
P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Telecommun Syst

DOI 10.1007/s11235-006-9006-0

Throttling spoofed SYN flooding traffic at the source1

Wei Chen · Dit-Yan Yeung2

C© Springer Science + Business Media, LLC 20063

Abstract TCP-based flooding attacks are a common form of Distributed Denial-of-Service4

(DDoS) attacks which abuse network resources and can bring about serious threats to the Internet.5

Incorporating IP spoofing makes it even more difficult to defend against such attacks. Among6

different IP spoofing techniques, which include random spoofing, subnet spoofing and fixed7

spoofing, subnet spoofing is the most difficult type to fight against. In this paper, we propose8

a simple and efficient method to detect and defend against TCP SYN flooding attacks under9

different IP spoofing types, including subnet spoofing. The method makes use of a storage-10

efficient data structure and a change-point detection method to distinguish complete three-way11

TCP handshakes from incomplete ones. This lightweight approach makes it relatively easy12

to deploy the scheme as its resource requirement is reasonably low. Simulation experiments13

consistently show that our method is both efficient and effective in defending against TCP-based14

flooding attacks under different IP spoofing types. Specifically, our method outperforms others15

in achieving a higher detection rate yet with lower storage and computation costs.16

Keywords DDoS . SYN flooding . IP spoofing . Hash-based detection . Bloom filter . CUSUM17

The research presented in this paper has been supported by a research grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China under the Area of Excellence (AoE) Scheme (Project No.
AoE/E-01/99).

W. Chen (�) . D.-Y. Yeung
Department of Computer Science and Engineering, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, China
e-mail: wchen@cse.ust.hk

D.-Y. Yeung
e-mail: dyyeung@cse.ust.hk

W. Chen
College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu, China

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

W. Chen, D.-Y. Yeung

1 Introduction 18

Distributed Denial-of-Service (DDoS) attacks are large-scale cooperative attacks typically 19

launched from a large number of compromised hosts. DDoS attacks are bringing about growing 20

threats to businesses worldwide. Designed to elude detection by the most popular tools available 21

today, these attacks can quickly incapacitate a targeted business, costing the victims a great 22

deal in lost revenue and productivity. While many methods have been proposed to counter such 23

attacks, they are either not efficient or not effective enough. Recent DDoS incidents show that 24

such attacks continue to cause serious threats to the Internet. 25

DDoS attacks are even more difficult to fight against if IP spoofing is incorporated into such 26

attacks. IP spoofing, or source IP address spoofing, refers to the technique of lying about the 27

return address (i.e., source address) of a packet. With IP spoofing, attackers can gain unauthorized 28

access to a computer or a network by making it appear that a message has come from a certain 29

trusted machine by “spoofing” the IP address of that machine. This technique has been used 30

by attackers for years, and is commonly used in DDoS attacks launched against commercial 31

servers. Strictly speaking, IP spoofing is not an attack by itself; it is merely a scheme used with 32

DDoS attacks. Since the attackers are mainly concerned with consuming network bandwidth 33

and resources, they usually do not care about properly completing handshakes and transactions. 34

Rather, they simply want to flood the victim with as many packets as possible within a short 35

period of time. In order to prolong the effects of an attack, they spoof the source IP addresses to 36

make tracing and stopping the DDoS as difficult as possible. 37

Spoofing techniques can be categorized into different types according to what spoofed source 38

addresses are used in the attacking packets. The three common IP spoofing types are random 39

spoofing, subnet spoofing, and fixed spoofing [11]. In random spoofing, the attacker randomly 40

generates 32-bit numbers for use as source addresses of the attacking packets. In subnet spoofing, 41

the addresses are generated from the address space corresponding to the subnet in which the agent 42

machine resides. For example, a machine which is part of the 143.89.124.0/24 network may spoof 43

any address in the range from 143.89.124.1 to 143.89.124.254. Compared to random spoofing, 44

subnet spoofing has a much narrower range of IP addresses. Another type of IP spoofing, called 45

fixed spoofing, chooses source addresses from a given list. In this case, the attacker typically 46

wants to perform a reflector attack or impose a blame for attack on several specific machines. 47

Most existing defense schemes against IP spoofing focus on random spoofing. One example 48

is to limit the chance of random IP spoofing by filtering at the routers. Implementing ingress 49

and egress filtering at the border routers is one specific realization of this approach. At the 50

upstream interface, the ingress filter should only allow source addresses within a valid range 51

(usually corresponding to the same subnet), thus preventing spoofed traffic from being sent 52

to the Internet. Unfortunately, this method does not work for subnet spoofing. Implementing 53

encryption and authentication can also reduce the spoofing threats. In fact, both measures are 54

already included in IPv6 to eliminate the spoofing threats. However, the current Internet still uses 55

IPv4 as the dominant communication protocol. 56

To defend against spoofed flooding traffic, especially that with subnet spoofing, we propose a 57

scheme that is based on a storage-efficient data structure and a change-point detection method. 58

The storage-efficient data structure, which is a variant of Bloom filter [2], is used to gener- 59

ate a hash digest of the traffic. The change-point detection method is based on the CUSUM 60

algorithm [3], which is a nonparametric change-point detection method. CUSUM enjoys the 61

virtues of sequential and nonparametric test and its computational requirement is quite low. 62

After some information about the traffic is extracted and stored in the Bloom filter, CUSUM is 63

then applied to detect abnormal changes in the digested traffic. 64

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Throttling spoofed SYN flooding traffic at the source

The major contributions of this paper are summarized below:65 � A modified Bloom filter is employed for the detection of spoofed flooding traffic. Since only66

fixed-size memory is required for the modified Bloom filter, it can avoid the potential threat of67

most existing DDoS defense schemes that are based on dynamic memory allocation. Moreover,68

the data structure is storage efficient, making it easier for Internet service providers (ISP) to69

adopt and deploy this source-side defense scheme.70 � We address the issue of how to define the hash functions for use in the Bloom filter. Analysis71

shows that our proposed scheme has very low collision rate (and hence low false positive rate72

for our DDoS defense scheme).73 � A simple and efficient change-point detection method can accurately detect spoofed flooding74

traffic, including that with the subtle IP spoofing type based on subnet spoofing. After detection,75

the traffic can be classified into three categories: random spoofing, subnet spoofing and fixed76

spoofing.77

The remainder of this paper is organized as follows. We first review some basics about TCP78

handshakes in Section 2. In Section 3, a space-efficient data structure called Bloom filter is79

reviewed and the design of the hash functions is discussed. Our method makes use of a modified80

