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Despite the fact that global multicast is still not possible in today’s Internet, many local networks are already multicast-capable (the
so-called multicast “islands”). However, most application-layer multicast (ALM) protocols for streaming have not taken advantage
of the underlying IP multicast capability. As IP multicast is more efficient, it would be beneficial if ALM can take advantage of such
capability in building overlay trees. In this paper, we propose a fully distributed protocol called scalable island multicast (SIM),
which effectively integrates IP multicast and ALM. Hosts in SIM first form an overlay tree using a scalable protocol. They then
detect IP multicast islands and employ IP multicast whenever possible. We study the key issues in the design, including overlay
tree construction, island management, and system resilience. Through simulations on Internet-like topologies, we show that SIM
achieves lower end-to-end delay, lower link stress, and lower resource usage than traditional ALM protocols.
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1. INTRODUCTION

With the popularity of broadband Internet access, there
has been increasing interest in media streaming services.
Recently, peer-to-peer (P2P) streaming has been proposed
and developed to overcome limitations in traditional server-
based streaming. In a P2P streaming system, cooperative
peers self-organize themselves into an overlay network via
unicast connections. They cache and relay data for each
other, thereby eliminating the need for powerful servers from
the system. Currently, there are two types of overlays for
P2P streaming: tree structure and gossip mesh. The first
one builds one or multiple overlay tree(s) to distribute data
among hosts. Examples include ALM protocols (e.g., Narada
and NICE) and some P2P video-on-demand systems (e.g.,
P2Cast and P2VoD) [1–6]. The second one builds a mesh
among hosts using gossip algorithms, with hosts exchang-
ing data with their neighbors in the mesh [7–9]. The gossip-
based approaches achieve high resilience to network and
group dynamics. However, they have high control overhead
due to data scheduling and mesh maintenance. They also
have high playback delay because in the gossip mesh a host
may not always find close peers as their neighbors. On the
contrary, trees introduce lower end-to-end delay and are eas-
ier to maintain. Therefore, we consider a tree-based approach
in this paper.

Most previously proposed ALM protocols (such as Nar-
ada, NICE, DT, Overcast, ALMI, etc.) assume that none of
the routers are multicast-capable and do not take use of
the underlying IP multicast capability [1, 2, 10–14]. Al-
though global IP multicast is not available today, many local
networks in today’s Internet are already multicast-capable.
These local multicast-capable domains, or so-called “is-
lands,” are often interconnected by multicast-incapable or
multicast-disabled routers. Since IP multicast is more effi-
cient than ALM, it would be beneficial if ALM makes use of
the local multicast capabilities in building trees.

This integration is especially important for streaming ap-
plications. Let link stress be the number of copies of a packet
transmitted over a certain physical link [1]. We have done
simulations on Internet-like topologies to evaluate some rep-
resentative ALM protocols. In a group of 1024 hosts, the aver-
age link stresses achieved by Narada [1], GNP-based DT [15],
TAG [13], and Overcast [11] are 2.9, 2.69, 2.61, and 2.02, re-
spectively. The maximum link stresses achieved by these pro-
tocols are 40, 24, 28, and 14, respectively. In other words, if
we use Narada for streaming, each underlay link averagely
needs to deliver 2.9 streams and the most loaded link has
to deliver 40 streams. Considering that a single stream usu-
ally requires several hundred Kbps transmission rate, the cur-
rent Internet often cannot provide enough bandwidth for the
streaming. On the other hand, as IP multicast always keeps
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the stresses of all the delivery links being 1, it significantly
improves the delivery efficiency and reduces the bandwidth
consumption. We hence propose a distributed and scalable
protocol called scalable island multicast (SIM) that combines
IP multicast with ALM for media streaming.

In SIM, hosts within an island exchange data with IP
multicast. They connect across islands with unicast overlay
paths. Each host first distributedly joins an overlay tree. It
then detects and joins its multicast island if possible. Each is-
land in SIM has a unique ingress host. The ingress receives
streaming data from outside of the island and IP multicasts
them within the island. Other hosts within the island receive
data from IP multicast instead of from their parents in the
overlay tree. We study the following key components in SIM.

