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Abstract

In the past few years, some nonlinear dimensionality reduction (NLDR) or nonlinear

manifold learning methods have aroused a great deal of interest in the machine

learning community. These methods are promising in that they can automatically

discover the low-dimensional nonlinear manifold in a high-dimensional data space

and then embed the data points into a low-dimensional embedding space, using

tractable linear algebraic techniques that are easy to implement and are not prone

to local minima. Despite their appealing properties, these NLDR methods are not

robust against outliers in the data, yet so far very little has been done to address

the robustness problem. In this paper, we address this problem in the context of an

NLDR method called locally linear embedding (LLE). Based on robust estimation

techniques, we propose an approach to make LLE more robust. We refer to this

approach as robust locally linear embedding (RLLE). We also present several specific

methods for realizing this general RLLE approach. Experimental results on both

synthetic and real-world data show that RLLE is very robust against outliers.

Key words: nonlinear dimensionality reduction, manifold learning, locally linear

embedding, principal component analysis, outlier, robust statistics, M-estimation,

handwritten digit, wood texture

1 Introduction

Dimensionality reduction is concerned with the problem of mapping data

points that lie on or near a low-dimensional manifold in a high-dimensional
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data space to a low-dimensional embedding space. Traditional techniques such

as principal component analysis (PCA) and multidimensional scaling (MDS)

have been extensively used for linear dimensionality reduction. However, these

methods are inadequate for embedding nonlinear manifolds.

In recent years, some newly proposed methods such as isometric feature map-

ping (Isomap) [1], locally linear embedding (LLE) [2,3], and Laplacian eigen-

map [4,5] have aroused a great deal of interest in nonlinear dimensionality

reduction (NLDR) or nonlinear manifold learning problems. Unlike previously

proposed NLDR methods such as autoassociative neural networks which re-

quire complex optimization techniques, these new NLDR methods enjoy the

primary advantages of PCA and MDS in that they still make use of simple

linear algebraic techniques that are easy to implement and are not prone to

local minima.

Despite the appealing properties of these new NLDR methods, they are not

robust against outliers in the data. Although some extensions have been pro-

posed to the original methods [6–12,3,13–15],very little has yet been done to

address the outlier problem. Among the extensions proposed is an interesting

extension of LLE proposed by Teh and Roweis, called locally linear coordi-

nation (LLC) [13], which combines the subspace mixture modeling approach

with LLE. A recent work by de Ridder and Franc [16] attempted to address

the outlier problem by proposing a robust version of LLC based on a recent

development in the statistics community called mixtures of t-distributions.

However, although the robust version of LLC is less sensitive to outliers than

LLC, the authors found that it is still more sensitive to outliers than ordinary

LLE. Zhang and Zha [17] proposed a preprocessing method for outlier removal

and noise reduction before NLDR is performed. It is based on a weighted ver-

sion of PCA. However, the method for determining the weights is heuristic in

nature without formal justification. More recently, Hadid and Pietikäinen [18]

studied the outlier problem and proposed a method to make LLE more robust.

However, their method is also heuristic in nature. Moreover, their method is

based on the assumption that all outliers are very far away from the data on

the manifold and they themselves form distinct connected components in the

neighborhood graph. Hence the outliers have no effect on the reconstruction

of the manifold data points. Apparently, this assumption is not always true

for many real-world applications.
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In this paper, we address the outlier problem in the context of LLE. Based on

robust PCA techniques, we propose an approach to make LLE more robust.

The rest of this paper is organized as follows. In Section 2, we first give a

quick review of the LLE algorithm. In Section 3, the sensitivity of LLE to

outliers is illustrated through some examples based on synthetic data. A new

approach called robust locally linear embedding (RLLE) is then presented in

Section 4 together with several specific realizations of the approach. Section 5

shows some experimental results to demonstrate the effectiveness of RLLE in

the presence of outliers. Some concluding remarks are given in Section 6.

2 Locally Linear Embedding

Let X = {x1,x2, . . . ,xN} be a set of N points in a high-dimensional data

space RD. The data points are assumed to lie on or near a nonlinear manifold

of intrinsic dimensionality d < D (typically d ¿ D). Provided that sufficient

data are available by sampling well from the manifold, the goal of LLE is to

find a low-dimensional embedding of X by mapping the D-dimensional data

into a single global coordinate system in Rd. Let us denote the corresponding

set of N points in the embedding space Rd by Y = {y1,y2, . . . ,yN}.