Bloom filter to store a hash digest of the relevant portions of a packet. The CUSUM based81

change-point detection scheme is presented in Section 4. We have performed some simulation82

experiments. The results reported in Section 5 show that our method can accurately detect spoofed83

flooding traffic under different IP spoofing types. We compare our method with two other DDoS84

detection methods, IDR and TOPS, which are also based on some hashing scheme. Finally,85

Section 6 presents some related work in the area of DDoS research and Section 7 concludes the86

work and outlines some future research issues.87

2 TCP handshakes88

Most existing DDoS attacks exploit the Transmission Control Protocol (TCP) [13]. It has been89

reported that more than 90% of the existing DDoS attacks are TCP based [17], although we90

do expect that attacks of other types, such as UDP based, will increase in the future as more91

applications based on them are available in the Internet. It is well known that IP spoofing is one92

of the security problems in the TCP/IP protocol suite, and hence it is commonly exploited by93

attackers. In what follows, we first look at TCP handshakes for normal transactions and then94

those for spoofed ones.95

The normal three-way handshake sequence is depicted in Fig. 1(a). The client C first sends96

a SYN request to the server S. After receiving the request, server S replies with a packet, which97

contains both the acknowledgement ACK and the synchronization request SYN (denoted as98

ACK/SYN hereinafter). Then client C sends an ACK back to S to complete the establishment of99

the connection.100

As mentioned above, there are three common types of IP spoofing techniques for faking101

the source IP addresses: random, subnet, and fixed. In random spoofing, the attacker randomly102

generates 32-bit numbers for use as source addresses of the attacking packets. Since the addresses103

are randomly generated, these spoofed IPs belong to different subnets and most of them are not104

from the subnet where the attack source is located. On the other hand, the addresses generated105

for subnet spoofing must be from the same subnet as the attack source. For fixed spoofing, source106

addresses are chosen from a given list of IPs.107

Under IP spoofing, the three-way handshake will be very different from that of the normal108

case as shown in Fig. 1(a). Attackers usually use unreachable spoofed source IPs in the attacking109

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

W. Chen, D.-Y. Yeung

Normal User

Server

A
SS

S

AS
S

AS

Rc

Rs
Internet

C

S

AS
S

S: SYN
AS: ACK/SYN
A: ACK

A

A

A

A

RI

Rv

Innocent Host

A
S

S

AS

S

AS

AS

Ra

S

S

Attacker

Internet

A I

V

Victim

S: SYN
AS: ACK/SYN

Rv

Innocent Host

A
S

S

AS

S

AS

AS

Ra

S

S

Attacker

Internet

A I

V

Victim

S: SYN
AS: ACK/SYN

Fig. 1 Three-way handshakes for a complete TCP connection and half-open connections caused by SYN flooding
attacks

packets to improve the attack efficiency [14]. These packets will not trigger the third round of 110

a handshake. Figure 1(b) shows the scenario under random IP spoofing. Most connections will 111

not receive the second round of each handshake because the ACK/SYN packets are sent to other 112

subnets. Under subnet spoofing as shown in Fig. 1(c), however, ACK/SYN packets are sent to the 113

correct subnet but destined to an incorrect host. The third round of a handshake is not successful. 114

Thus, a major difference between random spoofing and subnet spoofing is the different return 115

paths of the ACK/SYN packets. The figure for fixed spoofing is ignored since the effect is similar 116

to that of subnet spoofing. 117

Another difference between random spoofing and subnet spoofing is that random spoofing has 118

a much wider range of IPs than subnet spoofing. Random spoofing generates 32-bit IP addresses 119

randomly, and hence the probability of generating the same IP address twice is very small. On 120

the other hand, since the IP addresses in subnet spoofing are restricted to the range of a subnet, 121

it is not unusual to find that quite a large number of attacking packets have the same spoofed 122

source IP address. As a result, although both random spoofing and subnet spoofing give rise to 123

many incomplete handshakes, the incomplete handshakes caused by subnet spoofing have more 124

repeated source IPs. 125

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Throttling spoofed SYN flooding traffic at the source

Our method tries to detect the incomplete handshakes by monitoring the first and third rounds126

of each handshake. If any one of the rounds is lost, it is regarded as an incomplete handshake.127

We use the first and third rounds because both of them belong to the outgoing traffic. A study128

on the stability of end-to-end routing [12] shows that the paths from a source to a destination in129

the Internet are strongly dominated by a single route, with about two-thirds of the Internet paths130

having routes that persist for days or even weeks. Since the first and third rounds of a handshake131

are expected to occur within a very short period of time, it is reasonable to assume that they go132

through the same routing path and hence should be observed at the same router. This makes it133

easier to perform traffic monitoring. We do not consider the second round of a handshake because134

it may go through a path that is different from that of the first or third round.135

Since both the first and third rounds of a handshake belong to the outgoing traffic, our method136

which requires only one-way traffic monitoring has the advantage of being flexible and hence can137

easily be deployed at the source side, the intermediate network or the victim side. Nevertheless,138

source-side deployment is preferred because malicious traffic can be mitigated before they enter139

the Internet. It is stated in [11] that existing methods can only detect subnet spoofing within an140

exit router and hence they cannot detect subnet spoofing anywhere between the exit router and141

the victim. However, our method can perform detection successfully with little restriction on the142

deployment location.143

Recording the handshakes for all connections has very high computational and storage re-144

quirements especially in high-speed networks. To keep the overhead reasonably low, we propose145

a storage-efficient data structure in the next section.146

3 Traffic information digest147

Accurate detection of anomalies has to depend on detailed information analysis. However, stor-148

ing detailed traffic information is an expensive task. In order to extract useful information about149

abnormal (incomplete) handshakes, we only record information about TCP handshakes. More-150

over, we use a storage-efficient data structure for this purpose. In this section, we first give a151

brief overview of such a data structure. We then discuss the design of hash functions that can152

guarantee sufficiently low false positive rates.153

3.1 Bloom filter154

Bloom filter was first proposed by Bloom [2] in 1970. It was originally used to reduce the155

disk access time to different files and other applications, such as spell checkers. Recently, it156

has been adapted for use by some methods for defending against DDoS attacks [1, 4, 15]. A157

