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Abstract

This paper addresses the problem of transductive learning of the kernel matrix from a probabilistic per-

spective. We define the kernel matrix as a Wishart process prior and construct a hierarchical generative

model for kernel matrix learning. Specifically, we consider the target kernel matrix as a random matrix

following the Wishart distribution with a positive definite parameter matrix and a degree of freedom.

This parameter matrix, in turn, has the inverted Wishart distribution (with a positive definite hyperpa-

rameter matrix) as its conjugate prior and the degree of freedom is equal to the dimensionality of the

feature space induced by the target kernel. Resorting to a missing data problem, we devise an expectation-

maximization (EM) algorithm to infer the missing data, parameter matrix and feature dimensionality in a

maximum a posteriori (MAP) manner. Using different settings for the target kernel and hyperparameter

matrices, our model can be applied to different types of learning problems. In particular, we consider its

application in a semi-supervised learning setting and present two classification methods. Classification

experiments are reported on some benchmark data sets with encouraging results. In addition, we also

devise the EM algorithm for kernel matrix completion.
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1 Introduction

In recent years, kernel methods [31, 39] are increasingly popular in machine learning and data processing

applications due to their benefits from conceptual simplicity and theoretical potentiality. Kernel machines,

such as the support vector machines (SVM) [8], kernel principal component analysis (PCA) [30] and kernel

Fisher discriminant analysis (FDA) [3], work by mapping data nonlinearly into a high-dimensional feature

space and then implementing some traditional linear algorithms in this feature space. This approach is

attractive since feature vectors in the high-dimensional feature space are more likely to be linearly separable

than data points in the original input space. Moreover, the so-called kernel trick makes the implementation

of kernel methods efficient, since kernels can be used without explicit usage of the feature vectors themselves.

On the other hand, Gaussian process (GP), also known as “kriging” in geostatistics, has been widely

used for interpolating and smoothing spatial data in spatial statistics [10]. In machine learning, GP is also a

common Bayesian tool to assign prior distributions over functions, and has been successfully used in various

nonlinear modeling tasks [4], such as classification and regression. An important component in GP’s is the

covariance matrix. Usually, the covariance of the random field at any two index vectors is assumed to be

a positive definite function of the distance between the vectors [40]. Thus, the covariance matrix in a GP

can also be regarded as a kernel matrix, and this bridges the two techniques of GP’s and kernel machines

[32, 33].

1.1 Related Work

Because of the central role of the kernel, a poor kernel choice can lead to significantly impaired performance.

Typically, the practitioner has to select the kernel before learning starts, with common choices being the

polynomial kernel, Gaussian kernel, and Laplacian kernel. The associated kernel parameters, such as the

order in the polynomial kernel and the width in the Gaussian or Laplacian kernel, can then be determined

by the user using various heuristics. A more disciplined approach to set the parameters is by optimizing a

quality functional of the kernel [29], such as some generalization error bound [6] or evidence [24, 35]. Instead

of adapting only the kernel parameters, a recent development is to adapt also the form of the kernel itself.

As in practice we are often interested in finite-sized data sets, almost all information in the kernel function

can be encoded in a kernel matrix. Consequently, one could bypass the learning of the kernel function by
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just learning the kernel matrix instead.

Cristianini et al. [11] introduced the notion of alignment to measure the similarity between two kernels

or between a kernel and a target function. Based on this notion, they proposed a transductive learning

method [39] for the kernel matrix by optimizing the coefficients (eigenvalues) for the spectral decomposition

of the full kernel matrix on both training and test data. Kandola et al. [21, 22] extended this method to the

inductive setting. Lanckriet et al. [25] derived a generalization bound for choosing the kernel and formulated

the kernel matrix learning problem as a convex optimization problem that is not prone to local minima.

However, even with the recent advances in interior point methods, convex programming problems such as

semi-definite programming (SDP) are still very computationally expensive on problems with large kernel

matrices. Thus, instead of using SDP, Bousquet and Herrmann [5] proposed a simple, efficient gradient-

descent algorithm that can be orders of magnitude faster than a typical SDP solver. Crammer et al. [9], on

the other hand, formulated this learning problem under the boosting paradigm, so that an accurate kernel is

constructed from simple base kernels obtained from solving the generalized eigenvector problem. Recently,

kernel matrix learning has been used to deal with the problem of missing data, giving a kernel matrix

completion problem. For example, Graepel et al. [15] considered kernel matrix completion by applying SDP.

Based on information geometry [1], Tsuda et al. [37] introduced the use of Kullback-Leibler (KL) divergence

as a similarity measure between two positive definite matrices. They then devised an em algorithm for the

kernel matrix completion problem.

Notice that among these methods, SDP [38] and gradient descent [5] are algebraic, while boosting [14]

can be regarded as statistical. Tsuda et al. [37] also described an EM formulation for their em algorithm.

However, as mentioned by the authors, this EM formulation does not in fact have any observed data nor

does it have any prior distribution of missing data. Hence, this so-called EM formulation is only intended for

interpreting the relationship between the equations in the E- and M-steps with those in the e- and m-steps.

In summary, none of the above methods stems from a model-based perspective.

Due to the strong connection between the covariance matrix in a GP and the kernel matrix as discussed

above, the problem of choosing the covariance matrix can also be regarded as a kernel matrix learning

problem. Usually, the covariance matrix is first parameterized and then the associated hyperparameters are

estimated using methods such as maximum likelihood estimation (MLE) [27] or Markov chain Monte Carlo

(MCMC) [13, 28, 41]. These methods for learning the covariance matrix are based on the inductive setting.
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1.2 Outline of Our Work

In this paper, we proposed the notion of Wishart processes by treating a reproducing kernel as a stochastic

process. Specifically, if each feature dimension follows a Gaussian process prior, then the corresponding

random kernel matrix follows the Wishart distribution. Conversely, if we are given a kernel matrix following

the Wishart distribution, then there exists a set of feature vectors with each feature dimension following

the Gaussian process prior. Moreover, the dimensionality of the kernel-induced feature space is equal to the

degree of freedom of the Wishart distribution. This provides a generative model of the kernel matrix and

motivates us to view the kernel matrix learning problem from a model-based perspective. Moreover, this also

reveals the intrinsic statistical mechanism of reproducing kernels with Wishart process priors, and inspires

us to explore classification and regression problems using Wishart processes. We use a transductive learning

setting [19, 20, 39] to achieve these goals simultaneously.

Based on the Wishart generative model of the kernel matrix, we first propose in this paper a hierarchical

transductive learning framework for the kernel matrix. We consider the target kernel matrix as a random

matrix variate distributed according to the Wishart distribution [16], whose parameter matrix in turn follows

the conjugate prior of the Wishart distribution, which is the inverted Wishart distribution. As will be seen

later, this prior has the effect of including a regularization term in the likelihood function. Under the

maximum a posteriori (MAP) setting, we develop an expectation-maximization (EM) algorithm [12] to infer

the missing data and the model parameters for the corresponding learning problem. To our own surprise,

not only the parameter matrix, but also the dimensionality of the kernel-induced feature space as defined

above, can be estimated through the proposed EM algorithm.

Since the kernel matrix is a positive semi-definite matrix, our transductive learning model based on

Wishart processes has potential applications in many machine learning and pattern recognition problems.

For example, we can consider an affinity matrix or similarity matrix as a kernel matrix and then learn it

from data using our model. In this paper, we apply our hierarchical transductive learning model to the semi-

supervised learning paradigm [44], which has recently attracted a great deal of interest. By using different

settings on the target kernel matrix, we present two semi-supervised learning methods.

The first method is derived from the equivalence outlined above, namely, the reproducing kernel follows

a Wishart process and the dimensions of the feature vectors in the kernel-induced feature space are mutually

4



independent Gaussian processes. This inspires us to define each feature dimension as a Gaussian process

prior. Thus, the resultant method avoids the usage of the logistic function. Moreover, we shall see that the

EM algorithm can be used to estimate the covariance matrix in a GP. In the second method, we use the

discriminant kernel [42] as the target kernel, and then construct a transductive discriminant analysis method

for both classification and clustering problems. Our method differs from the generalized FDA in that the

kernel matrix we use includes information from both the input vectors and the labels.

In addition, based on the Wishart generative model of the kernel matrix, we devise the EM algorithm

for a kernel matrix completion problem [37], where a kernel matrix is defined over a data set with missing

information. This problem can be formulated a transductive learning problem. Tsuda et al. [37] devised an

em algorithm for this and described its relationship with the EM formulation. Unfortunately, the derivation

of the E-step in their EM algorithm is theoretically unclear because of the lack of a prior distribution on the

missing part of the kernel matrix. Our work proposes a rigorous derivation of the EM algorithm, which also

bears resemblance to the em algorithm.

1.3 Notations and Organization of the Paper

Throughout this paper, matrices and vectors are denoted by boldface uppercase letters and lowercase

letters, respectively. Let A = [aij ] be an m×n matrix. We denote the transpose of A by A′ and

(a11, . . . , an1, a12, . . . , amn)′ by vec(A). Moreover, when m = n, the trace of A is denoted by tr(A), its

determinant by |A|, and its inverse (if exists) by A−1. In addition, we write A Â 0 if A is positive definite

and A º 0 if A is positive semi-definite. Also, the Kronecker product of A and B is denoted by A⊗B.

