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Abstract—Proximity detection is to determine whether an IoT
receiver is within a certain distance from a signal transmitter. Due
to its low cost and high popularity, Bluetooth low energy (BLE)
has been used to detect proximity based on the received signal
strength indicator (RSSI). To address the fact that RSSI can be
markedly influenced by device carriage states, previous works
have incorporated RSSI with inertial measurement unit (IMU)
using deep learning. However, they have not sufficiently ac-
counted for the impact of multipath. Furthermore, due to the
special setup, the IMU data collected in the training process
may be biased, which hampers the system’s robustness and
generalizability. This issue has not been studied before.

We propose PRID, an IMU-assisted BLE proximity detection
approach robust against RSSI fluctuation and IMU data bias.
PRID histogramizes RSSI to extract multipath features and uses
carriage state regularization to mitigate overfitting due to IMU
data bias. We further propose PRID-lite based on a binarized
neural network to substantially cut memory requirements for
resource-constrained devices. We have conducted extensive ex-
periments under different multipath environments, data bias
levels, and a crowdsourced dataset. Our results show that PRID
significantly reduces false detection cases compared with the
existing arts (by over 50%). PRID-lite further reduces over 90%
PRID model size and extends 60% battery life, with a minor
compromise in accuracy (7%).

Index Terms—Proximity detection, BLE, IMU, carriage state,
regularization, binarized neural network

I. INTRODUCTION

Proximity detection is to decide whether an IoT receiver
is within a certain distance, say 5 meters, from a signal
transmitter. If so it is a “proximity” event, or “no proxmity”
event otherwise. Free from human operation, such decision
enables many proximity-based services (PBS), such as contact
tracing [1]–[4], proximity marketing [5], and presence or
check-in/checkout logging [6], [7]. These services often need
to detect proximity independent of receiver carriage state, i.e.,
independent of whether the receiver is held in swinging hands,
read positions, a pocket, backpack, side bag, and so on.

Many signals have been studied for proximity detection,
such as radio frequency (RF) [8], [9], ultrasound [10], and
LiDAR [11]. Among them, Bluetooth Low Energy (BLE)
emerges as the most promising due to its low cost, low
power consumption, appropriate coverage range (around 10
meters), and wide availability in IoT devices. In this work,
we consider a common BLE-based PBS deployment scenario

This work was supported, in part, by Hong Kong General Research
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where no hard partition (or wall) cuts between the receiver and
the transmitter at the time of proximity detection. (Detecting
partition between two devices is an independent issue outside
the scope of this study. Interested readers may refer to [12],
[13] and references therein.)

Traditionally, proximity is detected by measuring the re-
ceived signal strength indicator (RSSI) and correlating it with
distance, with the intuition that a lower RSSI means larger
distance, and vice versa. However, RSSI may be severely
affected by environment and receiver carriage state, leading
to signal fading, fluctuation, and attenuation. To address that,
much of the existing work employs deep learning to find
a high-dimensional classification boundary from the RSSI
values (see, for example, [14], [15]). However, these models
are often not robust against RSSI fluctuation because the
received signals may be randomly affected by nearby mobile
objects (e.g., pedestrians, vehicles, rotating fans, etc.). As
a result, the decision may be noisy, leading to less than
satisfactory results.

To account for the impact of carriage state on RSSI,
inertial measurement unit (IMU) readings are often collected
as training data [14]. Unfortunately, such a collection process
does not always faithfully reflect the operating condition in
reality (i.e., independence of carriage state in the general
case). In other words, the training data may be biased, i.e.,
the dataset does not guarantee the carriage state, as given
by IMU readings, to be independent of proximity. If such a
bias is not accounted for properly, deep learning models could
correlate the IMU readings to proximity, leading to overfitting
and generalization issues, and performance highly dependent
on the data acquisition process.

To tackle the above multipath and biased training data
issues, we propose PRID, a novel, accurate, and generalizable
IMU-assisted BLE proximity detection which is robust against
RSSI fluctuation and IMU data bias. We overview PRID in
Figure 1. In the forward (online) path, PRID, using a sliding
window (a few seconds), encodes BLE RSSIs and IMU data
as feature vectors using RSSI histogramization and carriage
feature encoding modules, respectively (signal encoding step).
After concatenating the feature vectors, a trained binary classi-
fier based on deep neural network (DNN) is employed to detect
proximity (proximity classification step). In the backward path
for offline training, PRID employs carriage state regularization
to reduce the IMU overfitting problem of the classifier.
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Fig. 1. System overview of PRID.

The major contributions of this work are as follows:

• RSSI histogramization to mitigate multipath impact: Mul-
tipath leads to a spread in RSSI distribution, which sheds
lights on the features in the environment. Therefore, to
mitigate RSSI fluctuations due to multipath, we propose
to represent the RSSI time series within a sliding win-
dow as a histogram. Through such a “histogramization”
process, the multipath environment is modeled as a dis-
tribution for training and inference purposes.

