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Abstract

The advantage of a kernel method often depends critically on a proper choice of

the kernel function. A promising approach is to learn the kernel from data auto-

matically. In this paper, we propose a novel method for learning the kernel matrix

based on maximizing a class separability criterion that is similar to those used by

linear discriminant analysis (LDA) and kernel Fisher discriminant (KFD). It is in-

teresting to note that optimizing this criterion function does not require inverting

the possibly singular within-class scatter matrix which is a computational problem

encountered by many LDA and KFD methods. We have conducted experiments on

both synthetic data and real-world data from UCI and FERET, showing that our

method consistently outperforms some previous kernel learning methods.

Keywords: kernel learning, Fisher discriminant criterion, kernel Fisher discrimi-

nant, face recognition.
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1 Introduction

Kernel methods [21] provide a disciplined approach to the nonlinear generalization of

many linear methods. Support vector machine (SVM), kernel principal component anal-

ysis (KPCA) and kernel Fisher discriminant (KFD) are just some of the better known

kernel methods. However, the advantage of a kernel method often depends critically on

a proper choice of the kernel function. Over the past few years, some methods have been

proposed to learn the kernel from data automatically. Early work on kernel learning is lim-

ited to learning the parameters of some prespecified kernel function form, e.g., [5]. More

recent work has gone beyond kernel parameter learning by learning the kernel itself in a

more nonparametric manner. In practice, since we work with data sets of finite size, we

can learn the kernel matrix corresponding to a given data set instead of learning the kernel

function. Different kernel matrix learning methods have been proposed. These include

performing classical optimization based on kernel alignment [7], semi-definite program-

ming (SDP) based on alignment or margin [10], faster methods such as gradient descent

[4] and quadratically constrained quadratic programming (QCQP) [1, 29] for alignment-

based or margin-based optimization, boosting based on exponential loss or logarithmic

loss [6], the information-geometric em method based on Kullback-Leibler (KL) divergence

[24], Markov chain Monte Carlo (MCMC) [28] and expectation-maximization (EM) [22]

based on likelihood, and matrix exponentiated gradient update and Bregmann projection

based on von Neumann divergence [25]. Using the mathematical programming reformu-

lation of KFD by [15], a quadratic programming approach was proposed by [9] to learn

a linear combination of kernels for KFD. Some methods perform optimization over the

conic structure of the space of kernels [1, 2, 11, 14, 17, 18]. Most of these methods are for

classification, but clustering [24] and regression [22] have also been studied.

Inspired by a recent kernel parameter learning method [27], we propose in this paper a

novel kernel matrix learning method based on optimizing a class separability criterion that

is similar to those used by linear discriminant analysis (LDA) [8, 20] and KFD [3, 16].
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In LDA, finding the optimal linear transformation corresponds to solving a generalized

eigenvalue problem, which requires that the pooled within-class scatter matrix be invert-

ible. While this is generally not a problem for large-sample applications, the problem does

arise in applications when the dimensionality of the input space is larger than the sample

size, such as in face recognition and microarray data analysis applications. Unfortunately,

this singularity problem is usually more severe for KFD as it essentially performs LDA in

the kernel-induced feature space which is of very high or even infinite dimensionality. To

address this problem, we do not attempt to solve a generalized eigenvalue problem. This

avoids the need for inverting the within-class scatter matrix which may be singular. In-

stead, we formulate a different optimization criterion which can give rise to a closed-form

solution for the optimization problem without requiring to solve a generalized eigenvalue

problem. It turns out that this optimization criterion is related to the maximum margin

criterion (MMC) [12] proposed recently for LDA and KFD methods. As a result, not only

is our method more general than the method of [27] in that it learns the kernel matrix

rather than just the parameters of a prespecified kernel function, but our optimization

method which leads to a closed-form solution is also more appealing than the gradient

method in [27] which requires tuning many parameters in the algorithm.