To simplify our presentation, we will employ the notation of [16]. Thus, for an n×n random matrix W,

W ∼Wn(r,Σ), means that W follows a Wishart distribution with degree of freedom r and an n×n parame-

ter matrix Σ Â 0. Finally, for an n×n random matrix X, X ∼ IWn(r,Θ) means that X follows an inverted

Wishart distribution with degree of freedom r+n+1 and an n×n parameter matrix Θ Â 0.

The paper is organized as follows. Section 2 presents a hierarchical Bayesian model for transductive

learning of the kernel matrix. In particular, we develop the EM algorithm for our model in Section 2.3, and

discuss its relationship with other existing methods for kernel matrix learning. In Section 3, we apply our

transductive learning framework with the EM algorithm to the semi-supervised learning paradigm. An EM

algorithm for the kernel matrix completion problem is then discussed in Section 4. Experimental results on
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classification applications are presented in Section 5, and the last section gives some concluding remarks. In

order to facilitate readers, brief introductions to certain topics of the matrix theory, including matrix variate

distributions, matrix differentials and the Kronecker product, are given in Appendix A. Detailed derivation

of the EM algorithm can be found in Appendix B.

2 Hierarchical Transductive Learning Model of the Kernel Matrix

Let I denote a given space and S = {ti}n
i=1 ⊂ I be a finite set of samples. Most existing kernel methods

define the kernel function K on the Cartesian space I × I, i.e.,

K : I × I → R, K(ti, tj) = kij = F (ti)′F (tj),

where F : I → F is a (usually nonlinear) mapping that relates I to a (possibly infinite-dimensional) feature

space F . The kernel trick allows us to compute the inner product of F (ti) and F (tj) in F without having

to explicitly compute the mapping F . The kernel matrix (or Gram matrix) defined on all samples in S is

denoted as K = [kij ]n×n. Our point of departure is to treat the feature vectors {F (t); t ∈ I} as a stochastic

process. Then the kernel function {K(ti, tj); ti, tj ∈ I} also follows a stochastic process. First of all, we

give the following definition.

Definition 1 {K(s, t); s, t ∈ I} is said to be a Wishart process if for any n ∈ N and {t1, . . . , tn} ⊆ I, the

n× n random matrix K = [K(ti, tj)] follows a Wishart distribution.

Let us assume that the feature space F is of finite dimensionality r. For any input vector t ∈ I, we can

express F (t) = (F1(t), . . . , Fr(t))′ as an r-dimensional functional vector. Let us define F as

F =




F1(t1) F2(t1) . . . Fr(t1)

F1(t2) F2(t2) . . . Fr(t2)
...

...
. . .

...

F1(tn) F2(tn) . . . Fr(tn)




. (1)

Then K = FF′. In this paper, we formulate a probabilistic generative model of the kernel matrix K based on

random matrix variate theory. Recall that Fj(t) (j = 1, . . . , r) represents the jth coordinate of the feature

vector F (t) and Fj(t) is itself a function from I to R. Denote f (j) = (Fj(t1), Fj(t2), . . . , Fj(tn))′, which
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contains the jth feature dimension in all n feature vectors (j = 1, . . . , r). From the dual relationship between

the matrix-variate distribution and the Wishart distribution [16], we have the following theorem:

Theorem 1 Let f (1), f (2), . . . , f (r) be r independent vectors from N (0,Σ), where 0 is an n-dimensional zero

vector and Σ Â 0 is n×n. Then K is a random Wishart matrix K ∼Wn(r,Σ). Conversely, given a kernel

matrix K ∼Wn(r,Σ), where r is an integer, then there exist r mutually independent n-dimensional vectors

f (j) from N (0,Σ).

Thus, we can conclude that {K(s, t); s, t ∈ I} is a Wishart process if and only if each feature dimension

follows a Gaussian process, or in other words, {Fj(t); t ∈ I} (j = 1, . . . , r) are r mutually independent

Gaussian processes. Theorem 1 leads us to a generative model for the kernel matrix K. That is, we define

the kernel matrix K as a random Wishart matrix from Wn(r,Σ) on which kernel learning can be performed.

Furthermore, its degree of freedom r is equal to the dimensionality of the feature space induced by kernel K.

This generative model provides a statistical basis for developing a Bayesian inference approach for learning

the kernel matrix. Motivated by this idea, we seek to pursue this interesting direction in the current paper.

Specifically, we shall present a hierarchical model for the transductive learning of the kernel matrix and then

devise an EM algorithm to infer this model.

2.1 Hierarchical Model

Let the training set be T = {(x1, y1), . . . , (xn1 , yn1)} and test set be T̃ = {(xn1+1, yn1+1), . . . , (xn1+n2 , yn1+n2)},

where xi ∈ Rq, yi ∈ {1, 2, . . . , c} for i = 1, . . . , n1 and the yi’s are unavailable for i = n1 + 1, . . . , n1 + n2.

Letting n = n2 + n1, we refer to X = {x1, . . . ,xn1 ,xn1+1, . . . ,xn} and Y = {y1, . . . , yn1 , yn1+1, . . . , yn} as

the input set and output set, respectively. We define a kernel matrix K on (T ∪ T̃ )×(T ∪ T̃ ) and partition

it as

K =




K11 K12

K21 K22


 , (2)

where K11 and K22 are n1×n1 and n2×n2 matrices defined on the training and test sets, respectively, and

K21 = K′
12 is an n2×n1 matrix characterizing the similarities between the training and test data.

We assume that K is distributed according to a Wishart distribution, i.e., K ∼Wn(r,Σ/r). Although

it is allowed that either n ≤ r or n > r, we consider the case of n ≤ r < ∞ in this paper. In other words, we
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assume K Â 0. In this case, we have

p(K | Σ, r) =
rrn/2

C(n, r)
|Σ|−r/2|K|(r−n−1)/2 exp

(
−r

2
tr(Σ−1K)

)
, (3)

where Σ Â 0 is an n×n parameter matrix, which is left completely unspecified in the model, and its un-

certainty is incorporated through a higher-level prior in this paper. Since the conjugate prior of a Wishart

distribution is inverted Wishart, we assume that Σ is distributed according to the inverted Wishart dis-

tribution1 IWn(ηr+n+1, ηrΘ), where Θn×n Â 0 is called the hyperparameter matrix and η > 0 is a

hyperparameter. From Theorem 4 in Appendix A.1, it also follows that C = Σ−1 is distributed according

to Wn(ηr+n+1, (ηrΘ)−1), as2

p(C | Θ, r, η) =
(ηr)(ηr+n+1)n/2

C(n, ηr+n+1)
|Θ|(ηr+n+1)/2|C|ηr/2exp

(
−ηr

2
tr(ΘC)

)
. (4)

As for Σ, we could again define Θ and η as a random matrix and a positive random variable, respectively,

and then incorporate their uncertainties by some higher-level priors. However, for simplicity, Θ and η will

be held fixed in this paper. Therefore, our probabilistic model is a hierarchical model with three levels. The

first (lowest) level corresponds to a random Wishart matrix K, the second level to the parameter matrix C

of the Wishart matrix, and the third level to the hyperparameter matrix Θ of the parameter matrix. Our

model differs from existing kernel learning methods in that ours is based on a probabilistic generative model.

Moreover, by using the hierarchical model, the hyperparameter matrix may be regarded as a regularization

term to avoid the overfitting problem [29].

The observed data set provides a particular realization of K. With an abuse of notation, we will denote

this realization again by K. Note that only the K11 part of K in (2) is available, while both K21 and K22

are missing. Hence, K represents the partially observed kernel matrix. We will formulate this as a missing

data problem and then apply the EM algorithm. In other words, the incomplete (observable) data is K11,

the complete data is {K11,K21,K22}, and the goal is to infer the missing data {K21,K22} and the unknown

model parameters {C, r}.
1As will be seen later, our choice of K ∼Wn(r,Σ/r) and Σ ∼ IWn(ηr+n+1, ηrΘ) facilitates a simple iterative estimation

procedure for the unknown parameters Σ and r.
2It is not too restrictive to set the degree parameter ρ to ηr+n+1. Indeed, for any ρ > n, we can write ρ = ηr+n+1 where

η = (ρ−n−1)/r.
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As for K in (2), Σ, C and Θ are similarly partitioned as

Σ =




Σ11 Σ12

Σ21 Σ22


 , C =




C11 C12

C21 C22


 , Θ =




Θ11 Θ12

Θ21 Θ22


 . (5)

Recall that K Â 0 if and only if K11 Â 0 and K22·1 Â 0 [17], where K22·1K22 −K21K−1
11 K12 is the Schur

complement of K11. We take {K11,K21,K22·1} instead as the complete data to ensure that K is always

positive definite. Moreover, we will use {C11·2,C21,C22}, where C11·2 = C11−C12C−1
22 C21, instead of C in

our EM algorithm given in Section 2.3.3 We will see that this representation can make the implementation

of the EM algorithm simpler. Figure 1 shows a graphical model representing the hierarchical model for

transductive learning of the kernel matrix.