Bloom filter is composed of a vector v of m bits, initially all set to 0. We have k independent158

hash functions, h1, h2, . . . , hk , each with a range 0, 1, . . . , m − 1. The vector v can show the159

existence of an element from some address space A. Given an element a ∈ A, the bits at positions160

h1(a), h2(a), . . . , hk(a) in v are set to 1 (Fig. 2(a)). Note that a particular bit may be set to 1161

multiple times and hence may potentially lead to inaccurate results. Given a query of the existence162

of b in A, we check the bits at positions h1(b), h2(b), . . . , hk(b). If any one of them is 0, then163

certainly b is not in A. Otherwise, we conjecture that b is in it. There is, however, a certain164

probability that the Bloom filter will give a false result. This probability is referred to as the false165

positive rate. The parameters k and m should be chosen carefully so that the false positive rate166

can be kept low enough.167

A variant of the original Bloom filter, called counting Bloom filter, uses a table of counters168

to replace the n bits, as shown in Fig. 2(b). The table is composed of k rows with n counters in169

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

W. Chen, D.-Y. Yeung

H1(a)=P1

Element a

H
2
(a)=P

2

H3(a)=P3

Hk(a)=Pk

.

.

.

1

1

1

1

m bits

H1(a)=P1

Element a

H
2
(a)=P

2

H
3
(a)=P

3

H
k
(a)=P

k

.

.

.

0 0 0 1 0 0 0 0 1 0 1 0 1 0

0 0 0 0 1 0 0 0 0 2 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 2 0 0

0 0 1 0 0 0 0 0 3 0 0 0 0 0

Fig. 2 A Bloom filter uses independent hash functions to map an input into multiple locations

each row. The rows are independent of each other and each row corresponds to one hash function 170

hi , 1 ≤ i ≤ k. The n counters in each row correspond to addresses from 0 to n − 1. All counters 171

are initialized to 0. Each counter represents how many times the corresponding location has been 172

hit. When a key a (such as an IP address) is inserted or deleted, the value of the corresponding 173

counter in each row is increased or decreased by 1, according to hi (a) for all k rows. If an IP 174

address b is already stored in the modified bloom filter, the counters at locations hi (b), 1 ≤ i ≤ k, 175

in the table should all be nonzero. 176

3.2 Traffic digest 177

Two hash tables, which are based on the counting Bloom filter, are constructed to record infor- 178

mation about TCP handshakes. One table, called destination table and denoted as Td , is used to 179

record destination IP information. The other one, called source table and denoted as Ts , is used 180

to record source IP information. 181

When a SYN request packet, corresponding to the first round of a handshake, is captured in 182

the outgoing traffic, the destination IP of the SYN packet is hashed using the k independent hash 183

functions and the corresponding counters in Td hit by the k hash functions are incremented by 184

α where 0 < α ≤ 1. Meanwhile, another hash table Ts works in the same way but records the 185

source IP information. The source IP of the SYN packet is hashed into the source table Ts and 186

the corresponding counters are updated. 187

When an ACK packet, corresponding to the third round of a handshake, is captured in the 188

outgoing traffic, both the destination and source IPs are extracted again and hashed into Td and 189

Ts , respectively. This time the corresponding counters are decremented by α where 0 < α ≤ 1. 190

For a normal TCP handshake, both SYN and ACK are observed and hence the corresponding 191

counters are first incremented and then decremented by α, leading to no resulting changes. 192

Figure 3 summarizes how tables Td and Ts are used. 193

All entries in both tables Td and Ts are reset periodically to prevent them from growing 194

indefinitely when it is under attack. Suppose Rt−1 is the value of a counter at time t − 1. Its value 195

is reset to Rt at time t as follows: 196

Rt = (1 − α)Rt−1, 0 < α ≤ 1.

Although it is possible that two different IP addresses are mapped to the same counter in a 197

row, the probability that they get mapped to the same counters in all k (k ≥ 1) rows is very low 198

even for a small value of k. As a result, the false positive rate caused by hash collision is rather 199

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Throttling spoofed SYN flooding traffic at the source

O
utgo

ing
 S

Y
N

 : +
a

O
u
tg

o
in

g
 A

C
K

 :
 -

a

H
2 0..20 1 1

H k 0..03 1 1

H
1 0..30 1 0

 .

H
2 0..30 4 1

H
k 1..20 1 1

H
1 0..00 1 1

 .

+a

Destination IP Table T
d

Source IP Table T
s

IP
d

e
stin

a
tio

n
IP

s
o

u
rc

e

IP
d

e
s

ti
n

a
ti

o
n

IP
s

o
u

rc
e

+a

-a

-a

Fig. 3 Td and Ts together monitor
TCP SYN and ACK packets

low. Assume that there are li counters with suspicious values in row i . The probability that a200

legitimate packet hits the suspicious counters in all k rows is equal to201

P =
k∏

i=1

(
li

n

)
=

∏k
i=1 li

nk

Since li � n, the probability P that a legitimate packet is misclassified as a suspicious one202

is rather low. For example, if k = 4, n = 256 and li = 12, 1 ≤ i ≤ 4, then P ≈ 4.828 × 10−6
203

which is a very acceptable false positive rate.204

3.3 Construction of hash functions205

Having a good set of independent hash functions is essential for good hash table performance.206

Ideally, each hash function in the Bloom filter should hash the keys to the table uniformly and207

two different keys should have low probability of collision. Moreover, the k hash functions are208

independent.209

In practice, it is not easy to design a good hash function that distributes the keys uniformly and210

yet has low computational cost. Moreover, the distribution of input keys affects the distribution211

of the counter usage. The design of such hash functions will be studied in our future work.212

In this paper, we focus on the design of independent hash functions that have low probability213

of collision. We use the 32-bit IP address IP as the key of the hash functions. The hash functions214

are defined as follows:215

hi (IP) = (IP + IP mod pi) mod n, 1 ≤ i ≤ k,

where mod denotes the modulus operation, n is the row length of the hash table, and pi is a prime216

number less than n.217

We now discuss the condition that makes two different keys collide in all k hash functions,218

i.e., for IP1 �= IP2, hi (IP1) = hi (IP2), 1 ≤ i ≤ k. If hi (IP1) = hi (IP2) and h j (IP1) = h j (IP2) for219

i �= j , that means220

IP1 + IP1 mod pi = IP2 + IP2 mod pi + nk

IP1 + IP1 mod p j = IP2 + IP2 mod p j + nl,

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

W. Chen, D.-Y. Yeung

for some integers k and l. Hence we have 221

IP1 mod pi − IP2 mod pi = IP1 mod p j − IP2 mod p j + n(k − l).