• Carriage state regularization for potentially biased train-
ing data: We study, for the first time, how to mitigate
IMU training data bias for BLE proximity detection. We
propose carriage state regularization, which first employs
importance sampling to reduce the discrepancy between
the IMU features of the “proximity” state and that of the
“no proximity” state in the training data. Then, it applies
the resultant sampling weights to a loss function in the
training step, thereof effectively reducing IMU overfitting
in the DNN-based proximity classifier.

• PRID-lite: Achieving memory efficiency for resource-
constrained IoT devices: While PRID is efficient and
deployable on smartphones commonly available on the
market nowadays, its memory requirement may still
be demanding for some low-end IoT devices with ex-
tremely constrained resources, such as contact tracing
tokens [3], smart car keys [7], and audio guide de-
vices for museums [16]. To further extend its use to
resource-constrained IoT devices, we propose PRID-lite,
a lightweight variant of PRID achieving high memory
efficiency with little cost in performance. We employ
model binarization on the DNN-based proximity classifier
to achieve a proper trade-off between neuron quantity
and neuron precision. Moreover, due to the memory-
efficient bit-wise operation between binarized neurons,
PRID-lite is more energy-conserving than floating-point
manipulation and computationally efficient.

PRID and PRID-lite are easily implementable and deploy-
able. We have developed them on commercial smartphones
and IoT devices (Android smartwatch, Raspberry Pi Zero,
and ESP-32). To validate our design, we conduct extensive
experiments on multiple sites with different multipath envi-

ronments and levels of IMU data bias, including the TC4TL
challenge dataset [17], which is a crowdsourced public dataset
for automated contact tracing. Our results show that PRID
achieves substantial improvement as compared with the state-
of-the-arts (with more than 50% reduction in false detection
cases in our dataset). PRID-lite reduces the model size of
PRID by 94% (from 5MB to 0.3MB) and extends battery
life by more than 60% in our implementations, with only a
minor compromise in accuracy (7% reduction in F-score). This
demonstrates that PRID-lite is deployable in most resource-
constrained devices.

The remainder of this paper is organized as follows. We
discuss related work in Section II, and how PRID encodes
RSSI and IMU signals in Section III. In Section IV, we present
PRID’s online proximity classification and its offline training
with carriage state regularization. In Section V, we detail
PRID-lite. Later, we cover illustrative experimental results in
Section VI and conclude in Section VII.

II. RELATED WORK

Distance, multipath environment, and carriage state are three
major factors that affect RSSI and hence proximity detection.
In the following, we discuss previous works on these three
factors.

Most of the early works on BLE proximity detection only
consider the relationship between RSSI and distance. By
assuming BLE signal merely attenuates over distance, they
investigate how RSSI decreases as distance goes up by regres-
sion approaches – it is intuitive to determine proximity events
by ranging from RSSI. The most common regression model
is the log-distance path loss model [18], which builds the
exponential relationship between RSSI and distance. Some of
its variants can be found in [19]. Linear and inverse proportion
relations are also studied in [20]. However, since these works
fail to consider the multipath environment and carriage state,
such regression approaches are mostly unreliable in practice.

Many recent works have considered the RSSI distortion
caused by the multipath environments. Their approaches are
either based on noise reduction or sequential correlation upon
an RSSI sliding window. The noise reduction works consider
the RSSI distortion as signal noise and study various signal
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filters against multipath environments. Works in [15], [20]–
[22] leverage statistical features (such as mean and median)
for noise reduction. Other works in [23]–[26] apply Bayesian
filters to process RSSI. Although these works improve de-
tection accuracy in the settings under study, they suffer from
poor extensibility to different environments since they assume
the identical noise distribution over different environments.
Besides, some research works explore RSSI sequential cor-
relation to detect proximity. Research work in [27] models
RSSI sequence as a Markov chain and denotes the proximity
as its model’s binary state. The work of [14] experiments
with several deep learning models on RSSI time series, trying
to find a high dimensional classification boundary. However,
since multipath fading is complex and unpredictable, the
resultant RSSI fluctuations are rather random and noisy. Such
fluctuation adversely affects these models, and, as a result, they
cannot learn a good classification boundary. In comparison,
PRID does not assume any noise distribution or sequential
correlation. Since the multipath effect leads to a spread in
RSSI distribution, it represents the RSSI time series as a
histogram and takes advantage of such signal fluctuation to
extract environmental features.

Since different carriage states could render RSSI completely
different even under the same environment and distance, some
works further account for carriage state on BLE proximity
detection. The approach in [4] categorizes carriage state as
a known set of several on-body positions (such as being
handheld or placed in a pocket). They adjust their RSSI-
based proximity threshold by carriage state while detecting
proximity. However, this scheme relies heavily on manual
labeling and works only for pre-defined states, making it
hard to deploy or generalize in practice. To efficiently reflect
carriage state, the work in [14] introduces IMU and leverages
deep learning to model the impact of carriage states on RSSI
values. To improve model generalizability, they crowdsource
data from volunteers. However, their models cannot generalize
well since they have not considered the bias in the IMU
training data. As a comparison, PRID uses IMU to reflect
carriage state and addresses the bias issue by applying car-
riage state regularization. By accounting for the correlation
between IMU readings and proximity states in training data,
the regularization greatly reduces the IMU overfitting problem.