(i) Construction of the overlay tree

We design a fully distributed host-joining mechanism for the
construction of the overlay tree. A new host can iteratively
ping other hosts and select a close peer with enough forward-
ing bandwidth as the parent.

(ii) Island management

Hosts within the same multicast domain form an island.
Each island has two multicast groups: a CONTROL group
and a DATA group. The control messages (e.g., for ingress
selection) are only multicasted in the CONTROL group, and
the streaming data are multicasted in the DATA group. We
further study the ingress selection and island detection issues
in detail.

(iii) System resilience

A single delivery tree may not provide good streaming qual-
ity, especially in a dynamic P2P system. We discuss two pos-
sible ways to improve system resilience: (1) build multiple
trees for data delivery, and (2) use a quick recovery scheme
to address temporary packet loss. In the recovery scheme,
each host selects a few recovery neighbors under the con-
straint of the recovery deadline. Whenever a packet loss is
detected, the retransmission request is sent to the recovery
neighbors.

We have evaluated SIM through simulations on Internet-
like topologies. Our simulation results show that SIM can ef-
ficiently combine IP multicast with ALM to achieve low end-
to-end delay, low link stress, and low resource usage.

The rest of the paper is organized as follows. In Section 2,
we briefly review the related work. In Section 3, we de-
scribe the data delivery mechanism in SIM. In Section 4, we
discuss how to improve system resilience. In Section 5, we
present illustrative simulation results. We finally conclude in
Section 6.

2. RELATED WORK

We briefly review previous work on island multicast as fol-
lows. Though protocols such as mTunnel, scattercast, YOID,

UMTP, AMT, and universal multicast (UM) have been pro-
posed to combine IP multicast with ALM, many of them re-
quire special nodes (such as proxies or servers) or manual
configuration for interhost connections [16–19]. SIM is fully
autonomous and does not require any special or super nodes.
Subset multicast (SM) also makes use of local multicast capa-
bility [20]. However, it is based on a star topology and is not
scalable to large groups. The work in [21] proposes a central-
ized island multicast algorithm. As opposed to them, SIM is
fully distributed and scalable. The work in [22] studies a dis-
tributed approach to integrate IP multicast and ALM. Each
island has a leader, which identifies some ingress and egress
hosts in its island for data delivery. This approach puts heavy
control loads to leaders and has complicated mechanism for
the management of leaders, ingress hosts, and egress hosts.
SIM provides a much simpler data-delivery method and is
much more implementable. In SIM, there is no leader, and
there is no overhead to select egress hosts.

In HMTP, each island has a unique leader (called desig-
nated member, or DM) [23]. DMs form an overlay tree for
data delivery. Each DM then IP multicasts data within its is-
land. While HMTP imposes the responsibilities of data re-
ceiving, data forwarding, and island management on a single
leader in each island, a leader has high nodal stress and heavy
workload. Different from it, SIM distributes these responsi-
bilities to different hosts. Each island in SIM has one ingress
and some egress hosts. SIM hence achieves a more balanced
load distribution. Furthermore, when islands are large, it is
not efficient to represent each island by a single DM, where
end-to-end delays depend on the locations of DMs and the
selection of appropriate DMs is not easy. In SIM, we can se-
lect a close pair of hosts to connect two islands. This method
is more efficient and practical. Another important difference
between HMTP and SIM is the construction of the overlay
tree. In HMTP, a new host starts joining the tree from the
tree root in a top-down manner. The top-level hosts in the
tree (i.e., those close to the root) are frequently visited by
new hosts and are easily overloaded by the ping requests. It is
hence not fully scalable. In SIM, each new host obtains a list
of randomly selected peers at the beginning and starts joining
from these hosts. The communication overhead for joining is
hence distributed to all the peers.

A preliminary version of SIM has been discussed in [24].
In this paper, we further propose a loss-recovery scheme to
improve streaming quality and conduct more comprehensive
simulations to evaluate SIM.

3. DATA DELIVERY IN SIM

In this section, we describe the data delivery mechanism in
SIM. Hosts first form a low-delay overlay tree. They then de-
tect multicast islands and use IP multicast if possible. Note
that unicast connections in SIM use TCP. But IP multicast
within an island uses UDP, for TCP is not available in this
case. In the following discussion, a parent of a host refers to
the host’s parent in the overlay tree, and the source distance of
a host refers to the delay between the source and the host in
the overlay tree.
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Figure 1: An example of joining the overlay tree in SIM.