This condition is strict for two keys IP1 �= IP2 to satisfy hi (IP1) = hi (IP2) for all k hash functions. 222

Thus we can conclude that the false positive rate should be very low. 223

The row length n of the hash table is chosen to be a power of 2. This choice allows the 224

modulus operation to be applied by simple bit masking which is computationally much cheaper 225

than performing the division operation. 226

4 Detection mechanism 227

During a spoofed flooding attack, it is expected that many incomplete handshakes will be observed 228

and hence there are many more SYN packets than the corresponding ACK packets. As a result, 229

some counters in Td will have an abnormally high counter value. Under normal operation, these 230

counter values should be close to 0. So there should exist a change point from low to high counter 231

values when an attack is launched. 232

In this section, we address the problem of detecting change points in the probabilistic char- 233

acteristics of random sequences. Cumulative Sum (CUSUM) is a sequential detection method 234

which assumes that the mean value of some variable under surveillance will change from nega- 235

tive to positive value whenever a change occurs. In our case, CUSUM is applied to detect abrupt 236

changes in Td . After a packet is identified as suspicious, we analyze its source IP and classify it 237

into one of three categories: random, subnet or fixed spoofing. 238

4.1 Change-point detection method 239

There exist two major change-point detection methods: posteriori change-point detection method 240

and sequential change-point detection method. When the process of data acquisition is completed 241

at the moment of checking, it is called a posteriori change-point method. On the other hand, the 242

sequential method checks for change points online with observations, i.e., simultaneously with 243

the process of data acquisition. The sequential method is preferred in spoofed attacking traffic 244

since it works in an online manner. 245

The essence of sequential change-point detection is as follows. Suppose the observations of 246

a random process Xt (with discrete or continuous time) are received sequentially. At a certain 247

moment (random or not, but unknown), some probabilistic characteristics of this process change. 248

An observer must make a decision as quickly as possible as to whether a change-point has 249

happened or not, while keeping the false alarm rate to be as low as possible. 250

Suppose that a sequence X1, . . . , Xr of independent random variables is observed. For each 251

1 ≤ v ≤ r , consider the hypothesis Hv that x1, . . . , xv−1 have the same density function f0(·) 252

and xv, . . . , xr have another density function f1(·). Denote by H0 a hypothesis of stochastic 253

homogeneity of the sample. Then the likelihood ratio statistic for testing the composite hypothesis 254

Hv (1 ≤ v ≤ r) against H0 is: 255

max
0≤k≤r

(Sr − Sk) = Sr − min
0≤k≤r

Sk,

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Throttling spoofed SYN flooding traffic at the source

where256

S0 = 0, Sk =
k∑

j=1

log
f1(x j)

f0(x j)
.

The CUSUM statistic gr = Sr − min0≤ j≤r S j can be written in the following recurrent form:257

gr =
(

gr−1 + log
f1(xr)

f0(xr)

)+
, g0 = 0,

where a+ = a I (A) for some a ≥ 0 and I (A) is the characteristic function of the set A.258

The effectiveness of this statistic is easy to understand. The mathematical expectation of259

yr = log(f1(xr)/ f0(xr)) is negative before and positive after the change-point.260

The stopping rule for change-point detection is:261

τ = inf
{

r ≥ 1 : Sr − min
0≤ j≤r

S j ≥ b
}
,

where b > 0 is the alarm threshold.262

There is a nonparametric version of the CUSUM statistic:263

yr = (yr−1 + xr)+, y0 = 0,

and the corresponding decision rule is264

dN (·) = d(yr) = I (yr > N),

where I (·) is the indicator function and N is the threshold. dN is the decision at time r , which265

gives a value of 1 to indicate an attack and 0 to indicate a normal condition.266

In general, E(Xr) = c. We choose a parameter a as the upper bound of c, i.e., a > c. Then we267

define xr = Xr − a so that it has a negative value during normal operation. When an attack takes268

place, the increase rate will suddenly become larger and the value xr = Xr − a will be positive.269

4.2 Sequence model270

Modeling of TCP connection requests is a difficult problem and the sequence Xt is not easily271

defined. It is not easy to devise a simple parametric model for TCP traffic due to its complicated272

characteristics. However, we assume that when an attack occurs, the traffic distribution will be273

different from that of normal traffic. We select the nonparametric version of CUSUM to perform274

online change-point detection, which has low computational cost.275

Since the k rows in Td are independent of each other, we choose one row to discuss for clarity.276

There are n counters in each row of table Td and these counters are denoted by C1, C2, . . . , Cn .277

The hash table is refreshed periodically. The value of counter Ci (1 ≤ i ≤ n) forms a sequence278

{Ct
i } according to the refresh period t . For each counter, we analyze the change-point of the279

sequence {Ct
i }.280

Normal TCP traffic has symmetric SYN and ACK pairs and hence the counters in Td should281

be close to 0. When spoofed TCP handshake packets are sent towards the victim, there will be282

more SYN packets than ACK packets. The corresponding counter value in Td will grow rapidly.283

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

W. Chen, D.-Y. Yeung

The density function of sequence {Ct
i } will change and CUSUM will detect this change. We 284

define xt
i = Ct

i − a, where a > 0, as the sequence of time t for the CUSUM method. The two 285

parameters are set according to the network conditions. Generally, the parameter a is close to 286

0 since the counter value should be close to 0 when there exist no spoofed flooding attack and 287

network error. Thus xt
i has a negative value under normal operation. When a spoofed flooding 288

attack occurs, it will change to a positive value. As for the parameter N which defines the alarm 289

threshold, a large value leads to longer detection delay but lower false positive rate. 290

When a spoofed flooding attack occurs, each row is expected to have a counter with an 291

abnormally high value. These abnormal counters are referred to as heavy counters. If a packet 292

is hashed into Td and hits all the k heavy counters in all k rows, this packet is regarded as a 293

suspicious spoofed packet and hence an alarm will be launched. 294

4.3 Spoofing type classification and response 295

No matter what type of IP spoofing is used, packets can be detected with our change-point 296

detection method. We can then identify the spoofing type by analyzing its source IP. 297