III. SIGNAL ENCODING IN PRID

We present in this section how PRID processes RSSI and
IMU signals so as to encode the system inputs to feature
vectors. In Section III-A, we discuss histogramization for BLE
RSSI. In Section III-B, we introduce carriage feature encoding
based on IMU readings.

A. RSSI Histogramization

Although an individual RSSI measurement is noisy, the
distribution of RSSIs over time tends to be informative in
representing environmental features. Based on this observa-
tion, we use histogram to represent the distribution of RSSI
fluctuation so as to capture RSSI distortion as well as the

(a) Without pedestrian. (b) With pedestrians.

Fig. 2. BLE RSSI histogram under environments w/o pedestrians roaming
around. The shaded red bin represents the median RSSI values.

multipath in the environment. In the histogram, we present
RSSI over a time period into various buckets, with each bucket
denoting the appearance frequency of a certain RSSI range.
Specifically, histogramization converts a series of RSSIs into
a vector

R = [r1, r2, ..., rn] , (1)

where ri denotes the normalized number of RSSI (over a
sliding window) that belongs to the ith bucket. We set each
bucket to cover the same range length (bin size)

δ =
ϕmax − ϕmin

n
, (2)

where ϕmax and ϕmin represent RSSI extrema (maximum
and minimum) that we consider, where, in our case, they are
separately set to be 0 dBm and −100 dBm.

Figure 2 shows an example that illustrates the capability of
RSSI histogram in representing RSSI distortions and multipath
environment. In the example, we collect RSSI in a corridor
where the signal receiver is 3 meters from a transmitter, and
the collection lasts for 10 seconds (around 90 RSSI values are
received). Figure 2a is collected at night when no pedestrian
passes; and Figure 2b is collected on a busy afternoon with
people walking around. Due to the multipath environments
causing RSSI distortions to different extents, RSSI median
value (denoted as the red shaded bin) shifts between two
figures without distance change, which violates the assumption
that a lower RSSI means a larger distance and fails its deriva-
tive methods. Nonetheless, RSSI histogramization represents
the RSSI time series as a signal fluctuation distribution that
could account for such influences from multipath environ-
ments. For one thing, from static to dynamic environments, as
the more complex multipath effect (as in the Figure 2b case)
renders a larger RSSI distortion (where RSSIs are sequentially
noisy), it also causes a larger signal fluctuation that leads
to a spread in RSSI distribution. For another, the fluctuation
enlarges the inconsistency between histogram buckets so that
its shape tends to be disordered. Besides the implication of
RSSI distortion and the multipath, the histogram also contains
distance information because the buckets are gathered by the
RSSI range.

In our findings, this observation is also applicable to many
non-line of sight and even cross-site scenarios. This is because
a complex environment is likewise to cause a complex fading
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TABLE I
CARRIAGE FEATURE ELEMENTS EXTRACTED FROM IMU DATA.

Feature Formula Source∗

Mean 1
N

∑N
i=1 xi G

Energy 1
N

∑N
i=1 xi

2 L, A

Variance 1
N

∑N
i=1(xi − x̄)2 L, A

Skewness E[(x−x̄
σ

)3] L, A

Kurtosis E[(x−x̄
σ

)4] L, A

Entropy
E[I(x)],

L, A
where I(x) = − ln

[
Pr

(
x−min(x)

max(x)−min(x)

)]
* G: gravity, L:linear acceleration, A: angular velocity

effect, rendering a severe RSSI distortion with a large signal
fluctuation. This shows that the RSSI histogram is a powerful
feature that is capable of representing multipath environments.

B. Carriage Feature Encoding

We extract several features from IMU measurements to re-
flect carriage states. Generally, IMU includes three categories
of signals: gravity, linear acceleration, and angular velocity.
Gravity can be naturally used to infer device attitude. Linear
acceleration and angular velocity, on the other hand, reflect the
movement of a device. We argue that the device movement is
also an important factor in reflecting carriage states. This is
because these signals can further differentiate carriage states
when devices have similar attitudes. For instance, the angular
velocity along phone azimuth is much larger than its pitch
when its user walks around with a phone in the front trouser
pocket, while this situation reverses if the phone is in back
pocket; in reality, such two carriage states could have different
impacts on RSSI due to their different on-body positions.

We extract carriage features from a period of IMU data (of
a few seconds). Formally, we denote the feature vector by

C = [c1, c2, ..., cm] . (3)

For gravity, we directly average the values along its three di-
mensions – the gravity projections of a device’s 3D coordinates
– to reflect device attitude over time. For linear acceleration
and angular velocity, we encode them by extracting some
statistical features: energy, variance, skewness, kurtosis, and
entropy. Since feature extraction on IMU data is not the focus
of this work, we empirically employ these features to reflect
carriage states and summarize them in Table I.