3.1. Construction of the overlay tree

We are interested in building a tree with low end-to-end de-
lay. Clearly, the tree construction mechanism should be dis-
tributed and scalable, and the algorithm should be simple
with low setup and maintenance overhead.

In SIM, a new host first contacts a public rendezvous
point (RP) to obtain a list of current hosts in the system. It
pings these hosts and selects k closest ones. Then, it pings the
neighbors of these selected hosts, and selects k closest ones
from all the hosts (the original k hosts and their neighbors).
This process is repeated until the improvement on round-
trip time (RTT) is lower than a certain threshold, or the
number of iterations exceeds a certain value t. At the end of
the process, the new host selects from its current k closest
hosts the one with enough forwarding bandwidth as its par-
ent. If there are no qualified hosts, the new host goes back up
one level to look for qualified parents.

Figure 1 shows an example of host joining in our scheme.
Suppose k = 2 and P is a new host. P first obtains a list of
hosts from the RP, say, C, D, E, F, and G. P then pings all of
these hosts and selects two closest ones, say C and D. P then
pings all of C’s and D’s neighbors. It continues selecting two
closest hosts from C, D, C’s neighbors (i.e., A, F, and G), and
D’s neighbors (i.e., B, H , and I). Such iteration stops if any of
the above stopping rules is satisfied. Since the list of hosts re-
turned by the RP is randomly generated, the communication
overhead for joining is distributed to all the hosts.

If a host leaves, its children need to rejoin the tree and
find new parents. A rejoining host starts rejoining from its
grandparent and then acts as joining.

3.2. Integrating IP multicast

After a host joins the overlay tree, it detects its island and
joins the island if any. Each streaming session has two unique
class-D IP addresses for IP multicast. One is used for mul-
ticasting control messages, and the other is used for multi-
casting streaming data. We call the groups corresponding to
these two IP addresses a CONTROL group and a DATA group,
respectively.
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Figure 2: Ingress selection in a SIM tree.

Each island has a unique ingress host, which is respon-
sible for accepting streaming data from outside of the is-
land and multicasting them within the DATA group. Other
hosts within the island accept streaming data from IP mul-
ticast instead of overlay unicast. We call a host within the
island a border host if its overlay parent is not within the is-
land. Clearly, the ingress must be a border host. In SIM, bor-
der hosts (including the ingress) join both the CONTROL
group and the DATA group, and nonborder hosts only join
the DATA group.

3.2.1. Selection of the ingress

Proper selection of the ingress is important for efficient data
distribution. If an ingress has a high source distance, all the
hosts within its island will accordingly suffer high-source dis-
tances. Furthermore, not every border host can serve as an
ingress. For example, in Figure 2, hosts first form an overlay
tree. Later on, it is detected that B, D, G, and H are within the
same island, and among them B, G, and H are border hosts.
However, among the three border hosts, only B can serve
as the ingress. If G becomes the ingress, all the other hosts
within the island will stop receiving data from their overlay
parents. When B is waiting for the data IP multicasted byG, E
cannot receive any data from B. Consequently, G cannot re-
ceive any data from E. A deadlock is hence formed. Similarly,
H cannot serve as the ingress.

To address these problems, we require each host to record
its own source distance. The distance can be computed along
the tree in a top-down manner. Namely, the source distance
of a host is equal to the sum of its parent’s source distance
and the delay from its parent to itself. An ingress is hence
selected from the border hosts of the island as the one with
the minimum source distance.

An ingress host periodically multicasts KeepAlive mes-
sages in the CONTROL group, which contains its source
distance. It also multicasts streaming data within the DATA
group. Initially, the ingress of an island is the island’s first
joining host. The noningress border host with the small-
est source distance in the island becomes the new ingress
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Figure 3: Combining IP multicast with ALM.

if

(i) the current ingress leaves or fails (detected through the
missing of KeepAlive messages), or

(ii) the border host has a smaller source distance than the
current ingress.

