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Abstract

Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can

be regarded as a generalization of expectation-maximization (EM) algorithms. An SM algo-

rithm aims at turning an otherwise intractable maximization problem into a tractable one by

iterating two steps. The S-step computes a tractable surrogate function to substitute the orig-

inal objective function and the M-step seeks to maximize this surrogate function. Convexity

plays a central role in the S-step. SM algorithms enjoy the same convergence properties as

EM algorithms. There are mainly three approaches to the construction of surrogate functions,

namely, by using Jensen’s inequality, first-order Taylor approximation, and the low quadratic

bound principle. In this paper, we demonstrate the usefulness of SM algorithms by taking lo-

gistic regression models, AdaBoost and the log-linear model as examples. More specifically, by

using different surrogate function construction methods, we devise several SM algorithms, in-

cluding the standard SM, generalized SM, gradient SM, and quadratic SM algorithms, and their

two variants called the conditional surrogate maximization (CSM) and surrogate conditional

maximization (SCM) algorithms.
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1 Introduction

In machine learning and statistics, optimization plays a very important role because many problems

require performing maximization or minimization of some objective function. One widely used

objective function is the log-likelihood function. Since it is closely related to convex (or concave)

functions [30], convexity (or concavity) also plays a central role in such problems. A successful

example is the well-known expectation-maximization (EM) algorithm [11]. Becker et al. [1] and

Lange et al. [23] showed that the EM algorithm can be derived from either Jensen’s inequality or

the concavity property of the log function. Along this line, a family of EM-like algorithms without

missing data [1] have been devised to handle cases involving no missing data. Lange et al. [23] unified

this family of algorithms under the framework of the so-called optimization transfer algorithms,

in which all algorithms rely on optimizing a function that serves as a surrogate for the original

objective function. By invoking convexity arguments, a general principle providing guidelines on

constructing these surrogate functions, as well as some specific examples, have been discussed [23].

Depending on the context, this often relies on three important tools, namely, Jensen’s inequality,

first-order Taylor approximation, and the low quadratic bound principle.

Optimization transfer algorithms are very efficient because they can make an otherwise hard or

very complicated optimization problem simpler. For example, an optimization transfer algorithm

can decouple the correlation among parameters so that they can be estimated in parallel. It can also

locally linearize a convex function near some value so as to make the problem at hand tractable. It

can avoid the computational problem of inverting large matrices as required by Newton’s method.

Moreover, optimization transfer enjoys the same local convergence properties as standard EM.

Other names have been used for optimization transfer methods. In the context of multidi-

mensional scaling (MDS) [3], optimization transfer is referred to as iterative majorization; while in

convex optimization [4], it is usually called the auxiliary function method. To contrast optimization

transfer methods with standard EM algorithms for missing data problems, Meng [26] suggested to

refer to these methods as SM algorithms. Here, S stands for the surrogate step while M stands

for the maximization (or minimization, depending on the optimization problem at hand) step. In

this paper we also prefer the name “SM algorithms” as it reflects more accurately the spirit of

this family of algorithms. Like EM algorithms, SM algorithms are also gaining popularity in com-

putational statistics. However, although EM algorithms are commonly used in machine learning
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nowadays, this is not the case for SM algorithms. This paper attempts to demonstrate the power

and potential of SM algorithms in machine learning, by using generalized linear models, such as

logistic regression and log-linear models, as specific examples for illustration.

We address two major issues in devising SM algorithms, namely, how a surrogate function is

defined and how the resultant surrogate function is maximized. On the first problem, there exist

three main approaches, namely, by using Jensen’s inequality, first-order Taylor approximation, and

the low quadratic bound principle. The first two approaches follow readily from the properties

of convex functions, while the third one uses a quadratic function to approximate the original

objective function. On the second problem, in general different maximization methods are required

for different surrogate functions. This leads to the standard SM, generalized SM, gradient SM,

and quadratic SM algorithms, and their two variants called the conditional surrogate maximization

(CSM) and surrogate conditional maximization (SCM) algorithms [26].

1.1 Contributions

To demonstrate how the three approaches mentioned above can be used to construct a surrogate

function, we consider the optimization problem corresponding to the binary logistic regression

model. Based on Jensen’s inequality, we decouple the correlation among the estimated parameters

and decompose the original high-dimensional optimization problem into a set of one-dimensional

sub-problems which can then be handled separately. Although we cannot obtain a one-step closed-

form iterative procedure, we present a gradient SM algorithm by borrowing ideas from the gradient

EM algorithm [22]. Moreover, we show that the iterative procedure of [5] can be regarded as a

generalized SM algorithm analogous to the generalized EM algorithm [11]. Based on the first-order

Taylor approximation, we express the original objective function as the difference of two convex

functions (i.e., a convex function plus a concave function), leading to a quadratic surrogate function.

Based on the low quadratic bound principle [2], we devise quadratic SM algorithms. The essence

of quadratic SM algorithms is to approximate the Hessian matrix in the pure Newton method with

a simpler positive definite matrix, and we will adopt a constant matrix in our case here. Thus, we

only have to compute the inverse of the Hessian matrix just once and inversion of large matrices

at each iteration can be avoided.

While Lange et al. [23] also used these three approaches to construct their SM algorithms, they
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considered different approaches for different optimization problems. In contrast, we consider the

use of the three approaches for the same optimization problem. Thus, our treatment allows us to

show that different construction approaches can be used to devise different SM algorithms for the

same optimization problem. In addition, based on combinations of Jensen’s inequality, first-order

Taylor approximation and the low quadratic bound principle, we present the fourth approach for

constructing surrogate functions. Quite surprisingly, the SM algorithms obtained turn out to be

equivalent to the parallel Bregman distance algorithms of [5], and thus our method can be seen

as providing a new derivation for their algorithms. Compared with [10] and [5], the mathematical

skills required for our approach are much simpler because we only need to utilize Jensen’s inequality

or first-order Taylor approximation over a convex function.

Our other contributions are to devise CSM and SCM algorithms for the binary logistic re-

gression model, and SM algorithms for multi-class logistic regression models and AdaBoost. More

importantly, our approaches naturally guarantee convergence of the corresponding iterative algo-

rithms. Moreover, we derive an SM algorithm for the log-linear model. On the one hand, this

illustrates an application of the SM algorithm to a constrained optimization problem. On the other

hand, our SM algorithm may be seen as an amendment of the generalized iterative scaling (GIS) [7]

as the constraint in GIS is not exactly satisfied. In summary, we believe that SM algorithms can

find wide applications in machine learning even beyond generalized linear models.

1.2 Related Work

The idea behind SM algorithms has been used in logistic regression models and AdaBoost (see, e.g.,

[28, 24]). However, our work has been mainly motivated by some recent works [5, 20, 21] which are

based on Bregman distance optimization methods. Simply put, the Bregman distance between two

vectors is defined via a convex function on a convex set that contains these two vectors. Della Pietra

et al. [9] applied Bregman distance optimization to log-linear models, while Della Pietra et al. [9] and

Collins et al. [5] discussed its relationship with GIS for log-linear models [7]. Like GIS, the core spirit

of Bregman distance optimization is from convex analysis [30]. However, this approach requires

considerable mathematical skills to construct a Bregman function that matches the problem in

question. Furthermore, in order to use Bregman distance optimization, it is common to reformulate

the unconstrained optimization problem as an equivalent constrained optimization problem subject
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to some constraints. This makes the problem much more technically involved. Della Pietra et al. [10]

also recognized these difficulties and sought to use the Legendre transformation technique [30]. The

main difference between [10] and [5] is that the former works with the argument at which a convex

conjugate takes on its value, while the latter works with the value of the functional itself. This

makes it more natural to formulate a duality theorem.

The rest of this paper is organized as follows. Section 2 presents the generic principle of

SM algorithms and Section 3 presents two extensions of SM algorithms. This is then applied

to the binary logistic regression model in Sections 4 and 5. In Sections 6–8, we further present

SM algorithms for the multi-class logistic regression model, AdaBoost, and the log-linear model,

respectively. The last section gives some concluding remarks.

2 Generic Structure of SM Algorithms

In many applications we have to consider the problem of maximizing an arbitrary function L(θ)

with respect to (w.r.t.) some parameter vector θ ∈ Rq. Given an estimate θ(t) at the tth iteration,

a typical SM algorithm [23, 26] consists of the following two steps:

Surrogate Step (S-Step): Substitute L(θ) by a surrogate function Q(θ | θ(t)), such that

L(θ) ≥ Q(θ | θ(t)) (1)

for all θ, with equality holding at θ = θ(t).

Maximization Step (M-Step): Obtain the next parameter estimate θ(t+1) by maximizing

the surrogate function Q(θ | θ(t)) w.r.t. θ, i.e.,

θ(t+1) = arg max
θ

Q(θ | θ(t)). (2)

Note that the SM algorithms can be applied equally well to the minimization of L(θ), by

simply reversing the inequality sign in (1) and changing the “max” to “min” in (2). Therefore,

in the sequel, “M” stands for either maximization or minimization depending on the optimization

problem at hand.

Depending on the surrogate functions obtained, different SM algorithms can be devised accord-

ingly. In the standard SM algorithm, a closed-form solution for θ(t+1) exists in the M-step. How-

ever, it is not always possible to obtain a closed-form solution for θ(t+1) in the M-step. In the same
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spirit as the generalized EM algorithm [11], we can devise a generalized SM algorithm, where, instead

of maximizing Q(θ|θ(t)), we only attempt to find a θ(t+1) such that Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)).

Alternatively, in the same spirit as the gradient EM algorithm [22], we may also devise a gradient

SM algorithm, as

θ(t+1) = θ(t)− (∇2Q(θ(t)|θ(t)))−1∇Q(θ(t)|θ(t)),

which is indeed the pure Newton method over Q(θ|θ(t)) instead of L(θ) because L(θ)−Q(θ|θ(t))

has a stationary point at θ = θ(t) so that ∇L(θ(t)) = ∇Q(θ(t)|θ(t)).