Since random spoofing generates a wide range of IP addresses for the source IPs of the packets, 298

the probability that two packets have the same source IP is very low. On the other hand, subnet 299

spoofing has a much narrower range than random spoofing. During a spoofed flooding attack, 300

the attacking source typically generates a large number of packets. This number is much larger 301

than the number of candidate IP addresses used for subnet spoofing. For example, in order to 302

bring down a victim server for 10 minutes, the attacker needs to inject at least 300,000 SYN 303

packets [17]. However, a class C subnet only has 254 IP addresses which are available for a 304

subnet spoofing attack. Therefore, quite a number of subnet spoofed packets are expected to 305

have identical source IPs during the attack period. 306

We define two thresholds, θ1 and θ2 (1 < θ1 < θ2), for Ts . When a packet hits k heavy counters 307

in Td , its source IP is checked in Ts . If all counters in Ts hit by this packet have values larger than 308

θ1 but smaller than θ2, it is regarded as subnet spoofing. If the value is much larger than θ2, it may 309

be caused by fixed spoofing. Otherwise it is regarded as random spoofing. Another difference 310

between random spoofing and subnet spoofing is the degree of overlap of the IP addresses. With 311

random spoofing, the IP addresses hashed into the same counter are typically different as a result 312

of hash collisions. With subnet spoofing, however, the IP addresses hashed into the same counter 313

are usually the same. This difference can be used for distinguishing random spoofing from subnet 314

spoofing. 315

Random spoofing may be throttled by ingress filters deployed at the edge routers. However, 316

there has been a lack of efficient methods for fighting against subnet spoofing. To defend against 317

attacks caused by fixed spoofing and subnet spoofing, we propose here a soft rate-limiting scheme. 318

Specifically, the percentage of traffic to go through is equal to 319

Rpass = γ −εCs ,

where Cs is the value of a counter in Ts and γ, ε are parameters. The legitimate value of Cs is 320

0. Thus if Cs is close to 0, we essentially allow almost all traffic to pass through. According to 321

the classification scheme above, a higher value of Cs means that the traffic has a higher chance 322

of being packets caused by fixed spoofing. The larger the value of Cs is, the more traffic will 323

be blocked. A lower value means that the traffic is more likely due to subnet spoofing. A small 324

rate-limiting value is thus used to mitigate collateral damages since the traffic is more distributed 325

and more legitimate traffic may hit these counters. 326

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Throttling spoofed SYN flooding traffic at the source

Attacker

Attacker

Legitimate User

Td

Rate-Limit

Ts

High

Low

Rate-Limit

Ingress
Filter

Pass

Step1: Abnormal Detection
- use Destination Table

If hit heavy counter

Do not hit heavy
counter

Step2: Traffic Classification-
Use Source Table

Attacking traffic to victim

Legitimate traffic to victim

Legitimate traffic to other servers

Subnet

Spoofing

Fixed spoofing

Legitimate

Step3: Rate-limiting

Random
Spoofing

Fig. 4 Architecture of the detection and response scheme

Figure 4 shows the architecture of our detection and response scheme. The scheme consists of327

three main steps. In the first step, only the destination table Td is used to make a traffic digest. The328

CUSUM method is then applied to detect SYN flooding attacks by detecting abnormal change-329

points in the traffic digest. In the second step, suspicious traffic is identified as either one of the330

spoofing types: random, subnet or fixed spoofing. The source table Ts helps to perform spoofing331

type classification. In the final step, different response methods are applied to defend against332

different types of IP spoofing. While ingress filters [6] can effectively filter packets caused by333

random spoofing, a flexible rate-limiting scheme is used to defend against the other two spoofing334

types according to the source IP distribution.335

5 Performance evaluation336

We have carried out some simulation experiments to evaluate the performance of our proposed337

method. We first evaluate the performance of our hash function and compare it with other hash338

functions with respect to the collision rate. We then use the DARPA off-line intrusion detection339

benchmark [9] for experiments on the detection of SYN flooding attacks with spoofing, which340

are commonly found on the current Internet. We use the NS2 network simulator to simulate341

the three IP spoofing types. Detection results are then separately analyzed for these different342

attacking scenarios, showing that our method is effective for all cases including the more subtle343

subnet spoofing type.344

5.1 Hash function performance345

Our hash function described in Section 3.3 has the advantages of low collision rate and high346

execution efficiency, which are particularly suitable for use in the Bloom filter. The proposed347

hash function is compared with Knuth’s multiplicative hash function [8], Robert’s 32- and 96-bit348

mixing hash functions [7] and a hybrid hash function. The hybrid hash function is composed of349

Knuth’s hash function and Robert’s hash function with different parameters, which are used as350

the k different independent hash functions in the Bloom filter. In our comparative study, we set351

n to 1024, k to 4, and the 100,000 IP addresses are randomly generated. These IP addresses are352

inserted into the hash tables for different hash functions.353

The execution time and the number of collisions for each hash function are shown in Table 1.354

It can be seen that our hash function not only has the lowest (zero) collision rate like Robert’s355

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

W. Chen, D.-Y. Yeung

Table 1 Comparison of hash
functions Hash function Time consumed (sec) Number of collisions

Our hash function 0.187 0

Robert’s 32-bit hash 0.188 3838

Robert’s 96-bit hash 0.250 0

Knuth’s hash 0.031 977

Hybrid hash 0.328 0

96-bit hash function and the hybrid hash function, it is also the most efficient among these three 356

methods. Although Knuth’s hash function is even more efficient than ours, it has a higher collision 357

rate and hence is less favorable. Our method, being both simple and efficient, is most suitable 358

for networking applications as that studied here. 359

5.2 Attack traffic detection 360

Two datasets from the DARPA benchmark are used to evaluate the detection performance of our 361

method. Specifically, one dataset contains SYN flood attack packets and the other dataset is free 362

of flooding attack. The original DARPA datasets are in tcpdump format and TCP SYN, ACK 363

and ACK/SYN packets are extracted from the datasets. 364

In all the experiments, the number of rows k in each hash table is set to 4 and the number of 365

counters n in each row is set to 1024. For attack detection, we only need to monitor the destination 366

table Td . As before, since each row in Td corresponds to an independent hash function, we only 367

discuss any one row here as other rows are the same. 368

We first observe the status of Td during normal operation. The parameters a and N are set to 369

different values for our testing. Normal traffic begins at 21:00 on one day and ends at 18:32 on 370

the following day. There are a total of 27877 TCP connections during this period. The numbers 371

of false positives observed for different combinations of the parameters a and N are shown in 372