η

11K21K122⋅K

211⋅C

21C 22C

r

Figure 1: A hierarchical model for transductive learning of the kernel matrix. Here, © indicates unknown

variables while ¤ indicates known variables.

2.2 Likelihood and Inference

First of all, we give a lemma that will be useful in our later discussions.

3Alternatively, we often use {C11·2,C2|1,C22}, where C2|1C
−1
22 C21, which is based on the Bartlett decomposition


C11·2 + C′

2|1C22C2|1 C′
2|1C22

C22C2|1 C22


 of C. Moreover, we shall interchangeably employ either of C, {C11·2,C21,C22} and

{C11·2,C2|1,C22}, depending upon the context.

9



Lemma 1 With C = Σ−1 as partitioned in (5), we have C11 = Σ−1
11·2, C−1

11 C12 − Σ12Σ−1
22 , C22 = Σ−1

22·1

and C−1
22 C21 = −Σ21Σ−1

11 .

From this lemma and Theorem 3 in Appendix A.1, we immediately have

Corollary 1 Assume K ∼Wn(r, Σ/r). Then

(i)

K11 ∼ Wn1(r, (rC11·2)−1),

K21 | K11 ∼ N (−C2|1K11, (rC22)−1 ⊗K11),

K22·1 ∼ Wn2(r − n1, (rC22)−1) is independent of K11 and K21;

(ii)

E(K21|K11) = −C2|1K11, E(K22·1)
r−n1

r
C−1

22·1.

As mentioned above, {K11,K21,K22·1} will be used as the complete data and hence we have to first

obtain its density function from p(K) = p(K11,K21,K22). This involves a standard transformation of

variables: K22·1 = K22−K21K−1
11 K12, B21 = K21 and B11 = K11. Now, (dK) = (dK11)∧(dK21)∧(dK22).4

Since the Jacobian determinant involved is unity, we have

(dK11) ∧ (dK21) ∧ (dK22) = (dB11) ∧ (dB21) ∧ (dK22·1).

Thus, p(K) = p(K11,K21,K22) = p(K11,K21,K22·1). This then follows from Corollary 1 that the log

likelihood function L(C | K, r) of the complete data is

L(C | K, r) = log p(K22·1) + log p(K11) + log p(K21|K11)

=
r−n−1

2
log |K11|+ r−n−1

2
log |K22·1|+ r

2
log |C11·2|+ r

2
log |C22|

−r

2
tr(C11·2K11)− r

2
tr(C12C−1

22 C21K11)− rtr(C12K21)

−r

2
tr(C22K22·1)− r

2
tr(C22K21K−1

11 K12)− log C(n, r) +
rn

2
log r. (6)

If we knew the complete matrix K, it would be easy to determine the parameter matrix C by maximizing

the (log) likelihood function. Similarly, if we knew the parameter matrix C, we could determine the matrices

K21 and K22·1. The problem is that we know neither. However, by treating this as a missing data problem
4Here, we use the wedge product or exterior product. Definition 6 in Appendix A.2 gives a brief introduction.
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with complete data K, observed data K11, and missing data K21 and K22·1, we can make use of the EM

algorithm [12] to alternate estimations of {K21,K22·1} and {C11·2,C21,C22, r}.

2.3 Learning with the EM algorithm

The EM algorithm consists of an E-step and an M-step. The E-step calculates the expectation of the

complete data log-likelihood (with respect to the missing data) and the M-step maximizes this expectation

with respect to the model parameters. With the availability of a prior distribution on the parameters, the

EM algorithm can also be used to obtain the MAP estimate. In this Section, our EM algorithm will work

in such a MAP setting. Thus, the EM algorithm computes the posterior estimates of the model parameters

in two steps: Given the tth estimates, C(t) and r(t), of C and r, the E-step computes

Q(C, r | C(t), r(t)) = E[log p(K11,K21,K22·1 | C, r) | K11,C(t), r(t)],

and the M-step produces the new estimates as

{C(t + 1), r(t + 1)} = Q(C, r | C(t), r(t)) + log p(C | r).

Using the hierarchical model defined in Section 2.1, these two steps can be shown to be:

E-step: Given K11, C22(t), C2|1(t) and r(t), compute

Q(C, r | C(t), r(t)) =
r

2
log |C11·2| − r

2
tr(C11·2K11) + rtr

(
C12C2|1(t)K11

)

−r

2
tr(C12C−1

22 C21K11)− r

2
tr

(
C22(C−1

22 )(t)
)

+
r

2
log |C22|

−r

2
tr

(
C22C2|1(t)K11C′

2|1(t)
)

(7)

+
r − n− 1

2

(
n2 log

2
r(t)

+
n2−1∑

j=0

Ψ(
r(t)− n1 − j

2
)− log |C22(t)|

)

+
rn

2
log r − log C(n, r) +

r − n− 1
2

log |K11|.

Here C2|1(t) = C−1
22 (t)C21(t) and Ψ(z) = Γ′(z)/Γ(z) is the digamma function.

M-step: Calculate

B = (K11 + ηΘ11)−1

and

C11·2 = (1 + η)B, (8)
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and perform the following two sub-steps:

(i) Given C22(t), C2|1(t) and r(t), compute

C2|1(t+1) = (C2|1(t)K11 − ηΘ21)B, (9)

C−1
22 (t+1) =

1
1 + η

(
C−1

22 (t) + ηΘ22 + C2|1(t)K11C′
2|1(t)

−C2|1(t+1)(K11 + ηΘ11)C′
2|1(t+1)

)
.

(ii) Given r(t) and C(t+1), the (t+1)th estimate of r can be obtained by solving

Q1(C(t + 1)|C(t)) +
dQ2(r|C(t), r(t))

dr
= 0, (10)

where

Q1(C | C(t)) = (1 + η) log |C11·2| − tr
(
C11·2(K11 + ηΘ11)

)

+2tr
(
C12

(
C2|1(t)K11 − ηΘ21

))

−tr
(
C12C−1

22 C21(K11 + ηΘ11)
)− tr

(
C22(C−1

22 (t) + ηΘ22)
)

+(1 + η) log |C22| − tr
(
C22C2|1(t)K11C′

2|1(t)
)
, (11)

Q2(r | C(t), r(t))

= (r − n− 1)
(
n2 log

2
r(t)

+
n2−1∑

j=0

Ψ(
r(t)− n1 − j

2
)− log |C22(t)|

)

+rn log r − 2 log C(n, r) + (r − n− 1) log |K11| (12)

+(ηr + n + 1) n log(ηr)− 2 log C(n, ηr + n + 1) + (ηr + n + 1) log |Θ|.

In Appendix B, we show the detailed derivation of the above E-step and the first part of the M-step.

From (8), we can see that C11·2 depends only on K11 and Θ11, and so it can be computed a priori because

K11 and Θ11 are known. Moreover, instead of C21, we estimate C−1
22 C21 directly. This makes the M-step

more efficient. On the other hand, it is easy to see that C11·2 Â 0 and it is proved in Appendix B.3 that

C22(t+1) is also positive definite. Thus, C(t+1) is positive definite. For the second part of the M-step, we

have the following theorem, whose proof is given in Appendix B.4.

Theorem 2 Assume that Q1(C | C(t)) and Q2(r | C(t), r(t)) are as defined in (11) and (12), respectively.

Given C(t + 1) in (9), the solution of (10) exists and is unique.
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Since it is based on the standard EM algorithm, it inherits its convergence property directly from [12].

It is worthy to note that the update of C is independent of r. In many cases, such as those in Section 3, it is

not necessary to obtain an estimate of r, and so the update of r in M-step(ii) need not be performed. Since

M-step(i) involves only C−1
22 but not C22, the computational cost can be significantly reduced by avoiding

matrix inversion at each iteration if the update is performed using C−1
22 directly (instead of C22).

After the algorithm has converged, then, depending upon the problem at hand, we can immediately

compute

K22·1 =
r − n1

r
C−1

22 , K21 = −C2|1K11, K22 = K22·1 + C2|1K11C′
2|1 (13)

using Corollary 1(ii), and from Lemma 1,

Σ11 =
K11 + ηΘ11

1 + η
, Σ21 −C2|1Σ11, Σ22 = C−1

22 + C2|1Σ11C′
2|1. (14)

3 Applications in Semi-Supervised Learning

Given K11 and Θ, we can now estimate the missing parts K21 and K22 from the EM algorithm. Transductive

learning seeks to transfer the intrinsic attributes of K11 to K21 and K22 via the parameter kernel Σ with

hyperparameter kernel Θ. The principal clue of transductive learning is the consistency assumption [44],

namely that a classification function should be sufficiently smooth with respect to the structure revealed by

the training and test data.