IV. PROXIMITY CLASSIFICATION IN PRID

We discuss in this section how PRID detects proximity
given the feature vectors of RSSIs and carriage states. In
Section IV-A, we present the design of the DNN-based prox-
imity classifier. In Section IV-B, we discuss carriage state
regularization for training the classifier.

Fig. 3. The network structure of the proximity classifier in PRID.

A. DNN-based Binary Proximity Classifier

As mentioned, RSSI histogram R provides environment
and distance features, while carriage feature vector C reflects
carriage state. We need a classification model that jointly
considers these inputs to estimate

y = Pr (Y = 1|R,C) , (4)

where y is the classifier output regarding the proximity state Y .
As mentioned, proximity state is either ”proximity” event (1)
or ”no proximity” event (0), i.e.,

Y =

{
1, if D ≤ τ ;

0, otherwise ,
(5)

where τ is the pre-defined proximity threshold and D is the
physical distance.

Unfortunately, it is intractable to handcraft such a model
with those high-dimensional inputs. Therefore, we leverage
deep learning to extract features from those inputs and cor-
relate them with the proximity state. Specifically, the RSSI
histogram and the carriage features, which are encoded over
the same period, are concatenated as a feature vector. We then
use a deep neural network (DNN)-based proximity classifier
to determine proximity states from the feature vectors.

We illustrate the classifier structure in Figure 3. It consists
of an input layer (omitted in the figure), an output layer,
and several hidden layers. Each hidden layer is comprised of
network neurons, a normalization method, and an activation
function. We employ batch normalization (BN) [28] as the
normalization method and Mish [29] as the activation function.
As a convention, Softmax serves as the classifier’s output layer.
As for the model training, we choose cross-entropy as the loss
function and train the network with the Adam optimizer. We
have also tried other common deep learning model tricks, such
as using ReLU as the activation function; they show a similar
performance in this task. Readers interested in such tricks may
refer to [30]–[32] and the references therein.

B. Carriage State Regularization

We illustrate in Figure 4 the problem of BLE proximity
detection by posing it as a graph model. Each node represents
a factor or an event in the BLE proximity detection system.
In the figure, the considerations – carriage state, distance, and
multipath environment – are three major factors that influ-
ence RSSI; proximity state is the comparison result between
proximity threshold (omitted in the graph for simplicity) and
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Fig. 4. Graphical model of BLE proximity detection. Each node denotes
a factor or event in proximity detection. A directed edge denotes causality
between its connected nodes.

physical distance. We denote RSSI with all of its represen-
tation as R and IMU reading with its derived carriage state
features as C. Take PRID as an example, we denote R as an
RSSI histogram and C as carriage feature vector.

In the figure, a directed edge describes causality between
nodes. Specifically, a directed edge pointing A to B indicates
that a variation in A could lead to a status change in B, being
other factors unchanged. For example, an edge pointing from
distance to RSSI means: without other factors changing, a
larger distance would lead to a smaller RSSI value. Note that,
the association absence between any two nodes assumes their
prior independence; for instance, carriage state and distance
are independent being RSSI unknown, but they are correlated
when the RSSI is given (according to d-separation [33]).

Essentially, the BLE proximity detection task is to model
those causalities beforehand, so that we can use the established
model to estimate the proximity state from those observable
inputs. For regression works that only consider distance and
RSSI, they model Pr(R|D) because distance causes RSSI
change. In practice, they estimate the distance from the ob-
servable RSSI

Pr(D|R) ∝ Pr(R|D), (6)

assuming Pr(D) is uniformly distributed. Then, proximity
state can be estimated the same way as in Equation 5,
with the goal of modeling the causality from distance to
proximity state in Figure 4. Apparently, these works suffer
inaccuracy in practice due to the absence of carriage state
and environment as well as their related edges. Thus, later
works further consider environment and carriage state, aiming
to model Pr(R|C, Y ) in the training phase. Since Pr(R|C, Y )
is intractable, they leverage deep learning to directly learn
Pr(Y |R,C) from data, assuming that

Pr(Y |C,R) ∝ Pr(R|Y,C). (7)

However, Equation 7 is valid only if proximity state Y and
carriage state C are independent because

Pr(Y |C,R) =
Pr(Y,C,R)

Pr(C,R)
∝ Pr(R|Y,C)Pr(Y |C). (8)

For using non-parametric models as deep learning ones, we
expect this independence in training data to guarantee the
established model to make unbiased estimations in practice. In
other words, instead of determining proximity from carriage
state, we want the model to detect proximity based on RSSI
representations while considering carriage state impact on
RSSI. Unfortunately, it is usually tricky to guarantee such
unbiased training data in quantity – for one thing, IMU is
highly sensitive to user activities, which varies in different
scenarios. For another, acquiring such data is labor-intensive,
systems from the literature (such as the work in [17]) crowd-
source data from volunteers for better adaptability in different
environments; this uncontrolled data acquisition process makes
it harder to guarantee an unbiased training dataset. As a result,
the built model Pr(Y |C,R) suffers bias from Pr(R|Y,C),
and its performance is highly manipulated by training data.
We refer to this issue as an IMU overfitting problem because
the learned model falsely correlates IMU with proximity
state when this discrepancy from independence appears in the
training data. Apparently, this issue hinders the models from
generalizing well.