Table 2. Compared to a total of 27877 connections, the number of false positives is actually 373

quite small and tolerable. We observe that most of the counters have a zero value and only two 374

counters (out of 1024 counters in the row) have nonzero values. The nonzero values are triggered 375

by incomplete handshakes caused by occasional network errors. We select a counter with zero 376

value and another counter with nonzero values to show the CUSUM change-point detection 377

results. The results are depicted in Fig. 5. Since the traffic is very low around midnight, the 378

result for this period is not shown for clarity. 379

In another experiment, the dataset with SYN flood attack packets is used. During the attack, 380

there are many more SYN packets than ACK packets. The counters corresponding to the hashed 381

values of the victim IP addresses grow substantially and hence become heavy counters. The 382

detection rates and false positive rates under different parameter settings are shown in Table 3. 383

When N is set to 2 and a to 1, the CUSUM detection rate is the highest. When N and a are set 384

to other values, the detection rate is lower but remains almost the same for different settings. 385

The reason is that the destination table Td is refreshed periodically and change-point is checked 386

Table 2 Number of false positives
N a = 1 a = 2 a = 3

2 13 4 2

3 4 2 0

4 2 0 0

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Throttling spoofed SYN flooding traffic at the source

Table 3 Detection rate and false positive rate

N a = 1 a = 2 a = 3

2 99.9%/1.21% 93.7%/0.95% 93.7%/0.76%

3 93.7%/1.19% 93.7%/0.84% 93.7%/0.69%

4 93.7%/1.09% 93.7%/0.76% 93.7%/0.65%

d/ f refers to detection rate d and false positive rate f .

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

12

Time (min)

T
h

e
 C

U
S

U
M

 r
e

su
lt

fo
r

a
 c

o
u

n
te

r
ke

e
p

in
g

 0
 v

a
lu

e

T
h

e
 C

U
S

U
M

 r
e

su
lt

fo
r

a
 n

o
n

-z
e

ro
 c

o
u

n
te

ra=1
a=2
a=3

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

12

Time (min)

a=1
a=2
a=3

Fig. 5 CUSUM results of two counters when there is no attack

by CUSUM after each refresh. After a special refresh period, the CUSUM method can detect387

malicious SYN packets at almost the same time even for different N and a values. On the other388

hand, the false positive rate generally decreases as N or a increases.389

While most of the counters still have a zero value, there are a few heavy counters with values390

significantly higher than those of the nonzero counters during normal operation as observed391

above. The CUSUM detection method can successfully detect these heavy counters. Figure 6392

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

12

Time (min)

T
h

e
 C

U
S

U
M

 r
e

su
lt

fo
r

a
 c

o
u

n
te

r
ke

e
p

in
g

 0
 v

a
lu

e

T
h

e
 C

U
S

U
M

 r
e

su
lt

fo
r

a
 n

o
n

-
ze

ro
 c

o
u

n
te

r

a=1
a=2
a=3

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5
x 10

5

Time (min)

a=1
a=2
a=3

Fig. 6 CUSUM results of two counters during a SYN flooding attack

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

W. Chen, D.-Y. Yeung

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Counter #

T
h
e
 c

o
u
n
te

r
sc

o
re

Counter Value

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Counter #

T
h
e
 c

o
u
n
te

r
sc

o
re

Counter Value

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Counter #

T
h
e
 c

o
u
n
te

r
sc

o
re

Counter Value

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

Counter #

T
h
e
 c

o
u
n
te

r
sc

o
re

Counter Value

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

Counter #

T
h
e
 c

o
u
n
te

r
sc

o
re

Counter Value

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

Counter #

T
h
e
 c

o
u
n
te

r
sc

o
re

Counter Value

Fig. 7 Counter values in one row each of tables Td and Ts under different spoofing types

shows the CUSUM results of two counters when an attack is launched. Note that the scale of the 393

vertical axis in Fig. 6(b) is much larger than that of Fig. 5(b). 394

5.3 Spoofing type classification 395

We use NS2 to simulate the random spoofing, subnet spoofing and fixed spoofing attack scenarios. 396

In the simulations, there are 10 server nodes and 1000 client nodes. One of the server nodes is 397

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Throttling spoofed SYN flooding traffic at the source

selected as the victim. The client nodes randomly select one or more server nodes as destinations398

for establishing connections. Regardless of what spoofing type is used, we observe that the399

flooding traffic can trigger one counter in each row of table Td to have an abnormally large value400

as shown in Fig. 7(a)–(c).401

To classify the spoofing into one of the three types, we have to monitor the counter values in402

table Ts . Figure 7(d) shows the values of the counters in one row of Ts under random spoofing. The403

counters have relatively small values which are distributed somewhat uniformly across different404

counters because the spoofed IPs are generated randomly. For subnet spoofing as shown in405

Fig. 7(e), since a much narrower range of IP addresses is used, we can see that only a portion406

of the counters have nonzero values. Moreover, these counter values are generally higher than407

those in Fig. 7(d). If we examine more closely the two tables in Figs. 7(d) and 7(e), we can see408

that many different IP addresses are hashed into the same counter in Fig. 7(d) due to hash table409

collisions, but a counter in Fig. 7(e) almost always corresponds to the same IP address. Figure 7(f)410

shows the counter values under fixed spoofing. This type of spoofing is much easier to identify411

since only a few counters have nonzero values and they are heavy counters with extremely high412

values.413

5.4 Comparison with other methods414

Our work bears resemblance to IDR [4] and TOPS [1], in the sense that these two methods also415

detect DDoS attacks based on a hashing scheme.416

IDR (Intrusion Detection Router) monitors the traffic passing through a router and detects417

the occurrence of any exceptionally heavy volume of packets going to the same destination.418

IDR also employs a Bloom filter to detect malicious packets. A two-dimensional table of k419

levels by m bins with k independent hash functions is used to keep track of the recent arrival420

rates of packets of different destination IP addresses passing through a router within a sampling421

period t .422

There exist some crucial differences between IDR and our method. First, IDR does not extract423