2.1 Convergence Properties

Let Ω ⊆ Rq be a set of feasible parameter values and

L : θ ∈ Ω 7→ L(θ) ∈ R

defines the objective function to be maximized. We regard each SM iteration as a point-to-set

mapping A such that θ(t) becomes θ(t+1) ∈ A(θ(t)). That is, the generalized SM algorithm leads

us to the following problem

Find θ̂ ∈ Ω such that L(θ̂) ≥ L(θ) for all θ ∈ Ω.

Given an initial value θ(0), we can generate an iterative sequence {θ(t)} such that θ(t+1) ∈ A(θ(t)).

It follows from the definition of the standard (or generalized) SM algorithm that

L(θ(t+1)) ≥ Q(θ(t+1) | θ(t)) ≥ Q(θ(t) | θ(t)) = L(θ(t)).

Let {L(θ(t))} be bounded above. Then L(θ(t)) converges monotonically to some L∗ < ∞.

The standard (generalized) SM algorithm enjoys the same convergence properties [11, 34] as

the standard (generalized) EM algorithm. Throughout this subsection, we make the following

assumptions:

L is continuous in Ω and differentiable in the interior of Ω, (3)

Ω0 = {θ ∈ Ω : L(θ) ≥ L(θ(0))} is compact for any L(θ(0)) > −∞, (4)

Q(θ|φ) is continuous in both θ and φ in Ω, and differentiable in θ in the interior of Ω. (5)

From the convergence results in [34, Theorems 2 and 3], it is straightforward to obtain the conver-

gence results to our generalized SM (standard) algorithm. Specifically, let M and S be the set of
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local maxima and the set of stationary points, respectively, of L in the interior of Ω. The condition

that Q(θ|φ) is continuous in both θ and φ in Ω is a sufficient condition for that A is a closed

point-to-set mapping over the complement of S (M). Since L(θ) − Q(θ|θ(t)) has a stationary

point at θ = θ(t), we have ∇L(θ(t)) = ∇Q(θ(t)|θ(t)) 6= 0 for any θ(t) 6∈ S. This implies that

θ(t) is not a local maximum of Q(θ|θ(t)) over θ ∈ Ω. From the definition of the M-step, we have

Q(θ(t+1)|θ(t)) > Q(θ(t)|θ(t)), hence L(θ(t+1)) > L(θ(t)) for all θ(t) 6∈ S. Therefore, it follows

from Zangwill’s global convergence theorem [34] that

Theorem 1 Suppose that the conditions (3), (4) and (5) are satisfied. Then all the limit points

of any iterative sequence {θ(t)} of a generalized SM algorithm are stationary points of L(θ) and

L(θ(t)) converges monotonically to L(θ∗) for some stationary point θ∗. Furthermore, if Q also

satisfies

sup
θ∈Ω

Q(θ|φ̂) > Q(φ̂|φ̂) for any φ̂ ∈ S\M, (6)

then all the limit points of any sequence {θ(t)} of the SM algorithm are local maxima of L(θ) and

L(θ(t)) converges monotonically to L(θ∗) for some local maximum θ∗.

Condition (5) is in fact very weak as it is usually satisfied in most practical cases. For example,

this condition always holds in Sections 4–8. Condition (6) is typically hard to verify. However, if

L(θ) is concave in θ and bounded above (< ∞), then L(θ) has a unique stationary point which is

the global maximum. Thus, we have the following theorem.

Theorem 2 Suppose that the conditions (3), (4) and (5) are satisfied. If L(θ) is concave in θ and

bounded above, then the limit point of any sequence {θ(t)} of a generalized SM algorithm is the

global maximum of L(θ) and L(θ(t)) converges monotonically to L(θ∗) for the global maximum θ∗.

2.2 Construction of Surrogate Functions

Clearly, construction of the surrogate function is key to SM algorithms in turning an otherwise

intractable optimization problem into a tractable one. On the one hand, the closer is the surrogate

function to L(θ), the more efficient is the SM algorithm. On the other hand, a good surrogate

function should preferably have a closed-form solution in the M-step. Lange et al. [23] discussed

some general principles and presented three methods for the design of surrogate functions in which

convexity of functions plays a central role.

7



Suppose a function f : S → (−∞, +∞] is convex on a closed convex set S ⊆ Rq. The first

method stems from Jensen’s inequality

f
( k∑

i=1

αiui

)
≤

k∑

i=1

αif(ui),

where αi ≥ 0 (i = 1, . . . , k) and
∑k

i=1 αi = 1, or its variant

f
( k∑

i=1

αiui

)
≤

k∑

i=1

αif(ui) +
(
1−

k∑

i=1

αi

)
f(0),

where
∑k

i=1 αi ≤ 1.

The following two extensions of Jensen’s inequality are also useful. The first one is

f(cTu) ≤
∑

i

ciwi

cTw
f
(cTw

wi
ui

)
,

where all elements of c = [ci] and w = [wi] are positive, while the second one is

f
( k∑

i=1

ciui

)
≤

k∑

i=1

αif
( ci

αi
(ui − vi) +

k∑

j=1

cjvj

)
,

where αi ≥ 0 (i = 1, . . . , k) and
∑k

i=1 αi = 1, and αi > 0 whenever ci 6= 0 [12]. These inequalities

can be used to decouple the correlation among the ui’s.

The second construction method makes use of the following property: When f(·) is also dif-

ferentiable on its domain S, it can be linearized by first-order Taylor approximation, as

f(u) ≥ f(v) +∇f(v)T (u− v), for u,v ∈ S.

Since most continuous functions can be expressed as the difference of two convex functions, we can

often use this trick to construct a surrogate function. For example, if for any f(u) = g(u) − h(u)

where both g(u) and h(u) are convex, we can write f(u) ≤ g(u) − h(v) − ∇h(v)T (u − v). The

use of differences of convex (d.c.) functions is a very important strategy in convex optimization

and has received much attention recently in machine learning. For example, the recently proposed

convex-concave computational procedure (CCCP) [35] is essentially based on this strategy.

The third method uses the low quadratic bound principle [2]. Suppose there exists a u-

independent positive semi-definite matrix B such that B−∇2f(u) is positive semi-definite. Then,

it can be shown that

f(u) ≤ f(v) +∇f(v)T (u− v) +
1
2
(u− v)TB(u− v).
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This is often used to define a quadratic surrogate function that can avoid the inversion of the

Hessian matrix in Newton’s method.

3 Extensions of SM: CSM and SCM

For a multi-parameter optimization problem with a set of parameter vectors Θ = {θ1, . . . ,θC}, the

objective function L(Θ) may also be expressed as L(θ1, . . . ,θC). In order to maximize L(θ1, . . . , θC)

w.r.t. θi’s, we use the so-called block relaxation diagram proposed by [8]. For simplicity of notation,

let Li = L(θ1(∗), . . . , θi−1(∗), θi, θi+1(t), . . . , θC(t)), where all ∗’s are simultaneously either t or t+1.

The block relaxation algorithm obtains θi(t+1) by maximizing Li. If ∗ = t, the procedure is called

parallel-update (corresponding to the Jacobi method in numerical mathematics), otherwise it is

called sequential-update (corresponding to the Gauss-Seidel method).

Instead of working with L(Θ) directly, we apply the SM algorithm to the maximization of Li

w.r.t. θi, i.e., we first for Li’s define surrogate functions Qi(θi|θi(t)), whose types can be different

for different Li’s, and then maximize Qi(θi|θi(t)). In many cases, since Li is in fact a log-likelihood

function conditioned on θl’s (l 6= i) in computational statistics, we refer to Qi(θi|θi(t)) as a con-

ditional surrogate function. As a result, this variant of the SM algorithm is called the conditional

surrogate maximization (CSM) algorithm (Table 1). It is noteworthy that the CSM algorithm is

closely related to the CEM algorithm [18], which is for maximizing an approximate conditional

likelihood function in mixture models.

An alternative to dealing with multiple variables (parameters) is based on the idea behind

the ECM algorithm [27], where one first computes the E-step and then decomposes the M-step

into several CM-steps. Analogous to the setting of ECM, we also propose a surrogate conditional

maximization (SCM) algorithm (Table 2). The differences between CSM and SCM can be clearly

seen from Tables 1 and 2. Specifically, CSM decomposes each SM-step into C conditional SM-steps,

while SCM only decomposes each M-step of SM into C conditional M-steps. In Table 2, ri(Θ) is a

vector function of Θ. Specifically, ri(Θ) = (θ1, . . . , θi−1, θi+1, . . . , θC) which is a vector containing

all the parameters except θi.
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Table 1: Block relaxation diagram of the CSM algorithm.

Begin Start with θi(0) ∈ Rm for i = 1, . . . , C and t = 0.

S-step (t+1).1 Define a surrogate function Q1(θ1|θ1(t)) for L1.

M-step (t+1).1 Find a θ1(t+1) such that Q1(θ1(t+1)|θ1(t)) ≥ Q1(θ1(t)|θ1(t)).

S-step (t+1).2 Define a surrogate function Q2(θ2|θ2(t)) for L2.

M-step (t+1).2 Find a θ2(t+1) such that Q2(θ2(t+1)|θ2(t)) ≥ Q2(θ2(t)|θ2(t)).

· · · · · ·
S-step (t+1).C Define a surrogate function QC(θC |θC(t)) for LC .

M-step (t+1).C Find a θC(t+1) such that QC(θC(t+1)|θC(t)) ≥ QC(θC(t)|θC(t)).

Motor If not converged, then t ← t+1 and go to S-step (t+1).1.

Table 2: Block relaxation diagram of the SCM algorithm.

Begin Start with θi(0) ∈ Rm for i = 1, . . . , C and t = 0.

S-step t Define a surrogate function Q(Θ|Θ(t)) for L(Θ).

M-step t.1 Find a θ1(t+1) that satisfies Q(Θ|Θ(t)) ≥ Q(Θ(t)|Θ(t)) subject to

r1(θ2, . . . , θC) = r1(θ2(t), . . . , θC(t)).