This can be achieved as follows. A border host may mul-
ticast its own source distance within the CONTROL group.
When a border host finds that its own source distance is
smaller than the smallest source distance being multicas-
ted, it keeps multicasting its own source distance within the
CONTROL group. On the other hand, if a border host re-
ceives a message reporting a smaller source distance than its
own one, it stops multicasting its own source distance. In the
end, only the border host with the smallest source distance
will multicast its source distance. If this source distance is
smaller than that of the ingress, the corresponding border
host will substitute the current ingress.

3.2.2. Island detection

The two class-D IP addresses are maintained by the RP. When
a new host joins the session, it first obtains the class-D ad-
dresses and a list of already joined hosts from the RP. The
new host then joins the overlay tree as described above. Af-
terwards, it joins the CONTROL group.

(i) If an island exists, the host will receive KeepAlive mes-
sages from the ingress. The host then detects whether itself is
a border host. If it is, it remains in the CONTROL group and
further joins the DATA group. Otherwise, it exits the CON-
TROL group and only joins the DATA group.

The examination of whether being a border host can be
achieved as follows. The host multicasts a BorderIdentifica-
tion message within the CONTROL group. If its parent re-
ceives the message, the parent unicasts a response message
to the host using TCP. If the host does not receive any re-

sponse after a certain time, it classifies itself as a border
host.

A noningress host in the DATA group stops receiving
streaming data from its overlay parent. Instead, it accepts
data transmitted by IP multicast. The connection to its over-
lay parent is then only used for transmitting control mes-
sages. If this host becomes an ingress later, it resumes the
overlay connection and accepts data from its parent again.

(ii) If the host does not find any island to join, it forms an
island only consisting of itself and becomes the island ingress.

We show an example of data delivery with IP multicast
in Figure 3. Figure 3(a) shows the overlay tree formed as de-
scribed above. In Figure 3(b), hosts A, B, and C join the
CONTROL group and detect that they are within the same
island. A is elected as the island ingress. B is a normal bor-
der host and C is a nonborder host. Therefore, A and B stay
in both the CONTROL group and the DATA group, while
C only stays in the DATA group. A then accepts data from
its overlay parent G, and multicasts them within the DATA
group. The incoming overlay paths of B and C are then used
for delivering control messages instead of media contents. If
A leaves the system, B will be elected as the new ingress since
it is the only border host within the island. B will then re-
sume data delivery along its overlay path and multicast data
within the island.

4. DISCUSSION ON SCHEME EXTENSION

In this section, we discuss two possible ways to improve sys-
tem resilience, that is, building multiple trees and conducting
packet-loss recovery.

4.1. Building multiple trees

Using a single tree may not offer satisfactory service, because,
firstly, hosts in the system are heterogeneous with different
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incoming and outgoing bandwidth. A host’s incoming path
may not be able to provide enough bandwidth for streaming.
Secondly, quality degradation at a host (e.g., packet loss or
host failure) affects all its descendants. In a highly dynamic
P2P system, it is difficult for hosts to achieve high stream-
ing quality with a single tree. To address these problems, we
can use multiple description coding (MDC) [25] to encode
streaming data into multiple descriptions and distribute the
descriptions along multiple trees [5].

In MDC, data are encoded into several descriptions.
When all the descriptions are received, the original data can
be reconstructed without distortion. If only a subset of the
descriptions are received, the quality of the reconstruction
degrades gracefully. The more descriptions a host receives,
the lower distortion the reconstructed data have. Therefore,
the source can encode its media content into M descriptions
using MDC (where M is a tunable parameter), and trans-
mit the descriptions along M different trees. Note that a host
has different descendants in different trees. The descendant
of a host in one tree is usually not the host’s descendant in
other trees. Therefore, packet loss at a host or failure of the
host only causes the loss of a single description (out of M de-
scriptions) at each of its descendants. The system resilience is
hence improved.

4.2. Packet-loss recovery

Although MDC and multiple-tree transmission can improve
resilience, packets may still get lost due to background traffic
or path/host failure. An efficient loss recovery mechanism is
hence desired to deal with temporary packet loss.