2 Our Kernel Learning Method

Let {(x1, y1), . . . , (xl, yl)} be a training set of l labeled examples and {xl+1, . . . ,xn} be a

test set of n− l unlabeled examples, where xi (i = 1, . . . , n) are n points in the input space

X and the class labels yi (i = 1, . . . , l) are from {C1, . . . , Cc} with c being the number of

classes. The objective of the classification problem is to predict the class labels of the

unlabeled examples in the test set. We consider the classification problem under the

transductive learning setting [26] in which the test set is given in advance before the

classifier is learned.
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2.1 Spectral Variants of Kernel Matrix

Let K = [k(xi,xj)]n×n denote the kernel matrix formed by the n data points in X for

some chosen kernel function k(·, ·), such as the RBF kernel or polynomial kernel. We

express the spectral decomposition of K as

K =

p∑
r=1

λrvrv
T
r =

p∑
r=1

λrKr, (1)

where λr (r = 1, . . . , p) are the p positive eigenvalues of K sorted in a monotonically

decreasing order and vr (r = 1, . . . , p) are the corresponding normalized eigenvectors.1

Kr (r = 1, . . . , p) are base kernel matrices of rank one. Based on these rank-one base

kernel matrices, we define a parameterized family of kernel matrices as

Kµ =

p∑
r=1

µ2
rvrv

T
r =

p∑
r=1

µ2
rKr, (2)

where µ = (µ1, . . . , µp)
T denotes p coefficients for specifying the spectral variants. This

method has also been used in some previous kernel learning work [4, 7, 10, 24, 28]. It is

trivial to show that each kernel matrix in this family corresponds to a Mercer kernel [21].

2.2 Class Separability Criterion for Optimization

Similar to common KFD methods, our class separability criterion is based on the objective

of maximizing the inter-class variability in the feature space while minimizing the intra-

class variability. Let φ(xi) (i = 1, . . . , n) be the n points in the feature space induced by

kernel matrix Kµ, li be the number of training data points that belong to class i, mi =

1
li

∑
yj=Ci

φ(xj) be the mean vector of class i in the feature space, and m = 1
l

∑c
i=1 limi =

1
l

∑c
i=1

∑
yj=Ci

φ(xj) be the mean vector of all l training data points. The between-class

1Instead of expressing K in terms of all its positive eigenvalues and the corresponding eigenvectors,

one may discard the very small eigenvalues as in PCA. In that case, K ' ∑p
r=1 λrvrvT

r =
∑p

r=1 λrKr.
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scatter matrix Sb and within-class scatter matrix Sw in the feature space are given by

Sb =
1

l

c∑
i=1

li(mi −m)(mi −m)T (3)

Sw =
1

l

c∑
i=1

∑
yj=Ci

(φ(xj)−mi)(φ(xj)−mi)
T . (4)

If the feature space is infinite-dimensional, we can define scatter operators instead. KFD

methods typically maximize the class separability through maximizing the Fisher cri-

terion (wTSbw)/(wTSww) to find the optimal linear transformation w. This can be

achieved by solving the generalized eigenvalue problem Sbw = λSww for the eigenvectors

w corresponding to the largest eigenvalues. However, this method requires inverting Sw.

Here, we use the trace of a scatter matrix to quantify its scatter. Let Tr(·) denote the

trace of a symmetric matrix. We use Tr(Sb) and Tr(Sw) to characterize the inter-class

variability and intra-class variability, respectively. Note that we do not use Tr(WTSbW)

and Tr(WTSwW), for some linear transformation matrix W, because we do not actually

find a low-dimensional embedding of the points. We can make use of the kernel trick to

express Tr(Sb) and Tr(Sw) in terms of µ and the matrix entries of K without requiring the

nonlinear mapping φ(·) explicitly. Let the (i, j)th entry of Kµ be expressed as (Kµ)ij =

bT
i Kµbj, where bi is the ith column of the n× n identity matrix. We can rewrite Tr(Sb)
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as

Tr(Sb) =
1

l

c∑
i=1

li(mi −m)T (mi −m)