The LLE algorithm [3] can be summarized as follows:

(1) For each data point xi ∈ X :

(a) Find the set Ni of K nearest neighbors of xi.

(b) Compute the reconstruction weights of the neighbors that minimize

the error of reconstructing xi.

(2) Compute the low-dimensional embedding Y for X that best preserves the

local geometry represented by the reconstruction weights.

Step (1)(a) is typically done by using Euclidean distance to define neighbor-

hood, although more sophisticated criteria may also be used.

Based on the K nearest neighbors identified, step (1)(b) seeks to find the

best reconstruction weights. Optimality is achieved by minimizing the local
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reconstruction error for xi

Ei = ‖xi −
∑

xj∈Ni

wijxj‖2, (1)

which is the squared distance between xi and its reconstruction, subject to

the constraints
∑

xj∈Ni
wij = 1 and wij = 0 for any xj /∈ Ni. Minimizing

Ei subject to the constraints is a constrained least squares problem. After

repeating steps (1)(a) and (1)(b) for all N data points in X , the reconstruction

weights obtained form a weight matrix W = [wij]N×N .

Step (2) of the LLE algorithm is to compute the best low-dimensional embed-

ding Y based on the weight matrix W obtained. This corresponds to mini-

mizing the following cost function:

Φ =
N∑

i=1

‖yi −
∑

xj∈Ni

wijyj‖2, (2)

subject to the constraints
∑N

i=1 yi = 0 and 1
N

∑N
i=1 yiy

T
i = I, where 0 is a

column vector of zeros and I is an identity matrix. Note the similarity of this

equation to (1). Based on W, we can define a sparse, symmetric, and positive

semidefinite matrix M as follows:

M = (I−W)T (I−W).

Note that (2) can be expressed in the quadratic form, Φ =
∑

i,j Mijy
T
i yj,

based on M = [Mij]N×N . By the Rayleigh-Ritz theorem [19], minimizing (2)

with respect to the yi’s in Y can be done by finding the eigenvectors with the

smallest (nonzero) eigenvalues.

Figure 1 shows how LLE works in finding the low-dimensional embedding of

the S curve manifold from R3 to R2.

3 Sensitivity of Locally Linear Embedding to Outliers

In this section, we will show through examples how the LLE results can be

affected by outliers in the data. We use three artificial data sets that have been
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commonly used by other researchers: Swiss roll (Figure 2), S curve (Figure 3),

and helix (Figure 4). For each data set, uniformly distributed random noise

points that are at least at a certain distance from the data points on the man-

ifold are added as outliers. Table 1 shows the parameter settings used in these

experiments. The parameters include the dimensionality of the data space D,

the dimensionality of the embedding space d (i.e., intrinsic dimensionality of

the nonlinear manifold), the number of nearest neighbors K, the number of

clean data points on the manifold, the number of outlier points, and the min-

imum distance between randomly generated outliers and data points on the

manifold.

As we can see from subfigures (b) of Figures 2–4, LLE cannot preserve well the

local geometry of the data manifolds in the embedding space when there are

outliers in the data. In fact, in the presence of outliers, the K nearest neighbors

of a (clean) data point on the manifold may no longer lie on a locally linear

patch of the manifold, leading to a small bias to the reconstruction. As for an

outlier point, its neighborhood is typically much larger than that of a clean

data point. As a result, the estimated reconstruction weights of its neighbors

cannot reflect well the local geometry of the manifold in the embedding space,

leading to a large bias to the embedding result. To make LLE more robust

against outliers, we believe it is crucial to be able to identify the outliers and

reduce their influence on the embedding result. In the next section, we present

an approach to its realization based on robust statistics.

4 Robust Locally Linear Embedding

The main idea of robust statistics is to devise statistical procedures that re-

duce the influence of distributional deviations and hence become insensitive

to them. This follows the notion of distributional robustness from Huber [20].

Our robust version of LLE, or RLLE, first performs local robust PCA [21] on

the data points in X . The robust PCA algorithm is based on weighted PCA.

It gives us a measure on how likely each data point comes from the underlying

data manifold. Outliers can then be identified and their influence is reduced

in the subsequent LLE learning procedure. The major modifications of RLLE

to the original LLE algorithm are discussed below.
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4.1 Principal Component Analysis

As in step (1)(a) of the LLE algorithm, K nearest neighbors of each data point

xi are identified. Let i1, i2, . . . , iK denote their indices, and hence xi1 ,xi2 , . . . ,xiK

denote the K neighbors in X . We define a D×K matrix X = [xi1 ,xi2 , . . . ,xiK ].