M-step t.2 Find a θ2(t+1) that satisfies Q(Θ|Θ(t)) ≥ Q(Θ(t)|Θ(t)) subject to

r2(θ1, θ3, . . . ,θC) = r2(θ1(∗), θ3(t), . . . ,θC(t)).

· · · · · ·
M-step t.C Find a θC(t+1) that satisfies Q(Θ|Θ(t)) ≥ Q(Θ(t)|Θ(t)) subject to

rC(θ1,θ2, . . . , θC−1) = rC(θ1(∗),θ2(∗), . . . ,θC−1(∗)).
Motor If not converged, then t ← t+1 and go to S-step t.

4 SM Algorithms for Binary Logistic Regression Model

In this section we focus on parameter estimation in the binary logistic regression model and present

several SM algorithms based on using different methods for constructing the surrogate function.

The first is based on Jensen’s inequality (Section 4.1), the second is based on the first-order Taylor

approximation (Section 4.2), the third is based on the low quadratic bound principle (Section 4.3),
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while the last one is based on a combination of approaches (Section 4.4). Moreover, we will also see

that the generalized SM algorithm is equivalent to the parallel Bregman optimization algorithm in

[5].

Let T = {(x1, y1), . . . , (xn, yn)} be a finite set of training examples, where each instance xi

from a domain or instance space X corresponds to a label yi ∈ {−1,+1}. We also assume that

we are given a set of real-valued feature functions, h1, . . . , hm, on X . Now our goal is to label the

xi’s using a linear combination of these features. In other words, we want to find a parameter

vector λ = (λ1, . . . , λm)T ∈ Rm such that fλ(xi) =
∑m

j=1 λjhj(xi) is a good approximation of the

underlying classification function. Instead of using fλ directly as a classification rule, we usually

postulate that the yi’s come from a probabilistic model associated with fλ(xi). In logistic regression

models, one suggestion is that the posterior probability of yi is given by a logistic function of fλ(xi),

as

p̂(yi | xi,λ) =
1

1 + exp{−yi
∑m

j=1 λjhj(xi)} . (7)

Accordingly, we can use the maximum likelihood estimation method for λ. Here we reformulate

maximum likelihood estimation as an equivalent minimization problem, which is based on the

following loss function

Lb(λ) =
n∑

i=1

ln
{

1 + exp
(
− yi

m∑

j=1

λjhj(xi)
)}

.

This problem was also addressed by an algorithm called LogitBoost [5] in the context of boosting

[16, 32].

Let us define

gij = −yihj(xi) (8)

and gi = (gi1, . . . , gim)T . Thus,

Lb(λ) =
n∑

i=1

ln
{

1 + exp
( m∑

j=1

λjgij

)}
. (9)

As in [5], we assume that
m∑

j=1

|gij | ≤ 1. (10)

Moreover, without loss of generality, we assume throughout this paper that gij 6= 0 for all i and j.

If there exists some gij = 0, we can simply remove the corresponding term from the summation in

exp{∑m
j=1 λjgij} so that the same results are still applicable.
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4.1 Using Jensen’s Inequality

We rewrite Lb(λ) in (9) as

Lb(λ) =
n∑

i=1

ln
{

1 + exp
[ m∑

j=1

|gij |
( gij

|gij |(λj − λj(t)) + λ(t)Tgi

)
+ (1− αi)λ(t)Tgi

]}
,

where

αi =
m∑

j=1

|gij |. (11)

Since d2 ln(1+exp(u))
du2 = exp(u)

(1+exp(u))2
> 0, ln(1 + exp(·)) is convex, and hence

Lb(λ) ≤
n∑

i=1

(1− αi) ln
(
1 + exp(λ(t)Tgi)

)
+

n∑

i=1

{ m∑

j=1

|gij | ln
[
1 + exp

( gij

|gij |(λj − λj(t)) + λ(t)Tgi

)]}

≡ Qz(λ|λ(t)). (12)

It is easy to show that Qz(λ(t)|λ(t)) = Lb(λ(t)). Hence, Qz(λ|λ(t)) can be used as a surrogate

function of Lb(λ). We then minimize Qz(λ|λ(t)) w.r.t. the λj ’s, by setting the partial derivative

∂Qz(λ|λ(t))
∂λj

=
n∑

i=1

gij

exp
(
λ(t)Tgi + gij

|gij |(λj − λj(t))
)

1 + exp
(
λ(t)Tgi + gij

|gij |(λj − λj(t))
)

to zero. However, a closed-form solution cannot be found. There are two methods to tackle this

problem. One is to employ a strategy similar to the generalized EM algorithm [11], leading to a

generalized SM algorithm. Alternatively, we can resort to a gradient SM algorithm analogous to

the gradient EM algorithm [22]. Here, we employ this strategy. Using

∂Qz(λ|λ(t))
∂λj

∣∣∣∣∣
λj=λj(t)

=
n∑

i=1

pi(λ(t))gij ,

∂2Qz(λ|λ(t))
∂λ2

j

∣∣∣∣∣
λj=λj(t)

=
n∑

i=1

pi(λ(t))(1− pi(λ(t)))|gij |,

where pi(λ) = exp(λT
gi)

1+exp(λT
gi)

, we update the current parameter estimate λj(t) to

λj(t+1) = λj(t)−
{

n∑

i=1

pi(λ(t))(1− pi(λ(t)))|gij |
}−1 n∑

i=1

pi(λ(t))gij . (13)

This gives rise to a gradient SM algorithm.
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4.2 Using First-Order Taylor Approximation

First, notice that ln cosh(u) = ln exp(u)+exp(−u)
2 for u ∈ (−∞,∞) is even while ln cosh

√
u for

u ∈ [0,∞) is concave [17]. It is easy to obtain

ln
(
1 + exp(λTgi)

)
= ln 2 +

λTgi

2
+ ln cosh

(
λTgi

2

)
= ln 2 +

λTgi

2
+ ln cosh

( |λTgi|
2

)
. (14)

Let
√

u = |λT
gi|

2 . Then it follows from the concavity1 of ln cosh
√

u that

ln cosh
( |λTgi|

2

)
≤ ln cosh

( |λ(t)Tgi|
2

)
+ βi(t)

(
(λTgi)2

4
− (λ(t)Tgi)2

4

)

= ln cosh
( |λ(t)Tgi|

2

)
+

1
4
(λ− λ(t))T βi(t)gigT

i (λ + λ(t)),

where βi(t) stands for the derivative of ln cosh
√

u at
√

u = |λ(t)Tgi|/2, and βi(t) = tanh(|λ(t)T gi|/2)

|λ(t)T gi|
when λ(t)Tgi 6= 0 and βi(t) = 1

2 otherwise. Thus, we obtain a quadratic surrogate function

Qf (λ|λ(t)) = n ln 2 +
n∑

i=1

{λTgi

2
+ ln cosh(

λ(t)Tgi

2
)
}

+
1
4
(λ− λ(t))T

{
n∑

i=1

βi(t)gigT
i

}
(λ + λ(t)) (15)

= Lb(λ(t)) +
n∑

i=1

(λ− λ(t))Tgi

2
+

1
4
(λ− λ(t))T

{
n∑

i=1

βi(t)gigT
i

}
(λ + λ(t)).

Minimization of Qf (λ|λ(t)) w.r.t. λ results in a new one-step SM algorithm

λ(t+1) = −
{

n∑

i=1

βi(t)gigT
i

}−1 n∑

i=1

gi. (16)

4.3 Using the Low Quadratic Bound Principle

The original idea of the low quadratic bound principle was proposed by [2]. More specifically, let

L(θ) be the objective function to be maximized, ∇L(θ) the Fisher score vector and ∇2L(θ) the

Hessian matrix at θ ∈ Rq. The low quadratic bound principle aims at finding a negative definite

q × q matrix B such that ∇2L(θ) º B for all θ.2 Thus, one can define the surrogate function

Q(θ | φ) of L(θ) as

Q(θ|φ) = L(φ) + (θ − φ)T∇L(φ) +
1
2
(θ − φ)TB(θ − φ).

1It is well-known that ln cosh
√

u is concave. Nevertheless, we present a new proof in Appendix A because the

proof procedure will be useful in the sequel.
2Here C º D means C−D is positive semi-definite.
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Clearly, L(θ) − Q(θ|φ) attains its minimum at θ = φ. Since Q(θ|φ) is a quadratic function, its

concavity implies that it has only one maximum. If we let φ be the tth estimate of θ, denoted θ(t),

then maximizing Q(θ|θ(t)) w.r.t. θ yields the (t+1)th estimate of θ as

θ(t+1) = θ(t)−B−1∇L(θ(t)). (17)

Note that if B is singular, we use its Moore-Penrose inverse instead. Obviously, it is a special case

of the SM algorithm, and, due to its origin from the low quadratic bound principle, will be referred

to as the quadratic SM algorithm in the sequel.