=
1

l

c∑
i=1

lim
T
i mi −mTm

=
1

l




c∑
i=1

∑
yj ,yk=Ci

1

li
(Kµ)jk −

l∑

j,k=1

1

l
(Kµ)jk




=
1

l

l∑

j,k=1

(
c∑

i=1

ai
jk −

1

l

)
bT

j Kµbk

=

p∑
r=1

µ2
r

[
1

l

l∑

j,k=1

(
c∑

i=1

ai
jk −

1

l

)
bT

j Krbk

]

=

p∑
r=1

µ2
rfr

= µTDbµ, (5)

where

ai
jk =





1

li
yj = yk = Ci

0 otherwise
(6)

fr =
1

l

l∑

j,k=1

(
c∑

i=1

ai
jk −

1

l

)
bT

j Krbk =
1

l

l∑

j,k=1

(
c∑

i=1

ai
jk −

1

l

)
bT

j vrv
T
r bk

(7)

Db = diag(f1, . . . , fp). (8)
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Similarly, we can rewrite Tr(Sw) as

Tr(Sw) =
1

l

c∑
i=1

∑
yj=Ci

(φ(xj)−mi)
T (φ(xj)−mi)

=
1

l

c∑
i=1


 ∑

yj=Ci

φ(xj)
T φ(xj)− lim

T
i mi




=
1

l




l∑
j=1

(Kµ)jj −
c∑

i=1

∑
yj ,yk=Ci

1

li
(Kµ)jk




=
1

l

l∑

j,k=1

(
δjk −

c∑
i=1

ai
jk

)
bT

j Kµbk

=

p∑
r=1

µ2
r

[
1

l

l∑

j,k=1

(
δjk −

c∑
i=1

ai
jk

)
bT

j Krbk

]

=

p∑
r=1

µ2
rgr

= µTDwµ, (9)

where δjk is the Kronecker delta and

gr =
1

l

l∑

j,k=1

(
δjk −

c∑
i=1

ai
jk

)
bT

j Krbk =
1

l

l∑

j,k=1

(
δjk −

c∑
i=1

ai
jk

)
bT

j vrv
T
r bk

(10)

Dw = diag(g1, . . . , gp). (11)

One possible optimality criterion for maximization is Tr(Sb)/Tr(Sw), which is a form

of generalized Rayleigh quotient. This seems to argue for solving it as a generalized

eigenvalue problem Dbµ = λDwµ. However, since D−1
w Db is diagonal and its diagonal

entries are generally different, the eigenvectors are just vectors with all except one entry

equal to 0 and the eigenvalues are the diagonal entries of D−1
w Db. The best solution is thus

the eigenvector corresponding to the largest eigenvalue. This implies that the spectral

variant solution degenerates to having only one base kernel. Apparently this is not what

we want.
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An alternative approach is to regard the maximization of Tr(Sb)/Tr(Sw) as a nonlinear

fractional programming (FP) problem [23]. Inspired by the parametric methods for solving

such FP problems, we define the following class separability criterion function:

Q(µ) = Tr(Sb)− αTr(Sw) = µT (Db − αDw)µ, (12)

where α > 0 is a parameter that can be determined, for example, by cross-validation.

Note that Q(·) is a function of the parameter vector µ in the parameterized family of

kernel matrices.

2.3 Solving the Optimization Problem

When we maximize the criterion function in (12), we eliminate the scaling factor by

enforcing the linear equality constraint 1T µ = c, where 1 is a column vector of ones and

c is some positive constant. The optimization problem can be solved using the method of

Lagrange multipliers with the Lagrangian

Q̂(µ, ρ) = Q(µ) + ρ(c− 1T µ). (13)

Differentiating Q̂(µ, ρ) with respect to µ and ρ gives the following partial derivatives:

∂Q̂

∂µ
= 2(Db − αDw)µ− ρ1 (14)

∂Q̂

∂ρ
= c− 1T µ. (15)

Setting the partial derivatives to zero, the optimal value of µ is given by

µ =
c(Db − αDw)−11

1T (Db − αDw)−11
. (16)

Note that (Db − αDw) is a diagonal matrix which is invertible if no diagonal entries are

zero. We set the constant c to
∑p

r=1

√
λr.