Ideally, if xi lies on the manifold, we expect its K nearest neighbors to lie on a

locally linear patch of the manifold as well. Let us assume the dimensionality

of this locally linear subspace be d. Each neighbor xij can be linearly projected

onto the d-dimensional subspace with coordinate vector zj = BT (xij − d) ∈
Rd, where d ∈ RD is a displacement vector and B = [b1,b2, . . . ,bd] ∈ RD×d

is a rotation matrix with bT
j bk = δjk for 1 ≤ j, k ≤ K, i.e., bj’s are or-

thonormal basis vectors. The low-dimensional image zj of xij is represented

as x̂ij = d + Bzj = d + BBT (xij − d) in the original space RD. Let the

difference between xij and x̂ij be denoted as εj = xij − x̂ij . Standard PCA

seeks to find the least squares estimates of d and B by minimizing

Epca =
K∑

j=1

‖εj‖2 = ‖X− d1T −BZ‖2
F (3)

where Z = [z1, z2, . . . , zK ] ∈ Rd×K and ‖ · ‖F denotes the Frobenius norm of

a matrix.

PCA seeks to construct the rank-d subspace approximation to the D-dimensional

data that is optimal in the least squares sense. Like other least squares esti-

mation techniques, PCA is not robust against outliers in the data.

4.2 Weighted Principal Component Analysis

Instead of using the standard optimization criterion in (3), we modify it

to a weighted squared error criterion. Given a set of nonnegative weights

A = {a1, a2, . . . , aK} for the K neighbors, the optimization problem becomes

minimizing the total weighted squared error

Erpca =
K∑

j=1

aj‖εj‖2 (4)
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with respect to d,b1,b2, . . . ,bd, subject to bT
j bk = δjk for 1 ≤ j, k ≤ d. It can

easily be shown that the least squares estimate of d is equal to the weighted

sample mean vector

dA =

∑K
j=1 ajxij∑K

j=1 aj

= µA. (5)

The least squares estimates of b1,b2, . . . ,bd are the (orthonormal) eigenvec-

tors of

SA =
1

K

K∑

j=1

aj(xij − µA)(xij − µA)T , (6)

which is weighted sample covariance matrix of the K neighbors. This cor-

responds to a weighted version of PCA. To reduce the influence of possible

outliers among the K neighbors, we would like to set A such that outliers get

small weight values. In other words, if a data point xij has a large error norm

‖εj‖, we would like to set aj small. Robust estimation methods can help to

set the appropriate weights, making weighted PCA a robust version of PCA.

4.3 Robust Principal Component Analysis

The above solution for weighted PCA assumes that A is fixed and is already

known. For weighted PCA to work as a robust PCA algorithm, we noted above

that we want A to depend on the εj’s. We also note that εj’s depend on d

and B, which in turn depend on A. Because of this cyclic dependency, we

use an iterative procedure to find the solution by starting from some initial

estimates. This iterative procedure, called iteratively reweighted least squares

(IRLS) [22], can be summarized as follows:

(1) Use standard PCA to find the initial least squares estimates of d and B,

denoted d(0) and B(0). Set t = 0.

(2) Repeat the following steps:

(a) t = t + 1;

(b) Compute ε
(t−1)
j = xij −d(t−1)−B(t−1)(B(t−1))T (xij −d(t−1)), 1 ≤ j ≤

K;

(c) Compute a
(t−1)
j = a(‖ε(t−1)

j ‖), 1 ≤ j ≤ K;

(d) Compute the weighted least squares estimates d(t) and B(t) by per-

forming weighted PCA on X based on the weight set A(t−1).

Until d(t) and B(t) do not change too much from d(t−1) and B(t−1).
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Here we assume that a(·) is some weight function that determines the weight

aj from the corresponding error norm or error residual ej = ‖εj‖:

aj = a(ej) = a(‖εj‖).