We now apply the low quadratic bound principle to the binary logistic regression model. First,

we compute the Fisher score vector and Hessian matrix as

∇Lb(λ) =
n∑

i=1

pi(λ)gi,

∇2Lb(λ) =
n∑

i=1

pi(λ)(1− pi(λ))gigT
i . (18)

This leads to the following second-order Taylor series approximation of the objective function Lb(λ)

at λ(t):

Qn(λ | λ(t)) = L(λ(t)) + (λ− λ(t))T∇L(λ(t)) +
1
2
(λ− λ(t))T∇2L(λ(t))(λ− λ(t)). (19)

Using the pure Newton method, the corresponding iteration formula is

λ(t+1) = λ(t)−
{ n∑

i=1

pi(λ(t))(1− pi(λ(t)))gigT
i

}−1 n∑

i=1

pi(λ(t))gi. (20)

On the other hand, since pi(λ)(1− pi(λ)) ≤ 1
4 , we have

∇2Lb(λ) ¹ 1
4
GGT ,

where G = [g1, . . . ,gn]. Now, given the tth iterates λj(t)’s of λj ’s, we can define a surrogate

function of Lb(λ) as

Qq(λ | λ(t)) = Lb(λ(t)) + (λ− λ(t))T∇Lb(λ(t)) +
1
8
(λ− λ(t))TGGT (λ− λ(t)). (21)

Then, minimization of Qq(λ|λ(t)) gives rise to the (t+1)th iterate of λ, as:

λ(t+1) = λ(t)− 4(GGT )−1∇Lb(λ(t)). (22)

We can see that the assumption
∑m

j=1 |gij | ≤ 1 is not necessary for this SM algorithm.
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4.4 Different Combinations of the Basic Approaches

Depending upon the problem at hand, usually one of the three approaches mentioned in Section 2

is used to construct a surrogate function. However, when none of these approaches can give a

closed-form solution, one may consider using multiple approaches in tandem. Here we illustrate

some combination approaches in the context of the binary logistic regression model. We will first

consider the combination of Jensen’s inequality and the first-order Taylor approximation, and will

see that it works well independent of the order in which they are combined. Next, we will consider

the combination of Jensen’s inequality and the low quadratic bound principle.

Combination 1 We first apply Jensen’s inequality to Qz(λ|λ(t)) in (12) and then apply

first-order Taylor approximation to the ln(·) function. Specifically, by

ln(u) ≤ ln(v) +
u− v

v
for u, v > 0 (23)

and letting u = 1 + exp
(

gij

|gij |(λj − λj(t)) + λ(t)Tgi

)
and v = 1 + exp(λ(t)Tgi), we have,

ln
[
1 + exp

( gij

|gij |(λj − λj(t)) + λ(t)Tgi

)]

≤ ln
[
1 + exp(λ(t)Tgi)

]
+

(
exp

( gij

|gij |(λj − λj(t))
)− 1

)
exp(λ(t)Tgi)

1 + exp(λ(t)Tgi)
.

By combining this with Qz(λ|λ(t)), we obtain a new surrogate function for Lb(λ):

Qc(λ|λ(t)) (24)

=
n∑

i=1

ln
(
1 + exp

( m∑

j=1

λj(t)gij

))
+

n∑

i=1

pi(λ(t))
m∑

j=1

|gij |
{

exp
( gij

|gij |(λj − λj(t))
)− 1

}
.

Since the partial derivative of Qc(λ|λ(t)) w.r.t. λj is

∂Qc(λ|λ(t))
∂λj

=
n∑

i=1

pi(λ(t))gij exp
( gij

|gij |(λj − λj(t))
)

=
∑

i∈S+
j

pi(λ(t))|gij | exp
(
λj − λj(t)

)−
∑

i∈S−j

pi(λ(t))|gij | exp
(
λj(t)− λj

)
,

where S+
j = {i : gij > 0} and S−j = {i : gij < 0}, it is easy to find an exact analytical solution of

argminλQc(λ|λ(t)) as

λj(t+1) = λj(t) +
1
2

ln
(∑

i∈S−j
|gij |pi(λ(t))

∑
i∈S+

j
|gij |pi(λ(t))

)
. (25)
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Combination 2 The second combination approach first applies the first-order Taylor approx-

imation and then Jensen’s inequality. Now let u = 1+exp(
∑m

j=1 λjgij) and v = 1+exp(
∑m

j=1 λj(t)gij)

in (23), we have

ln
(
1 + exp(

m∑

j=1

λjgij)
)
≤ ln

(
1 + exp(

m∑

j=1

λj(t)gij)
)

+
exp(

∑m
j=1 λjgij)− exp(

∑m
j=1 λj(t)gij)

1 + exp(
∑m

j=1 λj(t)gij)
.

It thus follows from Lb(λ) in (9) that

Lb(λ) ≤
n∑

i=1

ln
(
1 + exp

( m∑

j=1

λj(t)gij

))
+

n∑

i=1

exp
( ∑m

j=1 λjgij

)− exp
( ∑m

j=1 λj(t)gij

)

1 + exp
( ∑m

j=1 λj(t)gij

)

=
n∑

i=1

ln
(
1 + exp

( m∑

j=1

λj(t)gij

))
+

n∑

i=1

pi(λ(t))
[
exp

( m∑

j=1

(λj − λj(t))gij

)− 1
]

≡ Q∗(λ|λ(t)).

Using Jensen’s inequality, we have

exp
( m∑

j=1

(λj − λj(t))gij

)
= exp

( m∑

j=1

|gij | gij

|gij |(λj − λj(t)) + (1− αi)0
)

≤ 1− αi +
m∑

j=1

|gij | exp
( gij

|gij |(λj − λj(t))
)
.

Inserting this inequality into Q∗(λ|λ(t)), we again obtain the surrogate function Qc(λ|λ(t)) and

the iterative equation given in (25).

Clearly, this is a standard SM algorithm. Note that this algorithm is equivalent to the parallel

Bregman distance algorithm for binary logistic regression proposed by [5]. However, our derivation

is much simpler because we only utilize Jensen’s inequality with the convexity of ln(1 + exp(u))

and first-order Taylor approximation with the concavity of ln(u).

Combination 3 The point of departure of the third combination approach is from the

surrogate function Qz(λ|λ(t)) defined in (12). As

∂Q2
z(λ|λ(t))
∂λ2

j

=
n∑

i=1

|gij |
exp

(
λ(t)T gi + gij

|gij | (λj − λj(t))
)

1 + exp
(
λ(t)T gi + gij

|gij | (λj − λj(t))
)

[
1−

exp
(
λ(t)T gi + gij

|gij | (λj − λj(t))
)

1 + exp
(
λ(t)T gi + gij

|gij | (λj − λj(t))
)

]

≤ 1
4

n∑

i=1

|gij |,

we apply the low quadratic bound principle to Qz(λ|λ(t)), leading to another surrogate function

Qm(λ|λ(t)) = Lb(λ(t)) + (λ− λ(t))T∇Lb(λ(t)) +
1
8
(λ− λ(t))TD(λ− λ(t)), (26)
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where D = diag
( ∑n

i=1 |gi1|, . . . ,
∑n

i=1 |gim|
)

is a diagonal matrix, and we use Qz(λ|λ(t)) = Lb(λ)

and ∇Qz(λ(t)|λ(t)) = ∇Lb(λ) at λ = λ(t). Thus, we have

λj(t+1) = λj(t)− 4
( n∑

i=1

|gij |
)−1

n∑

i=1

pi(λ(t))gij , j = 1, . . . , m. (27)

Apparently, Qm(λ|λ(t)) is also a surrogate function for the log-likelihood function Lb(λ) through

combining Jensen’s inequality and the low quadratic bound principle.

4.5 Theoretical Analysis

We can see that the surrogate function for an objective function is not unique. By using (com-

binations of) different approaches from Section 2, different surrogate functions and consequently

different SM algorithms can be devised. Table 3 compares the various SM algorithms proposed in

the previous subsections, and their needs for matrix inversion are shown in Table 4.

Table 3: General comparison of the proposed SM algorithms and the pure Newton method for the

binary logistic regression.

Method Surrogate Iterative Approach(es) used

function equation

SM-1 Qz(λ|λ(t)) in (12) (13) Jensen’s inequality

SM-2 Qf (λ|λ(t)) in (15) (16) First-order Taylor approximation

SM-3 Qq(λ|λ(t)) in (21) (22) Low quadratic bound principle

SM-4 Qc(λ|λ(t)) in (24) (25) Jensen’s inequality

+ first-order Taylor approximation

SM-5 Qm(λ|λ(t)) in (26) (27) Jensen’s inequality

+ low quadratic bound principle

Newton’s Qn(λ|λ(t)) in (19) (20)

¿From Section 4.4, it can be shown that, for the same λ(t),

Lb(λ) ≤ Qz(λ|λ(t)) ≤ Qc(λ|λ(t)), (28)

Lb(λ) ≤ Qz(λ|λ(t)) ≤ Qm(λ|λ(t)). (29)
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Again considering λ(t+1) in (25), we have

Qz(λ(t+1)|λ(t)) ≤ Qc(λ(t+1)|λ(t)) ≤ Qc(λ(t)|λ(t)) = Lb(λ(t)) = Qz(λ(t)|λ(t)).

Qz(λ(t+1)|λ(t)) ≤ Qm(λ(t+1)|λ(t)) ≤ Qm(λ(t)|λ(t)) = Lb(λ(t)) = Qz(λ(t)|λ(t)).

This implies that the iterative procedure based on either (25) or (27) defines a generalized SM

algorithm w.r.t. the surrogate function Qz(λ|λ(t)). Therefore, we see that a standard SM algorithm

w.r.t. one surrogate function may at the same time be a generalized SM algorithm w.r.t. another

surrogate function.

SM-1 is a gradient SM algorithm. Like the gradient EM algorithm, its convergence is not

guaranteed. Here, since the SM-k (k = 2, . . . , 5) algorithms are standard SM algorithms, we

consider their convergence properties. For SM-3 and SM-5, their corresponding surrogate functions

Qq(λ|λ(t)) and Qm(λ|λ(t)) are clearly continuous in both λ and λ(t). For SM-2, it is easy to

see from Lemma 1 that βi(t) is continuous in λ(t)Tgi at (−∞, +∞). As a result, we obtain that

Qf (λ|λ(t)) is continuous in λ(t), and hence Qf (λ|λ(t)) is continuous in both λ and λ(t). As for SM-

4, we choose to regard it as a generalized SM algorithm w.r.t. the surrogate function Qz(λ|λ(t)) in

(12), which is continuous in both λ and λ(t). On the other hand, from (18), we have ∇2Lb(λ) º 0.

Consequently, Lb(λ) is convex. We again note that Lb(λ) is bounded below (≥ 0). This shows that

Lb(λ) only has a unique stationary point which is the local minimum. By Theorem 2, we thus have

the following corollary.

Corollary 1 The limit point of any sequence {λ(t)} of one of the SM-k (k = 2, . . . , 5) algorithms

is the global minimum of Lb(λ) and Lb(λ(t)) converges monotonically to Lb(λ∗) for the global

minimum λ∗.