DDoS features from the network traffic but it records the destination IP information of all packets424

passing through the router. Our method only records symmetric packets using the TCP protocol,425

such as SYN and ACK/SYN. The fact that IDR records more information than our method implies426

that IDR requires more hash updating effort. Second, IDR identifies a counter as being suspicious427

simply by its counter value, making it difficult to set the detection thresholds and difficult to obtain428

very accurate results. On the other hand, our method analyzes the counter values with CUSUM429

and hence the results are more accurate. Moreover, IDR is only a detection method but ours430

performs both detection and response.431

TOPS is a system based on the flow balance heuristic to detect and filter DoS bandwidth432

attacks. In particular, TOPS applies a form of Bloom filter based on a static tabular memory433

structure to detect attacks.434

There also exist some crucial differences between TOPS and our method. First, like IDR, TOPS435

also does not perform feature extraction and hence incurs higher storage and hash updating costs.436

Second, if the attacker incorporates IP spoofing into the attacking packets, TOPS can no longer437

compute the ratio of incoming to outgoing traffic for each IP address. Third, TOPS divides an438

IP address into four octets and uses the octets as input for the hash functions. This scheme can439

hardly distribute the entries uniformly in the hash tables. For example, the packets from subnet440

143.89.0.0/16 have the same octets 143 and 89. Therefore, octets 143 and 89 of all these packets441

are hashed into the same table.442

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

W. Chen, D.-Y. Yeung

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

T
h

e
 R

a
te

False Positive Rate
Detection Rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold R
min

T
h

e
 R

a
te

False Positive Rate
Detection Rate

2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold N

T
h

e
 R

a
te

False Positive Rate
Detection Rate

Fig. 8 Detection rates and false positive rates for IDR, TOPS and our method for different thresholds

In our comparison, we use the DARPA off-line intrusion detection benchmark to evaluate the 443

detection performance of IDR, TOPS and our method under different parameter settings. We use 444

two datasets: one is free of any attack and the other contains SYN flooding attack packets. 445

Figure 8(a) shows the detection rates and false positive rates for different thresholds. For 446

IDR, parameter setting follows the recommendation in [4], with the thresholds for all counters 447

being the same. From Fig. 8(a), we can see that it is difficult for IDR to obtain high detection 448

rate and low false positive rate simultaneously. When the threshold is set somewhat low, some 449

packets sent to a popularly visited destination will be incorrectly recognized as suspicious ones. 450

On the other hand, if the threshold is set too high, IDR will fail to detect some relatively low 451

attacking traffic. 452

TOPS can hardly detect SYN flooding attacks near the victim side since the victim tries to 453

respond to all SYN requests, including malicious ones. Therefore, the ratio of incoming to outgo- 454

ing traffic cannot indicate abnormal traffic characteristics. In our experiments, TOPS is deployed 455

near the attacking source and Rmin is used as the threshold according to the recommendation 456

in [1]. Figure 8(b) shows that TOPS, like IDR, cannot achieve high detection rate and low false 457

positive rate simultaneously. Adjusting Rmin can only improve one measure at the expense of the 458

other measure. Compared to IDR, TOPS can give more accurate results as the ratio of incoming 459

to outgoing traffic is a more reliable indicator for detection than the absolute counter values 460

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Throttling spoofed SYN flooding traffic at the source

0

50

100

150

200

250

Our IDR TOPS

Average

Maximal

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Our IDR TOPS

Average

Maximal

0

5

10

15

20
25

30

35

40

45

50

Our IDR TOPS

Time(Second)

Fig. 9 Storage and computational costs for IDR, TOPS and our method

especially when the traffic volume is high. We observe that many false positives are caused by461

some small counter values. The reason is that the ratio of incoming to outgoing traffic for these462

counters is very sensitive to changes in the traffic characteristics. However, since these counter463

values are small, their effect on the final results is relatively small.464

Figure 8(c) shows the results of our method. We set a to 1 and N to different values as shown465

in x-axis. From the experimental results, our method clearly outperforms IDR and TOPS in that466

it can give very high detection rate even when the false positive rate is kept very low. Moreover, it467

can be seen that the performance is not very sensitive to the parameter setting, making it relatively468

easy to deploy.469

We compare the storage costs of the three methods. Since all three methods use the same470

number of counters, the size of the hash table depends on the size of each counter. In order to471

allocate an appropriate memory size to each counter, let us first take a look at the counter value472

statistics of the three methods both under no attack and during attack.473

Figure 9(a) shows that the counters in our method have values close to zero since the TCP474

traffic is mostly symmetric when there is no attack. The average counter value for TOPS is close475

to that for IDR, but its maximum counter value is significantly larger because the hash function476

of TOPS makes the distribution of counter values highly non-uniform. During an attack, the477

counter values for all three methods increase significantly but the maximum value for TOPS is478

much larger, as shown in Fig. 9(b). Our method can accurately detect DDoS attacks even with a479

small threshold value. Therefore, it suffices to allow for a relatively small range of values for each480

counter, implying that the memory size can be kept small. IDR can also use a small threshold481

value. However, since it does not extract any traffic feature but stores all packet information, it482

requires more storage than our method. As for TOPS, it needs to collect all the information in483

order to calculate the ratio of incoming to outgoing traffic. Moreover, the distribution of counter484

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

W. Chen, D.-Y. Yeung

values is highly non-uniform and hence the maximum counter value can be very large. As a 485

result, TOPS has a higher storage requirement than IDR and our method. 486

We also compare the computational cost of the three methods. A dataset containing about 487

200,000 entries is used for evaluation. Figure 9(c) shows that our method has the lowest com- 488

putational cost since it extracts DDoS features from the traffic and it does not need to update the 489

hash table frequently. Besides the hash operation, our method only requires simple increment 490

and decrement operations. IDR has the highest computational cost since it has to perform the 491

hash operation for every packet. While TOPS also performs the hash operation for every packet, 492

the hash function used is simple and hence the computational cost of TOPS is still low. 493

To summarize, our method can perform accurate detection yet with low storage and compu- 494

tational costs. Moreover, it is relatively insensitive to the parameter setting. 495

6 Related work 496

Hash tables are high-performance data structures that can be used for efficient table lookup and 497

hence are particularly useful for many network packet processing applications. The Bloom filter 498

is a kind of space-efficient hash data structure, which was first proposed by Bloom [2]. It has 499

been used for network packet processing. For example, Song [16] presented a hash table data 500

structure and a lookup algorithm based on an extended Bloom filter which can support better 501

throughput for router applications using hash tables. Also, NetFlow [5] maintains a hash table of 502

connection records in DRAM and monitors the network traffic. The concept of multiple hashing, 503

which is similar to Bloom filter, is used to track large flows in the network traffic. 504