4.2.1. Design principle

Traditional source-recovery and parent-recovery schemes
have loss correlation problem and implosion problem [26].
That is, the losses of all downstream hosts are correlated
upon an upstream loss. The parent of a failed host is hence
likely in error, leading to low retransmission efficiency. Fur-
thermore, such recovery leads to implosion if retransmission
requests from downstream hosts are not aggregated (which is
often the case for simplicity). To address these problems, lat-
eral error recovery (LER) has been proposed [26, 27]. LER
randomly divides hosts into multiple planes and indepen-
dently builds an overlay tree in each plane. A host needs to
identify some hosts from other planes as its recovery neigh-
bors. Whenever a loss occurs, the host performs retransmis-
sion from its recovery neighbors. A limitation of LER is that
the trees in different planes should be of similar sizes. Oth-
erwise, a host in a small tree needs to serve as the recov-
ery neighbor of multiple hosts in a large tree and has high
workload. However, the balancing of multiple trees in a dy-
namic system requires high control overhead and is not easy.

We consider simplifying the selection of recovery neigh-
bors as follows. We only use a single plane instead of multi-
ple planes. The recovery neighbor of a host should satisfy the
following requirements: (1) not in the host’s subtree; (2) not
the ancestor of the host; and (3) not in the same island as the
host. Clearly, the loss correlation between a host and its re-
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Figure 4: Time diagram for recovery neighbor selection.

covery neighbor in this scheme is higher than that in LER. In
LER, the path from the root to a host and the path from the
root to the host’s recovery neighbor are disjoint on the over-
lay. But this is not true in our scheme. However, our scheme
does not need to balance multiple trees, thereby introducing
much lower control overhead.

Recovery neighbors are useful for improving streaming
quality. For example, if the path between a host and its par-
ent does not have enough bandwidth, the host can require
missing data from one or multiple of its recovery neighbors.
This enables multiple-path delivery as in gossip streaming.

4.2.2. Selection of recovery neighbors

We have listed three basic requirements for selecting recov-
ery neighbors as above. However, to achieve quick loss re-
covery, more careful selection should be considered. Firstly, a
streaming application usually has a certain recovery deadline
δ after detecting a loss. Define recovery latency as the time
interval from the moment a loss is detected to when the re-
pair is received. The recovery latency should be smaller than
δ. A host hence cannot select a faraway host as its recovery
neighbor, for the retransmission time may exceed the recov-
ery deadline. Secondly, the lost packet at a host is not avail-
able at an arbitrary host in the system. If the buffers of hosts
have finite sizes, it may happen that the packet needed is no
longer in the buffers. Even if the buffers are infinitely large
and hosts cache all the data they have received, it may hap-
pen that hosts have different end-to-end delays and the re-
quested data have not arrived at all the hosts in the system.
In LER, it is assumed that the buffers of hosts are all infinitely
large, which is often not true in real systems. We hence study
how to select an appropriate recovery neighbor with limited
buffer sizes.

Let ti and t j be the source distances of host i and j, re-
spectively, where j is a recovery neighbor of i. Let di j and dji

be the one-way delay from i to j and from j to i, respectively.
Let Bi and Bj be the buffer sizes of i and j (in terms of time),
respectively. As usual, we assume Bx ≥ δ for any host x in
the system. Figure 4 shows the time diagram upon a loss de-
tected at time ti at host i, given that the packet is transmitted
from the source at time 0. When i requests a retransmission
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Table 1: Requirements on host j as a recovery neighbor of host i.

Type Condition Recovery latency Requirements

I t j ≥ ti + di j t j + dji − ti t j + dji − ti ≤ δ

II t j < ti + di j di j + dji
di j + dji ≤ δ,

ti + di j ≤ t j + Bj

from host j at time ti, the retransmission request arrives at j
at time ti + di j .

Figure 4(a) shows the case where the arrival of the re-
transmission request is no later than the arrival of the re-
quested packet, that is, t j ≥ ti + di j . The recovery latency
is hence t j + dji − ti. Clearly, the buffer size does not matter
in this case, and the only requirement is t j + dji − ti ≤ δ.
Figure 4(b) shows the case where the arrival of the retrans-
mission request is later than the arrival of the requested
packet, that is, t j < ti + di j . The recovery latency is hence
di j +dji. Clearly, it is required that di j +dji ≤ δ. Furthermore,
upon the arrival of the retransmission request, the requested
packet should still be in host j’s buffer, that is, ti+di j ≤ t j+Bj .
Table 1 summarizes these requirements on qualified recovery
neighbors. Among all the qualified candidates, it is better to
select the ones with high-bandwidth connections. If no qual-
ified recovery neighbor can be found, we select from Type-I
hosts the ones with low recovery latency.