Following the ideas of Huber [23], we replace the least squares estimator by a

robust estimator that minimizes

Eρ =
K∑

j=1

ρ(ej) =
K∑

j=1

ρ(‖εj‖),

where ρ(·) is some convex function.Using the Huber function

ρ(e) =





1
2
e2 |e| ≤ c

c(|e| − 1
2
c) |e| > c

for some parameter c > 0, the weight function can be defined as

a(e) =
ψ(e)

e
=

ρ′(e)
e

=





1 |e| ≤ c

c
|e| |e| > c

where ψ(·) is called the influence function which is the first derivative of ρ(·).
This weight function allows the IRLS procedure to perform M-estimation for

robust PCA. In our experiments, we set c to be half of the mean error residual

of the K nearest neighbors, i.e., c = 1
2K

∑K
j=1 ej.

4.4 RLLE Algorithm

4.4.1 Reliability Scores

After the IRLS procedure converges to give the weighted least squares esti-

mates of d and B, each neighbor xij has an associated weight value aj. A

normalized weight value a∗j is then computed as a∗j = aj/
∑K

k=1 ak. This nor-

malized weight value can serve as a reliability measure for each neighbor of

point xi. For all points not in the neighborhood of xi, their weights are set to

0. After performing robust PCA for all points in X , a total reliability score si
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is obtained for each point by summing up the normalized weight values from

all robust PCA runs. The smaller the value of the total reliability score si for a

point xi, the more likely it is that xi is an outlier. The reliability scores can be

used in different ways to reduce the influence of the outliers on the embedding

result. We will describe some specific methods below for realizing this idea.

Note that the normalized weight values a∗j ’s are analogous to the posterior

probabilities of the hidden variables in the expectation-maximization (EM)

algorithm for mixture models. The reliability scores are similar to the so-called

“responsibilities” used in the generative models for handwriting recognition

[24].

4.4.2 Weighted Embedding with Reliability Scores

To preserve the integrity of the data, all data points including the clean data

points and the outliers are projected into the embedding space. Embedding

is achieved by minimizing a weighted version of the cost function in (2) with

the reliability scores serving as weights.

Let Xd denote the set of clean data points identified based on the reliability

scores, i.e., a point xi is in Xd if and only if si ≥ α for some threshold α > 0.

The RLLE algorithm can be described as follows:

(1) For each data point xi ∈ X :

(a) Find the set Ni ⊂ Xd of K nearest neighbors of xi.

(b) Compute the reconstruction weights of the neighbors that minimize

the error of reconstructing xi.

(2) Compute the low-dimensional embedding Y for X that best preserves the

local geometry by minimizing the following weighted cost function:

Φs =
N∑

i=1

si‖yi −
∑

xj∈Ni

wijyj‖2.

Step (2) of the RLLE algorithm above can be seen as a generalization of that

for standard LLE. We can express the weighted cost function in a quadratic

form, Φs =
∑

i,j M s
ijy

T
i yj, where Ms = [M s

ij]N×N is a sparse, symmetric, and
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positive semidefinite matrix defined as:

Ms = S(I−W)T (I−W) = SM,

with S = diag(s2
1, s

2
2, . . . , s

2
N). By the Rayleign-Ritz theorem [19], minimizing

Φs with respect to the yi’s in Y can be done by finding the d+1 eigenvectors

of Ms with the smallest d+1 eigenvalues, which is equivalent to solving the

generalized eigenvalue problem of Mv = λS−1v. 1

4.4.3 Variants of RLLE Algorithm

The RLLE algorithm described above is one realization of the RLLE approach

based on robust statistics. However, this is not the only possibility. Two vari-

ants of the RLLE algorithm can be found in a longer version of this paper

[25].

4.4.4 Analysis of RLLE Algorithm

The RLLE algorithm makes LLE more robust from two aspects. In the first

step of the algorithm, the probability of choosing outliers as neighbors is re-

duced so that the reconstruction weights reflect more accurately the local

geometry of the manifold. In the second step, the undesirable effect of outliers

on the embedding result is further reduced by incorporating the reliability

scores as weights into the cost function.

One property of the reliability scores is that the mean score s̄ over all N

points is equal to one, i.e., s̄ = 1
N

∑N
i=1 si = 1. Therefore, the threshold α used

to identify the clean data points can be considered as αs̄, which is a certain

fraction of the mean reliability score. This makes it easier to set the value of

α. Figure 5 shows the cumulative distributions of reliability scores for the S

curve, Swiss roll and helix data sets, where the x-axis indicates the reliability

scores and the y-axis shows the frequency counts. The α values used in our

experiments are shown as vertical dashed lines. As long as α is neither too

small nor too large, the performance is not very sensitive to its exact setting.