To tackle this IMU overfitting problem, we propose car-
riage state regularization to supervise the training process of
the DNN-based proximity classifier. Intuitively, carriage state
regularization aims to cut off the correlation between the
carriage feature and proximity state from the training data,
so as to force the proximity classifier to learn the carriage
state’s impact on RSSI.

Carriage state regularization leverages importance sampling
to account for the distribution discrepancy of the carriage
feature with different proximity states. We divide the training
dataset D into two groups S = SY=0 ∪ SY=1, according to
their proximity state Y . The discrepancy is caused by the fact
that these two groups are drawn from different distributions
so that Pr(C|Y = 1) ̸= Pr(C|Y = 0). Such a discrepancy
can be reduced by reweighting one group to match the other.
Thus, with the goal to tackle the resultant overfitting problem,
we reweight the training loss to reduce the discrepancy by

L′(yi, Yi) =
Pr(Ci|Y = 1)

Pr(Ci|Y = 0)
L(yi, Yi) = wiL(yi, Yi), (9)

where L(·) calculates training loss from detection result yi and
proximity state Yi, and wi represents the sampling weight.

Let w+ be the set of weights corresponding to the positive
samples, i.e., w+ = {wi|si ∈ SY=1}. Similarly, the weight set
for negative ones are w− = {wi|si ∈ SY=0}. In this work, we
aim to reweight SY=1 to match SY=0. We thus set all wi ∈
w− to be 1 and calculate w+. We use the kernel method to
bridge the distribution discrepancy in the feature space (kernel
mean matching [34]), that is

min
w+

1

2
(w+)TKw+ − κTw+ (10)

s.t.
∑||w+||

i=1 w+
i = ||w+||

0 ≤ w+
i ≤ wmax, i = 1, 2, 3 . . . , ||w+||

, (11)

5
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Fig. 5. The network structure of proximity classifier in PRID-lite.

where we set wmax as 10. The kernel computations are

Kij := k(C+
i , C+

j ), (12)

κi :=
||w+||
||w−||

||w−||∑
j=1

k(C+
i , C−

j ), (13)

where k(·, ·) is the radial basis function (RBF) kernel (the
kernel width γ = 1.0); we solve this quadratic program
problem by the interior point method [35].

Note that carriage state regularization is general for IMU-
assisted BLE proximity detection. Although we explain this
regularization on the carriage feature, it is also applicable to
other features that reflect carriage states.

V. PRID-LITE: ACHIEVING MEMORY EFFICIENCY

In PRID, most of the storage burden comes from the DNN-
based proximity classifier. Normally, we use the larger neural
network (with more neurons) for better generalization. How-
ever, a larger neural network not only requires more memory
but also increased energy consumption that some resource-
constraint devices cannot afford. Thus, the constrained re-
source limits us from using a large neural network, which
hinders the proximity classifier from being accurate.

Since a neural network’s nature is to encode training data
into its neuron connections, the neural network needs to be
large enough to perform well; thus, we apply binarized neurons
to build a larger network when the model size is constrained.
Instead of using a floating-point number, a binarized neuron
weight is either 1 or -1 (represented by a bit). This allows us
to replace a full-precision neuron to be 32 binarized neurons,
which enlarges the model structure in terms of neuron quan-
tity. In addition, this binarization replaces the floating-point
multiplication between neurons by bit-wise operation, which
is faster and lighter for IoT devices to process. Although this
binarization causes information loss between neurons – which
inevitably renders inaccuracy of binarized neural network
in comparison to its full-precision counterpart with enough
neuron quantity – it is likely to gain a better performance
by compromising the neuron precision for a larger network
structure when device resources limit the scaling up of the
model.

We illustrate the binarized proximity classifier structure in
Figure 5. Compared with the proximity classifier from PRID,
we binarize parts of its neurons (colored in white and black)
and apply the activation function HardTanh to the hidden
layers. We maintain the neuron precision of the input and

Fig. 6. Illustration of data collection. The dotted line stands for proximity
threshold. The user either moves within the proximity region or outside the
proximity threshold.

last hidden layer because they are important in conveying
information; but this would not cause severe memory burdens
since these two layers are usually much smaller than the other
layers. For general regularization, we add one dropout layer
between the last two hidden layers. We train the network by
using the same tricks as in the proximity classifier in PRID,
except that we employ “straight-through estimator” [36] to
tackle the binarized neuron training problem.

VI. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we show the illustrative experimental results
of PRID and PRID-lite. We first discuss the experimental
settings in Section VI-A, followed by the illustrative results
in Section VI-B.