The detailed selection process works as follows. As dis-
cussed in Section 3.2.1, each host has recorded its source dis-
tance (i.e., ti and t j). For simplicity, we assume that di j and
dji are equal to half of the RTT from i to j and from j to i, re-
spectively. A host i first joins the overlay tree for data delivery.
It then contacts its ancestors within L1 hops. In each contact,
i checks the ancestor’s descendants within L2 hops. Here L1

and L2 are two system parameters. If the host checked satis-
fies the above requirements (including the three basic princi-
ples), i adds the host as a candidate of its recovery neighbor.
If the requirements in Table 1 cannot be satisfied but the host
is of Type-I, i adds the host to a list of Type-I hosts. After col-
lecting a certain number of recovery neighbors and Type-I
hosts, i stops the selection process. Otherwise, i increases L1

and L2 and keeps selecting recovery neighbors.

5. ILLUSTRATIVE SIMULATION RESULTS

In this section, we present illustrative simulation results on
Internet-like topologies.

5.1. Simulation setup

We generate 10 transit-stub topologies with GT-ITM [28].
Each generated topology is a two-layer hierarchy of tran-
sit domains and stub domains. The transit domains form
a backbone and all the stub domains are connected to the
backbone. In our simulations, each topology has 4 transit do-
mains and 280 stub domains. On average, a transit domain
contains 10 routers and a stub domain contains 8 routers.
Each topology consists of 2280 routers and about 11 000

links. A group of 1024 hosts are randomly put into the net-
work. A host is connected to a unique stub router with 1
millisecond delay, while the delays of core links are given
by the topology generator. Link bandwidth is set as follows:
a backbone link (at least one end-point is a transit router)
can support 8 concurrent media streams, and a nonback-
bone link can support 3–6 concurrent media streams. The
distribution of islands is set as follows: from the stub do-
mains that consist of at least one host, we randomly select
some and set them to be multicast-capable. Define multicast
ratio θ as the ratio of the number of multicast-capable stub
domains to the number of stub domains that consist of at
least one host, and define island size S as the number of stub
domains in an island. Note that in the real Internet, routers
in a multicast island are often close to each other. There-
fore, in our simulations, only the stub domains connected
to the same transit router can be within the same multicast
island.

The SIM parameters are set as follows. Each new host ob-
tains a number of (at most 10) randomly selected hosts from
the RP when joining. A new host repeats the ping iterations
for at most 6 times and in each iteration pings at most 10
hosts (i.e., t = 6 and k = 10). We further implement two
tree-based ALM protocols for comparison, that is, Narada
[1] and Overcast [11]. Narada is one of the pioneering ALM
protocols and aims at building a low-delay overlay tree. Its
performance can serve as the benchmark. In Narada, each
host has a degree bound according to its edge bandwidth.
Overcast aims at constructing a tree with high bandwidth,
which achieves low stresses on links.

We use the following metrics to evaluate the protocols.

(i) Relay delay penalty (RDP): defined as the ratio of the
overlay delay from the source to a given host to the de-
lay between them along the shortest unicast path [1].

(ii) Link stress: defined as the number of copies of a packet
transmitted over a certain physical link [1].

(iii) Resource usage: defined as
∑L

i=1 di × si, where L is the
number of links active in data transmission, di is the
delay of link i, and si is the stress of link i [1]. Resource
usage is a metric of the network resource consumed in
data delivery.