Hash tables have also been used for defending against DDoS attacks. Snoeren [15] presented 505

a technique based on hash table for IP traceback, which generates audit trails for the network 506

traffic so that the origin of an IP packet delivered by the network in the recent past can be traced. 507

Hash table has also been employed to look for imbalance between the incoming and outgoing 508

traffic flows to or from an IP address [1]. More recently, a router equipped with DDoS protection 509

capability called IDR [4] was proposed to detect DDoS attacks using a Bloom filter. 510

Change-point detection methods have been applied to DDoS detection due to their simplicity 511

and effectiveness. Wang et al. [17, 18] proposed a method for detecting SYN flood attacks at 512

leaf routers that connect end hosts to the Internet. Based on the observation that SYN and FIN 513

packets form pairs in normal network traffic, they proposed using a nonparametric CUSUM 514

method to accumulate the pairs. Luo and Chang [10] proposed a two-stage scheme to detect 515

the so-called pulsing DoS attacks. The first stage uses wavelet transform to extract the desired 516

frequency components of the traffic data and the second stage tries to detect change points in the 517

extracted components. 518

7 Conclusion 519

IP spoofing is a problem without any easy solution because it is inherent to the design of the 520

TCP/IP suite. Although IP spoofing is not an attack in itself, it is commonly used with real 521

TCP-based attacks by exploiting the characteristics of TCP/IP. 522

To defend against spoofed flooding attacks, we propose in this paper an efficient method that 523

can detect all three types of spoofing: random, subnet and fixed spoofing. Based on the Bloom 524

filter, we propose a storage-efficient data structure which only requires a fixed-length table 525

for recording relevant traffic information. A change-point detection method, CUSUM, is then 526

applied to detect abrupt changes in the traffic characteristics which correspond to the occurrence 527

P1: aaa

TELS˙11235˙9006 styleB1v1.cls (2006/04/29 v1.1 LaTeX Springer document class) September 22, 2006 8:10

UNCORRECTED
PROOF

Throttling spoofed SYN flooding traffic at the source

of flooding attacks. When malicious events are detected, they can further be classified into528

random spoofing, subnet spoofing or fixed spoofing type by analyzing a hash table for the source529

IP characteristics. Simulation experiments show that our proposed method yields very accurate530

detection and classification results yet with low computational cost.531

There are some parameters in our method. Currently these parameters are set manually based532

on experience. A future extension is to devise an automated scheme for setting or adapting these533

parameters. Another interesting direction to pursue is to design adaptive hash functions that534

maximize the utilization of the hash table entries and hence further reduce the false positive rate.535

Moreover, we plan to evaluate our method in a reasonably large real network.536

References537

1. S. Abdelsayed, D. Glimsholt, C. Leckie, S. Ryan and S. Shami, An efficient filter for denial-of-service538

bandwidth attacks, in: IEEE Global Telecommunications Conference (GLOBECOM’03) (2003), Vol. 3, pp.539

1353–1357.540

2. B.H. Bloom, Space/time trade-offs in hash coding with allowable errors, Communications of the ACM 13(7)541

(1970) 422–426.542

3. B. Brodsky, Nonparametric Methods in Change-Point Problems (Kluwer Academic Publishers, The Nether-543

lands, 1993).544

4. E. Chan, H. Chan, K. Chan, V. Chan, S. Chanson and etc, IDR: An intrusion detection router for defending545

against distributed denial-of-service(DDoS) attacks, in: Proceedings of the 7th International Symposium on546

Parallel Architectures, Algorithms and Networks 2004(ISPAN’04) (2004), pp. 581–586.547

5. C. Estan, K. Keys, D. Moore and G. Vargese, Building a better NetFlow, in: ACM SIGCOMM (2004), pp.548

39–42.549

6. P. Ferguson and D. Senie, Network ingress filtering: Defeating denial of service attacks which employ ip550

source address spoofing (2000).551

7. B. Jenkins, A new hash functions for hash table lookup (1997).552

8. D. Knuth, The Art of Computer Programming, volume 3 of Sorting and Searching (Addison-Wesley, 1975).553

9. R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung and other, Evaluating intrusion de-554

tection systems: The 1998 DARPA off-line intrusion detection evaluation, in: the 2000 DARPA Information555

Survivability Conference and Exposition (2000).556

10. X. Luo and R.K.C. Chang, On a new class of pulsing denial-of-service attacks and the defense, in: Network557

and Distributed System Security Symposium 2005(NDSS2005) (San Diego, California, 2005).558

11. J. Mirkovic and P. Reiher, A taxonomy of DDoS attack and DDoS defense mechanisms, ACM SIGCOMM559

Computer Communications Review 34(2) (2004) 39–54.560

12. V. Paxson, End-to-end routing behavior in the Internet, IEEE/ACM Transactions on Networking 5(5) (1997)561

601–615.562

13. J. Postel, Transmission control protocol: DARPA internet program protocol specification, RFC 793 (1981).563

14. C.L. Schuba, I. Krsul, M. Kuhn, E.H. Spafford, A. Sundaram and D. Zamboni, Analysis of a denial of service564

attack on TCP, in: Proceedings of the 1997 IEEE Symposium on Security and Privacy, IEEE Computer Society565

(1997), pp. 208–223.566

15. A.C. Snoeren, Hash-based IP traceback, in: Proceedings of the ACM SIGCOMM Conference (ACM Press,567

2001), pp. 3–14.568

16. D.X. Song and A. Perrig, Advanced and authenticated marking schemes for IP traceback, in: Proceeding569

of Annual Joint Conference of the IEEE Computer and Communications Societies(INFOCOM) (2001), pp.570

878–886.571

17. H. Wang, D. Zhang and K.G. Shin, Detecting SYN flooding attacks, in: Proceedings of Annual Joint Con-572

ference of the IEEE Computer and Communications Societies(INFOCOM) (2002), Vol. 3, pp. 1530–1539.573

18. H. Wang, D. Zhang and K.G. Shin, Change-point monitoring for the detection of dos attack, IEEE Transac-574

tions on Dependable and Secure Computing 1(4) (2004) 193–208.575