A. Experimental Settings

We have implemented PRID and PRID-lite and conducted
extensive experiments to validate their performance. We
run PRID on an Android smartphone, which continuously
scans any surrounding BLE signals and logs the IMU data.
For PRID-lite, we deploy our implementation on multiple
resource-constrained IoT devices, including an Android smart-
watch, a single-board computer Raspberry Pi Zero (Pi Zero),
and a microcontroller unit ESP-32. Detailed specifications of
the IoT devices are listed in Table III.

In our implementation of the DNN-based binary proximity
classifier, we employ three fully connected layers with 700,
900, and 700 hidden nodes. Unless specified, it is for both
PRID and PRID-lite.

We verify the system performance through an experiment on
fields and an evaluation on a public crowdsourced dataset [17].
In our experiment, we set up a commercial iBeacon as the
BLE transmitter. The iBeacon is attached to a wall 1.2 meters
above the ground (as illustrated in Figure 6). It advertises 10
BLE handshaking messages per second with reference TX
power (RSSI measured at 1 meter) of -59dBm. We invite
multiple users for data collection. They carry smartphones
either by hands or in pockets (decided by the users) and can
move within 12m of the transmitter. We collect data in three
venues: a crowded indoor junction (dynamic environment),
an indoor open space with a few pedestrians (semi-dynamic
environment), and a quiet outdoor region (static environment).
In total, we collect RSSI readings for around 5 hours for model
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training and another one hour for performance testing. The
detailed collecting hour of training data is shown in Table II.
To fairly reflect reality, the carriage state and proximity state
labels are carefully decoupled in the test data. In addition,
we repeat the experiments for the proximity thresholds of 6m
and 2m, corresponding to different proximity requirements in
typical PBS applications (such as proximity marketing) and
contact tracing scenarios, respectively.

We also validate our scheme on a public dataset from
TC4TL challenge [17], a BLE proximity detection competition
for automated contact tracing. The TC4TL dataset contains
more than 25,000 crowdsourced RSSI sequences with each
sequence ranging from 10 to 150 seconds. It covers several
common environments and carriage states for contact tracing
and restricts users to move within 4.5m from transmitters. We
use the 2m proximity threshold in the evaluation since it is a
common safe distance for contact tracing.

For a better evaluation, we separately train and test all the
methods (including comparison schemes and our method) on
the two datasets. We chunk the test data into time periods of 5s
as well as the sliding window length. The evaluation metrics
of this experiment are shown as follows:

• Accuracy: Accuracy is a common and intuitive metric for
evaluating classifier quality. It denotes the proximity state
as Y and detection result as Det. The system precision
and recall is calculated as

Precision =
||{Y = 1} ∩ {Det = 1}||

||{Det = 1}||
,

Recall =
||{Y = 1} ∩ {Det = 1}||

||{Y = 1}||
.

(14)

F-score is their harmonic mean, which is computed by

F1 =
2× Precision×Recall

Precision+Recall
. (15)

• False detection rate: Accuracy mainly focuses on system
discernment on positive events, while recognizing prox-
imity events and reducing false alarms are both essential
in many PBS applications (such as contact tracing); thus,
we further use a false detection rate to compare system
performance. We follow the metric in [14] and employ
nDCF to measure the false detection rate. We evaluate
the detection error as the probability of missing contact
(proximity) event Emiss and false alarm Efa, which are
computed by

Emiss =
||{Y = 1} ∩ {Det = 0}||

||{Y = 1}||
,

Efa =
||{Y = 0} ∩ {Det = 1}||

||{Y = 0}||
.

(16)

The evaluation nDCF is their normalized decision cost
function

nDCF =
wmissEmiss + wfaEfa

min(wmiss, wfa)
, (17)

where we use weights wmiss = 1 and wfa = 1 in this
experiment.

TABLE II
SCHEME PRECISION/RECALL UNDER DIFFERENT SITES.

Collection Scheme precision/recall

Environment Carriage Y=0 Y=1 LDPL Conv1d PRID

Dynamic
Pocket 0.48 0.30 0.64/0.62 0.88/0.76 0.95/0.92

Hand 0.32 0.5 0.63/0.64 0.78/0.88 0.93/0.95

Semi-dynamic
Pocket 0.36 0.45 0.65/0.66 0.83/0.92 0.94/0.95

Hand 0.48 0.40 0.68/0.70 0.91/0.82 0.95/0.95

Static
Pocket 0.42 0.38 0.70/0.72 0.91/0.85 0.96/0.95

Hand 0.38 0.42 0.72/0.71 0.86/0.91 0.96/0.97

We compare our scheme with the following state-of-the-art
schemes:

• Temporal 1-D convolutional network (Conv1D) [14]:
Conv1D is a deep learning-based binary regressor. It uses
raw RSSI and IMU data over a time period as input. In
the experiments, we use one convolutional (with kernel
size of 1×5) and three fully-connected layers. Its neuron
quantity is set to be similar to that of PRID.