The learned kernel matrix Kµ can then be used with any kernel-based classification

method for classifying the unlabeled examples in the test set.
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3 Experiments

In this section, we present experimental results on several classification problems to com-

pare our kernel matrix learning method with some previous methods.

3.1 Experimental Setting for Comparative Study

We compare our method with a kernel matrix learning method based on kernel alignment

[7] and a kernel parameter learning method proposed recently by Xiong et al. [27].2 Xiong

et al.’s method is similar to ours in that it also uses the between-class scatter matrix

and within-class scatter matrix to define the class separability criterion. The difference,

however, is that it learns the parameters of a prespecified kernel function rather than

the kernel matrix itself. Standard RBF kernel serves for baseline comparison. Thus, our

comparative study consists of the following four kernel methods (with their short forms

shown inside brackets for subsequent use): (1) standard RBF kernel (RBF); (2) kernel

matrix learning based on alignment (Alignment); (3) kernel parameter learning by Xiong

et al. (Xiong’s); and (4) our kernel matrix learning method (Ours).

We use RBF kernel, k(x1,x2) = exp(−‖x1−x2‖2/σ2), to define the initial kernel matrix for

different kernel learning methods. The parameter σ2 is selected from {d̄2, 10−4, 10−3, 10−2,

10−1, 1, 5, 10, 102, 103} using leave-one-out (LOO) method, where d̄2 represents the mean

squared Euclidean distance between all data points in the input space. For Xiong et al.’s

method, the kernel optimization problem is solved in an iterative manner. As reported

in [27], the initial learning rate and the number of iterations are set to 0.01 and 200,

respectively, for all data sets. For our kernel learning method, the parameter α is set to

2We do not include another KFD-based kernel learning method by Fung et al. [9] in our comparative

study, for two reasons. First, their method only works for two classes. Like SVM, extension to multiple

classes is nontrivial. Second, the kernels for forming the linear combination and their parameters have

to be chosen manually in advance. As a result, the degree of automation is not as high as desired.
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10000 in the experiments. In the following subsections, we report extensive experiments

on a toy problem (for illustration purpose), UCI data sets, and face recognition. More

details about each task will be provided later.

3.2 A Toy Problem

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(d)

Figure 1: Comparison of different kernel learning methods on a toy data set. (a) original

data set with three classes; and the embedded data set based on (b) RBF; (c) Xiong’s;

(d) Ours.

We first perform some experiments on a 2-dimensional toy data set, as shown in Fig-

ure 1(a). There are 500 points in this data set with three classes. Two classes have 200
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points each corresponding to the up-down and left-right natural groups, while the third

class has 100 points corresponding to the center group. Data points shown with the same

point style and color belong to the same class. We randomly select 10% of the data

points from each class to form the training set and then perform kernel learning using

Xiong et al.’s and our methods. For the sake of visualization, we apply kernel PCA based

on the initial RBF kernel and the learned kernel matrices to embed the points onto a

2-dimensional space, as shown in Figure 1(b)–(d). It can be seen that neither the RBF

kernel nor the kernel learned by Xiong et al.’s method can give satisfactory result. On

the other hand, our method can group the data points properly according to their class

labels.

3.3 UCI Data Sets

We next perform some classification experiments on five data sets from the UCI Ma-

chine Learning Repository:3 Monks-3 (432/6/2), Ionosphere (351/34/2), Breast cancer

(569/31/2), Wine (178/13/3), and Boston housing (506/13/3), where the numbers inside

brackets (n/d/c) denote the number of data points n, number of features d, and number

of classes c. We perform kernel k-nearest neighbor (k-NN) classification and standard

soft-margin SVM classification on the three data sets based on different kernel learning

methods mentioned in Section 3.1. The optimal parameter values, k for kernel k-NN

and C for SVM, may be different for different classification methods, so we set them to

different values in our experiments. For all data sets, k is set to 1 and 3 for kernel k-NN

and the regularization parameter C is set to 100 and 1000 for SVM.