With a variety of different possibilities, a natural question to ask is what criteria should be

used to guide the design of a good surrogate function. Intuitively, one criterion that could be used

is the closeness of a surrogate function to the original objective function. For example, the closer

is the surrogate function to the objective function, the better it will be. Another possible criterion

is the tractability of the M-step. For example, a closed-form update equation is more desirable. In

other words, we want the surrogate function to be both efficient and effective. In practice, however,

there has to be a tradeoff between these two criteria.
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Table 4: Comparison on the needs for matrix inversion of the proposed SM algorithms and the

pure Newton method for binary logistic regression.

Method Matrix inversion?

SM-1 No need for matrix inversion

SM-2 Invert an m×m matrix at each iteration

SM-3 Invert an m×m matrix once during the whole process

SM-4 No need for matrix inversion

SM-5 No need for matrix inversion

Newton’s Invert an m×m matrix at each iteration

Now, we discuss this issue by taking our proposed SM algorithms as concrete examples. Specif-

ically, we have that, for the same λ(t),

Qn(λ|λ(t)) (or Lb(λ)) ≤ Qf (λ|λ(t)) ≤ Qq(λ|λ(t)) ≤ Qm(λ|λ(t)). (30)

The proof can be found in Appendix B. Since their corresponding SM algorithms are standard, we

can order the convergence rate of these algorithms as

the pure Newton method ≥ SM-2 ≥ SM-3 ≥ SM-5. (31)

This shows that the closer is a surrogate function to the objective function, the faster the rate

of convergence of the standard SM algorithm corresponding this surrogate function will be. On

the other hand, from (16) and (22), we can see that both SM-2 and SM-3 based on Qf (λ|λ(t))

and Qq(λ|λ(t)) amount essentially to minimizing Lb(λ) by the pure Newton method, but with the

Hessian matrix ∇2Lb(λ) replaced by an approximated matrix. They can avoid the non-convergent

problem of the pure Newton method. SM-2 has the same computational cost as Newton’s method.

Since SM-3 uses a constant matrix (i.e., B), it only needs to compute the inverse of this constant

matrix once during the whole iterative process. However, SM-5 does not need to invert any matrix.

Thus, in general, there may be a tradeoff between the two criteria.

Further, going back to (28) and (29), we have that the surrogate function Qz(λ|λ(t)) is superior

to Qc(λ|λ(t)) and Qm(λ|λ(t)). However, while SM-1 based on Qz(λ|λ(t)) does not have a closed-

form solution for the M-step, it is easy to show that an exact analytical solution exists for SM-4
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or SM-5 based on Qc(λ|λ(t)) or Qm(λ|λ(t)). It is worth noting that although we have (28),

SM-1 ≥ SM-4 does not always hold because SM-1 is a gradient algorithm. Given the same λ(t),

we denote its next estimates by λ(1)(t+1) and λ(4)(t+1) from SM-1 and SM-4, respectively. For

SM-1, λ(1)(t+1) may not be the minimum of Qz(λ|λ(t)). Consequently, we do not ensure that

Qz

(
λ(1)(t+1)|λ(t)

) ≤ Qc

(
λ(4)(t+1)|λ(t)

)
.

In other words, we are not able to guarantee that SM-1 is faster than SM-4. However, for SM-1

and SM-5, it can be shown from the last paragraph in Section 4.4 that

∇2Qz

(
λ|λ(t)

) ≤ 1
4
D.

Thus the Rayleigh quotient of ∇2Qz

(
λ|λ(t)

)
is smaller than that of 1

4D. Therefore,

η = ‖(∇2Qz(λ|λ(t))
)−1∇2L(λ)‖ ≥ ‖4D−1∇2L(λ)‖.

This implies that the dominant eigenvalue of I−(∇2Qz(λ|λ(t))
)−1∇2L(λ) is not smaller than that

of I− 4D−1∇2L(λ). As described in the so-called Ostrowski’s theorem [29, Ch.18], the dominant

eigenvalue determines the convergence rate of the corresponding algorithm. Thus SM-1 is faster

than SM-5, i.e., we still have

SM-1 ≥ SM-5. (32)

4.6 Experimental Analysis

In this subsection we empirically evaluate the SM algorithms summarized in Table 3 for the binary

logistic regression model. Our goal is to further validate the theoretical analysis given in Section 4.5

from an experimental perspective. Specifically, we attempt to achieve the following purposes:

(a) Illustrate the tradeoff between efficiency and effectiveness;

(b) Illustrate the tradeoff between training and testing.

In our experiments we use the pure Newton method for baseline comparison due to its relationship

with the SM algorithms given in (30) and (31). An empirical comparison of some SM algorithms

with other numerical methods such as conjugate gradient and quasi-Newton have been systemati-

cally studied in [28]. In the experiments, we use two synthetic data sets similar to those used in [5]
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and two real-world data sets. The code is implemented in MATLAB and it is available from the

homepage of the first author, and the experiments are run on a Pentium 2.79GHz PC with 2.00GB

RAM. We use the same initial values of the λij to implement these six algorithms. Specifically,

we use two initialization methods: one is to randomly generate λij(0) from a uniform distribution

over [−1, 1], i.e., λij(0) ∼ U([−1, 1]), and another is to set λij(0) = 0. From (7), the latter method

implies that p̂(yi = 1|xi, λ(0)) = p̂(yi = −1|xi,λ(0)) = 1/2 for i = 1, . . . , n. For all four datasets,

we run all the six algorithms until |Lb(λ(t+1))− Lb(λ(t))|/Lb(λ(0)) < 0.00001.

Simulated Data The first data set consists of 3,000 data points xi ∈ R100 sampled randomly

from the normal distribution with zero mean and identity covariance matrix. To label these points,

we first randomly generate a 100-dimensional hyperplane represented by a vector w ∈ R100 subject

to ‖w‖ = 1 and then assign the label yi = sgn(wTxi) to each xi. After this labeling step, we

perturb each point xi by adding a random noise term εi ∼ N (0, 0.2I), leading to a new noisy data

point zi. We use 1,000 points for training and the remaining 2,000 points for testing. We run our

experiments using two data sets, i.e., {xi} without noise and {zi} with noise. Specifically, we set

hj(xi) = xij and hj(zi) = zij , respectively, for the two data sets. In this case, we have n = 1000

and m = 100. For i = 1, . . . , n and j = 1, . . . ,m, we calculate gij = −yihj(xi) (or gij = −yihj(zi))

and set gij = gij∑100
j=1 |gij | such that

∑100
j=1 |gij | ≤ 1.

Text Data We also evaluate the SM algorithms on two text categorization tasks using the

WebKB [6] and NewsGroup [19] data sets. The WebKB data set contains web pages gathered

from computer science departments in several universities. The pages can be divided into seven

categories. Here we run the binary logistic regression model on the classes faculty and course, with

a total of 2,054 pages. The NewsGroup data set consists of 20 classes. We use the classes alt.atheism

and comp.graphics, with a total of 1,985 words. Based on the information gain criterion, 300 features

(i.e., m = 300) are selected for WebKB and 1000 features (i.e., m = 1000) for NewsGroup. We then

define a feature as

hj(xk) =
Nj(xk)
N(xk)

,

where Nj(xk) is the number of occurrences of feature j in document xk and N(xk) is the total

number of occurrences of all features in document xk. In the experiments, we specify 1, 398 training

samples and 656 test samples for WebKB dataset, and 1, 390 training samples and 595 test samples

for NewsGroup dataset.
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Figures 1 and 2 show the training loss, with values normalized to 1, for the two initialization

methods on these four data sets. Note that the x-axis is in log scale for all plots. Moreover, to

facilitate comparison and visualization, we illustrate the training losses of the first 100 iterations,

although some of the algorithms have converged and others have not converged before 100 iterations.

As we can see, all six algorithms are not sensitive to the initial values of the λij and converge though

with different rates. Obviously, the convergence of SM-2, SM-3, SM-4 and SM-5 follow from the

basic properties of SM algorithms. For SM-1 and the pure Newton method, they also converge in

our experiments. However, as is well known, the convergence of SM-1 and the pure Newton method

is generally not guaranteed. The orderings of different methods in terms of their convergence rate

are same as those in (31) and (32). In addition, SM-1 ≥ SM-4 holds for the two simulated data

sets, while it does not hold for the two text data sets. This is in full agreement with our theoretical

analysis in Section 4.5.
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Figure 1: Training loss vs. number of iterations.
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Figure 2: Training loss vs. number of iterations.

Since the performance of the algorithms is almost the same for different initial values of the

λij , the experimental results, reported in Tables 5 and 6, are based on initial values of the λij

chosen randomly from U([−1, 1]). For SM-2 and the pure Newton method, we need to invert

an m × m matrix at each iteration (see Table 4). Although SM-2 and the pure Newton method

take very few iterations to converge, they become very inefficient for larger values of m due to

the need for large storage. For SM-3, we need to invert an m × m matrix only once for all the

iterations. Hence its computational cost is lower. For the other methods, their computational costs

are even lower. These can be seen from Table 5, in which the bottom of each table entry gives

the corresponding number of iterations required before convergence. Thus, there exists a trade-off

between the convergence rate and the computational cost. SM-2 and the pure Newton method are

inefficient for high-dimensional data, although their convergence rates are the fastest.
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Table 5: Total CPU time (in seconds) / number of iterations required until convergence.

Dataset SM-1 SM-2 SM-3 SM-4 SM-5 Newton’s

Without noise 14.5781 21.8750 0.0156a+2.5469 0.0469b+36.7344 8.3594 3.2656

(# of iterations) 3511 256 1287 3842 4105 42

With noise 3.8906 3.4531 0.0156a+0.1875 0.0313b+13.2344 2.9375 0.5938

(# of iterations) 943 40 86 1359 1507 8

WebKB 2.1875 98.1406 0.0938a+2.7500 0.0469b+1.9531 5.2656 6.7813

(# of iterations) 147 191 357 119 957 15

NewsGroup 3.0313 523.4531 1.4219a+10.2969 0.1563b+2.3594 9.1719 38.5938

(# of iterations) 66 164 254 42 585 14

a CPU time required for inverting B.
b CPU time required for finding S+

j and S−j .