1 To ensure that S−1 exists, all si’s have to be positive. We set si to some small
positive value ε if the reliability score is zero.
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Although we make use of the reliability scores to reduce the influence of out-

liers on the embedding performance of RLLE, the primary objective of the

algorithm is not for outlier detection. However, the second variant of the algo-

rithm shows that we can explicitly perform outlier detection if we so wish. The

detected outliers may be embedded separately or removed, depending on the

application at hand. Unlike the use of the threshold α in the RLLE algorithm,

however, outlier detection is more sensitive to the setting of α. In Section 5.3,

we will present some experimental results to demonstrate the outlier detection

ability of a variant of the RLLE algorithm.

5 Experiments

5.1 Synthetic Data

We apply RLLE to the three artificial data sets described in Section 3 with

parameter settings of the experiments depicted in Table 1. The parameter α

is set to 0.5 for the Swiss roll and S curve data sets and 0.8 for the helix data

set. The embedding results of RLLE are shown in subfigures (c) of Figures 2–4

for comparison with those of LLE in subfigures (b).

RLLE leads to significant improvement in embedding performance over stan-

dard LLE for all three data sets. For the Swiss roll and S curve data sets

which are embedded from R3 to R2, the embedding performance can be seen

best by taking into account the coloring of the data points in the plots. It can

be seen that the embedding results obtained by RLLE vary the color more

smoothly, showing that the local geometry of the data manifolds can be pre-

served better even when there are outliers in the data. As for the helix data

set, RLLE results in a very smooth curve, indicating a direct correspondence

between the indices of the data points and their coordinates in the embedding

space. However, the irregular mapping discovered by LLE shows that it cannot

preserve the neighborhood relationship well.

Analogous to finding the breakdown point of a robust estimator, we further

study how varying the noise level influences the embedding performance of

the RLLE algorithm. As expected, the embedding performance of RLLE gets

11



worse as the noise level increases. Figure 6 shows the embedding results for

the S curve data set as the number of outliers increases gradually from 250 to

300.

We compare our RLLE method with a related method proposed by Zhang

and Zha [17]. Their local linear smoothing method tries to detect and remove

outliers and hence can be used as a preprocessing step before ordinary manifold

learning is performed. Figure 7 shows some results comparing Zhang and Zha’s

method with our method on the noisy helix data set shown in Figure 7(a).

Subfigure (b) shows the data points after applying their smoothing method

and (c) shows the 1-dimensional embedding after applying standard LLE to

the smoothed data set in (b). The result of RLLE, as shown in Figure 7(d),

is apparently better. This may be due to the somewhat heuristic way of their

method in setting the weights for weighted PCA in the local smoothing step.

Moreover, since their method has to make a hard decision on each data point,

some outliers and noise points may not be successfully removed and hence the

performance of the subsequent embedding step based on standard LLE may

be impaired by them.

To evaluate the performance of RLLE on different types of outliers, we per-

form more experiments on the helix data set contaminated by noise other than

the uniform noise used in the previous experiments. Specifically, we use Gaus-

sian noise which is another common noise type. Figure 8(a) shows the helix

data set contaminated by Gaussian noise points. From the results shown in

subfigures (b)–(d), we can see that Zhang and Zha’s local smoothing method

can handle Gaussian noise a little better than uniform noise, while RLLE can

give results comparable to the local smoothing method.

5.2 Handwritten Digits from MNIST Database

To illustrate the effectiveness of RLLE on high-dimensional real-world data,

we perform experiments on handwritten digits from the well-known MNIST

database. 2 The digits in the database have been size-normalized and centered

to 28×28 gray-level images, so the dimensionality of the digit space is 784. In

2 http://yann.lecun.com/exdb/mnist/
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our experiments, we randomly choose 1,000 images of digit “8” from a total

of 60,000 digit images in the MNIST training set.

Figure 9 shows the result of using LLE to embed the data set onto R2. We

traverse along two paths within the projected manifold. The first path is the

horizontal (blue) path and the second path is the vertical (green) path. Both

start from the arrow-pointed images. As we can see, the first dimension ap-

pears to describe the slant of the digits, while the second dimension describes

the change of digit width. The slant and width changes along the paths are

quite smooth, showing that LLE can preserve the local geometry well when

projecting the digits onto R2.

In order to add some outliers to the original digit data set, we randomly select

50 (5%) digits and change the gray-level values of 20 randomly chosen pixel

locations for each digit by inverting each value. 3 Some of the noisy images

generated are shown in Figure 10. These noisy images serve as outliers in the

following experiments.