Table 1-3 summarize the two-class classification results for different kernels and classifiers.

Two different training set sizes (20% and 40%) are considered. Each classification rate

reported is the average over 10 random trials. The lower value represents the standard

deviation for each average test accuracy. While the method based on kernel alignment is

3http://www.ics.uci.edu/~mlearn/MLRepository.html
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not satisfactory, both the methods by Xiong et al. and us can improve over RBF kernel

with our method giving better results. As pointed out by [27], the alignment-based method

essentially learns a kernel matrix by maximizing the between-class distance in the feature

space without considering the within-class distance. This limitation probably explains

why its results are not satisfactory. Table 4-5 summarize the multi-class classification

results. Xiong et al.’s method can naturally be extended for multi-class problems, so

we compare our method with theirs. Experimental results verify the effectiveness of our

method.

In the UCI repository web site, some reported classification results are better than ours,

e.g., results for the Wine data set. However, it should be noted that their results are based

on LOO evaluation, meaning that they use almost the entire data set for training. In our

experiments, we use only 20% and 40% of the data to form the training sets. If we perform

experiments based on LOO, the classification results will be improved significantly. For

the Wine data set, the classification results based on LOO using kernel k-NN (k = 3) and

SVM (C = 1000) are 99.46±1.13 and 99.68±1.02, respectively.

3.4 Face Recognition

We further assess the feasibility and performance of our method on the face recognition

task, using a data set from the FERET database [19].4 The FERET database contains

13,539 face images from 1,565 human subjects. The face images in the FERET database

were acquired during different photo sessions, with variations in size, pose, illumination,

facial expression, and aging. The FERET face database is from the FERET program

sponsored by the US Department of Defense’s Counterdrug Technology Development

Program through the Defense Advanced Research Projects Agency (DARPA), and it has

become the de facto standard for evaluating state-of-the-art face recognition algorithms.

We use a subset of 470 images (10 images from each of 47 subjects) from the FERET

4http://www.itl.nist.gov/iad/humanid/feret/
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Table 1: Classification results on the Monks-3 data set for different kernel methods and

training set sizes.

% labeled data 20% 40%

k-NN SVM k-NN SVM

k = 1 k = 3 C = 102 C = 103 k = 1 k = 3 C = 102 C = 103

RBF 76.29 78.14 92.55 93.04 78.26 82.17 91.78 92.28

±0.07 ±0.12 ±0.08 ±0.06 ±0.49 ±0.20 ±0.01 ±0.01

Alignment 84.35 83.86 89.88 90.75 88.84 88.77 89.22 89.77

±0.38 ±0.24 ±0.16 ±0.28 ±0.36 ±0.10 ±0.66 ±0.31

Xiong’s 87.65 89.25 93.94 92.71 88.17 89.68 93.87 94.25

±0.05 ±0.08 ±0.08 ±0.05 ±0.37 ±0.10 ±0.02 ±0.01

Ours 88.36 89.54 93.00 93.30 90.70 90.95 93.76 94.36

±0.08 ±0.04 ±0.13 ±0.12 ±0.53 ±0.11 ±0.05 ±0.06

database for our experiments. Each image is of size 46×56 with 256 gray levels. Figure 2

shows some sample images used in our experiments.

As the kernel direct discriminant analysis (KDDA) algorithm proposed by Lu et al. [13]

has been shown to deliver appealing face recognition results when compared with KPCA

and generalized discriminant analysis (GDA) [3], we use this method for classification with

different kernel matrices.5 We randomly select five images from each of the 47 classes to

form the training set. The recognition results, averaged over 10 random trials, based

on the standard RBF kernel and the kernel matrices learned by Xiong et al.’s and our

methods are shown in Figure 3. As can be seen, our method outperforms the other two

methods.

