mathrm{y}$ is symmetric)
- $(Q=x)$ is above $(Q=y)$
- $=>\beta_{x}<\beta_{y}$ will show contradiction
- $\Rightarrow \beta_{x} \geq \beta_{y}$ and Thm correct

Proof of Main Lemma

Let T be an OBCST. Assume

- $y<x \quad(x>y$ is symmetric $)$
- $(Q=x)$ is above $(Q=y)$
- $=>\beta_{x}<\beta_{y}$ will show contradiction
- $\Rightarrow \beta_{x} \geq \beta_{y}$ and Thm correct
- All comparisons between
($\mathrm{Q}=\mathrm{x}$) and ($\mathrm{Q}=\mathrm{y}$) are inequalities
- otherwise $\exists(\mathrm{Q}=\mathrm{w})$ on path with either $\beta_{x}<\beta_{w}$ or $\beta_{w}<\beta_{y}$ and can show contradiction with (x, w) or (w, y)

Proof of Main Lemma

Let T be an OBCST. Assume

- $y<x \quad(x>y$ is symmetric $)$
- $(Q=x)$ is above $(Q=y)$
- $=>\beta_{x}<\beta_{y}$ will show contradiction
- $\Rightarrow \beta_{x} \geq \beta_{y}$ and Thm correct
- All comparisons between
($\mathrm{Q}=\mathrm{x}$) and ($\mathrm{Q}=\mathrm{y}$) are inequalities
- otherwise $\exists(\mathrm{Q}=\mathrm{w})$ on path with either $\beta_{x}<\beta_{w}$ or $\beta_{w}<\beta_{y}$ and can show contradiction with (x, w) or (w, y)
- $x, y \in \operatorname{Range}((Q=x))$ by definition

If $x, y \in \operatorname{Range}((Q=y))$
then could $\operatorname{swap}(Q=X)$ and $(Q=y)$ to get cheaper tree.

Proof of Main Lemma

x would
be here

Proof of Main Lemma

Let T be an OBCST. Assume

- $\mathrm{y}<\mathrm{x}(\mathrm{x}>\mathrm{y}$ is symmetric)
- $(Q=x)$ is above $(Q=y)$
- $=>\beta_{x}<\beta_{y}$ will show contradiction
- All comparisons between
$(Q=x)$ and $(Q=y)$ are inequalities

Proof of Main Lemma

Let T be an OBCST. Assume

- $y<x \quad(x>y$ is symmetric $)$
- $(Q=x)$ is above $(Q=y)$
$=>\beta_{x}<\beta_{y}$ will show contradiction
- All comparisons between
$(Q=x)$ and $(Q=y)$ are inequalities
- Since $x \notin$ Range(($Q=y)$
$=>$ Path $(Q=x)$ to $(Q=y)$ contains $(Q<z)$ s.t z's children's ranges are [i,z,h'), [z,j,h") where $y \in[i, z)$ and $x \in[z, j)$. z is called splitter.

- P^{\prime} is (red) path from $(Q=x)$ to $(Q=y)$

Proof of Main Lemma

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$
- Proof will be case analysis of structure of P^{\prime}
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$
- Proof will be case analysis of structure of P^{\prime}
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

Case 1: P^{\prime} is one edge

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$
- Proof will be case analysis of structure of P^{\prime}
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

Case 1: P^{\prime} is one edge

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$
- Proof will be case analysis of structure of P^{\prime}
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

Case 1: P^{\prime} is one edge
$y \in A=>$ Weight $(A) \geq \beta_{y}>\beta_{x}$

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . \quad y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$
- Proof will be case analysis of structure of P^{\prime}
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

Case 1: P^{\prime} is one edge

$y \in A=>$ Weight $(A) \geq \beta_{y}>\beta_{x}$
=> replacing left subtree by right subtree in T yields new BCST T'
 with lower cost than T, contradicting T being OBCST

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . ~ y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$

Case 2: P' is two edges $\neq 丈$

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$

Case 2: P^{\prime} is two edges $\neq \mathrm{K}$

$y \in A=>$ Weight $(A) \geq \beta_{y}>\beta_{x}$

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$

Case 2: P^{\prime} is two edges $\neq 丈$

$y \in A=>$ Weight $(A) \geq \beta_{y}>\beta_{x}$
=> again replacing left tree by right tree in T yields new BCST T' with lower cost than T ,
 contradicting T being OBCST

Proof of Main Lemma

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$
- Proof will be case analysis of structure of P^{\prime}

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . \quad z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$
- Proof will be case analysis of structure of P^{\prime}
- Already saw first two cases of P'
- Showed for each that assumptions allow replacing subtree rooted at $(Q=x)$ with cheaper subtree for some range. Replacement leads to cheaper BCST, contradicting optimality of T

Proof of Main Lemma

- P is path in T from $(Q=x)$ to $(Q=y) . y<x . z$ is $x-y$ splitter on P
- P^{\prime} is path from $(Q=x)$ to $(Q=z)$
- Proof will be case analysis of structure of P^{\prime}
- Already saw first two cases of P'
- Showed for each that assumptions allow replacing subtree rooted at $(Q=x)$ with cheaper subtree for some range. Replacement leads to cheaper BCST, contradicting optimality of T
- The full proof splits P^{\prime} into 7 cases.
- For each, can show replacement with cheaper subtree, contradicting optimality of T .

Outline

- History
- Binary Search Trees
- Hu-Tucker Trees
- AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
- Problem Models
- List of New Results
- Our Results
- The Main Lemma
- Structural Properties of OBCSTs
- Dynamic Programming for OBCSTs
- Proof of The Main Lemma
- Extensions and Open Problems

Extensions \& Open Problems

- If the β_{i}, a_{i} are probabilities (sum to 1) can show an $O(n)$ algorithm that constructs BCST within additive error 3 of optimal for Exact Failure Case
- Modification of similar algorithm for Hu-Tucker case.
- $\mathrm{O}\left(\mathrm{n}^{4}\right)$ is quite high for worst case.
- Can we do better?