Table 6: Classification accuracy (%) after convergence.

Dataset SM-1 SM-2 SM-3 SM-4 SM-5 Newton’s

Without noise 94.55 94.80 95.10 94.60 94.05 94.95

With noise 82.70 82.50 82.50 82.70 82.95 82.60

WebKB 96.95 96.49 95.88 97.10 97.71 96.80

NewsGroup 94.12 93.45 85.21 94.29 96.13 91.76

We also report the classification accuracies on the test data in Table 6. On the simulated

data without noise, the pure Newton method, SM-2 and SM-3 outperform SM-1, SM-4 and SM-5.

This shows that the classification accuracy is consistent with the convergence rate for noiseless

datasets. However, on the noisy simulated data and the two text data sets, the classification results

are different from those for the simulated data sets. Specifically, the classification accuracies of

SM-2, SM-3 and the pure Newton method slightly decrease. In contrast, SM-1, SM-4 and SM-5 are

rather robust to noise, and they now give higher accuracy than SM-2, SM-3 and the pure Newton

method. Moreover, SM-5 gives the best classification performance although it is the worst in terms

of convergence rate. Thus, an algorithm with higher convergence rate does not always have higher

classification accuracy. Since most real-world datasets are noisy in nature, we think that SM-4 and

24



SM-5 are the best choices when considering both computational cost and classification accuracy.

5 CSM and SCM Algorithms for Binary Logistic Regression Model

Now we consider applying the CSM and SCM algorithms to the logistic regression model. The loss

function L(λ) can be regarded as a function Lb(λ1, . . . , λm) of multiple variables λi’s. First, if we

employ the parallel-update scheme, it is easy to see that the standard, generalized and gradient

SM algorithms given in the previous sections can also be regarded as CSM or SCM algorithms. On

the other hand, if we employ the sequential-update scheme, it is easy to obtain a CSM or SCM

algorithm from one of these SM algorithms by replacing pi(λ(t)) with

pi(w) =
exp(wTgi)

1 + exp(wTgi)
,

where w = (λ1(t), . . . , λi(t), λi+1(t+1), . . . , λm(t+1))T .

Now, we consider in more detail the application of CSM algorithms to an extension of the

logistic regression model. We change p̂(yi|xi,λ) in (7) to

p̂(yi|xi,λ, b) =
1

1 + exp
(
λTgi + b

) , (33)

where b is a bias term. Let us denote the corresponding loss function by Lb(λ, b). Let g+
i =

(gi1, . . . , gim, 1)T and λ+ = (λ1, . . . , λm, b)T be the extensions of gi and λ, respectively. Note that

condition (10) is no longer satisfied. However, the SM-2 and SM-3 algorithms given in the previous

sections can still work because (10) is not a necessary condition for them. To use the SM-1 and

SM-4 algorithms, we can simply modify g+
i ← 1

2g
+
i .

We now devise a CSM algorithm that alternately updates b and λ. First, given b(t), we use

Q1(λ|λ(t), b(t)) in the same way as Qc(λ|λ(t)) in (24) for a surrogate function and then obtain

λ(t+1) with an iterative equation as in (25). However, here we replace pi(λ(t)) = exp(λT
(t)gi)

1+exp(λT
(t)gi)

with pi(λ(t), b(t)) = exp(λT
(t)gi+b(t))

1+exp(λT
(t)gi+b(t))

. Then, given λ(t+1), we define a surrogate function Q2(b |
b(t), λ(t+1)) of Lb(λ(t+1), b) as

Lb(λ(t+1), b(t)) +
n∑

i=1

pi(λ(t+1), b(t))(eb−b(t) − 1),

where we have used the convexity of − ln(·), and then obtain b(t+1) via

b(t+1) = b(t) + ln
n∑

i=1

pi(λ(t+1), b(t)).
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It is easy to see that

Lb(λ(t+1), b(t+1)) ≤ Q2(b(t+1)|b(t), λ(t+1)) ≤ Q2(b(t)|b(t), λ(t+1))

= Lb(λ(t+1), b(t)) ≤ Q1(λ(t+1)|λ(t), b(t)) ≤ Q1(λ(t)|λ(t), b(t))

= Lb(λ(t), b(t)),

and Q1(λ|λ(t), b(t)) is continuous in both λ and λ(t) while Q2(b|b(t), λ(t+1)) is continuous in both

b and b(t). Thus this CSM algorithm is also guaranteed to converge in terms of Zangwill’s theorem

(see [8] for more details).

6 SM Algorithm for Multi-Class Logistic Regression Model

In a multi-class classification problem, the response variable yi takes value from a finite set of labels,

say Y = {1, 2, . . . , c}. Each feature is a mapping hj : X × Y → R. In the logistic regression model

(LogitBoost) [5, 16], we use the following probabilistic model:

p̂(yi|xi, λ) =
exp(

∑m
j=1 λjhj(xi, yi))∑

l∈Y exp(
∑m

j=1 λjhj(xi, l))

=
1∑

l∈Y exp
( ∑m

j=1 λj(hj(xi, l)− hj(xi, yi))
) . (34)

Given a training set T = {(x1, y1), . . . , (xn, yn)}, the logistic regression problem can be trans-

formed into maximizing the conditional log-likelihood

Lm(λ) =
n∑

i=1

m∑

j=1

λjhj(xi, yi)−
n∑

i=1

ln
∑

l∈Y
exp

( m∑

j=1

λjhj(xi, l)
)
,

or, equivalently, into minimizing the loss

L̃m(λ) =
n∑

i=1

ln
[∑

l∈Y
exp

( m∑

j=1

λj(hj(xi, l)− hj(xi, yi))
)]

.

We first work on Lm(λ) to devise a quadratic SM algorithm. Since

∂Lm(λ)
∂λs

=
n∑

i=1

[
hs(xi, yi)−

∑

l∈Y
p̂(l|xi, λ)hs(xi, l)

]
,

∂2Lm(λ)
∂λs∂λr

= −
n∑

i=1

∑

l∈Y
p̂(l|xi, λ)hs(xi, l)

[
hr(xi, yi)−

∑

k∈Y
p̂(k|xi,λ)hr(xi, k)

]
,
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then

∇Lm(λ) =
n∑

i=1

Hi(ei − qi),

∇2Lm(λ) = −
n∑

i=1

Hi(∆i − qiqT
i )HT

i ,

where ei is a c× 1 vector with the kth element being 1 if yi = k and 0 otherwise,

Hi =




h1(xi, 1) h1(xi, 2) . . . h1(xi, c)

h2(xi, 1) h2(xi, 2) . . . h2(xi, c)
...

...
. . .

...

hm(xi, 1) hm(xi, 2) . . . hm(xi, c)




, qi(λ) =




p̂(1|xi, λ)

p̂(2|xi, λ)
...

p̂(c|xi,λ)




,

and ∆i(λ) = diag(p̂(1|xi,λ), p̂(2|xi, λ), . . . , p̂(c|xi,λ)).

Using the following inequality [2]

∆i − qiqT
i ¹

1
2

[
I− 1

c
11T

]
,

where 1 is the c× 1 matrix of ones, we obtain

∇2Lm(λ) º −1
2

n∑

i=1

Hi

[
I− 1

c
11T

]
HT

i , B.

Thus, we have an iterative procedure for solving λ, as

λ(t+1) = λ(t) + B−1
n∑

i=1

Hi

(
ei − qi(λ(t))

)
. (35)

Next, we seek to derive the parallel Bregman distance algorithm for multi-class logistic regres-

sion proposed by [5] from the perspective of an SM algorithm. We work on L̃m(λ) and combine

the first-order Taylor approximation with Jensen’s inequality. First, using the concavity of ln(·),
we have

L̃m(λ) ≤
n∑

i=1

ln
[ ∑

l∈Y
e
∑m

j=1 λj(t)gilj

]
+

n∑

i=1

∑
l∈Y e

∑m
j=1 λjgilj −∑

l∈Y e
∑m

j=1 λj(t)gilj

∑
l∈Y e

∑m
j=1 λj(t)gilj

=
n∑

i=1

ln
[ ∑

l∈Y
e
∑m

j=1 λj(t)gilj

]
+

n∑

i=1

∑

l∈Y
p(l|xi, λ(t))e

∑m
j=1(λj−λj(t))gilj − n,

where gilj = hj(xi, l) − hj(xi, yi) and p(l|xi, λ(t)) =
exp(

∑m
j=1 λj(t)gilj)∑

l∈Y exp(
∑m

j=1 λj(t)gilj)
. For any i and l, we

assume that
∑m

j=1 |gilj | ≤ 1. Furthermore, without loss of generality, we assume that gilj 6= 0 for
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arbitrary i, l and j. Since exp(·) is convex, we have

exp
( m∑

j=1

(λj − λj(t))gilj

)
= exp

( m∑

j=1

|gilj |gilj

|gilj | (λj − λj(t)) + (1−
m∑

j=1

|gilj |)0
)

≤ 1−
m∑

j=1

|gilj |+
m∑

j=1

|gilj | exp
( gilj

|gilj |(λj − λj(t))
)
.