5The MATLAB code for KDDA is from the authors of [13].
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Table 2: Classification results on the Ionosphere data set for different kernel methods and

training set sizes.

% labeled data 20% 40%

k-NN SVM k-NN SVM

k = 1 k = 3 C = 102 C = 103 k = 1 k = 3 C = 102 C = 103

RBF 78.82 79.00 83.14 82.82 82.26 81.55 89.19 87.63

±0.07 ±0.08 ±0.06 ±0.19 ±0.25 ±0.15 ±0.28 ±0.15

Alignment 78.89 78.37 78.68 80.90 82.00 81.77 84.86 88.33

±0.26 ±0.57 ±0.37 ±0.11 ±0.10 ±0.28 ±0.51 ±0.31

Xiong’s 82.89 81.68 84.79 85.21 84.05 82.59 88.24 88.61

±0.20 ±0.12 ±0.08 ±0.21 ±0.37 ±0.20 ±0.25 ±0.10

Ours 85.36 84.68 85.07 85.15 89.62 88.76 90.95 89.11

±0.06 ±0.06 ±0.13 ±0.05 ±0.53 ±0.27 ±0.10 ±0.05

4 Conclusion

Recent years have seen intense research in kernel matrix learning to further enhance

the power and potential of existing kernel methods. While optimization criteria such as

kernel alignment and margin are commonly used, we propose in this paper a different

criterion that is similar to the Fisher criteria used by LDA and KFD. Inspired by the

parametric methods for solving nonlinear fractional programming problems, our class

separability criterion can be optimized without encountering the singularity problem faced

by many LDA and KFD applications. This new criterion function is also related to the

maximum margin criterion proposed recently for LDA and KFD. Currently, we determine

the parameter α via cross-validation. Another possibility is to formulate yet another

optimization problem like those in fractional programming to find the optimal value of α.
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Table 3: Classification results on the Breast Cancer data set for different kernel methods

and training set sizes.

% labeled data 20% 40%

k-NN SVM k-NN SVM

k = 1 k = 3 C = 102 C = 103 k = 1 k = 3 C = 102 C = 103

RBF 92.42 93.04 92.16 94.12 93.61 94.23 95.11 95.26

±0.07 ±0.10 ±0.08 ±0.11 ±0.13 ±0.14 ±0.26 ±0.24

Alignment 87.97 88.77 90.37 89.63 85.63 85.43 91.80 91.95

±1.27 ±1.87 ±0.15 ±0.15 ±0.47 ±0.59 ±0.27 ±0.40

Xiong’s 90.79 91.78 94.50 95.86 93.85 93.85 95.53 96.12

±0.12 ±0.17 ±0.16 ±0.09 ±0.17 ±0.24 ±0.13 ±0.32

Ours 94.19 94.48 96.06 96.77 94.23 94.94 97.11 97.61

±0.07 ±0.03 ±0.03 ±0.04 ±0.07 ±0.10 ±0.03 ±0.07

Moreover, we will explore more general forms of transforming the initial kernel matrix in

our future research.
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Table 4: Classification results on the Wine data set for different kernel methods and

training set sizes.

% labeled data 20% 40%

k-NN SVM k-NN SVM

k = 1 k = 3 C = 102 C = 103 k = 1 k = 3 C = 102 C = 103

RBF 91.63 94.07 95.11 95.04 94.24 94.81 95.81 96.04

±0.16 ±0.27 ±0.38 ±0.39 ±0.56 ±0.25 ±0.37 ±0.81

Xiong’s 92.62 91.68 94.96 92.33 95.52 95.00 95.05 96.05

±0.19 ±1.28 ±0.47 ±1.10 ±0.59 ±0.40 ±0.26 ±0.55

Ours 95.70 95.63 96.10 95.26 95.38 95.48 97.38 98.57

±0.42 ±0.26 ±0.01 ±0.11 ±0.18 ±0.23 ±0.07 ±0.04
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