After adding outliers to the original data set, LLE and RLLE are applied to

obtain low-dimensional embeddings in R2. The number of nearest neighbors

K is equal to 10 and the parameter α of RLLE is set to 0.5. Figures 11 and 12

show the results of LLE and RLLE, respectively. It is easy to see that RLLE

is superior to LLE in revealing the continuous changes in slant and width of

the digits in R2.

5.3 Wood Texture Images from USC-SIPI Database

Besides handwritten digit images, we also study real-world wood texture im-

ages obtained from the USC-SIPI image database. 4 The images used in our

experiments are rotated texture images of four different orientations or rota-

tion angles (0◦, 60◦, 120◦, and 90◦). The original images are of size 512×512

captured using a digital camera. We divide each of the original images into

841 (= 29× 29) partially overlapping blocks of size 64×64. Thus the resulting

wood texture data set contains a total of 3,364 images each of 4,096 (= 64×64)

3 A gray-level value v is inverted by replacing it with 255− v.
4 http://sipi.usc.edu/services/database/
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dimensions. Figure 13 shows 10 examples of each orientation class.

Figure 14(a) shows the result when LLE embeds the clean data onto R2. As

we can see, texture images of four different orientations are generally well

separated in the embedding space. Then, we randomly select 200 images (50

images for each class) and add a knot to each image. The knot is randomly

selected from five small knot images extracted from real wood images. The

location of the knot is randomly determined but its orientation follows that

of the wood texture. These artificially created noisy images act as outliers in

the subsequent experiments. Some examples of these noisy images are shown

in Figure 15.

LLE and RLLE are then applied to the wood texture data set with noisy

images added. As before, the number of nearest neighbors K is equal to 10

and the parameter α of RLLE is set to 0.5. Figure 14(b) and Figure 14(c)

show the embedding results of LLE and RLLE. It is easy to see that RLLE

outperforms LLE in preserving the separation between clusters and the data

distribution within each cluster.

The above experiments show that RLLE is more robust against outliers in the

data than LLE. This is likely due to the ability of RLLE, which is based on a

robust PCA (RPCA) algorithm, in detecting the outliers and reducing their

undesirable effect on the embedding performance. To verify this, we further

perform some experiments to assess the outlier detection ability of RLLE.

We compare it with a simple outlier detection method, which is based on the

straightforward idea that a data point is more likely to be an outlier if the

size of the neighborhood containing a certain number of nearest neighbors

is large. More specifically, for each data point, we compute the size of its

neighborhood just large enough to cover the 10 nearest neighbors. The larger

the neighborhood size, the more likely the data point is an outlier. We conduct

the following experiments using this simple neighborhood-based method as

well as RPCA based on reliability scores for outlier detection.

We use the true positive (TP) rate and false positive (FP) rate as perfor-

mance measures. The TP rate measures the chance that an outlier is correctly

detected, while the FP rate measures the chance that a clean data point

is incorrectly detected as an outlier. Figure 16 shows the receiver operating

characteristic (ROC) curves comparing the RPCA outlier detection method
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and the simple neighborhood-based outlier detection method for both the S

curve data set and the wood texture data set. Since a larger area under curve

(AUC) implies better performance, we can see that the RPCA outlier detec-

tion method is significantly better for the S curve data set. RPCA is also

better for the wood texture data set although the difference is not as sig-

nificant. Besides the ROC curves, we also compare the two outlier detection

methods in terms of the signal-to-noise ratio (SNR). The SNR is defined as

20 log TN/FN (in dB), where TN (true negative) and FN (false negative) de-

note the number of true clean data points (signal) and the number of true

outliers (noise), respectively, after outlier detection and removal. The results

are shown in Figure 17 and Tables 2 and 3. We can see that the performance

difference between the two methods is larger when more points are detected

as outliers and removed. While the simple neighborhood-based method is as

good as the RPCA method in removing trivial outliers, it is not as effective

in removing the less obvious ones accurately when we intend to remove more

outliers from the data (and hence have to include the less obvious ones as

well).

6 Concluding Remarks

In this paper, we have proposed a robust version of LLE, called RLLE, that is

very robust even in the presence of outliers. RLLE first performs local robust

PCA on the data points in the manifold using a weighted PCA algorithm. A

reliability score is then obtained for each data point to indicate how likely it

is a clean data point (i.e., non-outlier). The reliability scores are then used

to constrain the locally linear fitting procedure and generalize the subsequent

embedding procedure by incorporating the reliability scores as weights into the

cost function. The undesirable effect of outliers on the embedding result can

thus be largely reduced. Experimental results on both synthetic and real-world

data show the efficacy of RLLE.