Thus, we obtain a surrogate function for L̃m(λ):

Q̃m(λ|λ(t)) =
n∑

i=1

ln
[∑

l∈Y
exp

( m∑

j=1

λj(t)gilj

)]
−

n∑

i=1

∑

l∈Y
p(l|xi, λ(t))

m∑

j=1

|gilj |

+
n∑

i=1

∑

l∈Y
p(l|xi, λ(t))

m∑

j=1

|gilj | exp
( gilj

|gilj |(λj − λj(t))
)
. (36)

We are interested in the minimization of Q̃m(λ|λ(t)) w.r.t. λ. Taking the derivatives of Q̃m(λ|λ(t))

w.r.t. λ:

∂Q̃m(λ|λ(t))
∂λs

=
n∑

i=1

∑

l∈Y
p(l | xi, λ(t)) gils exp

( gils

|gils|
(
λs − λs(t)

))

=
∑

(i,l)∈S+
s

p(l | xi, λ(t)) |gils| exp
(
λs − λs(t)

)−
∑

(i,l)∈S−s

p(l | xi,λ(t)) |gils| exp
(
λs(t)− λs

)
,

where S+
s = {(i, l) : gils > 0} and S−s = {(i, l) : gils < 0}. So the solution of ∂Q̃m(λ|λ(t))

∂λs
= 0 leads

us to the (t+1)th estimate of λs, as

λs(t+1) = λs(t) +
1
2

ln
(∑

(i,l)∈S−s |gils| p(l|xi, λ(t))∑
(i,l)∈S+

s
|gils| p(l|xi,λ(t))

)
. (37)

Obviously,

L̃m(λ(t+1)) ≤ Q̃m(λ(t+1)|λ(t)) ≤ Q̃m(λ(t)|λ(t)) = L̃m(λ(t)).

This is thus an SM algorithm, which is equivalent to the parallel Bregman distance algorithm of

[5] for the multi-class logistic regression. It is clear that Q̃m(λ|λ(t)) is continuous in both λ and

λ(t). In addition, Lemma 2 shows that ∆i−qiqT
i º 0. Thus ∇2L̃m(λ) =

∑n
i=1 Hi

(
∆i−qiqT

i

)
HT

i

is positive semi-definite. Similar to Corollary 1, we have the following corollary.

Corollary 2 The limit point of any sequence {λ(t)} of the SM algorithm defined in (37) is the

global minimum of L̃m(λ) and L̃m(λ(t)) converges monotonically to L̃m(λ∗) for the global minimum

λ∗.
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7 SM Algorithm for AdaBoost

In this section we present SM algorithms for binary and multi-class AdaBoost. There exists a

connection between AdaBoost and maximum likelihood for exponential models [16, 24]. Unlike

the binary logistic regression model which is based on the minimization of (9), binary AdaBoost is

based on the minimization of the exponential loss function

La(λ) =
n∑

i=1

exp
[
− yi

m∑

j=1

λjhj(xi)
]

=
n∑

i=1

exp
( m∑

j=1

λjgij

)
. (38)

Let us denote the tth iterate of λj by λj(t). From (38), we have

La(λ) =
n∑

i=1

exp
( m∑

j=1

|gij | gij

|gij |(λj − λj(t)) + λ(t)Tgi

)

=
n∑

i=1

exp
( m∑

j=1

|gij | gij

|gij |(λj − λj(t)) + (1− αi)0
)

exp(λ(t)Tgi).

Since exp(·) is convex, it can be shown that

La(λ) ≤
n∑

i=1

exp(λ(t)Tgi)
{

1− αi +
m∑

j=1

|gij | exp
( gij

|gij |(λj − λj(t))
)}

≡ Qa(λ|λ(t)).

Clearly, Qa(λ(t)|λ(t)) = La(λ(t)), and thus the right-hand side can be used as a surrogate function

of La(λ). Note also that Qa(λ|λ(t)) has decoupled the relationship among the λj ’s. To minimize

Qa(λ|λ(t)) w.r.t. λj ’s, we set

∂Qa(λ | λ(t))
∂λj

=
n∑

i=1

gij exp(λ(t)Tgi) exp
( gij

|gij |(λj − λj(t))
)

to zero, and obtain

∑

i∈S+
j

|gij | exp(λ(t)Tgi) exp(λj − λj(t)) =
∑

i∈S−j

|gij | exp(λ(t)Tgi) exp(λj(t)− λj),

where S+
j = {i : gij > 0} and S−j = {i : gij < 0}. We take log on both sides and, upon simplification,

obtain the following update equation for λj :

λj(t+1) = λj(t) +
1
2

ln

(∑
i∈S−j

|gij | exp(λ(t)Tgi)
∑

i∈S+
j
|gij | exp(λ(t)Tgi)

)
.

As La(λ(t+1)) ≤ Qa(λ(t+1)|λ(t)) ≤ Qa(λ(t)|λ(t)) = La(λ(t)), local convergence is guaranteed.

Notice that the derivation of our SM algorithm is equivalent to the one by Lebanon and Lafferty [24].
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There are two popular versions of multi-class AdaBoost. The first one is AdaBoost.M2 [15],

which is based on the loss function

Lm2(λ) =
n∑

i=1

∑

l∈Y
exp

[ m∑

j=1

λj(hj(xi, l)− hj(xi, yi))
]
, (39)

and the other is AdaBoost.MH [33], which is based on the loss function

Lmh(λ) =
n∑

i=1

∑

l∈Y
exp

[
− ỹi,l

m∑

j=1

λjhj(xi, l)
]
, (40)

where

ỹi,l =





+1 if l = yi

−1 if l 6= yi.

Let gilj = hj(xi, l)−hj(xi, yi) or gilj = −ỹi,lhj(xi, l), and use Jensen’s inequality with
∑m

j=1 |gilj | ≤
1 for any i and l over Lm2(λ) (or Lmh(λ)). Then, we can immediately obtain the surrogate function

Q(λ|λ(t)) =
n∑

i=1

∑

l∈Y
exp

[ m∑

j=1

λj(t)gijl

]{
1−

m∑

j=1

|gijl|+
m∑

j=1

|gijl| exp
[ gijl

|gijl|(λj − λj(t))
]}

and the corresponding iterative equation

λs(t+1) = λs(t) +
1
2

ln

(∑
(i,l)∈S−s |gils| exp

( ∑m
j=1 λj(t)gijl

)
∑

(i,l)∈S+
s
|gils| exp

( ∑m
j=1 λj(t)gijl

)
)

.

We can see that these iterative procedures for binary and multi-class cases are equivalent to

those of the parallel-update optimization algorithm of [5]. However, while ours is built upon the

SM algorithm and relies only on the convexity of the exponential function, the one in [5] requires

the construction of a Bregman distance which is much more mathematically involved. Moreover,

convergence of our algorithm follows directly from the SM algorithm because it is obvious that

La(λ) or Lm2(λ) (Lmh(λ)) is convex in λ, and Qa(λ|λ(t)) or Q(λ|λ(t)) is continuous in both λ

and λ(t). It is worth noting that the Bregman distance optimization algorithm of [5] can also work

with the first-order Taylor expansion of a convex function. However, the argument of this convex

function is itself also a function.

8 SM Algorithm for Log-Linear Model

The generalized iterative scaling (GIS) algorithm [7] is an important method for the log-linear

model. In this section we develop an SM algorithm for the log-linear model which can be shown
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to be equivalent to GIS. Following the notation in [7], we let I be a finite index set, p = {pi; i ∈
I , pi ≥ 0,

∑
i∈I pi ≤ 1} and π = {πi; i ∈ I , πi > 0,

∑
i∈I πi ≤ 1}. Now given π, we seek to find a

probability function of the form

pi = πi

c∏

r=1

λari
r , (41)

which satisfies the constraints
∑

i∈I

aripi = hr, r = 1, 2, . . . , c,

where ari and hr are given and satisfy

ari ≥ 0,
c∑

r=1

ari = 1, hr > 0,
c∑

r=1

hr = 1.

Darroch and Ratcliff [7] formulated this problem as a constrained minimization problem as follows

min
p

{
KL(p, π) =

∑

i∈I

pi ln
pi

πi

}
, s.t.

∑

i∈I

aripi = hr, r = 1, . . . , c.

Further, this problem is equivalent to the following unconstrained minimization problem:

L(p, η0, η) =
∑

i∈I

pi ln
pi

πi
+

c∑

r=1

ηr(aripi − hr) + η0

( ∑

i∈I

pi − 1
)

, (42)

where η0 and η = {η1, . . . , ηc} are the Lagrange multipliers. As

∂L

∂pi
= ln

pi

πi
+

c∑

r=1

ηrari + η0 = 0,

∂L

∂η0
=

∑

i∈I

pi − 1 = 0,

we obtain

pi =
πi exp(−∑c

r=1 ηrari)∑
j πj exp(−∑c

r=1 ηrarj)
. (43)

Plugging (43) back into (42), we obtain the dual maximization problem [4] as

F (η) = −
∑

r

ηrhr − ln
∑

i∈I

(
πi exp

(−
∑

r

ηrari

))
. (44)

Now we apply the SM algorithm to this dual problem. Noticing that both − ln(·) and exp(·) are

convex, we have

F (η) ≥ −
∑

r

ηrhr − ln
∑

i∈I

πi exp
(−

∑
r

ηr(t)ari

)−
∑

i∈I πi exp
(−∑

r ηrari

)
∑

i∈I πi exp
(−∑

r ηr(t)ari

) + 1

= −
∑

r

ηrhr − ln
∑

i∈I

πi exp
(−

∑
r

ηr(t)ari

)−
∑

i∈I

pi(t) exp
( ∑

r

(ηr(t)− ηr)ari

)

≥ −
∑

r

ηrhr − ln
∑

i∈I

πi exp
(−

∑
r

ηr(t)ari

)−
∑

i∈I

pi(t)
∑

r

ari exp(ηr(t)− ηr),
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where

pi(t) =
πi exp(−∑c

r=1 ηr(t)ari)∑
j πj exp(−∑c

r=1 ηr(t)arj)
. (45)

This leads us to the (t+1)th estimate of ηr, i.e.,

ηr(t+1) = ηr(t)− ln
hr∑

i∈I pi(t)ari
. (46)

For r = 1, . . . , c, let ηr(0) be equal and randomly generated. We then alternately implement (45)

and (46). Recall that the iterative process of GIS for this problem is defined as [7, Theorem 1]

pi(0) = πi, pi(t+1) = pi(t)
c∏

r=1

(
hr

gr(t)

)ari

,

where gr(t) =
∑

i∈I aripi(t). In fact, with our initial settings on η, it follows easily from (45) that

pi(0) =
πi∑

j∈I πj
.