In general, definitions of both the incomplete kernel matrix K11 and the hyperparameter matrix Θ

depend on the problem being considered and the prior knowledge available. While the kernel matrix learn-

ing framework presented above is not limited to the classification problem, the focus of this paper is the

application of our model-based transductive learning framework to the semi-supervised learning problem by

incorporating unlabeled data into labeled data for training the classifier. In particular, we will use K11 to

capture class label information from the training data, so that after learning, we can obtain the kernel matrix

K22, which then contains class label information on the test set, and K21, which measures the similarity

between class labels on the training and test data. By using different settings on the kernel matrix K11,

we present two methods for semi-supervised learning. In the first method, K is defined as a kernel matrix

over the output data set Y, while in the second method, K is defined as a kernel matrix over the joint set

(X×Y) of the input data set X and the output data set Y. In both methods, the hyperparameter matrix Θ
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is defined as a kernel matrix over the input data set X . We can select any kernel defined over X for Θ. In

particular, we use a Gaussian kernel for Θ in our experiments. Now we can apply K11 and Θ to our kernel

learning framework, giving the estimates of K22 and K21, which can be used for classification.

3.1 A Classifier Using Wishart Processes

Here, we follow the same notations in Section 2, and each input vector is assumed to belong to only one class.

The first classification method is inspired by Theorem 1. Assume that the target kernel matrix K is defined

on the output set Y = {y1, . . . , yn1 , yn1+1, . . . , yn}, where yi = j ∈ {1, . . . , c} if the ith input vector belongs to

the jth class. If K ∼Wn(r,Σ/r), then, according to Theorem 1, there exists a functional vector F : Y → Rr.

Our point of departure is to directly present an explicit form of the function F (y) = (F1(y), F2(y), . . . , Fr(y))′,

where r = n + 1. It is obvious that c ≤ r since c ≤ n. First, we define r auxiliary functions as,

ψj(y) =





α j = y,

γ j 6= y and j ≤ c,

0 otherwise

j = 1, . . . , r

for y ∈ Y, where, α, γ ∈ (0, 1) and α À γ are constants pre-specified by the user. For the experiments in

Section 5, we will use α = 0.98 and γ = 0.01. Another effective choice for ψ is

ψj(y) =





c−1
c j = y,

− 1
c j 6= y and j ≤ c,

0 otherwise.

j = 1, . . . , r

Letting ψ̄(y) = 1
r

∑r
j=1 ψj(y), we thus define

Fj(y) = ψj(y)− ψ̄(y), j = 1, . . . , r.

For clarity, we again write out F defined in (1) as

F =




F1(y1) F2(y1) . . . Fr(y1)
...

...
. . .

...

F1(yn1) F2(yn1) . . . Fr(yn1)

F1(y(n1+1)) F2(y(n1+1)) . . . Fr(y(n1+1))
...

...
. . .

...

F1(yn) F2(yn) . . . Fr(yn)




.
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Furthermore, for simplicity of notation, we denote fi(fi1, . . . , fir) as its ith row vector, and also f (j) =

(f1j , . . . , fn1j , f(n1+1)j , . . . , fnj)′ as its jth column vector, where fij = Fj(yi). Let a(j) = (f1j , . . . , fn1j)′

and b(j) = (f(n1+1)j , . . . , fnj)′ (j = 1, . . . , r). Then f (j) =
(
(a(j))′, (b(j))′

)′
(j = 1, . . . , r). Clearly, for

i = 1, . . . , n1, the fi’s are available, while for i = n1 +1, . . . , n, the fi’s are missing because the corresponding

labels yi’s are unknown. This gives a partially observed realization of f (j) for j = 1, . . . , r, i.e., a(j) is available

while b(j) is missing. Moreover, we are given a realization of K11 on the output part of the training set,

K11 =




f1
...

fn1




(f ′1, . . . , f
′
n1

) + εIn1 , (15)

where In1 is the n1 × n1 identity matrix and ε is a small amount of jitter (e.g., ε = 0.0001) to prevent K11

from becoming singular.

According to Theorem 1, we have f (j) ∼ N (0,Σ) (j = 1, . . . , r). This results in b(j) ∼ N (Σ21Σ−1
11 a(j),Σ22·1),

conditioned on a(j). Recall that if Σ21Σ−1
11 = −C−1

22 C21 and C−1
22 = Σ22·1, then b(j) | a(j) ∼ N (−C−1

22 C21a(j),C−1
22 ).

This leads us to a classification method, which is summarized in Figure 2. Here, since r = n + 1 is pre-

specified, there is no need to use EM to estimate r. Thus, the current M-step reduces to M-step(i) given in

Section 2.3.

1. Compute the n× n hyperparameter kernel matrix Θ
[
exp(−‖xi−xj‖2

β )
]

and the n1 × n1 target kernel K11 according to (15).

2. Run the kernel matrix learning algorithm in (9) to directly obtain

C−1
22 C21 and C−1

22 .

3. Compute b(j) = −C−1
22 C21a(j), for j = 1, . . . , c.

4. Label the unlabeled point xi by yi = arg maxj{fij}c
j=1, for i = n1 + 1, . . . , n.

Figure 2: A classifier using Wishart processes.

3.2 Kernel Transductive Discriminant Analysis

The second semi-supervised learning method is motivated by a distance-based classifier using the discriminant

kernel [42]. We use the Gaussian kernel matrix on X × X as the n×n hyperparameter matrix Θ and the

discriminant kernel on T × T to define the n1×n1 target kernel matrix K11. In other words, its (k, l)th
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element, K((xk, yk), (xl, yl)), is defined as

K((xk, yk), (xl, yl))





1
2 exp

(
−‖xk−xl‖2

β

)
+ 1

2 yk = yl

1
2 exp

(
−‖xk−xl‖2

β

)
yk 6= yl

, k, l = 1, . . . , n1. (16)

Since the discriminant kernel guarantees that all between-class distances must be larger than all within-class

distances, this makes it desirable for distance-based classification or clustering methods. The discriminant

kernel K employs information from both the input vector x and its associated label y. So the nonlinear

mapping, which induces K, should also be a joint function of x and y, and we will denote it by F (x, y). After

obtaining the complete kernel K, we use a distance-based classification method that utilizes the property

of the discriminant kernel. Assume that Nj points in the training set belong to the jth class Cj , and

the class mean of Cj (in the feature-space) is mj = 1
Nj

∑
xi∈Cj

F (xi, yi). We then assign point x to Ci if

‖F (x, y)−mi‖2 ≤ ‖F (x, y)−mj‖2 for all j 6= i, where

‖F (x, y)−mi‖2 = F (x, y)′F (x, y) + m′
imi − 2F (x, y)′mi

= 1 +
1

N2
i

∑

xj ,xl∈Ci

K((xj , yj), (xl, yl))− 2
Ni

∑

xj∈Ci

K((x, y), (xj , yj)). (17)

Here, K(·, ·) is the corresponding element of the target kernel K. As can be seen from (17), this classification

method works with K11 and K21, and from (13), we have K21 = −C2|1K11. Therefore, the classification

method is independent of r. In other words, we can drop M-step(ii) for updating r. The proposed procedure is

summarized in Figure 3. Clearly, this classification method is a nearest mean classifier with the target kernel.

We also note that our classifier is similar to kernel FDA. Both are motivated by the Fisher discriminant

criterion, and seek to obtain discriminant feature vectors such that between-class distances are larger than

within-class distances. However, the procedures for achieving this goal are different. By employing joint

information from both the input and output spaces, we first define an inner product over the training set

such that the distance induced by the inner product satisfies the Fisher criterion, and then seek to transfer

this distance measure to the test set through transductive learning. Kernel FDA, on the other hand, tries

to find maximally separable feature vectors by optimizing the Fisher discriminant criterion using spectral

decomposition.
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1. Compute the n× n hyperparameter matrix Θ
[
exp(−‖xi−xj‖2

β )
]

and the n1 × n1 target kernel K11 according to (16).

2. Run the learning algorithm in (9). After obtaining C2|1 and C−1
22 ,

calculate K21 = −C−1
22 C21K11.

3. For every n1 + 1 ≤ k ≤ n, compute ‖F (xk,yk)−mi‖2 from (17), assign the test point xk

to Ci if ‖F (xk,yk)−mi‖2 ≤ ‖F (xk,yk)−mj‖2 for all j 6= i.

Figure 3: Kernel transductive discriminant analysis.

4 EM Algorithm for Kernel Matrix Completion

In practical applications, it is possible that the observed data are available only for a subset of samples.

Thus, when we work with a kernel matrix derived from such data, we are required to first complete the

missing entries in this kernel matrix [15, 37, 23, 34]. Specifically, given an incomplete kernel matrix K, we

partition it as K =




K11 K12

K21 K22


 where K11 is available, and K12 (= K′

21) and K22 are missing. Then,

our goal is to complete K12 and K22. This so-called kernel matrix completion problem can be regarded as a

special case of kernel matrix learning and can be included under the transductive learning framework of the

kernel matrix. A common approach to restoring K12 and K22 is through use of an auxiliary kernel matrix.

Recently, Tsuda et al. [37] devised an em algorithm for this problem. Moreover, they also described an

EM formulation, where the E- and M-steps are equivalent to the e- and m-steps, respectively. However, the

model in [37] does not have any observed data nor does it use any prior distribution of the missing data

{K12,K22}. It is necessary to assign a prior for the missing data to compute the expectation of the missing

data in the E-step. Thus, it is not really clear how to perform this EM algorithm [37]. In this Section, by

assigning a Wishart process prior to the kernel matrix K, we demonstrate a rigorous derivation of the EM

algorithm. First, if we let the auxiliary matrix to be the parameter matrix Σ of our model in Figure 1,

which is associated with the hyperparameter matrix Θ, then our model and the EM algorithm devised in

Section 2.3 can be easily used for this problem.