Despite the robustness of RLLE against outliers, it should be pointed out

that the computational requirement of it is significantly higher than that of

LLE. The bottleneck lies in the computation of the weights ai’s by RPCA.

Since the IRLS procedure has to be executed for each data point, multiple
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iterations are usually needed. As for the subsequent embedding procedure, its

computational demand is comparable to that of LLE, which is much lower.

Our future work will try to introduce approximations to speed up the RPCA

procedure.

It should be remarked that the same ideas proposed in this paper for LLE

may also be extended to make other NLDR methods, such as Isomap, more

robust. This is a potential direction for future research. Other possible re-

search directions include improvements of the current RLLE algorithm, such

as determining the parameter α automatically and reducing the computational

complexity. On the application side, we will consider more real-world appli-

cations, within and beyond areas in computer vision, image processing, and

text analysis, that can benefit from the robustness of NLDR algorithms.
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Fig. 1. LLE applied to the S curve data set. (a) S curve manifold inR3; (b) 1,500 data
points randomly sampled from the manifold; (c) LLE result for embedding space in
R2. Nearest neighbors (K = 15) are determined based on Euclidean distance.
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Fig. 2. LLE/RLLE applied to the noisy Swiss roll data set.
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Fig. 3. LLE/RLLE applied to the noisy S curve data set.
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Fig. 4. LLE/RLLE applied to the noisy helix data set. The x-axis in (b) and (c)
shows the indices of the data points (including outliers) and the y-axis shows their
coordinates in the embedding space R1.
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Fig. 5. Cumulative distributions of reliability scores for the S curve, Swiss roll and
helix data sets.
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Fig. 6. RLLE applied to the noisy S curve data set with different noise levels.
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Fig. 7. Zhang and Zha’s method/RLLE applied to the noisy helix data set.
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Fig. 8. Zhang and Zha’s method/RLLE applied to the helix data set contaminated
by Gaussian noise.
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Fig. 9. LLE on handwritten digit “8”. Top: embedding of digit images onto R2.
Bottom: images corresponding to points along the paths linked by solid lines.
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Fig. 10. Some noisy images generated to serve as outliers.

26



−3 −2 −1 0 1 2 3 4
−12

−10

−8

−6

−4

−2

0

2

Fig. 11. LLE on handwritten digit “8” with generated outliers. Top: embedding
of digit images onto R2 (the black circles represent the outliers). Bottom: images
corresponding to points along the paths linked by solid lines.
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Fig. 12. RLLE on handwritten digit “8” with generated outliers. Top: embedding
of digit images onto R2 (the black circles represent the outliers). Bottom: images
corresponding to points along the paths linked by solid lines.
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Fig. 14. LLE/RLLE applied to the wood texture data set.

30



Fig. 15. Some noisy wood texture images generated to serve as outliers.
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Fig. 16. ROC curves for the S curve and wood texture data sets.
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Fig. 17. SNR curves for the S curve and wood texture data sets.
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Table 1
Parameter settings of the LLE/RLLE experiments reported in Figures 2–4. The
percentage of outlier points is computed with respect to the number of clean data
points.

Parameter Swiss roll S curve Helix

Dimensionality of data space (D) 3 3 3

Dimensionality of embedding space (d) 2 2 1

Number of nearest neighbors (K) 15 15 10

Number of clean data points 1500 1500 500

Number (percentage) of outlier points 75(5%) 150(10%) 75(15%)

Minimum distance 2 0.2 0.3
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Table 2
SNRs (in dB) of the denoised S curve data set using the neighborhood-based and
RPCA outlier detection methods.

# predicted outliers (TP+FP) Neighborhood-based RPCA

50 23.5218 23.5218

100 28.6856 29.1902

150 32.9583 41.1674

200 34.4368 51.7622

250 37.2288 53.3615
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Table 3
SNRs (in dB) of the denoised wood texture data set using the neighborhood-based
and RPCA outlier detection methods.

# predicted outliers (TP+FP) Neighborhood-based RPCA

200 31.7264 30.0977

400 33.5662 33.2973

600 35.4888 36.4386

800 36.4453 39.1935

1000 38.2455 44.8958
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