Moreover, plugging (46) into (45), we have

pi(t+1) =
pi(t)

∏c
r=1

(
hr

gr(t)

)ari

∑
j∈I pj(t)

∏c
r=1

(
hr

gr(t)

)arj
,

where gr(t) =
∑

i∈I aripi(t). Clearly, our SM algorithm is similar to GIS. However, our SM algo-

rithm satisfies
∑

i∈I pi(t) = 1 while GIS only satisfies
∑

i∈I pi(t) ≤ 1. Thus, we may regard our SM

algorithm as a variant of GIS that makes the constraint
∑

i∈I pi = 1 hold.

9 Concluding Remarks

In this paper we have demonstrated the successful application of SM algorithms to generalized linear

models, and to the binary logistic regression model in particular. Like EM algorithms for missing

data problems, SM algorithms are gaining popularity in computational statistics for problems

without missing data. Although EM algorithms have already been commonly used in machine

learning, this is currently not the case for SM algorithms. We hope that this paper has successfully

demonstrated the power and potential of SM algorithms and will thus lead to its wider adoption

in machine learning.

Besides using Jensen’s inequality, first-order Taylor approximation or the low quadratic bound

principle, we have also demonstrated the possibility of using different combinations of these methods
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for constructing a surrogate function. In order to deal with multi-variable optimization problems,

we have also presented CSM and SCM. Furthermore, for this problem we can devise an SCMS

algorithm, an alternative based on the idea behind the ECME algorithm [25], which is an extension

of the ECM algorithm [27]. It would be possible to speed up SM algorithms via over-relaxation

approaches [31].

Recall that on the one hand, Della Pietra et al. [10] associated iterative scaling algorithms with

an auxiliary function, so iterative scaling algorithms are essentially equivalent to SM algorithms.

On the other hand, the Bregman distance-based optimization algorithms [9, 20, 21, 5, 10] work

with the first-order Taylor expansion of a convex function, the argument of which is itself also a

function. Therefore, these algorithms also share some common properties with SM algorithms.

Since convexity plays a central role in the methods proposed in this paper, it appears that

convexity is a necessary condition for SM algorithms to be applicable. It is noteworthy that a recent

work [13] in computational statistics devised a so-called TM algorithm, which alternates between

a T-step for calculating a titled version of the unconditional likelihood function and an M-step

for maximizing the titled version. The basic idea behind the TM algorithm is to approximate the

conditional log-likelihood function by linearizing the corresponding marginal log-likelihood with

the first-order Taylor expansion. However, since the TM algorithm does not make use of the

convexity property, its convergence is thus not guaranteed. Nevertheless, this algorithm inspires a

convex termination approach to the applications of SM algorithms in case of non-convexity. For a

method designed to work well for a convex function, convex termination refers to the application

of this method also to a non-convex function. From this perspective, the TM algorithm has the

property of convex termination. This resembles the Newton-like methods that possess the quadratic

termination property [14]. Thus the work of [13] sheds some light on the possibility of using SM

algorithms for non-convex functions as well. More studies along this line will be pursued in our

future work.

33



A Concavity of the Function f(u) = ln cosh(
√

u)

Lemma 1 The function

h(x) ≡




tanh(x)
x x 6= 0,

1 x = 0.

is continuous on (−∞, +∞).

Proof: If x 6= 0, we have

tanh(x)
x

=
exp(x)− exp(−x)

x
(
exp(x) + exp(−x)

) .

Now consider that

lim
x→0

exp(x)− exp(−x)
x
(
exp(x) + exp(−x)

) = lim
x→0

exp(x) + exp(−x)
exp(x) + exp(−x) + x

(
exp(x)− exp(−x)

) = 1,

thus h(x) is continuous.

Q.E.D.

For u > 0,
d ln cosh(

√
u)

du
=

exp(
√

u)− exp(−√u)
2
√

u
(
exp(

√
u) + exp(−√u)

) =
tanh(

√
u)

2
√

u
.

¿From Lemma 1, we can thus define a continuous function ϕ(u) on [0,∞) as

ϕ(u) ≡




tanh(
√

u)
2
√

u
u > 0,

1
2 u = 0.

Now we compute the derivative of ϕ(u) on (0,∞) as

1
4u

4
√

u + exp(−2
√

u)− exp(2
√

u)(
exp(

√
u) + exp(−√u)

)2 .

As

d(2v + exp(−v)− exp(v))
dv

= 2− exp(−v)− exp(v) = −(exp(−v/2)− exp(v/2))2 < 0,

2v +exp(−v)− exp(v) is a decreasing function. Hence, we have 4
√

u+exp(−2
√

u)− exp(2
√

u) ≤ 0

for u > 0. Thus, ϕ(u) is decreasing on (0,∞). Again, using the property that ϕ(u) is continuous
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on [0,∞), we have that ϕ(u) is decreasing on [0,∞). Furthermore, ϕ(u) ≤ 1
2 (∀u ∈ [0,∞)). Since,

up to an additive constant, we can express

f(u) =
∫ u

0
ϕ(v)dv, u ∈ [0,∞),

according to Theorem 24.2 in [30], we obtain that f(u) is a well-defined closed proper concave

function on [0,∞). Moreover, f ′+(0) = 1
2 .

B Proof of the Relationship (30)

Lemma 2 Suppose that ηj ≥ 0 for j = 1, . . . , r and
∑r

j=1 ηj ≤ 1. Let η = (η1, . . . , ηr)T . Then

diag(η)− ηηT º 0.

Proof: For an arbitrary x = (x1, . . . , xr)T 6= 0 ∈ Rr, we have

xT (diag(η1, . . . , ηr)− ηηT )x =
r∑

j=1

ηjx
2
j −

( r∑

j=1

ηjxj

)2
≥ 0.

Here we use that the function u2 is convex on R.

Q.E.D.

In this appendix, we want to prove that

Qn(λ|λ(t)) ≤ Qf (λ|λ(t)) ≤ Qq(λ|λ(t)) ≤ Qm(λ|λ(t)).

Let pi = pi(λ(t)), ui = λTgi and vi = λ(t)Tgi. Then

Qn(λ|λ(t)) = L(λ(t)) +
n∑

i=1

(ui − vi)pi +
1
2

n∑

i=1

pi(1− pi)(ui − vi)2,

Qf (λ|λ(t)) = L(λ(t)) +
n∑

i=1

ui − vi

2
+

n∑

i=1

βi(t)
4

(ui − vi)(ui + vi),

Qq(λ|λ(t)) = L(λ(t)) +
n∑

i=1

(ui − vi)pi +
1
8

n∑

i=1

(ui − vi)2.
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If vi = 0, then βi = 1
2 and pi = 1

2 and so the above relationship (30) holds. Now, consider the case

where vi 6= 0. As

βi(t) =
tanh(|λ(t)Tgi|/2)

|λ(t)Tgi|

=
exp(|λ(t)Tgi|)− 1

|λ(t)Tgi|
(
exp(|λ(t)Tgi|) + 1

)

=
exp(|vi|)− 1

|vi|
(
exp(|vi|) + 1

)

=
exp(vi)− 1

vi

(
exp(vi) + 1

)
( exp(x)− 1

x
(
exp(x) + 1

) is even on (−∞, 0) ∪ (0, +∞)
)
,

we have

ui − vi

2
+

βi

4
(ui − vi)(ui + vi)− pi(ui − vi)

=
ui − vi

2
+

exp(vi)− 1
4vi

(
exp(vi) + 1

)(ui − vi)(ui + vi)− exp(vi)
1 + exp(vi)

(ui − vi)

=
2vi exp(vi) + 2vi + (exp(vi)− 1)(ui + vi)− 4vi exp(vi)

4vi

(
exp(vi) + 1

) (ui − vi)

=
exp(vi)− 1

4vi

(
exp(vi) + 1

)(ui − vi)2.

From Appendix A, we know that
exp(vi)− 1

4vi

(
exp(vi) + 1

) ≤ 1
8
.

This then follows that

Qf (λ|λ(t))−Qq(λ|λ(t)) =
n∑

i=1

( exp(vi)− 1
4vi

(
exp(vi) + 1

) − 1
8

)
(ui − vi)2 ≤ 0.

On the other hand, consider

φ(vi) =
exp(vi)− 1

4vi

(
exp(vi) + 1

) − 1
2
pi(1− pi)

=
exp(vi)− 1

4vi

(
exp(vi) + 1

) − 1
2

exp(vi)
1 + exp(vi)

1
1 + exp(vi)

=
exp(2vi)− 1− 2vi exp(vi)

4vi

(
exp(vi) + 1

) .

For vi > 0, since

d
(
exp(2vi)− 1− 2vi exp(vi)

)

dvi
= 2 exp(vi)(exp(vi)− 1− vi) ≥ 0,
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then exp(2vi)−1−2vi exp(vi) ≥ 0. So φ(vi) ≥ 0. Clearly, φ(vi) is even on (−∞, 0)∪ (0, +∞). This

shows that φ(vi) ≥ 0 on (−∞, 0) ∪ (0, +∞). Thus, immediately we obtain

Qf (λ|λ(t))−Qn(λ|λ(t)) =
n∑

i=1

( exp(vi)− 1
4vi

(
exp(vi) + 1

) − 1
2
pi(1− pi)

)
(ui − vi)2 ≥ 0.

We now prove that Qq(λ|λ(t)) ≤ Qm(λ|λ(t)). By Lemma 2, we first have diag(|gi1|, . . . , |gim|) −
gigT

i is positive semi-definite because
∑m

j=1 |gij | ≤ 1. It then follows that

Qm(λ | λ(t))−Qq(λ | λ(t)) =
1
8
(λ− λ(t))T

n∑

i=1

(
diag(|gi1|, . . . , |gim|)− gigT

i

)
(λ− λ(t)) ≥ 0.
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