5.2. Results

Figure 5 shows the performance of a SIM tree with differ-
ent parameter settings. Figure 5(a) shows the result of tun-
ing the multicast ratio θ. As θ increases, the average RDP
first increases and then decreases. This is because two hosts
within the same multicast island are not necessarily close to
each other, therefore selecting a host from other domains as
the parent may introduce lower delay than simply receiving
IP multicast packets from the ingress. However, when most
hosts in the system are within multicast islands, the distance
between a host and its ingress is often not large. The aver-
age RDP is hence low. On the other hand, both the average
stress and the resource usage decrease as θ increases. When θ
increases from 0 to 1.0, the average stress and the resource us-
age are reduced by 25.7% and 27.4%, respectively. Therefore,



Xing Jin et al. 7

3.2

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

R
D

P
&

st
re

ss

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Multicast ratio (θ)

66

64

62

60

58

56

54

52

50

48

46

×103

R
es

ou
rc

e
u

sa
ge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average RDP
Average stress
Resource usage

(a) Performance of SIM with different multicast ratios (S = 1).
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Figure 5: Performance of SIM with different parameter settings.

the utilization of IP multicast in ALM can efficiently reduce
the loads on links and the overall bandwidth consumption.

Figure 5(b) shows the results of tuning the island size S.
As S increases, the average RDP fluctuates around 2.85. Av-
eragely, a maximum island in our simulations can contain 10
stub domains (i.e., S = 10). In fact, from our simulation re-
sults, the average number of hosts in an island when S = 10
is around 30. Therefore, the islands formed are small as com-
pared to the group size and such small islands cannot signif-
icantly reduce the end-to-end delay. We expect lower RDP
when the islands are larger. Different from the average RDP,
the average stress decreases as S increases. Clearly, IP mul-
ticast always achieves an average stress of 1.0. The more IP
multicast paths in the delivery tree, the lower average stress.
On the other hand, the resource usage first slightly increases
and then decreases when S increases. It shows that the penalty
in delay exceeds the improvement in stress when S increases
from 1 to 2. When S continues increasing, the improvement
in stress leads to the reduction in the resource usage.

Figure 6 compares the performance of different ALM
protocols. We select a set of (θ, S) combinations for SIM.
Figure 6(a) shows the average RDP achieved by different pro-
tocols. Overcast has the highest RDP among the protocols.
This is because it only aims at improving tree bandwidth and
does not optimize the tree in terms of end-to-end delay. Fur-
thermore, to reserve bandwidth for future hosts, each host
in Overcast is inserted into the tree as far from the source as
the bandwidth constraint allows. It hence performs poorly
in terms of RDP. SIM(0,∗) shows the result with no multi-
cast islands. It performs slightly worse than Narada. When θ
is 0.5, the average RDP of SIM is lower than that of Narada.
Furthermore, when θ = 1 and S = 10, all the hosts are within
islands and the average RDP of SIM is significantly reduced.

Figure 6(b) compares the average stress achieved by dif-
ferent protocols. Narada has the highest average stress. Over-
cast targets maximizing bandwidth and accordingly mini-
mizes link stress. It hence has lower average stress. SIM shows
very low average stress, even in the absence of multicast is-
lands. With the increase of θ and S, the average stress of SIM
decreases. When θ = 1 and S = 10, the average stress is only
1.14, which is very close to the optimal value of 1.0. The max-
imum stresses achieved by the protocols show similar trends
as the average stresses (as shown in Figure 6(c)). The uti-
lization of IP multicast can efficiently reduce the maximum
stress of SIM, from 19.4 (when θ = 0) to 7.5 (when θ = 1
and S = 10). Clearly, lower stresses indicate lighter loads on
links and hence higher transmission rates. From the figures,
SIM can achieve low stresses and is efficient for streaming
applications.

Figure 6(d) shows the resource usage achieved by differ-
ent protocols. Since Narada has the highest stress and Over-
cast has the highest RDP, their resource usage is high. SIM
achieves good tradeoff between RDP and link stress. Its re-
source usage is significantly lower than Narada and Overcast.

6. CONCLUSION

Traditional ALM protocols only make use of unicast connec-
tions to form delivery trees and have not fully taken advan-
tage of the local multicast capabilities. In this paper, we pro-
pose a fully distributed multicast protocol (called SIM) for
media streaming which combines IP multicast with ALM.
Hosts in SIM can distributedly detect multicast domains and
use IP multicast if possible. Simulations results show that it
can achieve low end-to-end delay, low link stress, and low re-
source usage.
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Figure 6: Performance comparison of different ALM protocols.
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