• ProxiTrak [15]: ProxiTrak employs a random forest to
detect proximity events. It extracts mean, minimum,
maximum, and standard deviation from both the RSSI
sliding window and inter-packet duration (IPD). It further
conducts majority voting on the detection results to
mitigate random noise. In our experiments, we follow
the original paper to set the sliding window’s length to
be 2s, and then aggregate results in 5s.

• Log-distance path loss model (LDPL) [20]: LDPL is a
classic distance estimation technique and wildly used
in commercial regression-based proximity detection sys-
tems. The distance is estimated by

distance = 10
TX−RSSI

10n , (18)

where n is a fading parameter learned from training data
and TX denotes the reference RSSI measured at 1m.
It detects proximity events by comparing the resultant
distance with the proximity threshold. To alleviate signal
fluctuation, we calculate RSSI by the mean value over a
sliding window of 5s.

B. Illustrative Results

We first study the impact of histogram bin size δ (as in
Equation 2) on the F-score. Figure 7 shows that the F-score
increases with the bin size when δ ≤ 4; then, the F-score
drops when bin size increases. This is because that histogram
with a larger bin is less sparse, providing stable features to
the proximity classifier to capture; but a histogram with a too
large of a bin size is insensitive to RSSI fluctuation distribution
change, so it cannot represent the multipath environment well.
Therefore, we follow the figure trend and adopt δ = 4 in the
following experiments.

Figure 8 compares the F-score of different schemes under
varied window lengths (in terms of time) in our on-field
experiment. We train and test data from the three sites together.
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Fig. 7. RSSI histogram bin size setting. Fig. 8. F-score against sliding window length. Fig. 9. F-score under different sites.

Fig. 10. Classification performance for contact
tracing application (proximity threshold is 2m).

Fig. 11. nDCF against different model size of
PRID and PRID-lite.

Fig. 12. Power consumption over time on IoT
smartwatch.

In the figure, PRID outperforms the other schemes by more
than 0.13 in the F-score (or reduces in over 60% of the false
detection cases). We can see that PRID and Conv1d gain
significant improvements when the window length increases
from 1s to 5s, then after that, they level out. ProxiTrak and
LDPL, on the other hand, do not benefit much from temporal
information. This is because the RSSI sliding window contains
environmental features, and the DNN-based methods are able
to extract them. Thus, to balance the system accuracy and
responsiveness, we set the window length to be 5s in both
PRID and PRID-lite.

With the 5s window, we further show the system per-
formance upon the three sites in Figure 9. As mentioned,
the dynamic environment is crowded with pedestrians, the
semi-dynamic environment is relatively less crowded, and
the static site has quiet surroundings; Therefore, these sites
possess environmental dynamics and hence some multipath
effects to different extents. As a result, all the schemes suffer
accuracy loss from static to dynamic environments because
of RSSI fluctuation. Nonetheless, across different sites, the
negligible accuracy changes of PRID shows its robustness to
RSSI fluctuation since it captures the multipath environment
by RSSI histogramization.

To study the system’s robustness against IMU data bias, we
separately conduct experiments on the three sites. We show
scheme precision and recall in Table II. Since ProxiTrak has
a similar trend to LDPL, we only show PRID, Conv1d, and
LDPL to avoid redundancy. Due to the multiple collectors and
different surroundings, carriage state and proximity state are

not independent in each site. From the collection hour shown
in the table, the carriage state strongly correlates with the
proximity state in the dynamic environment site. This correla-
tion becomes less in the semi-dynamic site and close to being
independent in the static site. All the schemes perform better
than those training on the three sites together, because training
on one specific site makes the models more customized.
From the table, LDPL shows inaccuracy since it cannot adapt
to the multipath environments and different carriage states.
Although Conv1d gets commendable results by considering
the carriage state, its accuracy (in terms of precision and recall)
is manipulated by IMU data bias. PRID achieves high accuracy
and robustness in all sites since it employs the carriage state
regularization to tackle IMU overfitting; even in a static site
where the carriage and proximity states are close to being
decoupled, PRID is still superior to Conv1d. This is because
IMU readings reflect device poses, its bias could still exist
even though the carriage state is nearly balanced in the training
data. Overall, this table shows that PRID is not only robust to
IMU data bias but highly reliable under various sites.

Contact tracing is an essential application of proximity
detection. Unlike classic PBS systems, contact tracing requires
a smaller proximity threshold (2m), rendering it very chal-
lenging. To validate system performance in this application,
as well as verify the generality (in terms of proximity thresh-
old) of PRID, we conduct experiments under the proximity
threshold of 2m. For fair evaluation, we consider the cases
collected within a 4-meter distance for training and testing.
Figure 10 demonstrates the nDCF of different schemes. All the
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TABLE III
IOT HARDWARE SPECIFICATION AND COMPUTATIONAL COST OF

PRID-LITE.