Now along the line in [37], the auxiliary matrix Σ is defined as Σ =
∑n

i=1 λiµiµ
′
i with λi > 0. Denote

U = [µ1, µ2, . . . , µn]′ and Λ = diag(λ1, λ2, . . . , λn). Here, U is assumed to be known, while Λ is unknown

and has to be estimated. Usually, µiµ
′
i’s are also called the base kernel matrices [11, 25, 9]. Thus, we
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seek to use a weighted combination of these fixed base matrices to approximate K. Consequently, the

problem is to estimate the weighting coefficients λi’s and the missing data {K12,K22}. As in Section 2.1,

we assume that the kernel matrix K is distributed according to a Wishart distribution Wn(r,Σ/r). Similar

to Section 2.1, we formulate it as a missing data problem where {K11,K21,K22·1} represents the complete

data, K11 represents the (incomplete) observed data, and {Λ, r} represents the unknown parameters. Denote

C = Σ−1 =
∑n

i=1 λ−1
i µiµ

′
i and partition µi as µ′i =

(
a′i,b

′
i

)
, where ai and bi are n1- and n2-dimensional

vectors, respectively. Then C11 =
∑n

i=1 λ−1
i aia′i, C22 =

∑n
i=1 λ−1

i bib′i, and C21 =
∑n

i=1 λ−1
i bia′i. The

log-likelihood function L(Λ, r | K) can be expressed as

L(Λ, r | K) =
rn

2
ln r − ln C(n, r) +

r

2

n∑

i=1

ln λ−1
i +

r − n− 1
2

ln |K| − r

2

n∑

i=1

λ−1
i µ′iKµi

=
rn

2
ln r − ln C(n, r) +

r

2

n∑

i=1

ln λ−1
i +

r − n− 1
2

(
ln |K11|+ ln |K22·1|

)

−r

2

n∑

i=1

λ−1
i

(
a′i K11 ai + 2b′i K21 ai + b′i K22·1 bi + b′i K21 K−1

11 K′
21 bi

)
. (18)

From (18) and the relation [26]

b′iK21K−1
11 K′

21bi = (vec(K′
21))

′(bib′i ⊗K−1
11 )vec(K′

21),

we have {ln |K22·1|,K22·1,K21, vec(K′
21)(vec(K′

21))
′} as complete-data sufficient statistic for {Λ, r}. Given

the tth estimates, Λ(t) and r(t), of Λ and r, by using the properties of Wishart distributions and matrix

variate normal distributions, we obtain

E
(
ln |K22·1|

∣∣K11,Λ(t), r(t)
)

= n2 ln
2

r(t)
+

n2−1∑

j=0

Ψ
(

r(t)− n1 − j

2

)
− ln |C22(t)|,

E
(
K22·1

∣∣K11,Λ(t), r(t)
)

=
r(t)− n1

r(t)
C−1

22 (t),

E
(
K21

∣∣K11,Λ(t), r(t)
)

= −C−1
22 (t)C21(t)K11,

E
(
vec(K′

21)(vec(K′
21))

′∣∣K11,Λ(t), r(t)
)

= (C−1
22 (t)⊗K11) vec(C12(t))

(
vec(C12(t))

)′(
C−1

22 (t)⊗K11

)
+

1
r(t)

C−1
22 (t)⊗K11,

Thus, for the E-step, we obtain the expectation of L(Λ, r|K) w.r.t. p(K22·1,K21

∣∣K11,Λ(t), r(t)) as

Q(Λ, r
∣∣Λ(t), r(t)) =

rn

2
ln r − ln C(n, r) +

r

2

n∑

i=1

(
ln λ−1

i − λ−1
i µ′iD(t)µi

)

+
r − n− 1

2

[
ln

|K11|
|C22(t)|n2 ln

2
r(t)

+
n2−1∑

j=0

Ψ
(r(t)− n1 − j

2
)]

.
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Here

D(t) =




D11(t) D′
21(t)

D21(t) D22(t)


 ,

where D11(t) = K11 and

D22·1(t) = C−1
22 (t), D21(t) = −C−1

22 (t)C21(t)K11. (19)

The M-step consists of two parts:

(i) To compute the (t+1)th estimate of λi as

λi(t+1) = µ′i D(t)µi. (20)

(ii) To compute the (t+1)th estimate of r by solving the following equation

n ln
r

2
−

n−1∑

j=0

Ψ
(r − j

2
)

=
n∑

i=1

ln µ′i D(t) µi − ln |D(t)|+ n2 ln
r(t)
2
−

n2−1∑

j=0

Ψ
(r(t)− n1 − j

2
)
. (21)

Since l ln z
2 −

∑l−1
j=0 Ψ

(
z−j
2

)
is a positive monotonic decreasing function of z for z ≥ l [7], n2 ln r(t)

2 −
∑n2−1

j=0 Ψ
( r(t)−n1−j

2

)
is always positive since n2 ln r(t)

2 ≥ n2 ln r(t)−n1
2 . Furthermore, applying the Hadamard’s

inequality [26] to the positive definite matrix UD(t)U′ and considering that µi’s are mutually orthonormal,

we have

|D(t)| = |UD(t)U′| ≤
n∏

i=1

µ′i D(t) µi.

Namely,
∑n

i=1 ln µ′i D(t) µi − ln |D(t)| is also nonnegative. Hence the right-hand side of (21) is always

positive. As a result, the solution of (21) is unique and may be obtained numerically through solving the

equation. Essentially, the EM algorithm alternately works with (19), (20) and (21). Obviously, (19) and

(20) correspond to the e- and m-steps, respectively, in the em algorithm of [37].

5 Experiments

In this Section, we present some experiments to illustrate the two classification methods devised in Section 3.

For the sake of easy reference, we refer to the classification methods in Sections 3.1 and 3.2 as GWPC and

KTDA, respectively. In all our experiments, the initialization of C is C(0) = 0.8Θ−1 and the maximum

number of iterations is set to 100. Once the maximum number of iterations is reached or the difference
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between the log likelihoods of two successive iterations is smaller than a threshold value of 0.00001, the EM

algorithm will stop.

5.1 Results on UCI Benchmark Data Sets

First, we illustrate the proposed method for classification problems. Experiments are performed on four

benchmark data sets (Wisconsin breast cancer, ionosphere, sonar, and wine) from the UCI Machine Learning

Repository. In our experiments, we compare GWPC and KTDA with kernel FDA (KFDA), SVM, kernel

nearest mean classifier (KNM) and 1-NN (i.e., k-NN with k = 1). The hyperparameter kernel Θ is based

on the Gaussian kernel. KNM allocates a data point x to Ci if ‖Fh(x)− ui‖2 ≤ ‖Fh(x)− uj‖2 for all j 6= i,

where

‖Fh(x)− ui‖2 = Kh(x,x) +
1

N2
i

∑

xj ,xl∈Ci

Kh(xj ,xl)− 2
Ni

∑

xj∈Ci

Kh(x,xj), (22)

with uj = 1
Nj

∑
xi∈Cj

Fh(xi), and Fh(·) and Kh(·, ·) are the nonlinear mapping and kernel function, respec-

tively, corresponding to Θ.

Experiments on these five classifiers are performed with the same setting. Specifically, we set β = 18.5

for the Wisconsin breast cancer and sonar data sets, and β = 2.5 for the ionosphere and wine data sets. In

addition, we use the public Matlab package SVMlight to implement SVM, where the regularization parameter

C is set to 300 for all four data sets. Results are averaged over 100 random splits of the data, one with 60%

for training and 40% for testing, and another with 10% for training and 90% for testing.

Tables 1–2 and Figures 4–5 show the results. The standard deviations with respect to 100 random

splits are also given inside brackets. As can be seen, the classification accuracies of GWPC, KTDA, KFDA

and SVM are almost the same. Moreover, they always outperform KNM because they all utilize class label

information from the training data during training but KNM does not. However, compared with KFDA and

SVM, GWPC and KTDA are relatively insensitive to the training set size. Moreover, we find that KTDA

generally outperforms GWPC, though we think that GWPC can be improved significantly by incorporating

active learning.

As mentioned in Section 3.2, it is unnecessary to perform M-step(ii) for updating r in KTDA. However,

in order to illustrate the dimensionality of the learned feature space, we also implement M-step(ii) in our

experiments, where we initialize r = n+1. Since η = (ρ−n−1)/r and ρ > n, one better choice for η is that
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Table 1: Test set accuracies (in %) obtained from the classification experiments (60% for training and 40%

for testing). The highest accuracies are shown in boldface.

Method breast cancer ionosphere sonar wine

GWPC 95.73 (±0.96) 92.44 (±1.92) 87.60 (±3.85) 96.59 (±1.75)

KTDA 96.00 (±0.95) 94.58 (±1.50) 87.40 (±3.61) 98.04 (±1.41)

KFDA 96.58 (±0.97) 92.34 (±1.99) 83.24 (±3.71) 96.04 (±2.55)

SVM 96.04 (±1.15) 92.06 (±2.08) 83.33 (±3.80) 96.92 (±1.95)

KNM 90.89 (±1.54) 68.58 (±4.55) 77.37 (±5.86) 94.39 (±3.10)

1-NN 95.14 (±1.00) 85.82 (±2.07) 84.18 (±3.77) 95.00 (±2.52)

Table 2: Test set accuracies (in %) obtained from the classification experiments (10% for training and 90%

for testing). The highest accuracies are shown in boldface.

Method breast cancer ionosphere sonar wine

GWPC 94.58 (±1.42) 85.58 (±5.63) 70.45 (±4.73) 93.79 (±2.14)

KTDA 94.47 (±1.47) 87.56 (±5.73) 70.22 (±4.59) 94.59 (±2.00)

KFDA 93.30 (±1.82) 77.06 (±10.12) 67.07 (±5.55) 85.37 (±7.83)

SVM 93.35 (±2.05) 77.37 (±10.00) 67.07 (±5.50) 92.59 (±3.29)

KNM 90.89 (±1.51) 76.99 (±7.78) 65.63 (±5.81) 87.22 (±5.32)

1-NN 92.94 (±1.59) 81.14 (±4.27) 69.18 (±4.60) 91.71 (±3.00)

η ∈ [0, 1]. In order to study the effect of η on r, we try both η = 1.0 and η = 0.5 in the experiments. For each

of the 100 random data splits, r converges to a fixed point. As an illustrative example, we take one of the

splits to demonstrate the convergence of r (Figure 6). After the EM algorithm has converged, the average

estimated values of r in the 100 random data splits for different values of n1 (number of training examples)

and η are shown in Table 3, showing that the feature spaces are indeed of very high dimensionality. We find

that for η = 1.0 and η = 0.5, the classification accuracy is insensitive, so we only report the classification

results with η = 0.5. As can be seen, with a decrease in n1 or η, the value of r increases. When n1

gets smaller, the known part K11 of the kernel matrix becomes smaller. As a result, information from

the hyperparameter matrix Θ, which is defined via the Gaussian kernel, will dominate. We know that the
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Figure 4: Box plots of the classification results for GWPC, KTDA, KFDA, SVM, KNM and 1-NN (60% for

training and 40% for testing).

dimensionality of the feature space induced by the Gaussian kernel is infinite. This probably explains why

r increases as a result. As for the relationships between r and η, recall that C is distributed according to

Wn(ηr + n + 1, (ηrΘ)−1) in our graphical model. Thus, there exists a tradeoff between r and η.
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Figure 5: Box plots of the classification results for GWPC, KTDA, KFDA, SVM, KNM and 1-NN (10% for

training and 90% for testing).

5.2 Results on USPS Digit Recognition

In this set of experiments, we use GWPC and KTDA to classify handwritten digits of size 16×16 from the

USPS database. For simplicity, we only use digits 1, 2, 3 and 4 as four classes, comprising of 1269, 929,

824 and 852 examples, respectively. We set η = 0.5. The results are averaged over 100 random splits of the

data, one with 10% for training and 90% for testing and the other with 1% for training and 99% for testing.
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Figure 6: Change of estimated value of r with the number of learning iterations for different settings.

Table 4 shows the averages and standard deviations of the test set accuracies over 100 random splits of the

data. The corresponding box plots are shown in Figure 7. Here, the regularization parameter C in the SVM

is set to 300 and β in the Gaussian kernel is set to the average Euclidean distance between training examples.

We see that with decreasing size of the training data set, both GWPC and KTDA outperform KFDA and

SVM. Considering that the USPS data possesses good local consistency, we implemented the consistency

method of Zhou et al. [44] for comparison. The method was initialized with the classification result of 1-NN

and ω in it is fixed at 0.95. When we used the value of β reported above, the classification accuracy of the

consistency method [44] is very low (< 50%). We found that the β in this method prefers smaller values.
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Table 3: Average estimated values of r in the four benchmark data sets.

# training examples (n1) η breast cancer ionosphere sonar wine

in terms of data set size n (n = 569) (n = 351) (n = 208) (n = 178)

1.0 6,761 (±7) 3,040 (±10) 1,723 (±5) 1,502 (±8)

0.6n
0.5 7,366 (±7) 4,407 (±13) 2,521 (±5) 2,187 (±7)

1.0 19,015 (±159) 11,447 (±226) 6,569 (±128) 6,445 (±195)

0.1n
0.5 28,118 (±195) 16,997 (±226) 9,796 (±155) 9,422 (±223)

Thus, we used β = 10. In this case, the consistency method obtained better accuracy, which is given in

Table 5. However, the classification accuracies of SVM and KFDA are very low (< 60%). Both GWPC and

KTDA, whose accuracies are given in Table 5, are only slightly affected by changes in the value of β.

Table 4: Average test set accuracies obtained from the classification experiments on the USPS database.

The highest accuracies are shown in boldface.

# training examples GWPC KTDA KFDA SVM KNM 1-NN

10% 97.74 97.63 97.59 97.04 94.55 96.58

(±0.31) (±0.34) (±0.36) (±0.49) (±0.45) (±0.37)

1% 93.05 92.45 91.47 90.45 92.08 88.98

(±1.27) (±1.36) (±3.83) (±1.65) (±1.30) (±1.75)

Table 5: Average test set accuracies obtained from the classification experiments on the USPS database

when β = 10. The highest accuracies are shown in boldface.

# training examples GWPC KTDA Consistency method

10% 96.73 (±0.29) 96.61 (±0.42) 98.04 (±0.29)

1% 90.84 (±1.32) 90.44 (±1.38) 96.17 (±1.27)

6 Conclusion

In this paper, we have proposed a model-based approach for transductive learning of the kernel matrix.

Formulated as a missing value problem, we devise an EM algorithm for learning the missing entries of
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Figure 7: Box plots of the classification results for GWPC, KTDA, KFDA, SVM, KNM and 1-NN on the

USPS database.

the kernel matrix and the unknown parameters of the underlying distribution. We have demonstrated the

efficacy of this approach by proposing two semi-supervised learning methods. In particular, we have studied

our hierarchical transductive learning framework with the EM algorithm under the classification setting.

In another work [43], based on this same framework, we also devised the Tanner-Wong data augmentation

algorithm [36] which is a variant of MCMC. It is also possible to apply the framework to regression problems

with Gaussian processes. This direction will be pursued in our future work.

Recall that in most existing kernel-based methods, only the kernel on the input set is used. However,

in our first method, the target kernel K and the hyperparameter kernel Θ are defined on the output set

and input set, respectively. Their relationship is established through the parameter matrix Σ (or C). So

the parameter matrix plays a role similar to the cross-covariance kernel [2]. In the second method, since the

discriminant kernel K is the direct sum of the ideal kernel [11] on the output set and the Gaussian kernel

on the input set, it can also be regarded as a cross-covariance kernel that relates the input space with the

output space. In fact, our proposed methods for semi-supervised learning consist of two separate processes:

the first explores the mutual relationship between kernels on the input and output sets through a hierarchical

model, and the second implements the classification task with the target kernel or discriminant kernel.
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A Matrix Theory

A.1 Matrix Variate Distributions

In the following, we will briefly introduce the concept of random matrices and some common matrix variate

distributions. Interested readers are referred to [16] for more details.

Definition 2 An m× n random matrix X = [xij ] is a matrix of random variables x11, . . ., xmn.

Obviously, random vectors and random variables are special cases of random matrices. Analogous to ran-

dom vectors and random variables, random matrices also follow some distributions, called matrix variate

distributions, with common examples including the normal, Wishart, and inverted Wishart distributions.

Definition 3 An s× t random matrix X is said to follow the matrix variate normal distribution with mean

matrix M and covariance matrix A⊗B (denoted X ∼ Ns,t(M,A⊗B)), where A(s×s) Â 0 and B(t×t) Â 0,

if vec(X′) ∼ N (vec(M′),A⊗B). The corresponding p.d.f. is

p(X) = (2π)−st/2|A|−t/2|B|−s/2 exp
[
−1

2
tr

(
A−1(X−M)B−1(X−M)′

)]
.

Definition 4 An m×m symmetric positive definite random matrix W is said to follow the Wishart distri-

bution (denoted W ∼Wm(ρ,S)) if

p(W) =
1

C(m, ρ)
|S|−ρ/2|W|(ρ−m−1)/2 exp

(
−1

2
tr(S−1W)

)
.

Here, ρ ≥ m is the degree of freedom, S(m×m) Â 0 is the parameter matrix, and C(m, ρ) = 2ρm/2πm(m−1)/4·
∏m

j=1 Γ(ρ+1−j
2 ) is a normalization term with Γ(·) being the Gamma function.
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Definition 5 An m×m symmetric positive definite random matrix V is said to follow the inverted Wishart

distribution (denoted V ∼ IWm(ρ,T)) if

p(V) =
1

C(m, ρ)
|T|ρ/2|V|−(ρ+m+1)/2 exp

(
−1

2
tr(TV−1)

)
.

Some properties of these distributions are given in the subsequent part. In particular, the first moments

of W ∼Wm(ρ,S) and V ∼ IWm(ρ,T) are E(W) = ρS and E(V) = T/(ρ−m− 1), respectively.