Hardware
Specification Computational cost

CPU Freq. RAM Time Memory usage

Smartwatch 1.5GHz 3GB <1ms 318KB

Pi Zero 1GHz 512MB 4ms 314KB

ESP-32 240MHz 512KB 268ms 309KB

schemes suffer slight performance declines when the proximity
threshold is 2m instead of 6m. This is because the user
moving range shrinks from 12m to 4m, introducing severe
signal ambiguity – the smaller proximity threshold enlarges
the influence of environmental dynamics and carriage states.
Nonetheless, PRID reduces the false detection by more than
50% (in terms of nDCF) compared with other schemes.

We evaluate the system performance in terms of nDCF on
the TC4TL challenge dataset with our comparison schemes:
LDPL (0.82), ProxiTrak (0.73), Conv1d (0.58), and PRID
(0.49). In this dataset, since several transmission periods share
one ground truth, we apply a majority voting to assemble re-
sults from several periods. This dataset is challenging because
it crowdsources data from large numbers of users with diverse
environments, with its training and test data not necessarily
from the same sets of environments or carriage states. It
requires not only good adaptability upon diverse environments
and carriage states but also generalization ability to new
scenarios. Nevertheless, the results show that our scheme
achieves the best results among the comparison schemes by
reducing more than 15% false detection cases compared with
the existing arts. This is because PRID extracts better features
from inputs and considers the IMU overfitting problem. This
result also verifies the better practicability and reliability of
PRID in reality.

To deploy PRID on extremely resource-constrained devices,
we study the system’s performance (in terms of nDCF) with
different proximity classifier model sizes of PRID and PRID-
lite. It is conducted on our on-field experiment when the
proximity threshold is 2m. From Figure 11, PRID nDCF first
drops as the model is smaller than ∼5MB and then levels out
after that. While nDCF of PRID-lite levels out when model
is larger than 0.3MB. Note that, PRID-lite outperforms PRID
when the model size is less than 0.5MB. This is because the
neuron quantity of PRID is so small that the model capacity
and generalization ability are constrained. In contrast, PRID-
lite sacrifices a percentage of neuron precision for neuron
quantity, so it achieves a lower nDCF when the model size
is small. However, the binarized neuron causes information
loss between network layers, making it hard for PRID-lite to
perform as accurately as PRID does when the model size is
large enough. From the figure, we adopt the model size of
5MB and 0.3MB for PRID and PRID-lite in our experiment. It
shows that PRID-lite reduces 94% memory cost at the expense
of 7% accuracy loss in F-score compared with PRID.

We evaluate the energy consumption over time on PRID and
PRID-lite, using an IoT smartwatch. The watch is equipped
with a lithium polymer built-in battery with a capacity of
800mAh. Except for BLE scanning and proximity detection,
we kill all unnecessary processes. The smartwatch conducts
one BLE scan per 10 seconds, and each scan lasts for 5
seconds. We record battery levels from 90% to 70% and show
them in Figure 12. From the figure, the BLE scan consumes
20% battery energy within around 50 minutes. Scanning while
running the PRID takes 30 minutes to use up the same
amount of battery power. In comparison, PRID-lite is more
energy-efficient as it consumes negligible power except for
BLE scanning. Overall, PRID-lite extends battery life by 60%
compared to PRID, making it efficient for energy-constrained
IoT devices in our experiment.

We finally show in Table III the inference time and memory
usage of PRID-lite on different IoT devices. We run PRID-
lite 10,000 times on each device and the average time cost
as inference time that affects system responsiveness. From
the table, even on ESP-32, the platform with the lowest
computational power among the devices, PRID-lite costs only
0.3s for each detection. As for memory usage, PRID-lite takes
up ∼0.3MB memory on all three devices.

VII. CONCLUSION

BLE-based proximity detection plays important roles in
many proximity-based services. It relies on the fact that a
lower RSSI implies a longer distance, and vice versa. However,
RSSI can be markedly affected by multipath and device
carriage states in reality. Previous works in the area have not
sufficiently considered RSSI fluctuation due to multipath, and
how to address carriage states with IMU training data bias to
achieve highly accurate and robust proximity detection.

We propose PRID, a novel IMU-assisted BLE proximity
detection approach robust against RSSI fluctuation due to
multipath and IMU data bias. By representing RSSI fluc-
tuation as a histogram, PRID extracts the features of the
multipath environment to encode it as a feature vector. It
further encodes the IMU data into carriage feature. Employing
a DNN-based binary proximity classifier, PRID then detects
proximity after concatenating the vectors. To address biased
training data, PRID applies carriage state regularization to
the loss function to reduce IMU overfitting of the DNN-
based classifier. To make our scheme more deployable on
highly resource-constrained IoT devices, we further propose
PRID-lite, a lightweight version of PRID using a binarized
neural network. We have implemented PRID and PRID-lite
in IoT devices. We conduct extensive experiments in several
venues and a public dataset and compare them with the state-
of-the-arts. Our results show that PRID achieves substantial
improvement as compared with the state of the arts (with more
than 50% reduction in false detection cases in our dataset).
PRID-lite reduces the model size from PRID by 94% (from
5MB to 0.3MB) and extends battery life by more than 60%,
with only a minor cost in accuracy (7% reduction in F-score).
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