Proposition 1

(1) If X ∼ Ns,t(M,A⊗B), then

E(X) = M,

E ((X−M)(X−M)′) = A⊗B.

(2) If W ∼Wm(ρ,S), then

E(W) = ρS

and

E (log |W|) = log |S|+ m log 2 +
m−1∑

j=0

Ψ
(

ρ− j

2

)
.

Here, E(·) denotes the expectation and Ψ(z) = Γ′(z)/Γ(z) is the digamma function.

Proof. The moments of X and W are given in [16]. To obtain E(log |W|), consider

∫
|S|−ρ/2|W|(ρ−m−1)/2exp

(
−1

2
tr(S−1W)

)
(dW) = C(m, ρ),

and take the derivatives of both sides with respect to ρ:

1
2

∫
(log |W| − log |S|)|S|−ρ/2|W|(ρ−m−1)/2exp

(
−1

2
tr(S−1W)

)
(dW) = C ′(m, ρ).

Take log of C(m, ρ) as

log C(m, ρ) =
ρm

2
log 2 +

m(m−1)
4

log π +
m−1∑

j=0

log Γ(
ρ−j

2
).

Then take the derivative of log C(m, ρ) with respect to ρ:

C ′(m, ρ)
C(m, ρ)

=
m

2
log 2 +

1
2

m−1∑

j=0

Γ′(ρ−j
2 )

Γ(ρ−j
2 )

=
m

2
log 2 +

1
2

m−1∑

j=0

Ψ(
ρ−j

2
).
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Thus,

E (log |W|) =
∫

log |W|p(W)(dW) = log |S|+ m log 2 +
m−1∑

j=0

Ψ
(

ρ− j

2

)
.

ut

The following results, which can be found in [16], follow easily from the definitions.

Theorem 3 Suppose W Â 0 and W ∼Wm(ρ,S). Partition W and S as




W11 W12

W21 W22


 and




S11 S12

S21 S22




respectively, where W11 and S11 are of size k × k. Let W22·1 = W22 − W21W−1
11 W12 and S22·1 =

S22 − S21S−1
11 S12 be the Schur complements of W11 and S11, respectively. Then

(i) W11 ∼Wk(ρ,S11) and W22 ∼Wm−k(ρ,S22);

(ii) W21 | W11 ∼ N (S21S−1
11 W11,S22·1 ⊗W11); and

(iii) W22·1 ∼Wm−k(ρ− k,S22·1) and is independent of W21 and W11.

Theorem 4 If W ∼Wm(ρ,S), then W−1 ∼ IWm(ρ,S−1).

A.2 Wedge Product and Matrix Differentials

For any matrix X, we denote the matrix of differentials (dxij) by dX.

Definition 6 For an arbitrary m×n matrix X, (dX) denotes the wedge product (or exterior product) of all

mn elements of dX:

(dX) ≡ dx11 ∧ · · · ∧ dx1n ∧ · · · ∧ dxm1 ∧ · · · ∧ dxmn.

If X is a symmetric n× n matrix, (dX) is the wedge product of the 1
2m(m + 1) distinct elements of dX:

(dX) ≡ dx11 ∧ · · · ∧ dx1n ∧ dx22 ∧ · · · ∧ dx2n ∧ · · · ∧ dxmm.

We list below some results of matrix calculus that will be used in the sequel.

Proposition 2

(a) If X and A are p× q and q × p, then
∂tr(XA)

∂X
= A′;
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(b) If X, A and B are p× q, q × q and p× p, then

∂tr(AX′BX)
∂X

= BXA + B′XA′;

(c) If X is a p× p symmetric positive definite matrix, then

∂ log | X |
∂X

= 2X−1 − diag(X−1),

∂tr(XA)
∂X

= A + A′ − diag(A);

(d) If X is a p× p symmetric positive definite matrix and A and B are q × p and p× q, then

∂tr(AX−1B)
∂X

= −X−1(BA + A′B′)X−1 + diag(X−1BAX−1).

Proof. Here we only prove (d). As I = XX−1, we have

0 = ∂I/∂x = ∂/∂x(XX−1) = ∂/∂x(X)X−1 + X∂/∂x(X−1).

If i 6= j, since X is symmetric, then ∂X/∂xij = eie′j + eje′i, where ei is the ith column of I. It then follows

that ∂/∂xij(X−1) = −X−1(eie′j + eje′i)X
−1. Thus,

∂/∂xij(tr(AX−1B)) = −tr
(
AX−1(eie′j + eje′i)X

−1B
)

= −tr
(
AX−1eie′jX

−1B
)− tr

(
AX−1eje′iX

−1B
)

= −e′jX
−1BAX−1ei − e′iX

−1BAX−1ej

= −(X−1BAX−1)ji − (X−1BAX−1)ij

= −(X−1A′B′X−1)ij − (X−1BAX−1)ij .

On the other hand, as ∂X/∂xii = eie′i, thus

∂/∂xii(tr(AX−1B)) = −(X−1A′B′X−1)ii.

Result follows from combining the two. ut
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A.3 The Kronecker Product of Matrices

Definition 7 Let A = (aij) be a p× q matrix and B = (bij) be an s× t matrix. The Kronecker product of

A and B, denoted by A⊗B, is the ps× qt matrix

A⊗B =




a11B a12B . . . a1qB

a21B a22B . . . a2qB
...

...
. . .

...

ap1B ap2B . . . apqB




.

Some important properties of the Kronecker product are listed in the following.

Proposition 3

(a) (A⊗B)′ = A′ ⊗B′.

(b) If A and B are both n× n, then tr(A⊗B) = tr(A)tr(B).

(c) If A and B are both n× n, then |A⊗B| = |A|n · |B|n.

(d) If A is k × l, B is p× q, X is l × s, and Y is q × t, then (A⊗B)(X⊗Y) = AX⊗BY.

(e) If A and B are nonsingular, then (A⊗B)−1 = A−1 ⊗B−1.

The following proposition [18] shows the connection between Kronecker product and the vec of a matrix.

Proposition 4 If A is t× k, X is k × l, B is l × s, Y is l × l and D is l × t, then

(i) vec(AXB) = (B′ ⊗A)vec(X);

(ii) tr(AXD) = (vec(A′))′(I⊗X)vec(D);

(iii) tr(AXYX′D) = (vec(X′))′(DA⊗Y′)vec(X′) = (vec(X′))′(A′D′ ⊗Y)vec(X′).

A.4 Proof of Lemma 1

Lemma 2 With C = Σ−1 as partitioned in (5), we have C11 = Σ−1
11·2, C−1

11 C12 − Σ12Σ−1
22 , C22 = Σ−1

22·1

and C−1
22 C21 = −Σ21Σ−1

11 .
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Proof. As

Σ ·C =




Σ11 Σ12

Σ21 Σ22


 ·




C11 C12

C21 C22


 = I,

we have 



Σ11C11 + Σ12C21 = I,

Σ11C12 + Σ12C22 = 0,

Σ21C11 + Σ22C21 = 0,

Σ21C12 + Σ22C22 = I.

Thus, C21 = −Σ−1
22 Σ21C11, C12 = −Σ−1

11 Σ12C22, (Σ11−Σ12Σ−1
22 Σ21)C11 = I and (Σ22−Σ21Σ−1

11 Σ12)C22 =

I, and result follows. ut

B Details of the Proposed EM Algorithm

B.1 Derivation of the E-Step

The E-step is equivalent to computing the expectation Q(C, r | C(t), r(t)) of the complete data log-likelihood

function:

Q(C, r | C(t), r(t))

= E [log p (K | C, r) | K11,C(t), r(t)]

=
∫

L (C, r | K) p(K22·1 | C(t), r(t))p(K21 | K11,C(t), r(t))(dK22·1) ∧ (dK21). (23)

Substituting (6) into (23), we obtain

Q(C, r | C(t), r(t)) =
rn

2
log r − log C(n, r) +

r

2
log |C11·2|+ r

2
log |C22|

−r

2
tr(C11·2K11)− r

2
tr(C12C−1

22 C21K11) +
r − n− 1

2
log |K11|

+
r − n− 1

2

∫
log |K22·1|p(K22·1 | C(t), r(t))(dK22·1)

−r

2

∫
tr(C22K22·1)p(K22·1 | C(t), r(t))(dK22·1)

−r

∫
tr(C12K21)p(K21 | K11,C(t), r(t))(dK21)

−r

2

∫
tr(C22K21K−1

11 K12)p(K21 | K11,C(t), r(t))(dK21). (24)
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Using Corollary 1 and Proposition 1 in Appendix A.1, we have:

∫
tr(C22K22·1)p(K22·1 | C22(t), r(t))(dK22·1) =

r(t)− n1

r(t)
tr(C22C−1

22 (t)),

∫
log |K22·1|p(K22·1 | C(t), r(t))(dK22·1) = n2 log

2
r(t)

+
n2−1∑

j=0

Ψ(
r(t)− n1 − j

2
)

− log |C22(t)|,
∫

tr(C12K21)p(K21 | K11,C(t), r(t))(dK21) = −tr
(
C12C2|1(t)K11

)
. (25)

As a result of using the statement “Y is N (M,C ⊗ D)” is equivalent to the statement that “y is

N (m,C⊗D)” with y = vec(Y′) and m = vec(M′), we obtain

E (vec(K12)|K11) = −vec(K11C12C−1
22 )− (C−1

22 ⊗K11)vec(C12),

E (vec(K12)(vec(K12))′|K11) = (C−1
22 ⊗K11)vec(C12)(vec(C12))′(C−1

22 ⊗K11)

+
1
r
C−1

22 ⊗K11.

On the other hand,

tr(C22K21K−1
11 K12) = (vec(K12))′(IC22 ⊗K−1

11 )vec(K12)

= tr
(
(C22 ⊗K−1

11 )vec(K12)(vec(K12))′
)
.

It then follows from Propositions 3 and 4 in Appendix A.3 that

∫
tr(C22K21K−1

11 K′
21)p(K21 | K11,C(t), r(t))(dK21)

=
∫

tr
(
(C22 ⊗K−1

11 )vec(K12)(vec(K12))′
)
p (vec(K12) | K11,C(t), r(t)) dvec(K12)

=
n1

r(t)
tr

(
C22C−1

22 (t)
)

+ tr
(
C22C2|1(t)K11C′

2|1(t)
)

. (26)

So we obtain (7) through substituting (25) and (26) back into (24). It is worthy to note that

{K22·1, log |K22·1|,K21,K21, vec(K′
21)(vec(K′

21))
′}

are complete-data sufficient statistic for {C11·2,C21,C22, r}.
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B.2 Derivation of the M-Step

After some calculations, we have

log p(C | Θ, r) =
(ηr + n + 1)n

2
log(ηr)− log C(n, ηr + n + 1) +

ηr + n + 1
2

log |Θ|

+
ηr

2
log |C11·2| − ηr

2
tr(C11·2Θ11)− ηr

2
tr(C12C−1

22 C21Θ11)

−ηrtr(C21Θ12)− ηr

2
tr(C22Θ22) +

ηr

2
log |C22|. (27)

Our M-step is now to maximize Q (C, r | C(t), r(t)) + log p(C | Θ, r, η) with respect to C and r, and then

obtain C(t + 1) and r(t + 1). Letting F (C, r | C(t), r(t)) = Q(C, r | C(t), r(t)) + log p(C | Θ, r), we

reformulate it as

F (C, r | C(t), r(t)) =
r

2
Q1(C | C(t)) +

1
2
Q2(r | C(t), r(t)),

where Q1(C | C(t)) and Q2(r | C(t), r(t)) are defined in (11) and (12), respectively. As




∂F (C,r|C(t),r(t))
∂C = 0

∂F (C,r|C(t),r(t))
∂r = 0

⇐⇒





∂Q1(C|C(t))
∂C = 0

∂Q2(r|C(t),r(t))
∂r + Q1(C | C(t)) = 0,

our M-step can be separated into two parts: first, obtain the (t+1)th estimate of C by solving ∂Q1(C|C(t))
∂C = 0;

then, obtain the (t+1)th estimate of r by solving (10). For the first part, using Proposition 2 in Appendix A.2,

we obtain the derivatives of Q1(C|C(t)) with respect to C11·2, C21 and C22 as

∂Q1

∂C11·2
= 2(1 + η)C−1

11·2 − (1 + η)diag(C−1
11·2)− 2(K11 + ηΘ11) + diag(K11 + ηΘ11),

∂Q1

∂C21
= 2C−1

22 (t)C21(t)K11 − 2ηΘ21 − 2C−1
22 C21(K11 + ηΘ11),

∂Q1

∂C22
= 2(1 + η)C−1

22 − (1 + η)diag(C−1
22 )− 2(C−1

22 (t) + ηΘ22) + diag
(
C−1

22 (t) + ηΘ22

)

−2C−1
22 (t)C21(t)K11C12(t)C−1

22 (t) + diag
(
C−1

22 (t)C21(t)K11C12(t)C−1
22 (t)

)

+2C−1
22 C21(K11 + ηΘ11)C12C−1

22 − diag
(
C−1

22 C21(K11 + ηΘ11)C12C−1
22

)
.

As 2A − diag(A) = 0 is equivalent to A = 0, the saddle point equations of F with respect to C11·2, C21

and C22 are

C11·2 = (1 + η)(K11 + ηΘ11)−1,

C−1
22 C21 = (C−1

22 (t)C21(t)K11 − ηΘ21)(K11 + ηΘ11)−1,

(1 + η)C−1
22 = C−1

22 (t) + ηΘ22 + C−1
22 (t)C21(t)K11C12(t)C−1

22 (t)

−C−1
22 C21(K11 + ηΘ11)C12C−1

22 .
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Substituting the second equation into the third equation above, we obtain the M-step in (11).

B.3 Proof of C(t+1) Â 0

Assuming that C(t) Â 0, we now proceed to prove that C(t+1) given in (9) is also positive definite. Consider

the following equality:

C−1
22 (t) + ηΘ22 + C2|1(t)K11C′

2|1(t)−C2|1(t+1)(K11 + ηΘ11)C′
1|2(t+1)

= C−1
22 (t) + ηΘ22 + C2|1(t)K11C′

2|1(t)

−(C2|1(t)K11 − ηΘ21)(K11 + ηΘ11)−1(C2|1(t)K11 − ηΘ12)

= C−1
22 (t) + ηΘ22 + C−1

22 (t)C21(t)K11C12(t)C−1
22 (t)

−(C−1
22 (t)C21(t)K11 − ηΘ21)(D11(t) + Θ11)−1(K11C12(t)C−1

22 (t)− ηΘ12)

= D22(t) + ηΘ22 − (D21(t) + ηΘ21)(K11 + Θ11)−1(D12(t) + ηΘ12),

where D11(t) = K11, D21(t) = D′
12(t) = −C−1

22 (t)C21(t)K11 and D22(t)C−1
22 (t)+C−1

22 (t)C21(t)K11C12(t)C−1
22 (t).

Now we define a new matrix as

D(t) =




D11(t) D12(t)

D21(t) D22(t)


 . (28)

It is easy to obtain D22·1(t) = C−1
22 (t). So we have D(t) Â 0 and D(t) + ηΘ Â 0. This then follows that

D22(t)+ηΘ22− (D21(t)+ηΘ21)(D11(t)+ηΘ11)−1(D12(t)+ηΘ12), the Schur complement of D11(t)+ηΘ11

in D(t) + ηΘ, is positive definite. Therefore, by (9), one obtains C22(t+1) Â 0. Integrating C11·2(t+1) Â 0,

we have C(t+1) Â 0 as long as C(0) Â 0.

B.4 Proof of Theorem 2

Using the matrix D(t) defined in (28), we can re-express Q1(C(t + 1) | C(t)) as

Q1(C(t + 1) | C(t)) = (1 + η) log |C(t + 1)| − tr
(
C(t + 1)(D(t) + ηΘ)

)
,
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and compute

∂Q2

∂r
= n2 log

2
r(t)

+
n2−1∑

j=0

Ψ(
r(t)− n1 − j

2
) + log |D(t)|+ η log |Θ|

+n +
(ηr + n + 1)ηn

ηr
+ ηn log

ηr

ηr + n + 1
+ n log

r

2
−

n−1∑

j=0

Ψ(
r − j

2
)

+ηn log
ηr + n + 1

2
− η

n−1∑

j=0

Ψ(
ηr + n + 1− j

2
).

So we have

n log
r

2
−

n−1∑

j=0

Ψ(
r − j

2
) + ηn log

ηr + n + 1
2

− η

n−1∑

j=0

Ψ(
ηr + n + 1− j

2
)

+ ηn
n + 1
ηr

− ηn log
(

1 +
n + 1
ηr

)
= n2 log

r(t)
2
−

n2−1∑

j=0

Ψ(
r(t)− n1 − j

2
) (29)

+ tr
(
C(t+1)(D(t) + ηΘ)

)− log |D(t)| − η log |Θ| − (1 + η) log |C(t+1)| − (1 + η)n.

It is clear that ηnn+1
ηr −ηn log

(
1 + n+1

ηr

)
is a positive decreasing function of r for r ≥ n. From the Lemma in

the Appendix of [7], we also obtain that both n log r
2−

∑n−1
j=0 Ψ( r−j

2 ) and ηn log ηr+n+1
2 −η

∑n−1
j=0 Ψ(ηr+n+1−j

2 )

are positive monotonic decreasing functions of r for r ≥ n. Thus, the left-hand side of (29) is a positive

monotonic decreasing function of r for r ≥ n. Furthermore, as

tr
(
C(t + 1)K(t)

)
+ ηtr

(
C(t + 1)Θ

) ≥ log |C(t + 1)K(t)|+ n + η log |C(t + 1)Θ|+ ηn,

together with n2 log r(t)
2 −∑n2−1

j=0 Ψ( r(t)−n1−j
2 ) ≥ 0, which is due to n2 log r(t)

2 ≥ n2 log r(t)−n1
2 , the right-hand

side of (29) is always nonnegative. Therefore the solution of (29) is uniquely determined.
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